NL2003511C2 - Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method. - Google Patents

Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method. Download PDF

Info

Publication number
NL2003511C2
NL2003511C2 NL2003511A NL2003511A NL2003511C2 NL 2003511 C2 NL2003511 C2 NL 2003511C2 NL 2003511 A NL2003511 A NL 2003511A NL 2003511 A NL2003511 A NL 2003511A NL 2003511 C2 NL2003511 C2 NL 2003511C2
Authority
NL
Netherlands
Prior art keywords
type
atoms
source material
monocrystalline silicon
semiconductor substrate
Prior art date
Application number
NL2003511A
Other languages
Dutch (nl)
Inventor
Martin Dinant Bijker
Walter Theodorus Matheus Stals
Original Assignee
Solar Cell Company Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Cell Company Holding B V filed Critical Solar Cell Company Holding B V
Priority to NL2003511A priority Critical patent/NL2003511C2/en
Priority to PCT/NL2010/050606 priority patent/WO2011034430A1/en
Application granted granted Critical
Publication of NL2003511C2 publication Critical patent/NL2003511C2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method
The present invention relates to a method for fabricating a photovoltaic cell, for 5 example a solar cell, comprising a semiconductor substrate having a front side and a back side, wherein an emitter and a back surface field portion are fabricated at the front side and back side, respectively. The present invention further relates to a photovoltaic cell that is obtained using such a method.
A photovoltaic cell, for example a solar cell, comprises a semiconductor substrate 10 having a front side and a back side. Depending on the design of the photovoltaic cell, non-rectifying electrical contacts that may connect the photovoltaic cell to an external electrical load are applied at both the front side and back side or only at the back side of the substrate.
At the front side radiation, for example sunlight, may be received. Electrical 15 contacts applied at the front side of the substrate are patterned such that blocking of the incident radiation is substantially minimized.
The semiconductor substrate comprises for example silicon-based material. To achieve high-performance photovoltaic cells, the silicon-based substrate material may have a monocrystalline crystal structure. In addition, the silicon-based substrate is 20 provided with dopant atoms to substantially achieve an n-type or p-type doping.
A photocurrent that is extracted from the photovoltaic cell comprises charge carriers generated by incident photons substantially in a depletion region of a p-n junction in the silicon-based substrate. In the case of a p-type doped silicon-based substrate an n-typc doped emitter is applied to form the p-n junction. In the case of an 25 n-type doped silicon-based substrate the emitter is p-type doped. Depending on the design of the photovoltaic cell, the emitter can be fabricated at the front side or at the back side of the semiconductor substrate.
The electron-hole pairs that are generated in the depletion region of the p-n junction are separated by an internal electric field across the p-n junction and are 30 provided by the electrical contacts to the external load. Depending on the design of the photovoltaic cell, the electrical contacts are arranged at both the front side and the back side or only at the back side of the silicon-based substrate. In the latter case, both n- 2 type and p-type doped regions have to be fabricated at the back side of the silicon-based substrate.
The life time of generated excess minority carriers, i.e. electrons in the case of a p-type doped silicon-based substrate and holes in the case of an n-type doped silicon-5 based substrate, is substantially increased by a surface field portion. Depending on the design of the photovoltaic cell the surface field portion is provided by significantly increasing the doping level of the silicon-based substrate at its front side or at its back side. The surface field portion substantially increases the probability that the generated excess minority carriers reach the electrical contacts before recombining with excess 10 majority carriers. As a result, the photocurrent that can be extracted from the photovoltaic cell is substantially being improved.
In the case of for example a p-type doped silicon-based substrate, wherein the emitter is fabricated at the front side and the electrical contacts are arranged at both the front side and the back side of the silicon-based substrate, a so-called back surface field 15 portion is provided by significantly increasing the doping level of the p-type doped silicon-based substrate at the surface of the back side adjacent to the electrical contacts. A resulting p+-doping level of the back surface field portion provides a potential energy barrier for the generated excess minority carriers, i.e. electrons. This potential barrier substantially confines the generated excess minority carriers to the p-type doped 20 silicon-based substrate and drives them towards the electrical contacts at the front side of the silicon-based substrate.
Known fabrication methods for the abovementioned photovoltaic cells use multiple different doping processes to form the emitter and surface field portion, respectively. A drawback of the known fabrication methods may be that tuning of the 25 multiple different doping processes can be rather tedious as different dopant atoms and drive-in temperatures are involved. Another drawback of the known fabrication methods may be high manufacturing costs of the photovoltaic cells due to high complexity of the fabrication process and the use of multiple different manufacturing tools.
30 It is an object of the present invention to provide a method for fabricating a photovoltaic cell wherein at least one of the abovementioned drawbacks is obviated or at least reduced. It is a further object of the present invention to provide a fabrication method that allows a substantially simpler tuning of the multiple different doping 3 processes. An even further object of the present invention is to provide a fabrication method for the emitter and surface field portion that allows substantially decreased manufacturing costs of the photovoltaic cells due to decreased complexity of the fabrication process and the use of less manufacturing tools. It is a further object of the 5 present invention to provide a photovoltaic cell that can be manufactured at relatively low costs.
At least one of the objects may be achieved by a method for fabricating a photovoltaic cell according to the present invention wherein an emitter and a back surface field portion are fabricated by applying a layer of diffusion source material at 10 the front side of the semiconductor substrate for the formation of the emitter, wherein the diffusion source material comprises first dopant atoms of a type that dopes at least part of the semiconductor substrate n-type or p-type, wherein applying the diffusion source material is carried out at conditions at which at least a substantial part of the first dopant atoms substantially does not diffuse into at least part of the semiconductor 15 substrate and by applying second dopant atoms, which are of a type opposite to the type of the first dopant atoms, at the back side of the semiconductor substrate for the formation of the back surface field portion, wherein applying the second dopant atoms at the back side of the semiconductor substrate is carried out at conditions at which at least part of the first dopant atoms and at least part of the second dopant atoms are 20 substantially simultaneously being driven into the front side and back side of the semiconductor substrate to form the emitter and back side surface field portion, respectively. By driving at least part of the first dopant atoms and at least part of the second dopant atoms into the front side and back side of the semiconductor substrate, respectively at substantially the same time, the tuning of the abovementioned doping 25 processes to form the emitter and the back surface field portion may significantly be reduced. The desired emitter and back surface field portion can substantially be achieved by simply optimizing conditions, such as temperature and time, of the process wherein the second dopant atoms are applied to and diffused into the back side of the semiconductor substrate. In addition, the complexity of the fabrication process and the 30 use of multiple different manufacturing tools may be reduced. As a result, manufacturing costs of the photovoltaic cell fabricated according to the method of the present invention may substantially be reduced.
4
In a preferred embodiment of the present invention, a capping layer is applied to encapsulate the layer of diffusion source material on the front side of the semiconductor substrate and at least part of the back side of the semiconductor substrate to substantially prevent the diffusion of at least part of the first dopant atoms out of at 5 least part of the diffusion source material into a process ambient and to substantially prevent the diffusion of at least part of the second dopant atoms into at least part of the diffusion source material or into at least part of the semiconductor substrate underneath the diffusion source material when the emitter and the back surface field portion are substantially simultaneously being formed. The capping layer has a dual function as it 10 is a sacrificial layer that absorbs the first dopant atoms and is a diffusion barrier for the second dopant atoms during the application of the second dopant atoms to the back side of the semiconductor substrate. Hence, the capping layer substantially prevents that at least part of the first dopant atoms end up in the process ambient during the application of the second dopant atoms. In addition, the capping layer substantially prevents that at 15 least part of the second dopant atoms end up at locations in the semiconductor substrate, such as the emitter, where substantially first dopant atoms should be present. The application of the capping layer makes tuning of the diffusion processes at least simpler and at least reduces the complexity of the fabrication process of the photovoltaic cell.
