NL2026356B1 - A 5G-oriented Cardiac Composite Finite Field Multiplication Device - Google Patents

A 5G-oriented Cardiac Composite Finite Field Multiplication Device Download PDF

Info

Publication number
NL2026356B1
NL2026356B1 NL2026356A NL2026356A NL2026356B1 NL 2026356 B1 NL2026356 B1 NL 2026356B1 NL 2026356 A NL2026356 A NL 2026356A NL 2026356 A NL2026356 A NL 2026356A NL 2026356 B1 NL2026356 B1 NL 2026356B1
Authority
NL
Netherlands
Prior art keywords
multiplication
finite field
module
serves
composite finite
Prior art date
Application number
NL2026356A
Other languages
Dutch (nl)
Other versions
NL2026356A (en
Inventor
Huang Xin
Yi Haibo
Yang Jinfeng
Original Assignee
Shenzhen Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Polytechnic filed Critical Shenzhen Polytechnic
Priority to NL2026356A priority Critical patent/NL2026356B1/en
Publication of NL2026356A publication Critical patent/NL2026356A/en
Application granted granted Critical
Publication of NL2026356B1 publication Critical patent/NL2026356B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/722Modular multiplication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

The invention discloses a 5G-oriented cardiac composite finite field multiplication device, which comprises a controller and a GF (2“) standard basis multiplier, which is used to perform multiplication of operands based on standard basis on GF(2“), GF (2“) multiplier, addition operator, multiplication operator and square operator. The beneficial effects of the invention are: the method based on the cardiac model is used to perform the multiplication of the composite finite field, which has obvious speed advantages compared with the existing multipliers in the multiplication on the composite finite field. In addition, when performing operations, segmented synchronous operations can be performed to further accelerate the operation rate, which can meet the application of 5G equipment.

