NL2011971C2 - Method and system for mining or extraction. - Google Patents

Method and system for mining or extraction. Download PDF

Info

Publication number
NL2011971C2
NL2011971C2 NL2011971A NL2011971A NL2011971C2 NL 2011971 C2 NL2011971 C2 NL 2011971C2 NL 2011971 A NL2011971 A NL 2011971A NL 2011971 A NL2011971 A NL 2011971A NL 2011971 C2 NL2011971 C2 NL 2011971C2
Authority
NL
Netherlands
Prior art keywords
substrate
materials
range
electrodes
signal
Prior art date
Application number
NL2011971A
Other languages
Dutch (nl)
Inventor
Gerben Hendrikus Zuidam
Original Assignee
Almas Invest B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Almas Invest B V filed Critical Almas Invest B V
Priority to NL2011971A priority Critical patent/NL2011971C2/en
Application granted granted Critical
Publication of NL2011971C2 publication Critical patent/NL2011971C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/006Charging without electricity supply, e.g. by tribo-electricity, pyroelectricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/02Separators
    • B03C7/023Non-uniform field separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/28Parts being easily removable for cleaning purposes

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to a method for mining or extraction of materials from a substrate, comprising earth, rock or ore, the method comprising steps for: -charging the materials present in the substrate, preferably by applying a triboelectric charge, -applying an electrostatic force to the charged materials for inducing transport of the charged materials through the substrate, -preferably repeating the above steps in an alternating manner.

