NL2009989C2 - Method and system for mining or extraction of noble metals. - Google Patents

Method and system for mining or extraction of noble metals. Download PDF

Info

Publication number
NL2009989C2
NL2009989C2 NL2009989A NL2009989A NL2009989C2 NL 2009989 C2 NL2009989 C2 NL 2009989C2 NL 2009989 A NL2009989 A NL 2009989A NL 2009989 A NL2009989 A NL 2009989A NL 2009989 C2 NL2009989 C2 NL 2009989C2
Authority
NL
Netherlands
Prior art keywords
substrate
minutes
precious metals
electrodes
applying
Prior art date
Application number
NL2009989A
Other languages
Dutch (nl)
Inventor
Gerben Hendrikus Zuidam
Original Assignee
Gerben Hendrikus Zuidam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerben Hendrikus Zuidam filed Critical Gerben Hendrikus Zuidam
Priority to NL2009989A priority Critical patent/NL2009989C2/en
Priority to EP13834395.9A priority patent/EP2931433A1/en
Priority to NL2011971A priority patent/NL2011971C2/en
Priority to PCT/NL2013/050904 priority patent/WO2014092579A1/en
Application granted granted Critical
Publication of NL2009989C2 publication Critical patent/NL2009989C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/006Charging without electricity supply, e.g. by tribo-electricity, pyroelectricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/02Separators
    • B03C7/023Non-uniform field separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/28Parts being easily removable for cleaning purposes

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to a method for mining or extraction of materials from a substrate, comprising earth, rock or ore, the method comprising steps for: -charging the materials present in the substrate, preferably by applying a triboelectric charge, -applying an electrostatic force to the charged materials for inducing transport of the charged materials through the substrate, -preferably repeating the above steps in an alternating manner.

