NL2024584B1 - Auxiliary charging system for drone - Google Patents

Auxiliary charging system for drone Download PDF

Info

Publication number
NL2024584B1
NL2024584B1 NL2024584A NL2024584A NL2024584B1 NL 2024584 B1 NL2024584 B1 NL 2024584B1 NL 2024584 A NL2024584 A NL 2024584A NL 2024584 A NL2024584 A NL 2024584A NL 2024584 B1 NL2024584 B1 NL 2024584B1
Authority
NL
Netherlands
Prior art keywords
drone
information
charging station
module
power
Prior art date
Application number
NL2024584A
Other languages
Dutch (nl)
Other versions
NL2024584A (en
Inventor
Ma Guoli
Zhang Xin
Ma Yumeng
Han Xiaoqiang
Original Assignee
Univ Binzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Binzhou filed Critical Univ Binzhou
Publication of NL2024584A publication Critical patent/NL2024584A/en
Application granted granted Critical
Publication of NL2024584B1 publication Critical patent/NL2024584B1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/20Transport or storage specially adapted for UAVs with arrangements for servicing the UAV
    • B64U80/25Transport or storage specially adapted for UAVs with arrangements for servicing the UAV for recharging batteries; for refuelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention discloses an auxiliary charging system for a drone. The auxiliary charging system includes a charging station management module, a drone information base, an alarm module, a human-computer interaction module, a controller, an information transmission module, a drone controller, a motion control module, an image collection module, an image processing module, an ultrasonic altimeter, an individual information base, a GPS positioning module, a power supply, and a power measurement module. According to the present invention, a relationship between a flight distance and power of a drone is analyzed, and based on an actual status of an individual drone and a distance between the drone and a charging station, the drone is allocated to a most suitable charging station for charging, so that the drone can fully utilize a battery capacity, and a single flight time of the drone can be prolonged. In addition, according to the present invention, a descending process is started at a particular distance from the charging station, and landing is performed through accelerated descending and decelerated descending, so that a large amount of landing time is saved, and operating efficiency of the drone is improved.