Description

A 5G-oriented Cardiac Composite Finite Field Multiplication Device Technical Field
[001] The invention relates to a finite field multiplication device, in particular to a 5G-oriented cardiac composite finite field multiplication device, which belongs to the field of computer application technology.
Technical Background
[002] The finite field is a field containing only a finite number of elements, which is widely used in various engineering fields. Currently, the multiplication of finite fields can be roughly divided into four categories according to the different design bases: multiplication based on standard basis, multiplication based on normal basis, multiplication based on double bases and multiplication based on triangular basis.
[003] As a special form of finite field, composite finite field is an isomorphic form of finite field, which is effectively used in various cryptographic applications and coding techniques. The effective multiplication design of composite finite fields plays a crucial role in the realization of cryptographic algorithms. A variety of well-known multipliers of composite finite fields existing in the existing technology, including software multipliers and hardware multipliers, which are devices that perform multiplication operations on two operands.
[004] With the development of 5G communication, data operations on signal processing, data storage and information transmission have been greatly improved. However, the multiplier of the composite finite field existing in the existing technology rarely uses the cardiac model. In addition, it is unable to perform segmented synchronous operations during operations, which results in low operation efficiency under real-time and speed-sensitive environment and cannot be well applied to 5G equipment.
Summary of the Invention
[005] The purpose of the invention is to provide a 5G-oriented cardiac composite finite field multiplication device in order to solve the above problems.
[006] The invention achieves the above purposes through the following technical solutions: a 5G-oriented cardiac composite finite field multiplication device, which comprises:
[007] A controller, which is used to schedule the input of multiplier and control data signal connected with it and the output of control data signal;
[008] Among them, the controller comprises a signal acquisition port, an input port, a processor, a scheduler and an output port. The signal acquisition port is used to collect the clock signal of 5G equipment, and the output end of the signal acquisition port is connected with the input end of the input port, the input port is used to input the operands of the composite finite field, and the output end of the input port is connected with the input end of the processor, the 1 processor is used to perform and control GF(2") standard basis multiplier and GF(2") multiplier, and the output end of the processor is connected with the output port, the output port is used to output the multiplication operation results performed by the composite finite field multiplier, the scheduler is used to call GF(2") standard basis multiplier and GF(2") multiplier, and the output end of the scheduler is connected with the input end of the processor.
[009] A GF(2" standard basis multiplier, which is used to perform multiplication of operands based on standard basis on GF(2");
[0010] A GF(2") multiplier, which is used to perform composite finite field multiplication of operands on GF(2");
[0011] An addition operator, which is used to perform addition operation of composite finite field;
[0012] A multiplication operator, which is used to perform multiplication operation of composite finite field;
[0013] A square operator, which is used to perform square operation of composite finite field.
[0014] As a further solution of the invention: the processor comprises an XOR gate circuit for processing addition operation, multiplication operation and square operation on GF(2") field.
[0015] As a further solution of the invention: the operands input by the input port comprise: operand a (x), operand b (x) and operand c (x). The operand a (x) has the representation form: a(X)=am-1x™'+an.2x™2+.. +ap; the operand b (x) has the representation form: b(x)=bm.1x™"+bm.
x™2+. +bg; the operand c (x) has the representation form: ¢(x)=CmnaX™"+Cm2x"2+...+Co.
[0016] As a further solution of the invention: the addition operator comprises a first addition operation module and a second addition operation module, and the first addition operation module and the second addition operation module jointly perform the addition operation on the finite field, which is used to calculate c (x) and d (x) of the known element e (x) of the finite field GF2%;
[0017] Among them, C(X)=Cni2-1 XV + Cp 2XV 2+ Cp d(X)=dn-1 xX" +dnox"2+. +dn2 e (x) =c(x)+d(x)
[0018] As a further solution of the invention: the multiplication operator comprises a first multiplication operation module and a second multiplication operation module, and the first multiplication operation module comprises a first processor and a cardiac array, the second multiplication operation module comprises a second processor and a cardiac array, the cardiac array is used to perform multiplication operation, the first processor is used to control the algorithm of the cardiac array in the first multiplication operation module, and the second processor is used to control the algorithm of the cardiac array in the second multiplication operation module.
2
[0019] As a further solution of the invention: the first multiplication operation module and the second multiplication operation module jointly perform the multiplication operation on the finite field, which is used to calculate c (x) and d (x) of the known element e (x) of the finite field GF(2");
[0020] nl (x)= da x! i=0 1-1 d(x) = > bx! k=0
[0021] Among them, a; and b, are the inputs of the multiplicative cardiac array.
[0022] As a further solution of the invention: the square operator comprises a first square operation module and a second square operation module, and first square operation module and the second square operation module are used to calculate c (x) of the known element e (x) of the finite field GF(2");
[0023] Among them, 5-1 e(x) = c(x) ex i=0
[0024] As a further solution of the invention: the addition operator, multiplication operator and square operator constitute the subfield operator of the composite finite field multiplication device, and are used to perform addition, multiplication and square of the operands on the subfield, respectively.
[0025] As a further solution of the invention: the composite finite field multiplication device is a special integrated circuit device and a programmable logic FPGA device.
[0026] The beneficial effects of the invention are: the 5G-oriented cardiac composite finite field multiplication device is reasonably designed, the method based on the cardiac model is used to perform the multiplication of the composite finite field, which has obvious speed advantages compared with the existing multipliers in the multiplication on the composite finite field. In addition, when performing operations, segmented synchronous operations can be performed to further accelerate the operation rate, which can meet the application of 5G equipment. Description of Drawings