20 In another embodiment of the present invention, the capping layer is applied on top of the diffusion source to substantially prevent the diffusion of at least part of the first dopant atoms out of at least part of the diffusion source material into the process ambient and to substantially prevent the diffusion of at least part of the second dopant atoms into at least part of the diffusion source material when the emitter and the back 25 surface field portion are substantially simultaneously being formed.
In an embodiment of the present invention, the capping layer comprises undoped dielectric material. However, the capping layer may consist of any suitable material that substantially acts as a barrier for dopant atoms.
In another embodiment of the present invention, the capping layer is applied 30 using a chemical vapor deposition (CVD) process. The capping layer may be applied using any suitable process such as plasma enhanced chemical vapor deposition (PECVD).
5
In yet another embodiment of the present invention, the conditions of the chemical vapor deposition process for applying the capping layer comprise an atmospheric or low ambient pressure and an ambient temperature at which at least part of the first dopant atoms substantially do not diffuse out of at least part of the diffusion 5 source material into the process ambient and substantially do not diffuse into at least part of the semiconductor substrate underneath the diffusion source material.
In an embodiment of the present invention, the capping layer comprises silicon oxide (SiOx). By applying a capping layer comprising SiOx at least the complexity of the fabrication process can be reduced as the diffusion source material can also 10 comprise at least a layer of SiOx. In that case, the capping layer and the diffusion source material can be removed in the same etching process after the substantially simultaneous diffusion of at least a part of the first and second dopant atoms into the front side and back side of the semiconductor substrate, respectively. This provides a potential reduction of process complexity and as a result a reduction of manufacturing 15 costs of the photovoltaic cell.
In another embodiment of the present invention, the silicon oxide (SiOx) layer is applied using an atmospheric pressure chemical vapor deposition (APCVD) process at an ambient temperature in the range of approximately 400°C to 650°C, in particular in the range of approximately 450°C to 525°C, for instance approximately 470°C. At 20 these ambient temperatures at least part of the first dopant atoms of the diffusion source material will substantially not diffuse out of at least part of the diffusion source material into the process ambient or into at least part of the semiconductor substrate underneath the diffusion source material. The skilled person will realize that the abovementioned ambient temperatures substantially enable a significant reduction of 25 process complexity and hence manufacturing costs of the photovoltaic cell.
In an embodiment of the present invention, the conditions of the process at which the diffusion source material is applied at the front side of the semiconductor substrate comprise an atmospheric or low ambient pressure and an ambient temperature that is substantially lower than the temperature at which at least part of the first dopant atoms 30 of the diffusion source material substantially starts diffusing into at least part of the semiconductor substrate underneath the diffusion source material. By applying the diffusion source material at these process conditions substantially less tuning of the diffusion processes is required. The diffusion of the first dopant atoms can substantially 6 be achieved by only tuning of the process wherein the second dopant atoms are applied at and diffused into the back side of the semiconductor substrate. The simpler tuning of the substantially simultaneous diffusion processes results in substantially reduced process complexity and hence substantially reduced manufacturing costs of the 5 photovoltaic cell.
In another embodiment of the present invention, the conditions of the process at which the second dopant atoms are applied to the back side of the semiconductor substrate comprise an atmospheric or low ambient pressure and an ambient temperature at which at least part of the first dopant atoms and at least part of the second dopant 10 atoms substantially start diffusing into the semiconductor substrate at substantially the same time.
In an embodiment of the present invention, the semiconductor substrate comprises silicon-based material. Silicon-based substrates are the most commonly used substrates in semiconductor industry. By using relatively low-cost silicon-based 15 substrate material the manufacturing costs of the photovoltaic cells can substantially be reduced compared to the use of for example gallium arsenide (GaAs). In addition, the use of silicon-based substrates substantially enables the advantages of economy of scale and the use of well known fabrication processes. As a result of the latter, process complexity can substantially be reduced.
20 In a further embodiment of the present invention, the silicon-based substrate has a monocrystalline crystal structure. To achieve a high-performance of photovoltaic cells, the semiconductor substrate preferably has a monocrystalline crystal structure because of the generally superior material properties compared to semiconductor material having polycrystalline or amorphous crystal structures. The material properties of 25 monocrystalline silicon-based substrates are generally superior to those having a polycrystalline or amorphous crystal structure as the latter two types of crystal structures comprise a high density of grain boundaries and other crystal imperfections, such as dislocations, defects or undesired impurities.
In another embodiment of the present invention, the monocrystalline silicon-30 based substrate comprises dopant atoms of a type that substantially dope at least part of the monocrystalline silicon-based substrate n-type or p-type.
In yet another embodiment of the present invention, the diffusion source material comprises a doped silicate glass layer comprising the first dopant atoms of a type that 7 dopes at least part of the monocrystalline silicon-based substrate n-type or p-type when at least part of the first dopant atoms is driven into the front side of the monocrystalline silicon-based substrate to form the emitter.
In an embodiment of the present invention, the doped silicate glass layer is 5 applied using an atmospheric pressure chemical vapor deposition (APCVD) process or a low pressure chemical vapor deposition (LPCYD) process. However, any suitable process may be used to apply the doped silicate glass layer as long as at least part of the first dopant atoms do not substantially diffuse into at least part of the front side of the mono crystalline silicon-based substrate during the application of the doped silicate 10 glass layer.
In a further embodiment of the present invention, the doped silicate glass layer, which is applied to form a p-type emitter at the front side of an n-type monocrystalline silicon-based substrate, comprises atoms from the third group of the periodic table.
In an embodiment of the present invention, the doped silicate glass layer 15 comprises boron atoms. Other dopant atoms from the third group of the periodic table such as aluminum (Al) may also be used. However, aluminum generally diffuses faster than boron. Hence, controlling the diffusion depth of the aluminum dopant atoms might be more tedious.
In another embodiment of the present invention a boron doped silicate glass layer 20 is applied at the front side of the n-type monocrystalline silicon-based substrate to form the p-type emitter using the APCVD process at an ambient temperature in a range of approximately 400°C to 650°C, in particular in the range of approximately 450°C to 525°C, for instance approximately 470°C.
In yet another embodiment of the present invention, the doped silicate glass layer, 25 which is applied to form an n-type emitter at the front side of a p-type monocrystalline silicon-based substrate, comprises atoms from the fifth group of the periodic table.
In a further embodiment of the present invention, the doped silicate glass layer comprises phosphorus atoms. Other dopant atoms from the fifth group of the periodic table such as arsenic (As) may also be used.
30 In an embodiment of the present invention, a phosphorus doped silicate glass layer is applied at the front side of the p-type monocrystalline silicon-based substrate to form the n-type emitter using the APCVD process at an ambient temperature in a range 8 of approximately 400°C to 650°C, in particular in the range of approximately 450°C to 525°C, for instance approximately 500°C.
In another embodiment of the present invention, the doped silicate glass layer is applied using an aqueous solution.
5 In a further embodiment of the present invention, the aqueous solution is applied using a spraying or misting or rolling process at an ambient temperature close to or at room temperature.