Description

AUXILIARY CHARGING SYSTEM FOR DRONE
TECHNICAL FIELD The present invention pertains to the field of drone application technologies, and in particular, relates to an auxiliary charging system for a drone.
BACKGROUND With the rapid development of the drone industry, both commercial drones and personal drones become popular, and drone technologies on the market tend to mature. In the prior art, a main technical difficulty of a drone is a battery life issue of the drone. When the drone operates outdoors for a long time, the drone needs to be charged at regular intervals. If the drone comes back for charging, the drone needs to keep enough power to fly back. This process is not only time-consuming, but also wastes energy, thereby directly leading to a shortened effective flight time of the drone and low operating efficiency. To ensure application of the drone in the commercial field, a battery life and an effective flight time of the drone need to be ensured, and operating efficiency of the drone needs to be improved. For this problem, in the prior art, drone charging stations are established, the drone selects, in a flight process, a nearest drone charging station for charging, and a basis for entering a state of searching for a charging station is power storage of the drone. When power of the drone reaches a preset threshold, the drone starts to match a charging station. However, for different drones, different battery types, and different battery usage duration, same power storage may still cause a large difference in actual driving distances. Therefore, an electric capacity of a power supply of the drone cannot be fully used, and further, operating efficiency of the drone is reduced or a specified threshold power is not enough for the drone to reach the charging station for charging, causing drone crashes and losses. To resolve this problem, the present invention provides the following technical solutions.
SUMMARY An objective of the present invention is to provide an auxiliary charging system for a drone. Technical problems needing to be resolved in the present invention are as follows:
1. A main battery life issue of a drone in the prior art relies the following: A drone charging station is deployed. The drone implements endurance by charging by using the drone charging station. However, in the prior art, when the drone selects the drone charging station for charging, only remaining power is used as a threshold to determine whether the drone needs to be charged. Analysis cannot be made based on different types of drones and different actual battery life statuses of batteries. As a result, power of the drone is exhausted before the drone reaches the charging station or the drone is charged nearby while power is enough for the drone to reach a next charging station. In the former case, the drone is likely to crash, causing damages, and in the latter case, an effective flight time of the drone is directly reduced, thereby reducing operating efficiency.
2. Before being charged at the charging station, the drone requires the steps of landing and taking off. To ensure smooth, safe, and accurate landing of the drone, a landing speed of the drone needs to be controlled. However, if reducing the landing speed only is used to achieve this objective, the charging time may increase. How to shorten the landing time of the drone and improve charging efficiency while ensuring smooth landing of the drone is one of the problems that need to be resolved currently. The objective of the present invention may be achieved by using the following technical solutions: An auxiliary charging system for a drone includes a charging station management module, a drone information base, an alarm module, a human-computer interaction module, a controller, an information transmission module, a drone controller, a motion control module, an image collection module, an image processing module, an ultrasonic altimeter, an individual information base, a GPS positioning module, a power supply, and a power measurement module, where the power supply is configured to supply power to a drone, and the power measurement module is configured to: measure real-time power information of the drone, and transmit the measured real-time power information to the drone controller; the GPS positioning module is configured to: collect real-time location information and real-time vertical height information of the drone, and transmit the collected real-time location information and real-time vertical height information to the controller by using the drone controller and the information transmission module;
the individual information base is configured to input and store corresponding drone information, where the drone information includes a drone number, a drone model, and a drone service time; the ultrasonic altimeter is configured to: detect a vertical distance between the drone and a charging station, and transmit the detected vertical distance to the drone controller; the motion control module is configured to control and correct a traveling speed and a vertical height of the drone and a drone posture; the image collection module is configured to: collect information about a real-time image near the drone, and transmit the collected information about the real-time image to the image processing module, and after the image processing module analyzes and processes a collected image, the motion control module is controlled by using the drone controller to adjust a running status of the drone; the charging station management module is configured to record location information of a charging station, self-status information of the charging station, and charging status information of the charging station; the drone information base is configured to store all drone information in the system, where the drone information includes a drone number, a drone model, a drone service time, and a relationship between a flight distance and power of a drone, where a method for collecting the relationship between the flight distance and the power of the drone by using the drone information base is as follows: SS1. using w% of power as a detection unit, and each time the power of the drone decreases by w%, recording a flight distance L of the drone in this process, so as to obtain L1, L2, …, Ln, where a power range corresponding to the flight distance is 0- W%, W%—2W%, ..., (100-w)%—100%; SS2. after recording the N sets of data L1, L2, …, Ln, calculating an average value Ak of flight distances of a plurality of sets of data that are in a same detection unit, and then each time a new set of data L1, L2, ..., Ln is recorded, replacing the set of data that is first recorded with the new set of data L1, L2, ..., Ln; and S83. after collecting a correspondence between the flight distance Ak and the power range, establishing a coordinate system by using the power range as a horizontal coordinate axis and using the flight distance as a vertical coordinate axis, and drawing a curve graph, to predict, based on a trend of decrease of a flight distance corresponding to w% of power with reduction of the power range, a flight distance of the drone in one or more power ranges having a relatively low power, subtracting a preset value from the predicted flight distance, and using a flight distance obtained after the subtracting as a final predicted value; the alarm module is configured to send alarm information; and the human-computer interaction module is configured to establish a human- computer interaction interface.
A method for selecting a suitable charging station by the controller based on a drone status and a charging station status to charge the drone is as follows: step 1: when power of the drone reaches a preset threshold 8%, reading, by the drone controller, the drone information in the individual information base and the location information and the vertical height information that are transmitted by the GPS positioning module, transmitting the drone information, the location information, and the vertical height information to the controller, and matching, by the controller, the received individual drone information with the drone information in the drone information base to obtain the relationship between the flight distance and the power of the drone, where all drones have a same preset threshold; step 2: obtaining, by the controller, distances from the drone to three available charging stations based on the real-time location information of the drone transmitted by the GPS positioning module and charging station information stored inthe charging station management module, where the three charging stations include one available charging station opposite to a traveling direction of the drone and two available charging stations in the traveling direction of the drone, a distance from the drone to the available charging station opposite to the traveling direction is Q1, a distance from the drone to a closer charging station in the traveling direction is Q2, and a distance from the drone to a farther charging station in the traveling direction is Q3; step 3: when real-time power of the drone is in a power range, obtaining, by using a next power range of the power range as a reference for calculation, based on the power range of the power of the drone and a diagram of the relationship between the flight distance and the power in the drone information base, a distance Q that can be flown by the drone; step 4: comparing size relationships between Q and Q1, Q2, and Q3, where when Q is less than any one of Q1, Q2, and Q3, the drone lands in situ, the GPS positioning module continuously sends positioning information, and the controller controls the alarm module to send alarm information;