Description

METHOD AND SYSTEM FOR MINING OR EXTRACTION
The present invention relates to a method for mining or extraction, preferably of materials transportable 5 under an electrically created force, preferably metals, such as noble metals, from a substrate, comprising earth, rock or ore. The invention furthermore relates to a system for mining or extraction of materials from a substrate, comprising earth, rock or ore.
10 According to the state of the art, it is possible to mine for materials using methods that are directed at removing the ore from the ore comprising sites, grinding the ore, and using any number of physical or chemical steps to further remove materials from ore.
15 Such systems are costly and cumbersome and devas tating to the environment or very costly underground. In light of these aspects, the present inventor has devised a method and system lacking the above indicated this advantages .
20 Therefore, the present invention is directed at a
Method for mining or extraction of materials transportable under an electrically created force, preferably of materials, more preferably of materials from a substrate, comprising earth, rock or ore, the method com- 25 prising steps for: - charging the materials present in the substrate, preferably by applying a triboelectric charge, - applying an electric force, such as an electrostatic force, to the charged materials for inducing 30 transport of the charged materials through the substrate, - preferably repeating the above steps in an alternating manner.
2
One major advantage of the above method is that for removing the materials, the surrounding substrate does not require direct tampering of matter adjacent to material particles. By providing a charge to the materials pre-5 sent in the substrate, it is made possible to cause migration of such charged particles through the surrounding matter without directly needing to move such surrounding matter. The charge is preferably a triboelectric charge, generated by causing the substrate to vibrate, the mutual 10 vibration of the material particles and the surrounding matter causing the material particles to become triboelec-trically charged.
Examples of materials are chemical elements such as chemical elements of the group of metals, such as cop-15 per, iron, uranium, titanium, vanadium, thorium, actinium, samarium, yttrium, indium and lanthanum; and/or lanthanides, an actinides and/or main group metals. Also base, strategic, rare earth metals, and some of their salts, oxides, hydroxides, concentrate. A first preferred embodi-20 ment according to the present invention provides steps for applying at least one antenna for providing a signal to the substrate that is suitable for providing the charge, preferably the triboelectric charge to the materials. The use of such antennae is very advantageous as it merely re-25 quires bringing the substrate in close contact or adjacency with the antenna. This may be achieved by simply arranging the antenna next to the substrate or by drilling a hole in the substrate and placing the antenna in the hole.
According to a second preferred embodiment, the 30 signal comprises electromagnetic waves, preferably with a frequency in the range of 300 MHz to 300 GHz, further preferably in the range of 1 GHz to 6 GHz, further preferably in the range of 2 GHz to 3 GHz, further preferably in 3 the range of 2.2 to 2.6 GHz. The electromagnetic waves have preferably a voltage amplitude of up to 100V, further preferably of up to 10V, further preferably up to IV. The electromagnetic waves have preferably a current amplitude 5 of up to 10A, further preferably of up to 1A, further preferably up to 100mA.
Depending upon specific substrate and ore situations, within the disclosure of this document, the skilled person is readily able to use simple adjustment procedures 10 without undue experimentation for individual substrate situations. Preferably, at least one frequency is used that is effective for influencing water, such as for heating thereof, such as around 2.4 GHz. In a further embodiment, the electromagnetic waves are applied with wave po-15 larization, preferably vertically and or horizontally the antenna preferably being adapted to achieve such effect.
The power of the antenna is preferably within the range of 1 kW to 300 kW, preferably in a range of .5 kW to 10 kW, preferably in a range from 10 kW to 100 kW, prefer- 20 ably in a range of 100 kW to 300 kW, or any subset defina ble within the outer limits of these ranges.
Furthermore, the antenna has a bar shape with a cylindrical cross-section, preferably an oval cross-section, preferably a square cross-section, further pref-25 erably a cross-section of a polygon.
Furthermore, the charging step is performed for a period of 1 second to 4 days, preferably between 10 seconds to 10 hours, preferably between 1 min. and 20 min., preferably between 2 min. and 10 min., preferably between 30 2 min. and 5 min. such ranges allow for imparting the charge to a sufficient number of material particles in a substantial rate. Preferably, the triboelectric effect is 4 applied by means of vibrating material particles in contact with surrounding material of the substrate.
During the charging step, according to a further embodiment, at least a part of moisture that is present in 5 substrate is transferred to steam.
Preferably, the electrostatic force is applied by contacting at least two electrodes with the soil and applying a signal between the electrodes that is suitable for inducing transport of the charged materials through 10 the substrate.
According to a further preferred embodiment, Method according to any of the preceding claims comprising an additional step of raising the conductivity of the substrate, preferably by means of a high voltage signal or 15 flash signal, preferably in the range of 1000- 1,000,000, more preferably in the range of 1000- 100,000, further preferably in the range of 1000-50,000, further preferably in the range of 5000-25,000, further preferably in the range of 10,000, 20,000 Volt, preferably thereby creating. 20 According to a further preferred embodiment, the potential of the electrically induced force is between IV and 100 kV, preferably between 1 V and 10,000 V, preferably between 1 V and 1 kV, preferably between 1 V and 100 V, preferably between 1 V and 24 V preferably between 1 V 25 and 12 V. According this further preferred embodiment, the induced current is between 1mA and 100A, preferably between 10mA and 50A, preferably between 100mA and 10A.
The electrodes are preferably constructed by means of a conductive material, such as graphite.
30 For obtaining a further improvement of migration of the materials, the signal on the electrodes is variable, preferably with respect to the magnitude of applied 5 voltage and or preferably an alternating current, with a period between 1 second and 1 hour.
The duration of the step for applying an electrostatic force is according to a preferred embodiment be-5 tween 1 min. and 10 hours, preferably between 1 min. and 2 hours, preferably between 1 min. and 30 min., preferably between 1 min. and 15 min., preferably between 3 min. and 8 min., preferably between 4 min. and 6 min.