In an embodiment of the present invention, the aqueous solution comprises boric acid to form the boron doped silicate glass layer at the front side of an n-type 10 monocrystalline silicon-based substrate for the formation of a p-type emitter when at least part of the boron atoms is driven into at least part of the n-type monocrystalline silicon-based substrate.
In another embodiment of the present invention, the boron doped silicate glass layer using the aqueous solution comprising boric acid is formed at an ambient 15 temperature in the range of approximately 25 °C to 800°C, in particular in the range of approximately 250°C to 600°C, for instance approximately 450°C.
In yet another embodiment of the present invention, the aqueous solution comprises phosphoric acid to form the phosphorus doped silicate glass layer at the front side of a p-type monocrystalline silicon-based substrate for the formation of an n-type 20 emitter when at least part of the phosphorus atoms is driven into at least part of the p-type mono crystalline silicon-based substrate.
In a further embodiment of the present invention, the phosphorus doped silicate glass layer using the aqueous solution comprising phosphoric acid is formed at an ambient temperature in the range of approximately 25°C to 800°C, in particular in the 25 range of approximately 250°C to 600°C, for instance approximately 470°C.
In an embodiment of the present invention, a liquid dopant source material is used to apply the second dopant atoms at the back side of the monocrystalline silicon-based substrate for the formation of the back surface field portion.
In a further embodiment of the present invention, the second dopant atoms of the 30 liquid dopant source material are applied using a furnace process.
In yet a further embodiment of the present invention, the liquid dopant source material comprises phosphoryl chloride (POCI3) for the application of phosphorus 9 atoms as the second dopant atoms at the back side of an n-type monocrystalline silicon-based substrate for the formation of an n+-type back surface field portion.
In another embodiment of the present invention, the phosphorus atoms of the liquid dopant source material are applied using the furnace process at an ambient 5 temperature in the range of approximately 850°C to 1000°C, in particular in the range of approximately 900°C to 980°C, for instance approximately 930°C.
In an embodiment of the present invention, the liquid dopant source material comprises boron bromide (BBr3) for the application of boron atoms as the second dopant atoms to the back side of a p-type mono crystalline silicon-based substrate for 10 the formation of a p+-type back surface field portion.
In another embodiment of the present invention, the boron atoms of the liquid dopant source material are applied using the furnace process at an ambient temperature in the range of approximately 850°C to 1000°C, in particular in the range of approximately 900°C to 980°C, for instance approximately 940°C.
15 In an embodiment of the present invention, a time that the furnace process lasts is longer than the time that the phosphoryl chloride (POCI3) or boron bromide (BBr3) is applied to the back side of the n-type or p-type monocrystalline silicon-based substrate, respectively. This may provide an additional degree of freedom for tuning the desired boron and phosphor doping profiles of the emitter and back surface field portion in the 20 case of an n-type monocrystalline silicon-based substrate and the desired phosphorus and boron profiles of the emitter and back surface field portion in the case of a p-type monocrystalline silicon-based substrate during the substantially simultaneous diffusion of the boron and phosphorus atoms during the furnace process. In addition, this may reduce the manufacturing costs of the photovoltaic cell.
25 In a further embodiment of the present invention, the time that the phosphoryl chloride (POCl3) or boron bromide (BBr3) is applied to the back side of the n-type or p-type monocrystalline silicon-based substrate respectively, lies typically in the range of 50% to 95% of the time that the furnace process lasts. The tuning of the desired boron and phosphor doping profiles may be better controlled by choosing a preferable ratio 30 for the time that the phosphoryl chloride (POCl3) or boron bromide (BBr3) is applied to the back side of the semiconductor substrate and the time that the furnace process lasts.
In a further embodiment of the present invention, electrical contacts are applied to the front side and back side of the monocrystalline silicon-based substrate.
10
Photovoltaic cells with electrical contacts that may supply the photocurrent to an external electrical load that are arranged both on the front side and back side of the semiconductor substrate are generally known as front contact cells. Photovoltaic cells with electrical contacts substantially at the back side of the semiconductor substrate are 5 generally indicated as back contact cells. The method according to the present application may be applied to both front contact and back contact cells. However, the fabrication method according to the present invention may be most advantageous for front contact photovoltaic cells.
In an even further embodiment of the present invention, the electrical contacts 10 applied to the front side of the monocrystalline silicon-based substrate have an H-pattem. The H-pattem generally comprises two bus bars that interconnect the individual electrical contacts which are arranged in a direction substantially perpendicular to the bus bars.
According to another aspect of the present invention a photovoltaic cell, for 15 example a solar cell, is provided. The photovoltaic cell comprises a semiconductor substrate having a front side and a back side, wherein the semiconductor substrate comprises n-type mono crystalline silicon-based material, wherein a p-type emitter is formed using first dopant atoms, for example boron atoms, at the front side and an n+-type back surface field portion is formed using second dopant atoms, for example 20 phosphorus atoms, at the back side, respectively, wherein at least part of the first dopant atoms and at least part of the second doping atoms are substantially simultaneously being driven into the front side and back side of the n-type monocrystalline silicon-based substrate, respectively. Although photovoltaic cells having an oppositely doped substrate, emitter and back surface field portion may also 25 be used, photovoltaic cells having an n-type monocrystalline substrate may have the advantages of reduced electrical power degradation over time and longer life time of excess majority carriers.
According to a further aspect of the present invention a photovoltaic cell, for example a solar cell, is provided. The photovoltaic cell comprises a semiconductor 30 substrate having a front side and a back side, wherein the semiconductor substrate comprises n-type or p-type monocrystalline silicon-based material, wherein a diffusion source material comprising first dopant atoms is applied to the front side to form an emitter that has a doping type opposite to that of the mono crystalline silicon-based 11 substrate, wherein second dopant atoms are applied to the back side to form a back surface field portion that has an increased doping level with respect to the doping level of the monocrystalline silicon-based substrate, wherein at least part of the first dopant atoms and at least part of the second doping atoms are substantially simultaneously 5 being driven into the front side and back side of the n-type or p-type monocrystalline silicon-based substrate, respectively.
In an embodiment of the present invention, the photovoltaic cell has a semi square or substantially square shape.
In another embodiment of the present invention, electrical contacts are applied to 10 the front side and back side of the monocrystalline silicon-based substrate.
According to a final embodiment of the present invention, the electrical contacts on the front side of the monocrystalline silicon-based substrate have an H-pattem.
The invention will be explained in more detail below with reference to a few drawings in which illustrative embodiments of the invention are shown. The person 15 skilled in the art will realize that other alternatives and equivalent embodiments of the invention can be conceived and reduced to practice without departing from the scope of the present invention.
Figure 1 shows a perspective view of a front contact photovoltaic cell according to an embodiment of the present invention.
20 Figure 2 schematically shows a cross sectional view of a semiconductor substrate of a photovoltaic cell.
Figure 3 schematically shows a layer of diffusion source material that has been applied to the front side of the semiconductor substrate of the photovoltaic cell.
Figure 4 schematically shows a capping layer that has been applied to the layer of 25 diffusion source material at the front side and the side surfaces of the back side of the semiconductor substrate of the photovoltaic cell.
Figure 5 schematically shows a layer of at least partially doped silicate glass that encapsulates the semiconductor substrate at the end of the process wherein at least part of the first dopant atoms and at least part of the second dopant atoms have been 30 diffused into at least part of the front side and back side of the semiconductor substrate of the photovoltaic cell.