when Q > Q1 and Q < Q2, the drone returns to the available charging station opposite to the traveling direction for charging; when Q > Q2, and Q < Q3, the drone travels to the closer charging station in the traveling direction for charging, if the charging station is in a full load state at the 5 moment, the drone returns to the available charging station opposite to the traveling direction for charging, and if both the charging station and the available charging station opposite to the traveling direction are in a full load state, the drone lands near the charging station for queuing; and in this process, a threshold a% is set, and when the power is reduced to the threshold, the drone lands in situ, and the controller controls the alarm module to send an alarm; and step 5: when Q > Q3, performing the operations of step 2 to step 4 after the drone travels the distance Q2. In a further solution of the present invention, the power supply, the power measurement module, the GPS positioning module, the individual information base, the ultrasonic altimeter, the image collection module, the image processing module, the motion control module, and the drone controller are all installed on the drone.
In a further solution of the present invention, after a power supply of the drone is replaced, the original correspondence between the flight distance and the power of the drone is deleted from the drone information base, and a correspondence is re- established.
In a further solution of the present invention, a method for landing the drone by using the drone controller is as follows: S1. when a horizontal distance between the drone and the charging station reaches apreset value Q4, enabling the drone to start landing, and when the GPS positioning module detects that a vertical height of the drone reaches a preset value Q5, enabling, by the drone controller, the ultrasonic altimeter, and transmitting the detected vertical height to the drone controller, where the vertical height of the drone is determined by the detected value of the ultrasonic altimeter;
S2. when a vertical height of the drone reaches a preset value Q6, enabling the drone to stop landing, collecting, by the image collection module, image information of a charging platform of the charging station and transmitting the image information to the image processing module, reading, by the image processing module, corners of the charging platform to establish a closed two-dimensional shape, and controlling, by the drone controller based on a relative location between the drone and the two-dimensional shape by using the motion control module, the drone to stop inside the two-dimensional shape; and S3. a method for moving by the drone in a vertical direction is: in a process in which the drone starts landing to the vertical distance Q5, falling at a constant speed after a speed of the drone decreases at acceleration at to a speed V1; and when the vertical distance becomes Q5, starting, by the drone, to decelerate at an acceleration a2, where when the vertical distance becomes Q6, a movement speed of the drone in the vertical direction is 0, and in a process in which the vertical distance changes from Q5 to Q6, a value of the acceleration a2 is adjusted based on a difference value of Q5 and Q6.
In a further solution of the present invention, infrared diodes are installed at the corners of the charging platform.
BENEFICIAL EFFECT OF PRESENT INVENTION
1. According to the present invention, a relationship between a flight distance and power of a drone is analyzed, and based on an actual status of an individual drone and a distance between the drone and a charging station, the drone is allocated to a most suitable charging station for charging, so that the drone can fully utilize a battery capacity, and a single flight time of the drone can be prolonged.
2. According to the present invention, a descending process is started at a particular distance from the charging station, and landing is performed through accelerated descending and decelerated descending. In comparison with a conventional process of first performing constant-speed descending and then performing decelerated descending after staying exactly above the charging station, a large amount of landing time is saved, and operating efficiency of the drone is improved.
BRIEF DESCRIPTION OF DRAWING The following further describes the present invention in detail with reference to the accompanying drawing and specific embodiments.
FIG. 1 is a schematic structural diagram of a system according to the present invention.
DESCRIPTION OF EMBODIMENTS The following clearly and completely describes the technical solutions in the embodiments of the present invention.
Definitely, the described embodiments are merely some rather than all of the embodiments of the present invention.
All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protection scope of the present invention.
An auxiliary charging system for a drone, as shown in FIG. 1, includes a charging station management module, a drone information base, an alarm module, a human-computer interaction module, a controller, an information transmission module, a drone controller, a motion control module, an image collection module, an image processing module, an ultrasonic altimeter, an individual information base, a GPS positioning module, a power supply, and a power measurement module, where the power supply, the power measurement module, the GPS positioning module, the individual information base, the ultrasonic altimeter, the image collection module, the image processing module, the motion control module, and the drone controller are all installed on the drone.
The power supply is configured to supply power to a drone, and the power measurement module is configured to: measure real-time power information of the drone, and transmit the measured real-time power information to the drone controller.
The GPS positioning module is configured to: collect real-time location information and real-time vertical height information of the drone, and transmit the collected real-time location information and real-time vertical height information to the controller by using the drone controller and the information transmission module.
The individual information base is configured to input and store corresponding drone information, where the drone information includes a drone number, a drone model, and a drone service time.
The ultrasonic altimeter is configured to: detect a vertical distance between the drone and a charging station, and transmit the detected vertical distance to the drone controller.
The motion control module is configured to control and correct a traveling speed and a vertical height of the drone and a drone posture.
The image collection module is configured to: collect information about a real-time image near the drone, and transmit the collected information about the real-time image to the image processing module, and after the image processing module analyzes and processes a collected image, the motion control module is controlled by using the drone controller to adjust a running status of the drone. The charging station management module is configured to record location information of a charging station, self-status information of the charging station, and charging status information of the charging station, where the seli-status information of the charging station is whether the charging station is in a normal running state, the charging status information of the charging station is whether the charging station has a vacancy for charging, and the charging station is deployed along a flight path of the drone.
The drone information base is configured to store all drone information in the system, where the drone information includes a drone number, a drone model, a drone service time, and a relationship between a flight distance and power of a drone.