Furthermore, it is preferred that the method com-10 prises steps for drilling openings in the substrate for placing the at least one antenna or the at least two electrodes .
Preferably, a space between an electrode and surrounding ore is provided, the space being between 1/10 of 15 a millimeter and 2 cm, preferably between one half of a millimeter and 1 cm, preferably between 1 mm and 1 cm.
Furthermore, it is preferred that the drilling openings has a diameter between 1 cm and 30 cm, preferably between 1 cm and 10 cm, preferably between 1 cm and 5 cm, 20 preferably between 2 cm and for centimeter, more preferably substantially 3 cm with a drilling depth of between 30 cm and 100 m, preferably between 1 m and 10 m, more preferably between 2 m and 4 m, preferably substantially around 3 m.
25 A further step of the extraction method comprises comprising steps for removing materials from either electrode. This may be achieved by mechanical, physical or chemical methods .
A further embodiment is directed at a method com-30 prising steps in which multi barrel drilling systems are used, preferably dual barrel drilling systems, further preferably applying sonic drilling, preferably ultrasonic drilling. This is highly advantageous as this technique 6 for drilling allows for very clean drilling well or holes, the advantage of which is good signal transfer between the antennae and the surrounding substrate or earth. A further advantage is that the drills are directly usable as the 5 antennae itself and therefore also a collector for the yielded materials or metals.
Further preferably, any drill or barrel is directly applied as an electrode, preferably in which a 1st or in a drill barrel is used for the charging step and or the 10 conductivity racing step. This provides for better efficiency as steps for removal of the drill and insertion of the electrode or antenna may be omitted.
Further preferably, any drill or barrel is provided with openings and or through holes. An advantage there-15 of is that the direction of signals is directable towards the part of the substrate to be treated with the signal resp. towards a counter electrode or antenna.
A further aspect according to the present invention is directed at a system for performing a method ac-20 cording to the above claims, the system comprising a control unit comprising: - means for connecting to a power supply, - generation means for generating a signal for charging materials present in a substrate, 25 - outputting means for outputting the signal for charging the materials, - generation means for generating a signal for applying an electrostatic force to the charged materials, - outputting means for outputting the signal for 30 applying an electrostatic force to the materials.
Such a system provides advantages as indicated in the above description directed at the methods.
7
According to a 1st preferred embodiment, the system comprises at least one antenna for charging materials present in a substrate and at least 2 electrodes for applying an electrostatic force to the materials.
5 Further advantages, features and details of the present invention will be described in greater detail with reference to the annexed drawings and based one or more preferred embodiments. The drawings show as follows. Similar, yet not necessarily identical parts of several pre-10 ferred embodiments are referred to with the same reference numerals .
Fig. 1 shows a schematic representation of two holes for holding electrodes for extraction of materials according to a preferred embodiment of the present inven-15 tion.
Fig. 2 shows a schematic representation of a system according to the preferred embodiment of the present invention .
Fig. 3 shows a schematic representation of a meth-20 od placing and removing an electrode.
Fig. 4 shows a schematic representation of an electrode .
Fig. 5 shows a top view of a mining pattern with the present invention.
25 A first preferred embodiment (Fig. 1-2) according to the present invention relates to a system for executing a method according to the present invention. The system comprises two electrodes 2, each with an integrated antenna 2'. An advantage of such integration is that the same 30 element may be used as both an antenna and an electrode.
In other embodiments, a separate antenna may be used, which may be especially optimized for the purpose of the antenna. An advantage of the combination in this embodi- 8 ment is that it saves at least drilling of one hole per operation .
In this sense, an operation is intended to mean a cycle of method steps directed at extracting noble metals 5 from a patch of substrate as indicated in the above. Such operation may require a series of repetitions of steps in which firstly, the noble metals are charged, thereof to secondly the noble metals are extracted by means of the electrodes. Charging and extraction may be performed sub-10 sequently and during the same time.
The boreholes are preferably cylindrical and a minimum of 2 is required. A number of electrodes may be used as well as a number of antennae. An arrangement of such elements may be chosen based on undue experimentation 15 depending on circumstances of the substrate. A very rich substrate may require a smaller scale distance between electrodes, extending up to one or two meters in order to limit the gain of noble metals on the electrodes to a certain maximum indicated by the space in the openings around 20 the electrodes, whereas a very lean substrate may require quite a distance between the electrodes, extending up to hundreds of meters in order to obtain any gain of noble metals on the electrodes. It is also possible to interrupt the method, extract the electrodes, remove the noble met-25 als from the electrodes, and reinserted the electrodes into the openings of the substrate.
The control unit 3 preferably comprises a timer unit, a power unit for powering the antennae, and a power unit for powering the electrodes. Depending on the power 30 and frequency to be applied to the antennae, the skilled person will adapt the power unit to be able to provide the relevant microwave energy. Depending on the signal to be 9 provided to the electrodes, a suitable generator, such as a vandergraaf generator will be required.
A typical example of a substrate is a substrate comprising 2-25 g per cubic meter. For charging the noble 5 metals, with the electrodes at a distance of for example 2 m, it is presently expected that 1 min. is required to obtain a sufficient charge of the noble metals, where after the electrodes may be provided with the signal for 5 min.
It is presently anticipated that 50KV suffices for 10 distances up to 200 meters, 2V for 2 meters, 12 V for 10 meter and 24 V for 30 meter.
A further preferred embodiment (Fig. 3) according to the present invention relates to a method for placing and removing an electrode.
15 In figure 3A an electrode 10 named a core barrel is inserted, preferably by means of sonic drilling, in a substrate 5 comprising soil, preferably holding a layer with ore 6, domestic or industrial dump material, or tailing. The electrode 10 is inserted in the substrate using 20 drilling preferably rotational and/or ultrasonic drilling. The electrode is moved during drilling in a direction A to insert the electrode in the substrate. The charging and transport of minable materials is possible with the present invention with the electrode inserted in the layer 25 with ore.