Figure 6 schematically shows the semiconductor substrate after removal of the doped silicate glass layers and the capping layer.
12
Figure 7 shows a schematic flow diagram of the process steps that are sequentially carried out to obtain the semiconductor substrate as shown in Figure 6.
The figures are not necessarily drawn to scale. In the figures identical components are denoted by the same reference numerals.
5 Figure 1 shows a perspective view of a front contact photovoltaic cell 1 according to an embodiment of the present invention. The photovoltaic cell comprises a semiconductor substrate 2 having a front side 3 and a back side that in the context of the present invention comprises both the lying surface 4 and the side surfaces 20, 30 as is schematically shown in the cross sectional view of Figure 2.
10 The semiconductor substrate 2 may comprise silicon-based material, such as silicon (Si), silicon germanium (SiGe) or any other semiconductor material that is suitable for fabricating photovoltaic cells, such as solar cells, for example gallium arsenide (GaAs) or germanium (Ge).
For relatively low-cost high-performance photovoltaic cells silicon-based 15 monocrystalline substrates are preferably used due to their generally superior material properties compared to silicon-based substrates having polycrystalline or amorphous crystal structures. The material properties of monocrystalline silicon-based substrates generally are superior to those having a polycrystalline or amorphous crystal structure as the latter two types of crystal structures comprise a high density of grain boundaries 20 and other crystal imperfections, such as dislocations, defects or undesired impurities.
The life time of charge carriers in the bulk of the semiconductor substrate 2 is a very important parameter for the photocurrent and consequently the electrical power performance of the photovoltaic cell 1. In the case of a monocrystalline crystal structure, the life time of charge carriers in the bulk of the semiconductor substrate is 25 longer than in the case of a substrate having a polycrystalline crystal structure or amorphous substrate material because a monocrystalline semiconductor substrate comprises substantially no grain boundaries and has substantially fewer other crystal imperfections, such as dislocations, defects or undesired impurities that give rise to a high recombination rate of for example photo-generated charge carriers. As a result of 30 the longer charge carrier life time in monocrystalline semiconductor substrates the photocurrent and electrical power that can be extracted from a photovoltaic cell 1 having such a semiconductor substrate have higher values.
13 A long charge carrier life time is preferred as the probability increases that charge carriers, which are generated by photons of radiation incident on the front side 3 of the semiconductor substrate 2, can reach the electrical contacts 40 that are arranged either at both the front side 3 and lying surface 4 of the back side or only at lying surface 4.
5 Photovoltaic cells with electrical contacts 40 that may supply the photocurrent to an external electrical load that are arranged both on the front side 3 and the lying surface 4 of the back side are commonly known as front contact cells, an example of which is shown in Figure 1. Photovoltaic cells with electrical contacts substantially at the lying surface 4 of the back side of the semiconductor substrate 2 are commonly indicated as 10 back contact cells.
The electrical contacts 40 on the front side 3 of front contact cells may have an H-pattem. Although the H-pattem of the electrical contacts 40 is well known from traditional designs using two bus bars 50, as is shown in Figure 1, it is also used to indicate designs using three bus bars 50.
15 The monocrystalline silicon-based substrate 2 is usually provided with dopant atoms of a type that substantially dope at least part of the silicon-based substrate 2 n-type or p-type. For n-type doping of silicon-based substrates dopant atoms from the fifth group of the periodic table are substantially used. Among others because of the values of their diffusivity and solid solubility in silicon, phosphor (P) atoms and arsenic 20 (As) atoms are preferably being used as n-type dopant atoms in silicon-based substrates. For p-type doping of silicon-based substrates dopant atoms from the third group of the periodic table are substantially used. In this case, boron (B) atoms or aluminum (Al) atoms are being used as p-type dopant atoms in silicon-based substrates.
Photovoltaic cells according to a preferred embodiment of the present invention 25 typically use n-type silicon-based substrates because the life time of the majority charge carriers, i.e. electrons, is substantially longer because of the higher mobility of electrons than of holes. In addition, the degradation of the electrical power performance over time of photovoltaic cells 1 having n-type silicon-based substrates 2 tends to be less than that of photovoltaic cells 1 having p-type silicon-based substrates 2. The 30 electrical power degradation over time of photovoltaic cells 1 having p-type substrates 2 is substantially caused by the formation of boron-oxygen (BO) complexes, which act as very effective recombination centers and consequently substantially reduce the photocurrent and electrical power that can be extracted from the photovoltaic cell 1.
14
The photocurrent that is extracted from the photovoltaic cell 1 comprises charge carriers generated by incident photons substantially in a depletion region of a p-n junction 9 in the silicon-based substrate 2. In the case of a p-type doped silicon-based substrate 2 an n-type doped emitter 8 is applied to form the p-n junction 9. In the case 5 of an n-type doped silicon-based substrate 2 the emitter 8 is p-type doped. Depending on the design of the photovoltaic cell 1, the emitter 8 can be fabricated at the front side 3 or at the lying surface 4 of the back side of the semiconductor substrate 2.
The electron-hole pairs that are generated in the depletion region of the p-n junction 9 are separated by an internal electric field across the p-n junction 9 and are provided 10 by the electrical contacts to the external load. Depending on the design of the photovoltaic cell 1, the electrical contacts are arranged at both the front side 3 and the lying surface 4 of the back side or only at the lying surface 4 of the back side of the silicon-based substrate 2. In the latter case, both n-type and p-type doped regions have to be fabricated at the back side of the silicon-based substrate 2.
15 The charge carrier life time of generated excess minority carriers, i.e. electrons in the case of a p-type doped silicon-based substrate 2 and holes in the case of an n-type doped silicon-based substrate 2, is substantially increased by a surface field portion. Depending on the design of the photovoltaic cell 1, the surface field portion is provided by significantly increasing the doping level of the silicon-based substrate 2 at its front 20 side 3 or at the lying surface 4 of its back side. The surface field portion increases the probability that the generated excess minority carriers reach the electrical contacts before recombining with excess majority carriers. As a result, the photocurrent and electrical power that can be extracted from the photovoltaic cell 1 are improved.
In the case of a p-type doped silicon-based substrate 2, wherein the emitter 8 is 25 fabricated at the front side 3 and the electrical contacts are arranged at both the front side 3 and the lying surface 4 of the back side of the silicon-based substrate 2, a so-called back surface field portion 10 is provided by significantly increasing the doping level of the p-type doped silicon-based substrate 2 at the surface of the lying surface 4 of the back side adjacent to the electrical contacts. A resulting p+-doping level of the 30 back surface field portion 10 provides a potential energy barrier for the generated excess minority carriers, i.e. electrons. This potential barrier substantially confines the generated excess minority carriers to the p-doped silicon-based substrate 2 and drives them towards the electrical contacts at the front side of the silicon-based substrate 2.
15
In a step 100 of the fabrication method according to the present invention, a layer of diffusion source material 5 is applied to the front side 3 of the semiconductor substrate 2 of the photovoltaic cell 1. Figure 3 schematically shows a layer of diffusion source material 5 at the front side 3 of the semiconductor substrate 2. The layer of diffusion 5 source material 5 is applied to form an emitter 8 near the front side 3 of the semiconductor substrate 2. The diffusion source material 5 comprises first dopant atoms of a type that dopes at least part of the semiconductor substrate 2 n-type or p-type.