A method for collecting the relationship between the flight distance and the power of the drone by using the drone information base is as follows: SS1. Use w% of power as a detection unit, and each time the power of the drone decreases by w%, record a flight distance L of the drone in this process, so as to obtain L1, L2, … Ln, where a power range corresponding to the flight distance is 0- w%, w%—2w%, ..., (100-w)%—100%. Movement in a vertical direction is involved only when the drone takes off and lands, movement of the drone in the vertical direction is relatively small for most of the time, and takeoff and landing are not frequent. Therefore, power consumption caused by the takeoff and the landing is not taken into consideration.
882. After recording the N sets of data L1, L2, ..., Ln, calculate an average value Ak of flight distances of a plurality of sets of data that are in a same detection unit, and then each time a new set of data L1, L2, ..., Ln is recorded, replace the set of data that is first recorded with the new set of data L1, L2, … Ln. Therefore, authenticity of data is ensured, and impact of a battery loss on a running distance of the drone is reduced.
SS3. To prevent the drone from a crash due to a power outage, a threshold is often set to determine whether the drone continues to fly. Therefore, in one or more power ranges having low power, the drone may start to be charged, and consequently a sufficient data source cannot be obtained. Therefore, after collecting a correspondence between the flight distance Ak and the power range,
establish a coordinate system by using the power range as a horizontal coordinate axis and using the flight distance as a vertical coordinate axis, and draw a curve graph, to predict, based on a trend of decrease of a flight distance corresponding to w% of power with reduction of the power range, a flight distance of the drone in one or more power ranges having a relatively low power, and in order to ensure normal running of the drone, subtract a preset value from the predicted flight distance, and use a flight distance obtained after the subtracting as a final predicted value. After a power supply of the drone is replaced, the original correspondence between the flight distance and the power of the drone is deleted from the drone information base, and a correspondence is re-established. The alarm module is configured to send alarm information. The human-computer interaction module is configured to establish a human- computer interaction interface. A method for selecting a suitable charging station by the controller based on a drone status and a charging station status to charge the drone is as follows: Step 1: When power of the drone reaches a preset threshold 8%, the drone controller reads the drone information in the individual information base and the location information and the vertical height information that are transmitted by the GPS positioning module, transmits the drone information, the location information, and the vertical height information to the controller, and the controller matches the received individual drone information with the drone information in the drone information base to obtain the relationship between the flight distance and the power of the drone, where for ease of management, all drones have a same preset threshold.
Step 2: The controller obtains distances from the drone to three available charging stations based on the real-time location information of the drone transmitted by the GPS positioning module and charging station information stored in the charging station management module, where "available" means that the charging station is in a normal running state, the plurality of charging stations include one available charging station opposite to a traveling direction of the drone and two available charging stations in the traveling direction of the drone, a charging station is an aggregation point of one charging platform or a plurality of charging platforms, a distance from the drone to the available charging station opposite to the traveling direction is Q1, a distance from the drone to a closer charging station in the traveling direction is Q2, and a distance from the drone to a farther charging station in the traveling direction is Q3. Step 3: When real-time power of the drone is in a power range, obtain, by using a next power range of the power range as a reference, that is, by using, when the real-time power is in 2w%-3w%, a power range of w%—-2w% as a reference, based on the power range of the power of the drone and a diagram of the relationship between the flight distance and the power in the drone information base, a distance Q that can be flown by the drone. Step 4: Compare size relationships between Q and Q1, Q2, and QS.
When Q is less than any one of Q1, Q2, and Q3, the drone lands in situ, the GPS positioning module continuously sends positioning information, and the controller controls the alarm module to send alarm information.
When Q > Q1 and Q < Q2, the drone returns to the available charging station opposite to the traveling direction for charging. To avoid the foregoing two cases, the threshold 8% can be increased.
When Q > Q2, and Q < G3, the drone travels to the closer charging station in the traveling direction for charging, if the charging station is in a full load state at the moment, the drone returns to the available charging station opposite to the traveling direction for charging, and if both the charging station and the available charging station opposite to the traveling direction are in a full load state, the drone lands near the charging station for queuing.
In this process, a threshold a% is set, and when the power is reduced to the threshold, the drone lands in situ and waits for staff to get it. Step 5: When Q > Q3, perform the operations of step 2 to step 4 after the drone travels the distance Q2.
A method for accurately and fast landing the drone by using the drone controller is as follows: S1. When a horizontal distance between the drone and the charging station reaches a preset value Q4, the drone starts landing, that is, the drone lands while discovering that the drone is horizontally near the charging station so as to save a landing time, and when the GPS positioning module detects that a vertical height of the drone reaches a preset value Q5, the drone controller enables the ultrasonic altimeter, and transmits the detected vertical height to the drone controller, where in this case, the vertical height of the drone is determined by the detected value of the ultrasonic altimeter.
S2. When a vertical height of the drone reaches a preset value Q8, the drone no longer continues to land, at the same time the drone controller controls the image collection module to collect image information of a charging platform of the charging station and transmit the image information to the image processing module, the image processing module reads corners of the charging platform to establish a closed two-dimensional shape, and the drone controller controls, based on a relative location between the drone and the two-dimensional shape by using the motion control module, the drone to stop within the two-dimensional shape.
To ensure accuracy in identifying the corners, infrared diodes may be installed at the corners of the charging platform.
S3. A method for moving by the drone in a vertical direction is as follows: In a process in which the drone starts landing to the vertical distance Q5, the drone falls at a constant speed after a speed of the drone decreases at an acceleration at to a speed V1. When the vertical distance becomes Q5, the drone starts to decelerate at an acceleration a2, and when the vertical distance becomes Q6, a movement speed of the drone in the vertical direction is 0. In a process in which the vertical distance changes from Q5 to Q6, because a module for measuring the vertical height is changed from the GPS positioning module to the ultrasonic altimeter, a large error occurs in this process, a value of the acceleration a2 needs to change based on a difference value of Q5 and Q6. By alternating accelerated descending and decelerated descending, the landing time can be reduced in comparison with constant speed descending in the prior art.
According to the method, a descending process is started at a distance Q4 from the charging station, and landing is performed through accelerated descending and decelerated descending.
In comparison with a conventional process of first performing constant-speed descending and then performing decelerated descending after staying exactly above the charging station, a large amount of landing time is saved, and operating efficiency of the drone is improved.
The foregoing content is merely an example and description of the structure of the present invention.
Various modifications or additions made by a person skilled in the art on the described specific embodiment or replacements made by using a similar manner shall fall within the protection scope of the present invention, provided that the modifications or additions or replacements do not deviate from the structure of the present invention or do not go beyond the scope defined by the claims.