In figure 3B an outer barrel or overcasing 20 is placed over the electrode 10. The hollow drill is placed in the substrate using drilling preferably rotational and/or ultrasonic drilling. The hollow drill is moved dur-30 ing drilling in a direction A to place it over the electrode in the substrate preferably at the same depth as the electrode. It is provided that during drilling a drilling fluid is used to ease the force to move the drill in the 10 direction of A during at least part of the drilling. The drilling fluid is preferably water and is preferably used for drilling through hard layers like rock.
In figure 3C the hollow drill is moved further 5 over the electrode.
In figure 3D the hollow drill is at its end position and the retraction of the electrode is started. The electrode is retracted in the direction of B. A space between the hollow drill and the electrode contains a re-10 trieved part of the substrate. Preferably the space is large enough to contain a substantial amount of the transported materials. Preferably the space is between 0.1cm and lm, by further preference between 0.5cm and 10cm, by further preference between 1cm and 2cm.
15 In figure 3E the retraction of the electrode pro gressed further. As a further preference the electrode and the hollow drill are retracted at the same pace.
A benefit of ultrasonic over rotational drilling is that the sides of the bore hole are not polished. A 20 polished bore hole has a lower contact surface with an electrode placed in the bore hole which results in a lower conductivity which results in less transport of minable materials. A further preferred embodiment (Fig. 4) according to the present invention is an electrode.
25 Figure 4A shows an elongated cylindrical electrode 2. The electrode is preferably perpendicular to the surfaced of the substrate placed in the substrate. The electrode comprises a front side 41 and a back side 43. The front side comprises holes 40. The barrels emit the radio 30 waves for charging the minable materials by the triboelec-trical effect. The openings are preferably faced in the direction of the second electrode for charging the minable materials preferably between the electrodes.
11
The holes have preferably a size like a diameter equal to a quarter of the multiple of the radio signal frequency used by the triboelectrical effect. By preference a frequency of the emitted radio waves is around 5 2.4GHz. A quarter wavelength of the frequency is prefera bly 31,25mm in vacuum. Due to a lower propagation speed of the radio wave in a substrate, the quarter wavelength may be longer than 31.25mm.
Figure 4B shows an elongated cylindrical electrode 10 2 after the present mining method is applied. The elec trode shows multiple areas 42 with minable materials deposited on the electrode.
A further preferred embodiment (Fig. 5) according to the present invention relates to a method of mining.
15 This method is improves mining efficiency. Figure 5 shows a top view of this mining pattern.
Before the step of harvesting, the earth is preferably subjected to a high voltage flash from the barrel, preferably the outer barrel, but the inner barrel may be 20 used before the outer is lowered. This flash creates lower resistance by creating or recreating p-n or n-p bridges or tunnels between crystals or particles in the earth. Especially man handled substrates are subject to the positive effect of this procedure and will yield high reductions in 25 resistance. The flash is preferably characterized by a block wave of direct current. The flash is preferably envisaged to recreate natural diodes in the substrate. An alternating current is under testing. During the harvesting phase, this flashing step allows for a raise in the 30 through put current. During testing, the harvesting current was raised from 20 mA to 2,5 A over a distance of 1,2 meter. Therefore, it is envisaged to raise the harvesting 12 or transport current by 10-1000 times, preferably 10-500 times, further preferably 1-200 times.
Shown are a first electrode 61 preferably a cathode and a second electrode 62 preferably an anode placed 5 at a first location 63, where both electrodes are placed some distance from each other. The electrodes are used to transport and preferably also to charge the minable materials. An electrical field transports the charged materials in the direction of A.
10 After some time the second electrode is retrieved from the first location 63 and repositioned to a second location 63'. Preferably the minable materials are recharged before transport of the minable materials in the direction of B.
15 After some time the second electrode is retrieved from the second location 63' and repositioned to a third location 63''. Preferably the minable materials are recharged before transport of the minable materials in the direction of C.
20 The process of retrieving and repositioning the second electrode is repeated preferably up until a complete circular pattern around the first electrode is formed.
A yield example is e.g. Substrate contents 5 gram 25 gold per M delivers a production on daily bases of 576 gram. Three exemplary embodiments of antenna uses are introduced : 1. the distance between the antennae is 20 meter, length of the barrel 2,4 meter and the width of the mate- 30 rial to be processed 2,4 meter (1,2 to the right and 1,2 to the left from the antenna).
2. distance between antenna 75 meter. Other distances remain the same as in point 1.
13 3. distance between antennae 200 meter. Other distances remain the same as point 1.
In such examples, the core barrel, dual wall and single is provided. A side discharge or front discharge 5 can be used for the system to adjust the emitted HF orientation. The core barrel for our system can be applied as antenna and simultaneously as collector (electrode). The core barrel over casing for he can be applied as a bridge maker. Flush or muddy puffy is envisaged as catalyst 10 source.
Herebelow, some test results are provided of the mixture of metals adhered to the electrodes after harvesting in a per test differently composed substrate or soil.
Test 1; Sm 0,78 %; 15 K 0,80 %; Gd 1,56 %;
Ca 61,24 %; Cu 0,48 %;
Ti 0,88 %; 35 As 0,12 %;
Mn 0,43 %; Pb 0,51 %;
Fe 32,96 %; Ac 0,15 %.
20 Cu 1,08%;
Zn 0,22%; Test 3;
As 1,47 %; 40 Ni 0,66 %;
Sr 0,67 %; Fe 0,57 %; Y 0,04 %; Cu 96,04%; 25 Pb 0,20 %; Pb 0,24 %;
Ac 0,01% Ag 2,48%.
45
Test 2; Test 4;
Mn 0,42 %; Cu 98,15%; 30 Fe 94,72 %; Ag 1,45 %.
La 1,26 %;
In the above, the present invention is described 50 with reference to one or more preferred embodiments. Sev- 14 eral aspects of several distinct preferred embodiments are described in the above. Furthermore, the features of distinct embodiments are deemed described in combination with each other in order to provide a description of all combi-5 nations that are considerable within the scope of this description by an expert of the field. The above disclosure these preferred embodiments are not limiting to the scope of protection of this document. The rights sought are determined in the annexed claims, o * * * * *