The diffusion source material 5 may comprise a silicate glass (SiOx) layer that is at 10 least partially doped with boron atoms or phosphorus atoms to form a p-type or n-type doped emitter 8 respectively, upon diffusion of at least part of the boron or phosphorus atoms into at least part of the n-type or p-type doped silicon-based substrate 2, respectively. The boron or phosphorus doped silicate glass layers are also known as borosilicate glass (BSG) or phosphosilicate glass (PSG) respectively.
15 The diffusion source material 5 comprising BSG or PSG can be applied by using any suitable process, for instance an atmospheric pressure chemical vapor deposition (APCVD) process or a low pressure chemical vapor deposition (LPCVD) process. The process conditions are selected such that at least a substantial part of the first dopant atoms substantially does not diffuse into at least part of the semiconductor substrate 2. 20 These conditions comprise an atmospheric or low ambient pressure and an ambient temperature that is substantially lower than the temperature at which at least part of the first dopant atoms of the diffusion source material 5 substantially starts diffusing into at least part of the semiconductor substrate 2 underneath the diffusion source material 5.
A drawback of the application of the BSG and PSG layers using an APCVD or 25 LPCVD may be the use of the toxic diborane (62¾) and phosphine (PH3), respectively.
The use of these substances can be avoided by using an aqueous solution containing boric acid (H3BO3) or phosphoric acid (H3PO4). The aqueous solution can be applied using a spraying or misting or rolling process, preferably at or close to room temperature.
30 For the application of the aqueous solution to the front side 3 of the silicon-based substrate 2 it is preferred that the front side 3 is hydrophilic. This can be achieved by subjecting the front side 3 of the silicon-based substrate 2 for example to an ozone (O3) treatment.
16
After the application of the aqueous solution, a BSG or PSG layer for the formation of the p-type or n-type emitter 8 respectively has to be formed. This can be done by drying the aqueous solution at an ambient temperatures in the range of approximately 25°C to 800°C, in particular in the range of approximately 250°C to 600°C, for 5 instance approximately 450°C or 470°C for the BSG or PSG layer, respectively.
In another step 200 of the fabrication method according to the present invention, an optional capping layer 6 is applied to the layer of diffusion source material 5 at the front side 3 and the side surfaces 20, 30 of the back side of the semiconductor substrate 2. Figure 4 schematically shows a preferred embodiment of the present invention 10 wherein the capping layer 6 covers the front side 3 and the complete side surfaces 20, 30 of the back side of the semiconductor substrate.
The capping layer 6 substantially prevents the diffusion of at least part of the first dopant atoms out of at least part of the diffusion source material 5 into a process ambient. In addition, the capping layer 6 substantially prevents the diffusion of at least 15 part of the second dopant atoms into at least part of the diffusion source material 5 or into at least part of the semiconductor substrate 2 underneath the diffusion source material 5 when the emitter 8 and the back surface field portion 10 are substantially simultaneously being formed.
In an embodiment the capping layer 6 comprises undoped dielectric material such 20 as silicon oxide (SiOx) that can be applied using a chemical vapor deposition (CVD) process. The conditions of the chemical vapor deposition process for applying the capping layer 6 comprise an atmospheric or low ambient pressure and an ambient temperature at which at least part of the first dopant atoms substantially do not diffuse out of at least part of the diffusion source material 5 into the process ambient and 25 substantially do not diffuse into at least part of the semiconductor substrate 2 underneath the diffusion source material 5. The ambient temperature typically lies in the range of approximately 400°C to 650°C, in particular in the range of approximately 450°C to 525°C, for instance approximately 470°C.
The use of a capping layer 6 comprising SiOx has the advantage that the capping 30 layer 6 can substantially be removed during the same process step wherein the BSG
(SiOx:B) and PSG (SiOx:P) layers at the end of the substantially simultaneous diffusion process are removed. The aforementioned layers can be removed using for example a hydrofluoric acid (HF) solution.
17
In a further step 300 of the fabrication method according to the present invention, second dopant atoms are substantially applied to the lying surface 4 of the back side of the semiconductor substrate 2. During this process at least part of the first dopant atoms and at least part of the second dopant atoms are substantially simultaneously diffused 5 into at least part of the front side 3 and lying surface 4 of the back side of the semiconductor substrate 2.
For the formation of a n+-doped back surface field portion 10, phosphorus atoms are applied as second dopant atoms to the lying surface 4 of the back side of the n-type silicon-based substrate 2. The phosphorus atoms can be applied using a liquid dopant 10 source material comprising phosphoryl chloride (POCI3) in a furnace process. The phosphorus atoms are applied at such process conditions that at least part of the boron atoms of the BSG at the front side 3 of the n-type silicon-based substrate 2 and at least part of the phosphorus atoms are substantially simultaneously being driven into the front side 3 and the lying surface 4 of the back side of the semiconductor substrate 2 to 15 form the p-type doped emitter 8 and the n+-doped back side surface field portion 10, respectively. The substantially simultaneous diffusion of the boron and phosphorus atoms is indicated in Figure 5 by the downwardly and upwardly directed arrows, respectively. The resulting p-n junction is indicated by the dashed line 9. In addition, a boundary of the n+-doped back surface field portion is indicated by the dashed line 11. 20 In addition, Figure 5 schematically shows a layer of at least partially phosphorus doped silicate glass 7 that encapsulates the semiconductor substrate 2 at the end of the substantially simultaneous diffusion process.
In a final step 400 according to the fabrication method according to the present invention, the layer of at least partially phosphorus doped silicate glass 7, the layer of 25 diffusion source material 5 and the optional capping layer 6 are removed. Figure 6 shows the resulting semiconductor substrate 2 after removal of these layers. The resulting p-n junction is indicated by dashed line 9 and the boundary of the n+-doped back surface field portion is indicated by dashed line 11.
Figure 7 shows a schematic flow diagram comprising the aforementioned steps 100, 30 200, 300, 400 of the fabrication method according to the present invention, which are sequentially carried out to obtain the semiconductor substrate as shown in Figure 6.