Claims (4)

ConclusiesConclusions 1. Een hulplaadsysteem voor een drone, omvattende: (a) een laadstation beheermodule ingericht voor het vastleggen van locatie- informatie van een laadstation, bedrijfstoestand informatie van het laadstation en laadstatusinformatie van het laadstation, (b) een drone- informatiebasis ingericht voor het opslaan van alle drone-informatie in het systeem, waarbij en de drone-informatie een drone-nummer, een drone- model, een drone-bedieningstijd omvat en een relatie tussen de vluchtafstand en voedingsstatus van de drone, (c) een alarmmodule ingericht om alarminformatie te verzenden, (d) een mens-computer interactiemodule ingericht om een interactie tussen mens en computer tot stand te brengen, (e) een controller, (f) een informatieoverdrachtsmodule, (g) een drone controller, (h) een bewegingsregelmodule ingericht voor het regelen en corrigeren van een reissnelheid en een verticale hoogte van de drone en een dronehouding, (i) een beeldverzamelingsmodule ingericht voor het verzamelen van realtime beeldinformatie in de buurt van de drone, en het verzenden van de verzamelde realtime beeldinformatie naar de beeldverwerkingsmodule, (j) een beeldverwerkingsmodule ingericht voor het analyseren en verwerken van een door de beeldverzamelingsmodule verzameld beeld waarna de bewegingsregelmodule wordt gereguleerd door gebruik van de drone controller om de actuele bedrijfstoestand van de drone aan te passen; (k) een uitrasone hoogtemeter ingericht om een verticale afstand tussen de drone en het laadstation te detecteren en de gedetecteerde verticale afstand naar de drone controller te verzenden, (1) een individuele informatiebasis ingericht voor het invoeren en opslaan van overeenkomstige drone-informatie, waarbij de drone-informatie een drone-nummer, een drone-model en een drone-bedieningstijd omvat, {m) een GPS-positioneringsmodule ingericht voor het verzamelen van realtime locatieinformatie en realtime verticale hoogteinformatie van de drone en het verzenden van de verzamelde realtime locatieinformatie en realtime verticale hoogteinformatie naar de controller door gebruik van de drone controller en de informatieoverdrachtsmodule, (n) een voeding ingericht om energie aan de drone te leveren en (0) een vermogensmeetmodule ingericht om realtime vermogensinformatie van de drone te meten en de gemeten realtime vermogensinformatie naar de drone controller te verzenden ; waarbij een werkwijze voor het verzamelen van de relatie tussen de vliegafstand en de voedingsstatus van de drone door gebruik van de drone-informatiebasis omvat: SS1, het gebruik van de voedingsstatus per w% als een eenheid van detectie, en iedere keer dat de voedingsstatus van de drone afneemt met w%, het vastleggen van een vliegafstand L van de drone in dit proces, waardoor L1, L2, … Ln worden verkregen,, waarbij een overeenkomstig voedingsstatusbereik in relatie tot de vliegafstand is 0-w%, w% -2W%, ..., (100-w)% - 100%; SS2, na registratie van de N sets van gegevens L1, L2, …, Ln, het berekenen van een gemiddelde waarde Ak van vluchtafstanden van een meervoud van gegevenssets welke in dezelfde detectie-eenheid zijn, en vervolgens nadat elke een nieuwe set van gegevens L1, L2, ..., Lnis vergaard het vervangen van eerder vastgelegde gegevensset door de nieuwe set van gegevens L1, L2, …, L2; SS3, na het verzamelen van een overeenkomst tussen de vliegafstand Ak en het vermogensbereik, het opzetten van een coördinatensysteem door het vermogensbereik als een horizontale coördinaat as te gebruiken en de vluchtafstand als een verticale coördinaat as te gebruiken, en het tekenen van een curve-grafiek om op basis van een trend van afname van een vliegafstand die overeenkomt met w% van het vermogen met vermindering van het vermogensbereik een vliegafstand van de drone te verkrijgen in een of meerdere vermogensbereiken met een relatief laag vermogen, waarbij een vooraf ingestelde waarde wordt afgetrokken van de verkregen vliegafstand, en het gebruiken van een vliegafstand verkregen na het aftrekken als een uiteindelijke voorspelde waarde; waarbij een werkwijze voor het selecteren van een geschikt laadstation door de controller op basis van een drone status en een laadstationstatus de volgende stappen omvat: Stap 1: indien het vermogen van de drone een vooraf ingestelde drempel 8% bereikt, het door de drone-controller uitlezen van de drone-informatie in de individuele informatiebasis en de locatie-informatie en de verticale hoogte- informatie die worden verzonden door de GPS-positioneringsmodule, het verzenden van de drone-informatie, de locatie-informatie en de verticale hoogte-An auxiliary charging system for a drone, comprising: (a) a charging station management module adapted to record location information of a charging station, operating state information of the charging station and charging status information of the charging station, (b) a drone information base adapted to store of all drone information in the system, where and the drone information includes a drone number, a drone model, a drone operating time and a relationship between the flight distance and power status of the drone, (c) an alarm module arranged to report alarm information (d) a human-computer interaction module arranged to establish an interaction between human and computer, (e) a controller, (f) an information transfer module, (g) a drone controller, (h) a motion control module adapted for controlling and correcting a travel speed and a vertical height of the drone and a drone attitude, (i) an image collection module adapted to collect real ime image information in the vicinity of the drone, and sending the collected real-time image information to the image processing module, (j) an image processing module arranged to analyze and process an image collected by the image collection module, after which the motion control module is regulated by using the drone controller to adjust the current operating state of the drone; (k) an ultrasonic altimeter configured to detect a vertical distance between the drone and the charging station and transmit the detected vertical distance to the drone controller, (1) an individual information base configured to input and store corresponding drone information, wherein the drone information includes a drone number, a drone model and a drone operating time, {m) a GPS positioning module arranged to collect real-time location information and real-time vertical elevation information from the drone and transmit the collected real-time location information, and real-time vertical