Claims (24)

1. Werkwijze voor mijnbouw of extractie van materialen transporteerbaar onder en electrisch opgewekte kracht, bij voorkeur, van metalen, bij verdere voorkeur 5 van edele metalen uit een substraat, omvattende aarde, rots of erts, waarbij de werkwijze stappen omvat voor: - het laden van de metalen die aanwezig zijn in het substraat, bij voorkeur door het aanleggen van een triboelektrische lading, 10. het aanleggen van een elektrische kracht, zoals een elektrostatische kracht op de materialen voor het induceren van transport van de materialen door het substraat, - het bij voorkeur herhalen van de voorgaande 15 stappen op een alternerende wijze.Method for mining or extraction of materials transportable under an electrically generated force, preferably, of metals, more preferably of precious metals from a substrate, comprising earth, rock or ore, the method comprising steps of: - loading of the metals present in the substrate, preferably by applying a triboelectric charge; 10. applying an electric force, such as an electrostatic force, to the materials for inducing transport of the materials through the substrate; preferably repeating the previous 15 steps in an alternating manner. 2. Werkwijze volgens conclusie 1 omvattende stappen voor het toepassen van tenminste een antenne voor het verschaffen van een signaal aan het substraat dat geschikt 20 is voor het verschaffen van de lading, bij voorkeur de triboelektrische lading naar de materialen.2. Method as claimed in claim 1, comprising steps for applying at least one antenna for providing a signal to the substrate which is suitable for providing the charge, preferably the triboelectric charge to the materials. 3. Werkwijze volgens conclusie 1 of 2 waarbij het signaal elektromagnetische golven omvat, bij voorkeur in 25 het bereik van 300 MHz tot 300 GHz, bij verdere voorkeur het bereik van 1 GHz tot 6 GHz, bij verdere voorkeur in het bereik van 2 GHz tot 3 GHz, bij verdere voorkeur in het bereik van 2, 2 tot 2, 6 GHz.3. Method according to claim 1 or 2, wherein the signal comprises electromagnetic waves, preferably in the range of 300 MHz to 300 GHz, more preferably in the range of 1 GHz to 6 GHz, more preferably in the range of 2 GHz to 3 GHz, more preferably in the range of 2, 2 to 2, 6 GHz. 4. Werkwijze volgens conclusie 3 waarbij de elek tromagnetische golven worden toegepast met golfpolarisa-tie, bij voorkeur verticaal en/of horizontaal.Method according to claim 3, wherein the electromagnetic waves are applied with wave polarization, preferably vertically and / or horizontally. 5. Werkwijze volgens conclusie 2, 3 of 4 waarbij het vermogen van de antenne ligt binnen het bereik van 1 kilowatt tot 300 kW, bij voorkeur in het bereik van 5 kilowatt tot 10 kW, bij voorkeur in het bereik van 10 kW tot 5 100 kW, bij voorkeur in een bereik van 100 kW tot 300 kW, of enige deelverzameling definieerbaar binnen de buitenste limieten van deze bereiken.Method according to claim 2, 3 or 4, wherein the power of the antenna is in the range of 1 kilowatt to 300 kW, preferably in the range of 5 kilowatt to 10 kW, preferably in the range of 10 kW to 5 100 kW, preferably in a range of 100 kW to 300 kW, or any subset definable within the outer limits of these ranges. 6. Werkwijze volgens conclusie 2, 3, 4 of 5 waar- 10 bij de antenne een balkvorm heeft met een cilindrische dwarsdoorsnede, bij voorkeur een ovale dwarsdoorsnede, bij voorkeur een vierkante dwarsdoorsnede, bij voorkeur een dwarsdoorsnede van een veelhoek.6. Method as claimed in claim 2, 3, 4 or 5, wherein the antenna has a beam shape with a cylindrical cross-section, preferably an oval cross-section, preferably a square cross-section, preferably a cross-section of a polygon. 7. Werkwijze volgens enige van de voorgaande con clusies omvattende een additionele stappen voor het verhogen van de geleidbaarheid van het substraat, bij voorkeur door middel van een hoog voltagesignaal of een flitssig-naal, bij voorkeur in het bereik van 1000 - 1 miljoen, bij 20 verdere voorkeur in het bereik van 1000 - 100.000, bij verdere voorkeur het bereik van 1000 - 50.000, bij verdere voorkeur het bereik van 5000 - 25.000, bij verdere voorkeur het bereik van 10.000 - 20.000 volt.Method according to any of the preceding claims, comprising an additional step for increasing the conductivity of the substrate, preferably by means of a high voltage signal or a flash signal, preferably in the range of 1000-1 million, at Further preferably in the range of 1000 - 100,000, more preferably in the range of 1000 - 50,000, more preferably in the range of 5000 - 25,000, more preferably in the range of 10,000 - 20,000 volts. 