Description

METHOD AND SYSTEM FOR MINING OR EXTRACTION OF NOBLE METALS
The present invention relates to a method for mining or extraction of noble metals from a substrate, com-5 prising earth, rock or ore. The invention furthermore relates to a system for mining or extraction of noble metals from a substrate, comprising earth, rock or ore.
According to the state of the art, it is possible to mine for noble metals using methods that are directed 10 at removing the ore from the ore comprising sites, grinding the ore, and using any number of physical or chemical steps to further remove noble metals from ore.
Such systems are costly and cumbersome and devastating to the environment or very costly underground. In 15 light of these aspects, the present inventor has devised a method and system lacking the above indicated this advantages .
Therefore, the present invention is directed at a method for mining or extraction of noble metals from a 20 substrate, comprising earth, rock or ore, the method comprising steps for: - charging the noble metals present in the substrate, preferably by applying a triboelectric charge, - applying an electrostatic force to the charged 25 noble metals for inducing transport of the charged noble metals through the substrate, - preferably repeating the above steps in an alternating manner.
One major advantage of the above method is that 30 for a moving noble metals, the surrounding substrate does not require direct tampering of matter adjacent to noble metal particles. By providing the charged noble metals present in the substrate, is made possible to cause migra- 2 tion of such charged particles through the surrounding matter without directly needing to move such surrounding matter. The charge is preferably a triboelectric charge, generated by causing the substrate to vibrate, the mutual 5 vibration of the noble metal particles and the surrounding matter causing the noble metal particles to become triboe-lectrically charged.
A first preferred embodiment according to the present invention provides steps for applying at least one 10 antenna for providing a signal to the substrate that is suitable for providing the charge, preferably the triboelectric charge to the noble metals. The use of such antennae is very advantageous as it merely requires bringing the substrate in close contact or adjacency with the an-15 tenna. This may be achieved by simply arranging the antenna next to the substrate or by drilling a hole in the substrate and placing the antenna in the hole.
According to a second preferred embodiment, the signal comprises electromagnetic waves, preferably in the 20 range of 300 MHz to 300 GHz, further preferably in the range of 1 GHz to 6 GHz, further preferably in the range of 2 GHz to 3 GHz, further preferably in the range of 2.2 to 2.6 GHz. Depending upon specific substrate and ore situations, within the disclosure of this document, the 25 skilled person is readily able to use simple adjustment procedures without undue experimentation for individual substrate situations. Preferably, at least one frequency is used that is effective for influencing water, such as for heating thereof, such as around 2.4 GHz. In a further 30 embodiment, the electromagnetic waves are applied with wave polarization, preferably vertically and or horizontally the antenna preferably being adapted to achieve such effect.
3
The power of the antenna is preferably within the range of 1 kW to 300 kW, preferably in a range of .5 kW to 10 kW, preferably in a range from 10 kW to 100 kW, preferably in a range of 100 kW to 300 kW, or any subset defina-5 ble within the outer limits of these ranges.
Furthermore, the antenna has a bar shape with a cylindrical cross-section, preferably an oval cross-section, preferably a square cross-section, further preferably a cross-section of a polygon.
10 Furthermore, the charging step is performed for a period of 10 seconds to 10 hours, preferably between 1 min. and 20 min., preferably between 2 min. and 10 min., preferably between 2 min. and 5 min. such ranges allow for imparting the charge to a sufficient number of noble metal 15 particles in a substantial rate. Preferably, the triboe- lectric effect is applied by means of vibrating noble metal particles in contact with surrounding material of the substrate .
During the charging step, according to a further 20 embodiment, at least a part of moisture that is present in substrate is transferred to steam.
Preferably, the electrostatic force is applied by contacting at least two electrodes with the soil and applying a signal between the electrodes that is suitable 25 for inducing transport of the charged noble metals through the substrate.
According to a further preferred embodiment, the potential of the electrostatic force is between one fold and 100 kV, preferably between 1 V and 10,000 V, prefera-30 bly between 1 V and 1 kV, preferably between 1 V and 100 V, preferably between 1 V and 24 V preferably between 1 V and 12 V.
4
The electrodes are preferably constructed by means of a conductive material, such as graphite.
For obtaining a further improvement of migration of the noble metals, the signal on the electrodes is vari-5 able, preferably with respect to the magnitude of applied voltage and or preferably an alternating current, with a period between 1 second and 1 hour.
The duration of the step for applying an electrostatic force is according to a preferred embodiment be-10 tween 1 min. and 10 hours, preferably between 1 min. and 2 hours, preferably between 1 min. and 30 min., preferably between 1 min. and 15 min., preferably between 3 min. and 8 min., preferably between 4 min. and 6 min.
Furthermore, it is preferred that the method com-15 prises steps for drilling openings in the substrate for placing the at least one antenna or the at least two electrodes .