Claims (43)

1. Werkwijze voor het vervaardigen van een fotovoltaïsch element, bijvoorbeeld een zonnecel, omvattende een halfgeleider substraat met een voorzijde en een 5 achterzijde, waarbij een emitter en een back surface field gedeelte worden vervaardigd aan de voorzijde en achterzijde, respectievelijk door: • het aanbrengen van een laag diffusie bronmateriaal aan de voorzijde van het halfgeleider substraat voor het vormen van de emitter, waarbij het diffusie bronmateriaal eerste doteerstof atomen omvat van een type dat ten minste 10 een gedeelte van het halfgeleider substraat n-type of p-type doteert, waarbij het aanbrengen van het diffusie bronmateriaal wordt uitgevoerd onder voorwaarden waarbij ten minste een substantieel deel van de eerste doteerstof atomen in hoofdzaak niet in ten minste een gedeelte van het halfgeleider substraat diffundeert; 15 «het aanbrengen van tweede doteerstof atomen, die van een tegenovergesteld type als dat van de eerste doteerstof atomen zijn, aan de achterzijde van het halfgeleider substraat voor het vormen van het back surface field gedeelte, waarbij het aanbrengen van de tweede doteerstof atomen aan de achterzijde van het halfgeleider substraat wordt uitgevoerd onder voorwaarden waarbij 20 ten minste een gedeelte van de eerste doteerstof atomen en ten minste een gedeelte van de tweede doteerstof atomen in hoofdzaak simultaan in de voorzijde en de achterzijde van het halfgeleider substraat worden gedreven voor het respectievelijk vormen van de emitter en het back surface field gedeelte. 25Method for manufacturing a photovoltaic element, for example a solar cell, comprising a semiconductor substrate with a front side and a rear side, wherein an emitter and a back surface field part are manufactured on the front side and rear side, respectively by: of a layer of diffusion source material on the front side of the semiconductor substrate to form the emitter, the diffusion source material comprising first dopant atoms of a type doping at least a portion of the semiconductor substrate n-type or p-type, wherein applying the diffusion source material is performed under conditions where at least a substantial portion of the first dopant atoms do not substantially diffuse into at least a portion of the semiconductor substrate; Applying second dopant atoms, which are of an opposite type to that of the first dopant atoms, at the rear of the semiconductor substrate to form the back surface field portion, wherein applying the second dopant atoms to the back side of the semiconductor substrate is carried out under conditions in which at least a portion of the first dopant atoms and at least a portion of the second dopant atoms are driven substantially simultaneously into the front and back sides of the semiconductor substrate to form respectively the emitter and the back surface field part. 25 2. Werkwijze volgens conclusie 1, waarbij een afdeklaag wordt aangebracht voor het omhullen van de laag diffusie bronmateriaal aan de voorzijde van het halfgeleider substraat en van ten minste een gedeelte van de achterzijde van het halfgeleider substraat voor het in hoofdzaak voorkomen dat ten minste een gedeelte van de 30 eerste doteerstof atomen uit ten minste een gedeelte van het diffusie bronmateriaal diffundeert in een procesomgeving en voor het in hoofdzaak voorkomen dat ten minste een gedeelte van de tweede doteerstof atomen diffundeert in ten minste een gedeelte van het diffusie bronmateriaal of in ten minste een gedeelte van het halfgeleider substraat onder het diffusie bronmateriaal wanneer de emitter en het back surface field gedeelte in hoofdzaak simultaan worden gevormd.The method of claim 1, wherein a cover layer is provided for enclosing the layer of diffusion source material on the front side of the semiconductor substrate and of at least a portion of the back side of the semiconductor substrate for substantially preventing at least a portion of the first dopant atoms from at least a portion of the diffusion source material diffuses into a process environment and substantially prevents at least a portion of the second dopant from diffusing atoms into at least a portion of the diffusion source material or into at least one portion of the semiconductor substrate beneath the diffusion source material when the emitter and the back surface field portion are formed substantially simultaneously. 3. Werkwijze volgens conclusie 1 of 2, waarbij de afdeklaag wordt aangebracht op het 5 diffusie bronmateriaal om in hoofdzaak te voorkomen dat ten minste een gedeelte van de eerste doteerstof atomen uit ten minste een gedeelte van het diffusie bronmateriaal diffundeert in de procesomgeving en om in hoofdzaak te voorkomen dat ten minste een gedeelte van de tweede doteerstof atomen in ten minste een gedeelte van het diffusie bronmateriaal diffundeert wanneer de emitter en het back 10 surface field gedeelte in hoofdzaak simultaan worden gevormd.3. Method as claimed in claim 1 or 2, wherein the cover layer is applied to the diffusion source material to substantially prevent at least a part of the first dopant from diffusing atoms from at least a part of the diffusion source material in the process environment and to substantially preventing at least a portion of the second dopant from diffusing into at least a portion of the diffusion source material when the emitter and the back surface field portion are formed substantially simultaneously. 4. Werkwijze volgens conclusie 2 of 3, waarbij de afdeklaag ongedoteerd dielectrisch materiaal omvat.Method according to claim 2 or 3, wherein the cover layer comprises undoped dielectric material. 5. Werkwijze volgens een van de conclusies 2-4, waarbij de afdeklaag wordt aangebracht door middel van een chemical vapor deposition (CVD) process.The method according to any of claims 2-4, wherein the cover layer is applied by means of a chemical vapor deposition (CVD) process. 6. Werkwijze volgens een van de conclusies 2-5, waarbij de voorwaarden van het chemical vapor deposition process voor het aanbrengen van de afdeklaag een 20 atmosferische of lage omgevingsdruk en een omgevingstemperatuur omvatten waarbij ten minste een gedeelte van de eerste doteerstof atomen in hoofdzaak niet uit ten minste een gedeelte van het diffusie bronmateriaal diffundeert in de procesomgeving en in hoofdzaak niet in ten minste een gedeelte van het halfgeleider substraat onder het diffusie bronmateriaal diffundeert. 256. Method as claimed in any of the claims 2-5, wherein the conditions of the chemical vapor deposition process for applying the cover layer comprise an atmospheric or low ambient pressure and an ambient temperature at which at least a part of the first dopant has substantially no atoms diffuses from at least a portion of the diffusion source material into the process environment and substantially does not diffuse into at least a portion of the semiconductor substrate below the diffusion source material. 25 7. Werkwijze volgens een van de conclusies 2-6, waarbij de afdeklaag silicium oxide (SiOx) omvat.The method of any one of claims 2-6, wherein the cover layer comprises silicon oxide (SiOx). 8. Werkwijze volgens conclusie 7, waarbij de silicium oxide laag wordt aangebracht 30 door middel van een atmospheric pressure chemical vapor deposition (APCVD) proces bij een omgevingstemperatuur in het bereik van ongeveer 400°C tot 650°C, in het bijzonder in het bereik van ongeveer 450°C tot 525°C, bijvoorbeeld bij ongeveer 470°C.8. Method according to claim 7, wherein the silicon oxide layer is applied by means of an atmospheric pressure chemical vapor deposition (APCVD) process at an ambient temperature in the range of approximately 400 ° C to 650 ° C, in particular in the range from about 450 ° C to 525 ° C, for example at about 470 ° C. 9. Werkwijze volgens een van de voorgaande conclusies, waarbij de voorwaarden van het proces waarbij het diffusie bronmateriaal aan de voorzijde van het halfgeleider substraat wordt aangebracht, omvatten een atmosferische of lage omgevingsdruk en een omgevingstemperatuur die in hoofdzaak lager is dan de temperatuur waarbij ten 5 minste een gedeelte van de eerste doteerstof atomen van het diffusie bronmateriaal in hoofdzaak begint te diffunderen in ten minste een gedeelte van het halfgeleider substraat onder het diffusie bronmateriaal.9. A method according to any one of the preceding claims, wherein the conditions of the process in which the diffusion source material is applied to the front side of the semiconductor substrate comprise an atmospheric or low ambient pressure and an ambient temperature that is substantially lower than the temperature at which at least 5 at least a portion of the first dopant atoms of the diffusion source material substantially begins to diffuse into at least a portion of the semiconductor substrate below the diffusion source material. 