8. Werkwijze volgens enige van de voorgaande con clusies, waarbij de laadstap wordt uitgevoerd gedurende een periode van 10 seconden tot 10 uren, bij voorkeur tussen een minuut en 20 minuten, bij voorkeur tussen 2 min. en 10 min., bij voorkeur tussen 2 min. En 5 min.A method according to any of the preceding claims, wherein the charging step is performed for a period of 10 seconds to 10 hours, preferably between one minute and 20 minutes, preferably between 2 minutes and 10 minutes, preferably between 2 min. and 5 min. 9. Werkwijze volgens een of meer van de voorgaande conclusies waarbij het triboelektrische effect wordt toe- 30 gepast door middel van het vibreren van edelmetaaldeeltjes in contact met omliggend materiaal van het substraat.9. Method according to one or more of the preceding claims, wherein the triboelectric effect is applied by vibrating noble metal particles in contact with surrounding material of the substrate. 10. Werkwijze volgens een of meer van de voorgaan-5 de conclusies waarbij gedurende de stap voor het laden, tenminste een deel van vocht dat aanwezig is in het substraat wordt omgezet in stoom.10. Method according to one or more of the preceding claims, wherein during the loading step, at least a part of moisture present in the substrate is converted into steam. 11. Werkwijze volgens een of meer van de voorgaan-10 de conclusies, waarbij de elektrostatische kracht wordt aangelegd door middel van het in contact brengen van tenminste 2 elektroden met de bodem en het aanleggen van een signaal tussen de elektroden dat geschikt is voor het induceren van transport van de geladen materialen door het 15 substraat.11. Method as claimed in one or more of the foregoing claims, wherein the electrostatic force is applied by contacting at least 2 electrodes with the bottom and applying a signal between the electrodes which is suitable for inducing of transport of the charged materials through the substrate. 12. Werkwijze volgens conclusie een of 10, waarbij het potentiaal van de elektrostatische kracht ligt tussen 1 volt en 100 kV, bij voorkeur tussen 1 volt en 10.000 20 volt, bij voorkeur tussen 1 volt en 1 kV, bij voorkeur tussen 1 volt en 100 volt, bij voorkeur tussen 1 volt een 24 volt, bij voorkeur tussen 1 volt en 12 volt.A method according to claim 1 or 10, wherein the potential of the electrostatic force is between 1 volt and 100 kV, preferably between 1 volt and 10,000 volt, preferably between 1 volt and 1 kV, preferably between 1 volt and 100 volts, preferably between 1 and 24 volts, preferably between 1 and 12 volts. 13. Werkwijze volgens conclusie 1, 10 of 11 waar-25 bij de elektroden een geleidend materiaal omvatten zoals grafiet.13. A method according to claim 1, 10 or 11, wherein the electrodes comprise a conductive material such as graphite. 14. Werkwijze volgens conclusie 1, 10 - 12, waarbij het signaal op de elektroden variabel is, bij voorkeur 30 met betrekking tot de grootte van aangelegd voltage en/of bij voorkeur een wisselstroom, met een periode tussen 1 seconde en 1 uur.A method according to claims 1, 10 - 12, wherein the signal on the electrodes is variable, preferably with respect to the magnitude of applied voltage and / or preferably an alternating current, with a period between 1 second and 1 hour. 15. Werkwijze volgens conclusie 1, 10 - 13 waarbij de duur van de stap voor het aanleggen van een elektrostatische kracht is tussen een minuut en 10 uren, bij voorkeur tussen een minuut en 2 uren, bij voorkeur tussen 1 5 minuut en 30 minuten, bij voorkeur tussen 1 minuut en 15 minuten, bij voorkeur tussen 3 minuten en 8 minuten, bij voorkeur tussen 4 minuten en 6 minuten.Method according to claim 1, 10-13, wherein the duration of the step of applying an electrostatic force is between one minute and 10 hours, preferably between one minute and 2 hours, preferably between 15 minutes and 30 minutes, preferably between 1 minute and 15 minutes, preferably between 3 minutes and 8 minutes, preferably between 4 minutes and 6 minutes. 16. Werkwijze volgens een of meer van de voorgaan- 10 de conclusies, omvattende stappen voor het boren van ope- ningen in het substraat voor het plaatsen van de ten min-ste-ene-antenne of the tenminste twee elektroden.16. Method as claimed in one or more of the foregoing claims, comprising steps for drilling openings in the substrate for placing the at least one antenna or the at least two electrodes. 17. Werkwijze volgens een of meer van de voorgaan- 15 de conclusies waarbij een ruimte tussen de elektroden en omliggend erts is verschaft, waarbij de ruimte is tussen een tiende van een millimeter en 2 cm, bij voorkeur tussen een halve millimeter en een centimeter, bij voorkeur tussen een millimeter en een centimeter. 