Preferably, a space between an electrode and surrounding ore is provided, the space being between 1/10 of 20 a millimeter and 2 cm, preferably between one half of a millimeter and 1 cm, preferably between 1 mm and 1 cm.
Furthermore, it is preferred that the drilling openings has a diameter between 1 cm and 30 cm, preferably between 1 cm and 10 cm, preferably between 1 cm and 5 cm, 25 preferably between 2 cm and for centimeter, more preferably substantially 3 cm with a drilling depth of between 30 cm and 100 m, preferably between 1 m and 10 m, more preferably between 2 m and 4 m, preferably substantially around 3 m.
30 A finalizing step of the extraction method com prises comprising steps for removing noble metals from either electrode. This may be achieved by mechanical, physical or chemical methods.
5 A further aspect according to the present invention is directed at a system for performing a method according to the above claims, the system comprising a control unit comprising: 5 - means for connecting to a power supply, - generation means for generating a signal for charging noble metals present in a substrate, - outputting means for outputting the signal for charging the noble metals, 10 - generation means for generating a signal for ap plying an electrostatic force to the charged noble metals, - outputting means for outputting the signal for applying an electrostatic force to the noble metals.
Such a system provides advantages as indicated in 15 the above description directed at the methods.
According to a 1st preferred embodiment, the system comprises at least one antenna for charging noble metals present in a substrate and at least 2 electrodes for applying an electrostatic force to the noble metals.
20 Further advantages, features and details of the present invention will be described in greater detail with reference to the annexed drawings and based one or more preferred embodiments. The drawings show as follows. Similar, yet not necessarily identical parts of several pre-25 ferred embodiments are referred to with the same reference numerals .
Fig. 1 shows a schematic representation of two holes for holding electrodes for extraction of noble metals according to a preferred embodiment of the present in-30 vention.
Fig. 2 shows a schematic representation of a system according to the preferred embodiment of the present invention.
6 A first preferred embodiment (Fig. 1-2) according to the present invention relates to a system for executing a method according to the present invention. The system comprises two electrodes 2, each with an integrated anten-5 na 2'. An advantage of such integration is that the same element may be used as both an antenna and an electrode.
In other embodiments, a separate antenna may be used, which may be especially optimized for the purpose of the antenna. An advantage of the combination in this embodi-10 ment is that it saves at least drilling of one hole per operation.
In this sense, an operation is intended to mean a cycle of method steps directed at extracting noble metals from a patch of substrate as indicated in the above. Such 15 operation may require a series of repetitions of steps in which firstly, the noble metals are charged, thereof to secondly the noble metals are extracted by means of the electrodes. Charging and extraction may be performed subsequently and during the same time (in which case an extra 20 antenna is indicated).
The boreholes are preferably cylindrical and a minimum of 2 is required. A number of electrodes may be used as well as a number of antennae. An arrangement of such elements may be chosen based on undue experimentation 25 depending on circumstances of the substrate. A very rich substrate may require a smaller scale distance between electrodes, extending up to one or two m in order to limit the gain of noble metals on the electrodes to a certain maximum indicated by the space in the openings around the 30 electrodes, whereas a very lean substrate may require quite a distance between the electrodes, extending up to hundreds of meters in order to obtain any gain of noble metals on the electrodes. It is also possible to interrupt 7 the method, extract the electrodes, remove the noble metals from the electrodes, and reinserted the electrodes into the openings of the substrate.
The control unit preferably comprises a timer 5 units, a power unit for powering the antennae, and a power unit for powering the electrodes. Depending on the power and freguency to be applied to the antennae, the skilled person will adapt the power unit to be able to provide the relevant microwave energy. Depending on the signal to be 10 provided to the electrodes, a suitable generator, such as a vandergraaf generator will be required.
A typical example of a substrate is a substrate comprising 2-25 g per cubic meter. For charging the noble metals, with the electrodes at a distance of for example 2 15 m, it is presently expected that 1 min. is required to obtain a sufficient charge of the noble metals, where after the electrodes may be provided with the signal for 5 min.
It is presently anticipated that 50KV suffices for distances up to 200 meters, 2V for 2 meters, 12 V for 10 20 meter and 24 V for 30 meter.
In the above, the present invention is described with reference to one or more preferred embodiments. Several aspects of several distinct preferred embodiments are described in the above. Furthermore, the features of dis-25 tinct embodiments are deemed described in combination with each other in order to provide a description of all combinations that are considerable within the scope of this description by an expert of the field. The above disclosure these preferred embodiments are not limiting to the scope 30 of protection of this document. The rights sought are determined in the annexed claims.
k k k k k