elevation information to the controller using the drone controller and the information transfer module, (n) a power supply configured to provide power to the drone and (0) a power measurement module configured to measure real-time power information from the drone and transfer the measured real-time power information to send the drone controller; wherein a method for collecting the relationship between the flight distance and the power status of the drone using the drone information base comprises: SS1, the use of the power status per w% as a unit of detection, and each time the power status of the drone the drone descends by w%, recording a flight distance L of the drone in this process, obtaining L1, L2, ... Ln ,, where a corresponding power status range in relation to the flight distance is 0-w%, w% -2W %, ..., (100-w)% - 100%; SS2, after recording the N sets of data L1, L2,…, Ln, calculating an average value Ak of flight distances of a plurality of data sets that are in the same detection unit, and then after each a new set of data L1 , L2, ..., Lnis collects replacing previously recorded data set with the new set of data L1, L2,…, L2; SS3, after collecting an agreement between the flight distance Ak and the power range, set up a coordinate system using the power range as a horizontal coordinate axis and the flight distance as a vertical coordinate axis, and draw a curve graph to obtain a flight distance of the aircraft in one or more power ranges with relatively low power, based on a trend of decrease in flight distance corresponding to w% of power with reduced power range, subtracting a preset value from the flight distance obtained, and using a flight distance obtained after subtraction as a final predicted value; wherein a method for selecting a suitable charging station by the controller based on a drone status and a charging station status comprises the following steps: Step 1: if the power of the drone reaches a preset threshold of 8%, it by the drone controller reading out the drone information in the individual information base and the location information and the vertical height information sent by the GPS positioning module, sending the drone information, the location information and the vertical height information informatie naar de controller, en het door de controller vergelijken van de ontvangen individuele drone-informatie met de drone-informatie in de drone-information to the controller, and the controller comparing the received individual drone information with the drone information in the drone informatiebasis om de relatie tussen de vliegafstand en de voedingsstatus van de drone, waarbij alle drones dezelfde vooraf ingestelde drempel hebben;information base for the relationship between the flight distance and the power status of the drone, where all drones have the same preset threshold; Stap 2: het verkrijgen, door de controller, van afstanden van de drone naar drie beschikbare laadstations op basis van de realtime locatie-informatie van de drone verzonden door de GPS-positioneringsmodule en laadstationinformatie opgeslagen in de laadstation beheermodule, waarbij de drie laadstations één beschikbaar laadstation tegenovergesteld aan een voorwaartse richting van de drone omvat en twee beschikbare laadstations in de voorwaartse richting van de drone, een afstand van de drone tot het beschikbare laadstation tegenovergesteld aan de voorwaartse tichting is Q1, een afstand van de drone naar een nabijer laadstation in de voorwaartse richting is Q2, en een afstand van de drone naar een verder laadstation in de voorwaartse richting is Q3;Step 2: Obtaining, by the controller, distances from the drone to three available charging stations based on the real-time location information of the drone sent by the GPS positioning module and charging station information stored in the charging station management module, with the three charging stations one available charging station opposite to a forward direction of the drone and two available charging stations in the forward direction of the drone, a distance from the drone to the available charging station opposite to the forward direction is Q1, a distance from the drone to a closer charging station in the forward direction is Q2, and a distance from the drone to a further charging station in the forward direction is Q3; Stap 3: indien de realtime voedingsstatus van de drone in een vermogensbereik ligt, het verkrijgen, door een volgend vermogensbereik van het vermogensbereik te gebruiken als referentie voor de berekening, op basis van het vermogensbereik van de voedingsstatus van de drone en een diagram van de relatie tussen de vliegafstand en de voedingsstatus in de drone-informatiebasis, een afstand Q die kan worden gevlogen door de drone;Step 3: If the real-time power status of the drone is in a power range, obtain it, by using another power range of the power range as a reference for the calculation, based on the power range of the power state of the drone and a diagram of the relationship between the flight distance and the power status in the aircraft information base, a distance Q that can be flown by the aircraft; Stap 4: het vergelijken van grootteverhoudingen tussen Q en Q1, Q2 en Q3; waarbij indien Q kleiner is dan een van Q1, Q2 en Q83, landt de drone op zijn oorspronkelijke plaats, stuurt de GPS-positioneringsmodule continu positioneringsinformatie en reguleert de controller de alarmmodule om alarminformatie te verzenden; indien Q> Q1 en Q <Q2 keert de drone terug naar het beschikbare laadstation tegengesteld aan de voorwaartse richting voor opladen;Step 4: comparing size ratios between Q and Q1, Q2 and Q3; wherein if Q is less than one of Q1, Q2 and Q83, the drone lands in its original position, the GPS positioning module continuously sends positioning information and the controller regulates the alarm module to send alarm information; if Q> Q1 and Q <Q2, the aircraft will return to the available charging station opposite the forward direction for charging; indien Q> Q2 en Q <G3 reist de drone naar het dichtstbijzijnde laadstation in de reisrichting voor opladen, als het laadstation op dit moment in een volledige laadstatus is, keert de drone terug naar het beschikbare laadstation tegengesteld aan de voorwaartse richting voor opladen, en als zowel het laadstation als het beschikbare laadstation tegengesteld aan de voorwaartse richting in een volledige laadtoestand zijn, landt de drone nabij het laadstation in een wachtrij;if Q> Q2 and Q <G3 the aircraft travels to the nearest