[0027] Figure 1 is a structure diagram of the invention;
[0028] Figure 2 is a structure diagram of the controller of the invention;
[0029] Figure 3 is a structure diagram of the addition operator of the invention;
[0030] Figure 4 is a structure diagram of the multiplication operator of the invention;
[0031] Figure 5 is a structure diagram of the square operator of the invention; 3
Detailed Description of the Presently Embodiments
[0032] In the following part, the technical solutions in the embodiments of the invention will be described clearly and completely in conjunction with the drawings in the embodiments of the invention. Obviously, the described embodiments are only a part of the embodiments of the invention, not all of the embodiments. In view of the embodiments in the invention, all other embodiments obtained by those ordinary technical personnel in this field without paying any creative work belong to the scope of protection of the invention.
[0033] Please refer to Figure 1 to Figure 5, a 5G-oriented cardiac composite finite field multiplication device, which comprises:
[0034] A controller, which is used to schedule the input of multiplier and control data signal connected with it and the output of control data signal;
[0035] Among them, the controller comprises a signal acquisition port, an input port, a processor, a scheduler and an output port. The signal acquisition port is used to collect the clock signal of 5G equipment, and the output end of the signal acquisition port is connected with the input end of the input port, the input port is used to input the operands of the composite finite field, and the output end of the input port is connected with the input end of the processor, the processor is used to perform and control GF(2") standard basis multiplier and GF(2") multiplier, and the output end of the processor is connected with the output port, the output port is used to output the multiplication operation results performed by the composite finite field multiplier, the scheduler is used to call GF(2") standard basis multiplier and GF{2") multiplier, and the output end of the scheduler is connected with the input end of the processor.
[0036] A GF(2" standard basis multiplier, which is used to perform multiplication of operands based on standard basis on GF(2");
[0037] A GF(2") multiplier, which is used to perform composite finite field multiplication of operands on GF(2");
[0038] An addition operator, which is used to perform addition operation of composite finite field;
[0039] A multiplication operator, which is used to perform multiplication operation of composite finite field;
[0040] A square operator, which is used to perform square operation of composite finite field.
[0041] Further, in the embodiment of the invention, the processor comprises an XOR gate circuit for processing addition operation, multiplication operation and square operation on GF(2") field.
[0042] Further, in the embodiment of the invention, the operands input by the input port comprise: operand a (x), operand b (x) and operand c (x). The operand a (x) has the representation form: a(x)=am.1x™'+am.2x™2+...+aq; the operand b (x) has the representation form: b(X) = bm1x™ +bm.2x™2+.. +b; the operand c (x) has the representation form: cx) =Cm-1X7+Cm- 2XM24 | +Co.
4
[0043] Further, in the embodiment of the invention, the addition operator comprises a first addition operation module and a second addition operation module, and the first addition operation module and the second addition operation module jointly perform the addition operation on the finite field, which is used to calculate ¢ (x) and d (x) of the known element e (x) of the finite field GF(2%);
[0044] Among them, C(X)=Cnyz-1X"2 + Cn 2X24 +Co d(X)=dn.- 1X" +dn 2x" 2+. +dn2 e (x) =c(x)+d(x)
[0045] Further, in the embodiment of the invention, the multiplication operator comprises a first multiplication operation module and a second multiplication operation module, and the first multiplication operation module comprises a first processor and a cardiac array, the second multiplication operation module comprises a second processor and a cardiac array, the cardiac array is used to perform multiplication operation, the first processor is used to control the algorithm of the cardiac array in the first multiplication operation module, and the second processor is used to control the algorithm of the cardiac array in the second multiplication operation module.
[0048] Further, in the embodiment of the invention, the first multiplication operation module and the second multiplication operation module jointly perform the multiplication operation on the finite field, which is used to calculate c (x) and d (x) of the known element e (x) of the finite field GF(2"); n-1 c(x)= > ax’ j=0 nt d(x)= > bx" k=0
[0047] Among them, a, and b, are the inputs of the multiplicative cardiac array.
[0048] Further, in the embodiment of the invention, the square operator comprises a first square operation module and a second square operation module, and first square operation module and the second square operation module are used to calculate c (x) of the known element e (x) of the finite field GF(2");
[0049] Among them, al e(x)= c(x) = 2e x
[0050] Further, in the embodiment of the invention, the addition operator, multiplication operator and square operator constitute the subfield operator of the composite finite field multiplication device, and are used to perform addition, multiplication and square of the operands on the subfield, respectively.
5
[0051] Further, in the embodiment of the invention, the composite finite field multiplication device is a special integrated circuit device and a programmable logic FPGA device.
[0052] For those technical personnel in this field, it is obvious that the invention is not limited to the details of the above exemplary embodiments, and the invention can be realized in other specific forms without departing from the spirit or basic characteristics of the invention. Therefore, from any point of view, the embodiments should be regarded as exemplary and nonrestrictive. The scope of the invention is defined by the attached claims rather than the above description, so it is intended to include all changes falling within the meaning and scope of the equivalent elements of the claims in the invention. Any drawing signs in the claims should not be regarded as limiting the claims involved.
[0053] In addition, it should be understood that although the descriptions are illustrated in accordance with the embodiments, not each embodiment only contains one independent technical solution. This narrative mode of the descriptions is only for the sake of clarity. Those technical personnel in this field should take the descriptions as a whole, and the technical solutions in the embodiments can be appropriately combined to form other embodiments that can be understood by those technical personnel in this field. 6