Claims (18)

1. Werkwijze voor mijnbouw of extractie van edele metalen uit een substraat, omvattende aarde, rots of erts, waarbij de werkwijze stappen omvat voor: 5. het laden van de edele metalen die aanwezig zijn in het substraat, bij voorkeur door het aanleggen van een triboelektrische lading, - het aanleggen van elektrostatische kracht op de geladen de edele metalen voor het induceren van transport 10 van de geladen edele metalen door het substraat, - het bij voorkeur herhalen van de voorgaande stappen op een alternerende wijze.A method for mining or extracting precious metals from a substrate comprising soil, rock or ore, the method comprising steps of: 5. loading the precious metals present in the substrate, preferably by applying a triboelectric charge, - applying electrostatic force to the charged precious metals to induce transport of the charged precious metals through the substrate, - preferably repeating the previous steps in an alternating manner. 2. Werkwijze volgens conclusie 1 omvattende stap- 15 pen voor het toepassen van tenminste een antenne voor het verschaffen van een signaal aan het substraat dat geschikt is voor het verschaffen van de lading, bij voorkeur de triboelektrische lading naar de edele metalen.2. Method as claimed in claim 1, comprising steps for applying at least one antenna for providing a signal to the substrate which is suitable for providing the charge, preferably the triboelectric charge to the precious metals. 3. Werkwijze volgens conclusie 1 of 2 waarbij het signaal elektromagnetische golven omvat, bij voorkeur in het bereik van 300 MHz tot 300 GHz, bij verdere voorkeur het bereik van 1 GHz tot 6 GHz, bij verdere voorkeur in het bereik van 2 GHz tot 3 GHz, bij verdere voorkeur in 25 het bereik van 2, 2 tot 2, 6 GHz. 1 2 Werkwijze volgens conclusie 3 waarbij de elektromagnetische golven worden toegepast met golfpolarisa-tie, bij voorkeur verticaal en/of horizontaal. 30 2 Werkwijze volgens conclusie 2, 3 of 4 waarbij het vermogen van de antenne ligt binnen het bereik van 1 kilowatt tot 300 kW, bij voorkeur in het bereik van een half kilowatt tot 10 kW, bij voorkeur in het bereik van 10 kW tot 100 kW, bij voorkeur in een bereik van 100 kW tot 300 kW, of enige deelverzameling definieerbaar binnen de buitenste limieten van deze bereiken. 5Method according to claim 1 or 2, wherein the signal comprises electromagnetic waves, preferably in the range of 300 MHz to 300 GHz, more preferably in the range of 1 GHz to 6 GHz, more preferably in the range of 2 GHz to 3 GHz, more preferably in the range of 2, 2 to 2, 6 GHz. Method according to claim 3, wherein the electromagnetic waves are applied with wave polarization, preferably vertically and / or horizontally. Method according to claim 2, 3 or 4, wherein the power of the antenna is in the range of 1 kilowatt to 300 kW, preferably in the range of half a kilowatt to 10 kW, preferably in the range of 10 kW to 100 kW, preferably in a range of 100 kW to 300 kW, or any subset definable within the outer limits of these ranges. 5 6. Werkwijze volgens conclusie 2, 3, 4 of 5 waarbij de antenne een balkvorm heeft met een cilindrische dwarsdoorsnede, bij voorkeur een ovale dwarsdoorsnede, bij voorkeur een vierkante dwarsdoorsnede, bij voorkeur een 10 dwarsdoorsnede van een veelhoek.6. Method according to claim 2, 3, 4 or 5, wherein the antenna has a beam shape with a cylindrical cross-section, preferably an oval cross-section, preferably a square cross-section, preferably a cross-section of a polygon. 7. Werkwijze volgens een of meer van de voorgaande conclusies waarbij de stappen voor het laden wordt uitgevoerd gedurende een periode van 10 seconden tot 10 uren, 15 bij voorkeur tussen een minuut en 20 minuten, bij verdere voorkeur tussen 2 minuten en 10 minuten, bij verdere voorkeur tussen 2 minuten en 5 minuten.7. Method as claimed in one or more of the foregoing claims, wherein the loading steps are carried out for a period of 10 seconds to 10 hours, preferably between one minute and 20 minutes, more preferably between 2 minutes and 10 minutes, at further preference between 2 minutes and 5 minutes. 8. Werkwijze volgens een of meer van de voorgaande 20 conclusies waarbij het triboelektrische effect wordt toegepast door middel van het vibreren van edelmetaaldeeltjes in contact met omliggend materiaal van het substraat.8. Method as claimed in one or more of the foregoing claims, wherein the triboelectric effect is applied by vibrating noble metal particles in contact with surrounding material of the substrate. 9. Werkwijze volgens een of meer van de voorgaande 25 conclusies waarbij gedurende de stap voor het laden, tenminste een deel van vocht dat aanwezig is in het substraat wordt omgezet in stoom.9. Method as claimed in one or more of the foregoing claims, wherein during the loading step, at least a part of moisture that is present in the substrate is converted into steam. 10. Werkwijze volgens een of meer van de voorgaan-30 de conclusies, waarbij de elektrostatische kracht wordt aangelegd door middel van het in contact brengen van tenminste 2 elektroden met de bodem en het aanleggen van een signaal tussen de elektroden dat geschikt is voor het in duceren van transport van de geladen edelmetalen door het substraat.10. Method as claimed in one or more of the foregoing claims, wherein the electrostatic force is applied by contacting at least 2 electrodes with the bottom and applying a signal between the electrodes which is suitable for ducing transport of the charged noble metals through the substrate. 11. Werkwijze volgens conclusie een of 10, waarbij 5 het potentiaal van de elektrostatische kracht ligt tussen 1 volt en 100 kV, bij voorkeur tussen 1 volt en 10.000 volt, bij voorkeur tussen 1 volt en 1 kV, bij voorkeur tussen 1 volt en 100 volt, bij voorkeur tussen 1 volt een 24 volt, bij voorkeur tussen 1 volt en 12 volt.11. Method according to claim 1 or 10, wherein the potential of the electrostatic force is between 1 volt and 100 kV, preferably between 1 volt and 10,000 volts, preferably between 1 volt and 1 kV, preferably between 1 volt and 100 volts, preferably between 1 and 24 volts, preferably between 1 and 12 volts. 