charging station in the direction of travel for charging, if the charging station is in a full charging state at this time, the aircraft will return to the available charging station opposite the forward direction for charging, and if both the charging station and the available charging station opposite to the forward direction are in a full charging state, the drone lands near the charging station in a queue; in dit proces wordt een drempelwaarde a% ingesteld, en wanneer de voedingsstatus tot de drempelwaarde wordt gereduceerd, landt de drone op zijn oorspronkelijke plaats en reguleert de controller de alarmmodule om een alarm te verzenden;in this process, a threshold value a% is set, and when the power status is reduced to the threshold, the drone lands in its original position and the controller regulates the alarm module to send an alarm; en Stap 5: wanneer Q> Q3, het uitvoeren van de bewerkingen van stap 2 tot stap 4 nadat de drone de afstand Q2 heeft afgelegd; en waarbij een werkwijze voor het landen van de drone door gebruik van de drone controller betreft:and Step 5: when Q> Q3, performing the operations from Step 2 to Step 4 after the drone has traveled the distance Q2; and wherein a method for landing the drone using the drone controller is: St. indien een horizontale afstand tussen de drone en het laadstation een vooraf ingestelde waarde Q4 bereikt, het faciliteren van de landing van de drone, en indien de GPS-positioneringsmodule detecteert dat een verticale hoogte van de drone een vooraf ingestelde waarde Q5 bereikt, het inschakelen van de ultrasone hoogtemeter door de drone controller ,, en het overbrengen van de gedetecteerde verticale hoogte naar de drone controller, waarbij de verticale hoogte van de drone wordt bepaald door de gedetecteerde waarde van de ultrasone hoogtemeter;St. if a horizontal distance between the drone and the charging station reaches a preset value Q4, facilitating the landing of the drone, and if the GPS positioning module detects that a vertical height of the drone reaches a preset value Q5, it turning on the ultrasonic altimeter by the drone controller, and transmitting the detected vertical height to the drone controller, the vertical height of the drone being determined by the detected value of the ultrasonic altimeter; S2. indien een verticale hoogte van de drone een vooraf ingestelde waarde Q6 bereikt, waardoor de drone kan stoppen met landen, het verzamelen van beeldinformatie van een laadplatform van het laadstation door de beeldverzamelingsmodule, en het verzenden van de beeldinformatie naar de beeldverwerkingsmodule, het door de beeldverwerkingsmodule uitlezen van de hoeken van het laadplatform om een gesloten tweedimensionale vorm tot stand te brengen, en het door de drone-controller op basis van een relatieve locatie tussen de drone en de tweedimensionale vorm met behulp van de motion control-module reguleren van de drone om te landen in de tweedimensionale vorm; en S3. een werkwijze om door de drone in verticale richting te bewegen is: in een proces waarin de drone begint te landen naar de verticale afstand Q5, het vallen met een constante snelheid nadat een snelheid van de drone afneemt met versnelling al tot een snelheid V1; wanneer de verticale afstand Q5 wordt, het beginnend met vertragen door de drone met een versnelling a2 ; wanneerindien de verticale afstand Q6 wordt, een bewegingssnelheid van de drone in de verticale richting 0 is, en in een proces waarin de verticale afstand verandert van Q5 naar QG6, een waarde van de versnelling a2 wordt aangepast op basis van een verschilwaarde van Q5 en Q6.S2. if a vertical height of the drone reaches a preset value Q6, which allows the drone to stop landing, collecting image information from a loading platform of the charging station by the image collection module, and sending the image information to the image processing module, it by the image processing module read out the angles of the loading platform to create a closed two-dimensional shape, and control the drone by the drone controller based on a relative location between the drone and the two-dimensional shape using the motion control module to to land in the two-dimensional form; and S3. a method of moving the drone in the vertical direction is: in a process where the drone starts to land towards the vertical distance Q5, falling at a constant speed after a speed of the drone decreases with acceleration already up to a speed V1; when the vertical distance becomes Q5, it starting deceleration by the drone with an acceleration a2; when if the vertical distance becomes Q6, a movement speed of the drone in the vertical direction is 0, and in a process where the vertical distance changes from Q5 to QG6, an acceleration value a2 is adjusted based on a difference value of Q5 and Q6 . 2. Het hulplaadsysteem voor een drone volgens conclusie 1, waarbij de voeding, de vermogensmeetmodule, de GPS-positioneringsmodule, de individuele informatiebasis, de ultrasone hoogtemeter, de beeldverzamelingsmodule, de beeldverwerkingsmodule, de bewegingsregelmodule en de drone controller allemaal geïnstalleerd zijn op de drone.The drone auxiliary charging system according to claim 1, wherein the power supply, the power measurement module, the GPS positioning module, the individual information base, the ultrasonic altimeter, the image collection module, the image processing module, the motion control module and the drone controller are all installed on the drone. 3. Het hulplaadsysteem voor een drone volgens conclusie 1, waarbij nadat een voeding van de drone is vervangen, de oorspronkelijke correspondentie tussen de vliegafstand en de voedingsstatus van de drone wordt verwijderd uit de drone- informatiebasis, en een correspondentie wordt hersteld.The drone auxiliary charging system according to claim 1, wherein after a power supply of the drone is replaced, the original correspondence between the flight distance and the power status of the drone is deleted from the drone information base, and a correspondence is restored. 4. Het hulplaadsysteem voor een drone volgens conclusie 1, waarbij infrarooddioden zijn geïnstalleerd op de hoeken van het laadplatform.The drone auxiliary charging system according to claim 1, wherein infrared diodes are installed at the corners of the loading platform.
NL2024584A 2018-12-28 2019-12-27 Auxiliary charging system for drone NL2024584B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811624788.8A CN109508037B (en) 2018-12-28 2018-12-28 A kind of unmanned plane assisted charging system