Claims (9)

1. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger, wordt gekenmerkt door: bestaat uit het volgende: De controller, die dient ervoor om de daarmee verbonden vermenigingsapparaat te plannen en de invoer van het gegevenssignaal en de uitvoer van het gegevenssignaal te controleren; Waarvan de voorgenoemde controller bestaat uit een signaalverwervingspoort, een invoerpoort, een processor, een planner en een uitvoerpoort, de voorgenoemde signaalverzamelpoort dient ervoor om het kloksignaal van het 5G apparaat te verzamelen, bovendien het uitvoeruiteinde van de signaalverzamelpoort is verbonden met het invoeruiteinde van de invoerpoort, de voorgenoemde processor dient ervoor om de GF (2n) standaard vermenigingsapparaat en de GF (2n) vermenigingsapparaat te controleren, en bovendien is de uitvoer terminal van de voorgenoemde planner verbonden met de invoer terminal van de processor.1. A kind of 5G heartbeat matrix oriented composite finite field multiplier, it is characterized by: consists of the following: The controller, which serves to schedule the associated multiplication device and control the input of the data signal and the output of the data signal; Of which the aforesaid controller consists of a signal acquisition port, an input port, a processor, a scheduler and an output port, the aforesaid signal collecting port is for collecting the clock signal from the 5G device, moreover, the output end of the signal collecting port is connected to the input end of the input port , the aforementioned processor serves to control the GF (2n) default multiplier and the GF (2n) multiplier, and moreover, the output terminal of the aforementioned scheduler is connected to the input terminal of the processor. GF (2n) standaardvermenigingsapparaat, dient ervoor om de vermenigvuldiging van operanden op standaard GF (2n) uit te voeren; GF (2n) vermenigingsapparaat, dient ervoor om samengestelde beperkte veld vermenigvuldiging van operanden op GF (2n) uit te voeren; Optellen calculator, dient ervoor om samengestelde beperkte velden op te tellen; Vermenigvuldigingscalculator, dient ervoor om samengestelde beperkte velden te vermenigvuldigen; De kwadratische calculator, dient ervoor om het samengestelde beperkte veld te kwadrateren.GF (2n) standard multiplication device, serves to perform the multiplication of operands on standard GF (2n); GF (2n) multiplication device, serves to perform compound constrained field multiplication of operands on GF (2n); Addition calculator, serves to add compound limited fields; Multiplication calculator, serves to multiply compound limited fields; The quadratic calculator, serves to square the composite constrained field. 2. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde processor dient ervoor om het XOR poort circuit te optellen, vermenigvuldigen en kwadrateren op het GF (2n) domein.A kind of 5G heartbeat matrix oriented composite finite field multiplier according to claim 1, characterized by : said processor is for adding, multiplying and squaring the XOR gate circuit on the GF (2n) domain. 3. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de door de voorgenoemde invoerpoort ingevoerde operanden inclusief: operand a(x), operand b(x) en operand c(x), en de operand a (x) wordt uitgedrkt in: a(x) = am-1xm-1+am-2xm-2+ … +a0; operand b (x) wordt uitgedrkt in: b(x) = bm-1xm-1+bm-2xm-2 + ... + b0; operand c{x) wordt uitgedrkt in: c(x) = cm- 1xm-1+cm-2xm-2 + … + CO.A kind of 5G heartbeat matrix oriented composite finite field multiplier according to claim 1, characterized by : the operands input from the aforesaid input port including: operand a(x), operand b(x) and operand c(x), and the operand a (x) is expressed in: a(x) = am-1xm-1+am-2xm-2+ … +a0; operand b(x) is expressed in: b(x) = bm-1xm-1+bm-2xm-2 + ... + b0; operand c{x) is expressed in: c(x) = cm-1xm-1+cm-2xm-2 + … + CO. 4 Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde opteller 7 bestaat uit een eerste optelbewerkingsmodule en een tweede optelbewerkingsmodule, en de voorgenoemde eerste optelbewerkingsmodule en de voorgenoemde tweede optelbewerkingsmodule voeren gezamenlijk een optelbewerking uit, dat dient ervoor om de bekend c(x) en d(x) van element e(x) op het beperkt veld GF(2n) te berekenen; Waarvan: c(x)=cn/2-1xn/2-1+cn/2-2xn/2-2+...+cO0 d(x)=dn-1xn-1+dn-2xn-2+...+dn/2 e (x) =c(x)+d(x)A kind of 5G heartbeat matrix oriented composite finite field multiplier according to claim 1, characterized by: said adder 7 is composed of a first add operation module and a second add operation module, and said first add operation module and said second add operation module jointly perform an addition operation which serves to compute the known c(x) and d(x) of element e(x) on the constrained field GF(2n); Of which: c(x)=cn/2-1xn/2-1+cn/2-2xn/2-2+...+cO0 d(x)=dn-1xn-1+dn-2xn-2+. ..