2017. Method as claimed in one or more of the foregoing claims, wherein a space between the electrodes and surrounding ore is provided, wherein the space is between a tenth of a millimeter and 2 cm, preferably between half a millimeter and a centimeter, preferably between a millimeter and a centimeter. 20 18. Werkwijze volgens de voorgaande conclusies waarbij de booropeningen een diameter hebben tussen een centimeter en 30 cm, bij voorkeur tussen een centimeter en 10 cm, bij voorkeur tussen een centimeter en 5 cm, bij 25 voorkeur tussen twee centimeter en vier centimeter, bij voorkeur in hoofdzaak 3 cm met een boordiepte van tussen 30 cm en 100 meter, bij voorkeur tussen 1 meter en 10 m, bij verdere voorkeur tussen 2 en 4 m meter, bij voorkeur in hoofdzaak rond 3 m. 3018. Method as claimed in the foregoing claims, wherein the drill openings have a diameter between an centimeter and 30 cm, preferably between an centimeter and 10 cm, preferably between an centimeter and 5 cm, preferably between two centimeters and four centimeters, preferably substantially 3 cm with a drilling depth of between 30 cm and 100 meters, preferably between 1 meter and 10 m, more preferably between 2 and 4 m meters, preferably substantially around 3 m. 19. Werkwijze volgens enige van de voorgaande conclusies, omvattende stappen voor het verwijderen van materialen uit enige van de elektroden.A method according to any of the preceding claims, comprising steps for removing materials from any of the electrodes. 20. Werkwijze volgens een van de voorgaande conclusies waarbij multi pijpboorsystemen worden toegepast, bij voorkeur waarbij duale pijpboorsystemen, bij verdere 5 voorkeur toepassing van sonisch boren, bij verdere voorkeur ultrasoon boren.20. Method as claimed in any of the foregoing claims, wherein multi-pipe drilling systems are used, preferably wherein dual pipe-drilling systems, further preferably use of sonic drilling, further preferably ultrasonic drilling. 21. Werkwijze volgens enige van de voorgaande conclusies waarbij enige woord of pijp direct wordt toegepast 10 als een elektroden, bij voorkeur waarbij de eerste of enige boorpijp wordt gebruikt voor de laadstap en of de geleidbaarheid verhogende stap.21. Method as claimed in any of the foregoing claims, wherein any word or pipe is used directly as an electrodes, preferably wherein the first or only drill pipe is used for the loading step and / or the conductivity-increasing step. 22. Werkwijze volgens enige van de voorgaande con- 15 clusies waarbij enige boer of pijp is voorzien van openin- gen en/of dooropeningen.22. Method according to any of the preceding claims, wherein some farmer or pipe is provided with openings and / or openings. 23. Systeem voor het uitvoeren van een werkwijze volgens een of meer van de voorgaande conclusies, waarbij 20 het systeem een regeleenheid omvat, omvattende: - middelen voor het verbinden met een vermogens- toevoer, - opwekmiddelen voor het opwekken van een signaal voor het laden van materialen die aanwezig zijn in een 25 substraat, - uitvoermiddelen voor het uitvoeren van het signaal voor het laden van de materialen, - opwekmiddelen voor het opwekken van een signaal voor het aanleggen van een elektrostatische kracht op de 30 geladen materialen, - uitvoermiddelen voor het uitvoeren van het signaal voor het aanleggen van een elektrostatische kracht op de materialen.23. System for performing a method according to one or more of the preceding claims, wherein the system comprises a control unit, comprising: - means for connecting to a power supply, - generating means for generating a signal for charging of materials present in a substrate, - output means for outputting the signal for loading the materials, - generating means for generating a signal for applying an electrostatic force to the charged materials, - output means for outputting applying the signal for applying an electrostatic force to the materials. 24. Systeem volgens conclusie 23, omvattende tenminste een antenne voor het laden van materialen die aanwezig zijn in een substraat en tenminste 2 elektroden voor 5 het aanleggen van een elektrostatische kracht op de materialen .24. System as claimed in claim 23, comprising at least one antenna for charging materials present in a substrate and at least 2 electrodes for applying an electrostatic force to the materials.
NL2011971A 2012-12-14 2013-12-16 Method and system for mining or extraction. NL2011971C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.
NL2009989 2012-12-14
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.
NL2011971 2013-12-16