10. Werkwijze volgens een van de voorgaande conclusies, waarbij de voorwaarden van 10 het proces waarbij de tweede doteerstof atomen worden aangebracht aan de achterzijde van het halfgeleider substraat omvatten een atmosferische of lage omgevingsdruk en een omgevingstemperatuur waarbij ten minste een gedeelte van de eerste doteerstof atomen en ten minste een gedeelte van de tweede doteerstof atomen in hoofdzaak beginnen te diffunderen in het halfgeleider substraat op in 15 hoofdzaak het zelfde tijdstip.10. Method as claimed in any of the foregoing claims, wherein the conditions of the process in which the second dopant atoms are applied to the rear side of the semiconductor substrate comprise an atmospheric or low ambient pressure and an ambient temperature at which at least a part of the first dopant atoms and at least a portion of the second dopant atoms begin to diffuse substantially into the semiconductor substrate at substantially the same time. 11. Werkwijze volgens een van de voorgaande conclusies, waarbij het halfgeleider substraat silicium gebaseerd materiaal omvat.The method of any one of the preceding claims, wherein the semiconductor substrate comprises silicon based material. 12. Werkwijze volgens conclusie 11, waarbij het silicium gebaseerde substraat een monokristallijne kristalstructuur heeft.The method of claim 11, wherein the silicon-based substrate has a monocrystalline crystal structure. 13. Werkwijze volgens conclusie 11 of 12, waarbij het monokristallijne silicium gebaseerde substraat doteerstof atomen omvat van een type dat ten minste een 25 gedeelte van het monokristallijne silicium gebaseerde substraat in hoofdzaak n-type of p-type doteert.13. A method according to claim 11 or 12, wherein the monocrystalline silicon-based substrate comprises dopant atoms of a type that doping at least a portion of the monocrystalline silicon-based substrate substantially n-type or p-type. 14. Werkwijze volgens een van de voorgaande conclusies, waarbij het diffusie bronmateriaal een gedoteerde silicaatglas laag omvat die de eerste doteerstof 30 atomen heeft welke van een type zijn dat ten minste een gedeelte van het monokristallijne silicium gebaseerde substraat n-type of p-type doteert wanneer ten minste een gedeelte van de eerste doteerstof atomen in de voorzijde van het monokristallijne silicium gebaseerde substraat wordt gedreven voor het vormen van de emitter.A method according to any one of the preceding claims, wherein the diffusion source material comprises a doped silicate glass layer which has the first dopant 30 atoms which are of a type doping at least a portion of the monocrystalline silicon-based substrate n-type or p-type when at least a portion of the first dopant atoms are driven in front of the monocrystalline silicon-based substrate to form the emitter. 15. Werkwijze volgens conclusie 14, waarbij de gedoteerde silicaatglas laag wordt aangebracht door middel van een atmospheric pressure chemical vapor deposition (APCVD) proces of een low pressure chemical vapor deposition (LPCVD) proces. 5The method of claim 14, wherein the doped silicate glass layer is applied by means of an atmospheric pressure chemical vapor deposition (APCVD) process or a low pressure chemical vapor deposition (LPCVD) process. 5 16. Werkwijze volgens conclusie 14 of 15, waarbij de gedoteerde silicaatglas laag, die wordt aangebracht om een p-type emitter te vormen aan de voorzijde van een n-type monokristallijn silicium gebaseerd substraat, atomen omvat uit de derde hoofdgroep van het periodiek systeem. 10The method of claim 14 or 15, wherein the doped silicate glass layer, which is applied to form a p-type emitter on the front side of an n-type monocrystalline silicon-based substrate, comprises atoms from the third main group of the periodic table. 10 17. Werkwijze volgens conclusie 16, waarbij de gedoteerde silicaatglas laag boor atomen omvat.The method of claim 16, wherein the doped silicate glass layer comprises boron atoms. 18. Werkwijze volgens een van de voorgaande conclusies, waarbij een boor gedoteerde 15 silicaatglas laag wordt aangebracht aan de voorzijde van het n-type monokristallijne silicium gebaseerde substraat voor het vormen van de p-type emitter door middel van het APCVD proces bij een omgevingstemperatuur in het bereik van ongeveer 400°C tot 650°C, in het bijzonder in het bereik van ongeveer 450°C tot 525°C, bijvoorbeeld bij ongeveer 470°C. 2018. Method as claimed in any of the foregoing claims, wherein a boron-doped silicate glass layer is applied to the front side of the n-type monocrystalline silicon-based substrate for forming the p-type emitter by means of the APCVD process at an ambient temperature in the range of about 400 ° C to 650 ° C, in particular in the range of about 450 ° C to 525 ° C, for example at about 470 ° C. 20 19. Werkwijze volgens een van de conclusies 14-18, waarbij de gedoteerde silicaatglas laag, die wordt aangebracht om een n-type emitter te vormen aan de voorzijde van een p-type monokristallijn silicium gebaseerd substraat, atomen omvat uit de vijfde hoofdgroep van het periodiek systeem. 25The method of any one of claims 14-18, wherein the doped silicate glass layer, which is applied to form an n-type emitter on the front side of a p-type monocrystalline silicon-based substrate, comprises atoms from the fifth main group of the periodic table. 25 20. Werkwijze volgens conclusie 19, waarbij de gedoteerde silicaatglas laag fosfor atomen omvat.The method of claim 19, wherein the doped silicate glass comprises low phosphorus atoms. 21. Werkwijze volgens een van de voorgaande conclusies, waarbij een fosfor 30 gedoteerde silicaatglas laag wordt aangebracht aan de voorzijde van het p-type monokristallijne silicium gebaseerde substraat voor het vormen van de n-type emitter door middel van het APCVD proces bij een omgevingstemperatuur in het bereik van ongeveer 400°C tot 650°C, in het bijzonder in het bereik van ongeveer 450°C tot 525°C, bijvoorbeeld bij ongeveer 500°C. 3521. A method according to any one of the preceding claims, wherein a phosphorus-doped silicate glass layer is applied to the front side of the p-type monocrystalline silicon-based substrate to form the n-type emitter by means of the APCVD process at an ambient temperature in the range of about 400 ° C to 650 ° C, in particular in the range of about 450 ° C to 525 ° C, for example at about 500 ° C. 35 22. Werkwijze volgens een van de conclusies 14-21, waarbij de gedoteerde silicaatglas laag wordt aangebracht door middel van een oplossing in water.The method of any one of claims 14 to 21, wherein the doped silicate glass layer is applied by means of an aqueous solution. 23. Werkwijze volgens conclusie 22, waarbij de oplossing in water wordt aangebracht 5 door middel van een sproei- of vernevel- of rolproces bij kamertemperatuur.A method according to claim 22, wherein the aqueous solution is applied by means of a spraying or spraying or rolling process at room temperature. 24. Werkwijze volgens een van de voorgaande conclusies, waarbij de oplossing in water boorzuur omvat voor het vormen van de boor gedoteerde silicaatglas laag aan de voorzijde van een n-type monokristallijn silicium gebaseerd substraat voor de 10 vorming van een p-type emitter wanneer ten minste een gedeelte van de boor atomen in ten minste een gedeelte van het n-type monokristallijne silicium gebaseerde substraat wordt gedreven.24. Method according to any of the preceding claims, wherein the aqueous solution comprises boric acid to form the boron-doped silicate glass layer on the front side of an n-type monocrystalline silicon-based substrate for forming a p-type emitter when at least at least a portion of the boron atoms are driven into at least a portion of the n-type monocrystalline silicon-based substrate. 