+dn/2 e (x) =c(x)+d(x) 5. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde vermenigingsapparaat bestaat uit een eerste vermenigvuldigingsmodule en een tweede vermenigvuldigingsmodule, en bovendien de voorgenoemde eerste module voor vermenigvuldiging omvat een eerste processor en een cardiale matrix, de voorgenoemde tweede module voor vermenigvuldiging omvat een tweede processor en een cardiale matrix, de voorgenoemde cardiale matrix dient ervoor om vermenigvuldigingsbewerkingen uit te voeren, de voorgenoemde eerste processor dient ervoor om het algoritme van de cardiale matrix in de eerste module voor vermenigvuldiging te besturen, en de voorgenoemde tweede processor dient ervoor om het algoritme van de cardiale matrix in de tweede module voor vermenigvuldiging te besturen,A kind of 5G heart rate matrix oriented composite finite field multiplier according to claim 1, characterized by : said multiplier device consists of a first multiplication module and a second multiplication module, and further said first multiplication module comprises a first processor and a cardiac matrix, the said second multiplication module comprises a second processor and a cardiac matrix, said cardiac matrix is for performing multiplication operations, said first processor is for controlling the cardiac matrix algorithm in the first multiplication module, and said second processor serves to control the cardiac matrix algorithm in the second multiplication module, 6. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde eerste vermenigvuldigingsbewerkingsmodule en de voorgenoemde tweede vermenigvuldigingsbewerkingsmodule voeren gezamenlijk een vermenigvuldigingsbewerkingen uit, en dient ervoor om de bekend c(x) en d(x) van element e(x) op het beperkt veld GF(2") te berekenen; nt | c(x)= > ax J=0 n--1 d(x) = > bx! k=0 Waarvan aj en bk zijn de invoeringen van de vermenigvuldiging cardiale matrix.A kind of 5G heartbeat matrix oriented composite finite field multiplier according to claim 1, characterized by : said first multiplication processing module and said second multiplication processing module jointly perform multiplication operations, and serves to reproduce the known c(x) and d(x) of element e(x) on the restricted field GF(2"); nt | c(x)= > ax J=0 n--1 d(x) = > bx! k=0 Of which aj and bk are the Introductions of the cardiac matrix multiplication. 7. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde kwadratische calculator, bestaat uit een eerste kwadratische module en een tweede 8 kwadratische module,en bovendien de voorgenoemde eerste kwadratische module en de voorgenoemde tweede kwadratische module, dient ervoor om de bekend c{x) van element e(x) op het beperkt veld GF(2") te berekenen; Waarvan: a n-1 ; e=c(x) = ex i=0A kind of 5G heart rate matrix oriented composite finite field multiplier according to claim 1, characterized by : the said quadratic calculator, consists of a first quadratic module and a second 8 quadratic module, and furthermore said first quadratic module and said second quadratic module , serves to calculate the known c{x) of element e(x) on the restricted field GF(2"); of which: a n-1 ; e=c(x) = ex i=0 8. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 1, wordt gekenmerkt door: de voorgenoemde opteller, vermenigvuldigings caculator en kwadraten caculator vormen de caculator op het subveld van de samengestelde eindige veldvermenigvuldiger en worden respectievelijk gebruikt voor het optellen, vermenigvuldigen en kwadrateren van operanden op het subveld uit te voeren.A kind of 5G heartbeat matrix oriented composite finite field multiplier according to claim 1, characterized by : the aforesaid adder, multiplication caculator and squares caculator form the caculator on the subfield of the composite finite field multiplier and are respectively used for addition, multiplication and squaring of operands on the subfield. 9. Een soort 5G hartslag matrix georiënteerde samengestelde eindige veldvermenigvuldiger volgens conclusie 8, wordt gekenmerkt door: het voorgenoemde samengestelde eindige veldvermenigvuldiger is een ASIC apparaat en bovendien is ook een programmeerbaar FPGA apparaat. 9A kind of 5G heart rate matrix oriented composite finite field multiplier according to claim 8, characterized by: said composite finite field multiplier is an ASIC device and furthermore is also a programmable FPGA device. 9
NL2026356A 2020-08-27 2020-08-27 A 5G-oriented Cardiac Composite Finite Field Multiplication Device NL2026356B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2026356A NL2026356B1 (en) 2020-08-27 2020-08-27 A 5G-oriented Cardiac Composite Finite Field Multiplication Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2026356A NL2026356B1 (en) 2020-08-27 2020-08-27 A 5G-oriented Cardiac Composite Finite Field Multiplication Device