Publications (1)

Publication Number Publication Date
NL2011971C2 true NL2011971C2 (en) 2014-06-17

Family

ID=50236242

Family Applications (2)

Application Number Title Priority Date Filing Date
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.

Country Status (3)

Country Link
EP (1) EP2931433A1 (en)
NL (2) NL2009989C2 (en)
WO (1) WO2014092579A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE598948C (en) * 1931-05-31 1934-06-21 Siemens Schuckertwerke Akt Ges Process for separating dust mixtures by means of a capacitor field
US3493109A (en) * 1967-08-04 1970-02-03 Consiglio Nazionale Ricerche Process and apparatus for electrostatically separating ores with charging of the particles by triboelectricity
US5938041A (en) * 1996-10-04 1999-08-17 University Of Kentucky Research Foundation Apparatus and method for triboelectrostatic separation
US5967331A (en) * 1997-10-27 1999-10-19 Katyshev; Anatoly L. Method and apparatus for free fall electrostatic separation using triboelectric and corona charging
SE530917C2 (en) * 2005-11-03 2008-10-21 Airgrinder Ab Process and apparatus for separating different elements and / or their compounds from each other

Also Published As

Publication number Publication date
EP2931433A1 (en) 2015-10-21
NL2009989C2 (en) 2014-06-17
WO2014092579A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US10400568B2 (en) System and methods for controlled fracturing in formations
US4084638A (en) Method of production stimulation and enhanced recovery of oil
CN104204405B (en) It is electroluminescent to split stratum
EP3508683B1 (en) Apparatuses and methods for supplying electrical power to an electrocrushing drill
US11773696B2 (en) Acoustic stimulation
Zhu et al. The fragmentation mechanism of heterogeneous granite by high-voltage electrical pulses
CN103551231A (en) Pulse breaking mechanism, as well as seabed cobalt-rich crust breaking system and method
BR112015014670B1 (en) ELECTROCRUSHING DRILLING DRILL
EA012931B1 (en) Method for extracting hydrocarbons from hydrocarbon formations and a method for processing hydrocarbon-bearing formations
CN108222839A (en) Multi-electrode electric crushing drill bit and electric crushing experimental device
CN105189917B (en) Method for the physical field in the horizontal end of inclined shaft of equipment to be applied to productivity hydrocarbon bed
RU2017109053A (en) DEVICES, METHODS AND SYSTEMS OF Borehole Range Metering
NL2011971C2 (en) Method and system for mining or extraction.
US20130081874A1 (en) Electro-Hydraulic Drilling With Shock Wave Reflection
Sharma et al. Generation of ELF waves during HF heating of the ionosphere at midlatitudes
US9091776B2 (en) Subterranean mapping system including electrically conductive element and related methods
CN105986809A (en) Interwell electromagnetic transmitting system
RU2383391C1 (en) Device for processing of materials containing noble metals
US9081116B2 (en) Subterranean mapping system including spaced apart electrically conductive well pipes and related methods
CN105182430A (en) Time frequency electromagnetic exploration system and data acquisition method thereof
RU2375573C2 (en) Method for breaking of rocks
RU2739234C1 (en) Electromagnetic ore pretreatment method and device for implementation thereof
EA200901278A1 (en) METHOD OF ELECTRIC POWER SUPPLY OF ELECTRIC DISCHARGE DEVICES
RU2470330C2 (en) Method and apparatus for obtaining optical and impact waves in liquid
Usov et al. Perspectives and conceptual solutions for the design of compact technological systems the basis on electric pulse method destruction of materials

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20170101