12. Werkwijze volgens conclusie een, 10 of 11 waarbij de elektroden een geleidend materiaal omvatten zoals grafiet.The method of claim 1, 10 or 11, wherein the electrodes comprise a conductive material such as graphite. 13. Werkwijze volgens conclusie een, 10 - 12, waarbij het signaal op de elektroden variabel is, bij voorkeur met betrekking tot de grootte van aangelegd voltage en/of bij voorkeur een wisselstroom, met een periode tussen 1 seconde en 1 uur. 20A method according to claim 1, 10 - 12, wherein the signal on the electrodes is variable, preferably with respect to the magnitude of applied voltage and / or preferably an alternating current, with a period between 1 second and 1 hour. 20 14. Werkwijze volgens conclusie een, 10 - 13 waarbij de duur van de stap voor het aanleggen van een elektrostatische kracht is tussen een minuut en 10 uren, bij voorkeur tussen een minuut en 2 uren, bij voorkeur tussen 25. minuut en 30 minuten, bij voorkeur tussen 1 minuut en 15 minuten, bij voorkeur tussen 3 minuten en 8 minuten, bij voorkeur tussen 4 minuten en 6 minuten.A method according to claim 1, 10-13 wherein the duration of the step of applying an electrostatic force is between one minute and 10 hours, preferably between one minute and 2 hours, preferably between 25. minute and 30 minutes, preferably between 1 minute and 15 minutes, preferably between 3 minutes and 8 minutes, preferably between 4 minutes and 6 minutes. 15. Werkwijze volgens een of meer van de voorgaan- 30 de conclusies, omvattende stappen voor het boren van ope- ningen in het substraat voor het plaatsen van de ten min-ste-ene-antenne of the tenminste 2 elektroden.15. Method as claimed in one or more of the foregoing claims, comprising steps for drilling openings in the substrate for placing the at least one antenna or the at least 2 electrodes. 16. Werkwijze volgens een of meer van de voorgaande conclusies waarbij een ruimte tussen de elektroden en omliggend erts is verschaft, waarbij de ruimte is tussen een tiende van een millimeter en 2 cm, bij voorkeur tussen 5 een halve millimeter en een centimeter, bij voorkeur tussen een millimeter en een centimeter.Method according to one or more of the preceding claims, wherein a space between the electrodes and surrounding ore is provided, wherein the space is between a tenth of a millimeter and 2 cm, preferably between half a millimeter and a centimeter, preferably between a millimeter and a centimeter. 17. Werkwijze volgens de voorgaande conclusies waarbij de booropeningen een diameter hebben tussen een 10 centimeter en 30 cm, bij voorkeur tussen een centimeter en 10 cm, bij voorkeur tussen een centimeter en 5 cm, bij voorkeur tussen twee centimeter en vier centimeter, bij voorkeur in hoofdzaak 3 cm met een boordiepte van tussen 30 cm en 100 meter, bij voorkeur tussen 1 meter en 10 m, 15 bij verdere voorkeur tussen 2,04 m meter, bij voorkeur in hoofdzaak rond 3 m.Method according to the preceding claims, wherein the drill openings have a diameter between 10 centimeters and 30 cm, preferably between 1 centimeter and 10 cm, preferably between 1 centimeter and 5 cm, preferably between 2 centimeters and 4 centimeters, preferably substantially 3 cm with a drilling depth of between 30 cm and 100 meters, preferably between 1 meter and 10 m, more preferably between 2.04 m, preferably substantially around 3 m. 18. Werkwijze volgens enige van de voorgaande conclusies, omvattende stappen voor het verwijderen van edele 20 metalen uit enige van de elektroden.18. Method as claimed in any of the foregoing claims, comprising steps for removing precious metals from any of the electrodes. 19. Systeem voor het uitvoeren van een werkwijze volgens een of meer van de voorgaande conclusies, waarbij het systeem een regeleenheid omvat, omvattende: 25. middelen voor het verbinden met een vermogens- toevoer, - opwekmiddelen voor het opwekken van een signaal voor het laden van edele metalen die aanwezig zijn in een substraat, 30. uitvoermiddelen voor het uitvoeren van het sig naal voor het laden van de edele metalen, - opwekmiddelen voor het opwekken van een signaal voor het aanleggen van een elektrostatische kracht op de geladen edele metalen, - uitvoermiddelen voor het uitvoeren van het sig- 5 naai voor het aanleggen van een elektrostatische kracht op de edele metalen.A system for performing a method according to any one of the preceding claims, wherein the system comprises a control unit, comprising: 25. means for connecting to a power supply, - generating means for generating a signal for charging of precious metals present in a substrate, 30. output means for outputting the signal for charging the precious metals, - generating means for generating a signal for applying an electrostatic force to the charged precious metals, - output means for performing the signal for applying an electrostatic force to the precious metals. 20. Systeem volgens conclusie 19, omvattende tenminste een antenne voor het laden van edele metalen die 10 aanwezig zijn in een substraat en tenminste 2 elektroden voor het aanleggen van een elektrostatische kracht op de edele metalen. ~k -k -k -k20. System as claimed in claim 19, comprising at least one antenna for charging precious metals that are present in a substrate and at least 2 electrodes for applying an electrostatic force to the precious metals. ~ k -k -k -k
NL2009989A 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals. NL2009989C2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.
EP13834395.9A EP2931433A1 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.
PCT/NL2013/050904 WO2014092579A1 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.
NL2009989 2012-12-14