Publications (2)

Publication Number Publication Date
NL2024584A NL2024584A (en) 2020-07-10
NL2024584B1 true NL2024584B1 (en) 2020-11-26

Family

ID=65756724

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024584A NL2024584B1 (en) 2018-12-28 2019-12-27 Auxiliary charging system for drone

Country Status (3)

Country Link
CN (1) CN109508037B (en)
BE (1) BE1026674B1 (en)
NL (1) NL2024584B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244758A (en) * 2019-06-04 2019-09-17 广州优飞信息科技有限公司 A kind of unmanned plane precisely lands control method and system
CN110310520A (en) * 2019-06-14 2019-10-08 西安理工大学 The aerial virtual fence method of the wireless ultraviolet light on unmanned plane recharging level ground

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074868A (en) * 2004-08-31 2006-03-16 Fuji Heavy Ind Ltd Battery charging system of electric automobile
CN102721422A (en) * 2012-06-01 2012-10-10 北京交通大学 Intelligent guide system for power supply of electric automobile
US9359074B2 (en) * 2014-09-08 2016-06-07 Qualcomm Incorporated Methods, systems and devices for delivery drone security
WO2016096014A1 (en) * 2014-12-18 2016-06-23 Siemens Aktiengesellschaft Distributed drone system and drone
CN104852475B (en) * 2015-04-14 2017-12-26 中电科(德阳广汉)特种飞机系统工程有限公司 A kind of unmanned vehicle wireless charging method and system
CN104898695A (en) * 2015-05-14 2015-09-09 零度智控(北京)智能科技有限公司 UAV automatic takeoff and landing method and system thereof
CN106936170B (en) * 2015-12-29 2020-03-27 中国移动通信集团公司 Charging control method, server, unmanned aerial vehicle, charging station and system
CN105867413B (en) * 2016-04-18 2018-12-11 西安爱生技术集团公司 A kind of parachuting unmanned plane voluntary recall method
CN105759831A (en) * 2016-05-03 2016-07-13 湖北工业大学 Interaction butt-joint control methods adopted when unmanned aerial vehicles enter or exit from relay service stations
CN105904991B (en) * 2016-06-01 2018-10-30 刘华英 New-energy automobile charging and conversion electric method
CN106026308A (en) * 2016-07-29 2016-10-12 乐视控股(北京)有限公司 Unmanned aerial vehicle charging method and device
CN106696743A (en) * 2017-01-11 2017-05-24 贵州大学 Method and system for intelligent charging reminding and reservation charging of battery electric vehicle
CN107021153A (en) * 2017-04-10 2017-08-08 和龙 Electric bicycle method for managing security, apparatus and system
CN108983807B (en) * 2017-06-05 2021-08-10 北京臻迪科技股份有限公司 Unmanned aerial vehicle fixed-point landing method and system
CN107464016B (en) * 2017-07-27 2020-09-08 北京交通大学 Electric vehicle charging route induction method considering battery residual electric quantity
CN107479573A (en) * 2017-08-07 2017-12-15 深圳市华琥技术有限公司 A kind of flight charging method of unmanned plane
CN108319284B (en) * 2017-12-29 2022-01-14 北京航空航天大学 Unmanned aerial vehicle gliding section track design method suitable for obstacle environment
CN108196574B (en) * 2018-01-02 2021-11-09 广州亿航智能技术有限公司 Unmanned aerial vehicle endurance judgment method and device and computer storage medium
CN108146639B (en) * 2018-01-03 2024-04-12 沈观清 High-speed parachute landing system and method for recycling small and medium unmanned aerial vehicle and ejection parachute
CN109018424B (en) * 2018-07-28 2021-04-30 武汉梓俊信息科技有限公司 Third party unmanned aerial vehicle continuation of journey basic station

Also Published As

Publication number Publication date
BE1026674A1 (en) 2020-04-29
CN109508037B (en) 2019-10-11
BE1026674B1 (en) 2020-10-07
CN109508037A (en) 2019-03-22
NL2024584A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
NL2024584B1 (en) Auxiliary charging system for drone
CN109142971A (en) The method for inspecting and inspection device of transmission line polling robot
JP2019507713A (en) Floor monitoring method when robot is in elevator, electronic device, computer storage medium
US20210041896A1 (en) Method for controlling a drone, drone and system
KR20170076414A (en) Method and apparatus of battery management in consideration of battery rest time
CN109144727A (en) The management method and device of resource in cloud data system
US10162401B1 (en) Measuring battery degradation
WO2022178865A1 (en) Method and device for monitoring and predicting traction power supply system of rail transit
US20210407107A1 (en) Target association using occlusion analysis, clustering, or both
US20220100571A1 (en) Scheduling system, scheduling method, and non-transitory recording medium
EP4253130A1 (en) Method and computer system for controlling vehicle battery swapping, medium, and vehicle
KR20220075123A (en) Analysis Service System for Battery Condition of Electric Bus
JP2019192030A (en) Apparatus and method for determining moving path of autonomously movable information processing apparatus
CN105022569B (en) The method of the picture update rate of optionally switch mouse
CN109508621A (en) Loading hatch method for monitoring state, device, equipment and its storage medium
CN117201565A (en) Internet-connected unmanned aerial vehicle management cloud platform based on 5G transmission
CN113183827A (en) New forms of energy electric automobile intelligent cloud central control management platform that traveles based on artificial intelligence
US20230086998A1 (en) Control device, monitoring system, control method, and non-transitory computer-readable recording medium
CN109033964A (en) It is a kind of judgement vehicle to departure from port event method, system and equipment
CN115407215A (en) Unmanned aerial vehicle&#39;s battery duration management evaluation system
CN113479219B (en) Driving track planning method and device, computer equipment and medium
US20220161674A1 (en) Charging control system, charging control apparatus, and computer readable recording medium
US20220101066A1 (en) Reducing false detections for night vision cameras
CN115314850A (en) Intelligent motion system based on cloud edge cooperative control
US11226635B2 (en) Moving body system and operation control method

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230101