Publications (2)

Publication Number Publication Date
NL2026356A NL2026356A (en) 2020-10-15
NL2026356B1 true NL2026356B1 (en) 2021-10-04

Family

ID=72882618

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026356A NL2026356B1 (en) 2020-08-27 2020-08-27 A 5G-oriented Cardiac Composite Finite Field Multiplication Device

Country Status (1)

Country Link
NL (1) NL2026356B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314330B (en) * 2011-09-09 2013-12-25 华南理工大学 Composite finite field multiplier

Also Published As

Publication number Publication date
NL2026356A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
CN109543832B (en) Computing device and board card
CN109522052B (en) Computing device and board card
US9201847B2 (en) Composite finite field multiplier
CN109471626A (en) Page logic structure, page generation method, page data processing method and device
TW202115560A (en) Multiplier and method for floating-point arithmetic, integrated circuit chip, and computing device
CN103793199B (en) A kind of fast rsa password coprocessor supporting dual domain
WO2021184765A1 (en) Rule processing method and apparatus, medium, and electronic device
CN112506935A (en) Data processing method, data processing apparatus, electronic device, storage medium, and program product
CN108400868A (en) Storage method, device and the mobile terminal of seed key
CN107862352A (en) A kind of Quick Response Code sharing method and Quick Response Code share equipment
WO2021078210A1 (en) Computing apparatus and method for neural network operation, integrated circuit, and device
TW202117534A (en) Converter, chip, electronic equipment and method for converting data types
CN112149174A (en) Model training method, device, equipment and medium
NL2026356B1 (en) A 5G-oriented Cardiac Composite Finite Field Multiplication Device
US20220357923A1 (en) Method for implementing dot product operation, electronic device and storage medium
CN206162532U (en) Parallel arithmetic unit and concurrent operation system
CN112149834A (en) Model training method, device, equipment and medium
CN112149141A (en) Model training method, device, equipment and medium
CN114359015B (en) Data transmission method, device and graphic processing server
WO2022001497A1 (en) Computing apparatus, integrated circuit chip, board card, electronic device and computing method
US7216141B2 (en) Computing carry-in bit to most significant bit carry save adder in current stage
CN114510217A (en) Method, device and equipment for processing data
CN111260046A (en) Operation method, device and related product
Guo et al. Research on Big Data Acquisition Method Based on Mapreduce Algorithm
CN111260070A (en) Operation method, device and related product

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230901