Publications (1)

Publication Number Publication Date
NL2009989C2 true NL2009989C2 (en) 2014-06-17

Family

ID=50236242

Family Applications (2)

Application Number Title Priority Date Filing Date
NL2009989A NL2009989C2 (en) 2012-12-14 2012-12-14 Method and system for mining or extraction of noble metals.
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.

Family Applications After (1)

Application Number Title Priority Date Filing Date
NL2011971A NL2011971C2 (en) 2012-12-14 2013-12-16 Method and system for mining or extraction.

Country Status (3)

Country Link
EP (1) EP2931433A1 (en)
NL (2) NL2009989C2 (en)
WO (1) WO2014092579A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE598948C (en) * 1931-05-31 1934-06-21 Siemens Schuckertwerke Akt Ges Process for separating dust mixtures by means of a capacitor field
US3493109A (en) * 1967-08-04 1970-02-03 Consiglio Nazionale Ricerche Process and apparatus for electrostatically separating ores with charging of the particles by triboelectricity
US5938041A (en) * 1996-10-04 1999-08-17 University Of Kentucky Research Foundation Apparatus and method for triboelectrostatic separation
US5967331A (en) * 1997-10-27 1999-10-19 Katyshev; Anatoly L. Method and apparatus for free fall electrostatic separation using triboelectric and corona charging
SE530917C2 (en) * 2005-11-03 2008-10-21 Airgrinder Ab Process and apparatus for separating different elements and / or their compounds from each other

Also Published As

Publication number Publication date
NL2011971C2 (en) 2014-06-17
WO2014092579A1 (en) 2014-06-19
EP2931433A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
Yan et al. Breakdown process and fragmentation characteristics of anthracite subjected to high-voltage electrical pulses treatment
Zhu et al. The fragmentation mechanism of heterogeneous granite by high-voltage electrical pulses
US9120101B2 (en) Method and system for reusing materials and/or products by pulsed power
Li et al. Experimental and numerical analyses of electro-pulse rock-breaking drilling
Zuo et al. Electrical breakdown channel locality in high voltage pulse breakage
US11773696B2 (en) Acoustic stimulation
MX2010002271A (en) Generating seismic vibrator signals.
NL2009989C2 (en) Method and system for mining or extraction of noble metals.
Soboliev et al. Electric stimulation of chemical reactions in coal
Li et al. Study on Low‐Frequency TEM Effect of Coal during Dynamic Rupture
O'Keefe et al. Fracture induced electromagnetic emissions in the mining industry
RU2312217C1 (en) Method to break rock having crystalline structure
US9081116B2 (en) Subterranean mapping system including spaced apart electrically conductive well pipes and related methods
Pottelette et al. Phase space holes and elementary radiation events
Shchitnikov et al. Estimation of the optimal wireless channel frequency range for activating an explosive material in a borehole
Che et al. Numerical Simulation of the Effect of Initial Generator Capacitor Voltage on Granite Fragmentation by High Voltage Pulse Discharge
Guo et al. The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating. Universe 2021; 7: 29
Zhu et al. Electrode structural effects on the mechanism of high-voltage pulse rock breaking
Hambling Plans to plasma bomb sky
Connolly et al. SalSA status
Gil Fluctuations of pulsar emission with sub-microsecond time-scales
Voitenko et al. Application of electro-discharge blasting technology for destruction of oversized rocks and rock massive splitting off
Paiva et al. Ball lightning caused by a semi-relativistic runaway electron avalanche
Belov et al. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters
Agliardi et al. Optimization of massive countermeasure design in complex rockfall settings

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20160101