25. Werkwijze volgens een van de voorgaande conclusies, waarbij de boor gedoteerde 15 silicaatglas laag door middel van de oplossing in water omvattende boorzuur wordt gevormd bij een omgevingstemperatuur in het bereik van ongeveer 25°C tot 800°C, in het bijzonder in het bereik van ongeveer 250°C tot 600°C, bijvoorbeeld bij ongeveer 450°C.25. Method as claimed in any of the foregoing claims, wherein the boron doped silicate glass layer is formed by means of the aqueous boric acid solution at an ambient temperature in the range of approximately 25 ° C to 800 ° C, in particular in the range from about 250 ° C to 600 ° C, for example at about 450 ° C. 26. Werkwijze volgens een van de voorgaande conclusies, waarbij de oplossing in water fosforzuur omvat voor het vormen van de fosfor gedoteerde silicaatglas laag aan de voorzijde van een p-type monokristallijn silicium gebaseerd substraat voor de vorming van een n-type emitter wanneer ten minste een gedeelte van de fosfor atomen in ten minste een gedeelte van het p-type monokristallijne silicium 25 gebaseerde substraat wordt gedreven.The method of any one of the preceding claims, wherein the aqueous solution comprises phosphoric acid to form the phosphor-doped silicate glass layer on the front side of a p-type monocrystalline silicon based substrate to form an n-type emitter when at least a portion of the phosphorus atoms is driven into at least a portion of the p-type monocrystalline silicon-based substrate. 27. Werkwijze volgens een van de voorgaande conclusies, waarbij de fosfor gedoteerde silicaatglas laag door middel van de oplossing in water omvattende fosforzuur wordt gevormd bij een omgevingstemperatuur in het bereik van ongeveer 25°C tot 30 800°C, in het bijzonder in het bereik van ongeveer 250°C tot 600°C, bijvoorbeeld bij ongeveer 470°C.27. A method according to any one of the preceding claims, wherein the phosphorus-doped silicate glass layer is formed by means of the aqueous phosphoric acid solution at an ambient temperature in the range of about 25 ° C to 800 ° C, in particular in the range from about 250 ° C to 600 ° C, for example at about 470 ° C. 28. Werkwijze volgens een van de voorgaande conclusies, waarbij een vloeibare doteerstof bronmateriaal wordt gebruikt voor het aanbrengen van de tweede doteerstof atomen aan de achterzijde van het monokristallijne silicium gebaseerde substraat voor de vorming van het back surface field gedeelte.The method of any one of the preceding claims, wherein a liquid dopant source material is used to apply the second dopant atoms to the rear of the monocrystalline silicon-based substrate to form the back surface field portion. 29. Werkwijze volgens conclusie 28, waarbij de tweede doteerstof atomen van het 5 vloeibare doteerstof bronmateriaal worden aangebracht door middel van een ovenproces.29. Method according to claim 28, wherein the second dopant atoms of the liquid dopant source material are applied by means of an oven process. 30. Werkwijze volgens conclusie 28 of 29, waarbij het vloeibare doteerstof bronmateriaal phosphoryl chloride (POCfi) omvat voor het aanbrengen van fosfor 10 atomen als de tweede doteerstof atomen aan de achterzijde van een n-type monokristallijn silicium gebaseerd substraat voor de vorming van een n+-type back surface field gedeelte.The method of claim 28 or 29, wherein the liquid dopant source material comprises phosphoryl chloride (POCfi) for applying phosphorus 10 atoms as the second dopant atoms to the rear of an n-type monocrystalline silicon based substrate for forming an n + -type back surface field part. 31. Werkwijze volgens een van de conclusies 28-30, waarbij de fosfor atomen van het 15 vloeibare doteerstof bronmateriaal worden aangebracht door middel van een ovenproces bij een omgevingstemperatuur in het bereik van ongeveer 850°C tot 1000°C, in het bijzonder in het bereik van ongeveer 900°C tot 980°C, bijvoorbeeld bij ongeveer 930°C.31. A method according to any one of claims 28-30, wherein the phosphorus atoms of the liquid dopant source material are applied by means of an oven process at an ambient temperature in the range of about 850 ° C to 1000 ° C, in particular in particular range from about 900 ° C to 980 ° C, for example at about 930 ° C. 32. Werkwijze volgens een van de conclusies 28-31, waarbij het vloeibare doteerstof bronmateriaal boorbromide (BBn) omvat voor het aanbrengen van boor atomen als de tweede doteerstof atomen aan de achterzijde van een p-type monokristallijn silicium gebaseerd substraat voor de vorming van een p+-type back surface field gedeelte. 25The method of any one of claims 28 to 31, wherein the liquid dopant source material comprises boron bromide (BBn) for applying boron atoms as the second dopant atoms on the rear of a p-type monocrystalline silicon based substrate for forming a p + -type back surface field part. 25 33. Werkwijze volgens een van de conclusies 28-32, waarbij de boor atomen van het vloeibare doteerstof bronmateriaal worden aangebracht door middel van het ovenproces bij een omgevingstemperatuur in het bereik van ongeveer 850°C tot 1000°C, in het bijzonder in het bereik van ongeveer 900°C tot 980°C, bijvoorbeeld 30 bij ongeveer 940°C.A method according to any of claims 28-32, wherein the boron atoms of the liquid dopant source material are applied by means of the furnace process at an ambient temperature in the range of about 850 ° C to 1000 ° C, in particular in the range from about 900 ° C to 980 ° C, for example 30 at about 940 ° C. 34. Werkwijze volgens een van de conclusies 29-33, waarbij een tijd die het ovenproces in beslag neemt, langer is dan de tijd waarin het phosphoryl chloride (POCfi) of boorbromide (BBr3) wordt aangebracht aan de achterzijde van 35 respectievelijk het n-type of p-type monokristallijne silicium gebaseerde substraat.A method according to any of claims 29-33, wherein a time which takes up the furnace process is longer than the time in which the phosphoryl chloride (POCfi) or boron bromide (BBr3) is applied to the back of 35 and the n- type or p-type monocrystalline silicon-based substrate. 35. Werkwijze volgens conclusie 34, waarbij de tijd waarin het phosphoryl chloride (POCI3) of boorbromide (BBr3) wordt aangebracht aan de achterzijde van het n-type of p-type monokristallijne silicium gebaseerde substraat respectievelijk, 5 typisch in het bereik ligt van 50% tot 95% van de tijd die het ovenproces in beslag neemt.The method of claim 34, wherein the time in which the phosphoryl chloride (POCl 3) or boron bromide (BBr 3) is applied to the back of the n-type or p-type monocrystalline silicon-based substrate, respectively, is typically in the range of 50 % to 95% of the time it takes for the oven process. 36. Werkwijze volgens een van de voorgaande conclusies, waarbij elektrische contacten worden aangebracht aan de voorzijde en achterzijde van het 10 monokristallijne silicium gebaseerde substraat.36. Method according to any of the preceding claims, wherein electrical contacts are provided on the front and back of the monocrystalline silicon-based substrate. 37. Werkwijze volgens conclusie 36, waarbij de elektrische contacten die aan de voorzijde van het monokristallijne silicium gebaseerde substraat worden aangebracht een H-patroon hebben. 15The method of claim 36, wherein the electrical contacts applied to the front side of the monocrystalline silicon-based substrate have an H pattern. 15 38. Fotovoltaïsch element, bijvoorbeeld een zonnecel, omvattende een halgeleider substraat met een voorzijde en een achterzijde, waarbij het halfgeleider substraat n-type monokristallijn silicium gebaseerd materiaal omvat, waarbij een p-type emitter wordt gevormd door middel van eerste doteerstof atomen, bijvoorbeeld boor 20 atomen, aan de voorzijde en een n+-type back surface field gedeelte wordt gevormd door middel van tweede doteerstof atomen, bijvoorbeeld fosfor atomen, aan de achterzijde, respectievelijk, waarbij ten minste een gedeelte van de eerste doteerstof atomen en ten minste een gedeelte van de tweede doteerstof atomen in hoofdzaak simultaan worden gedreven in de voorzijde en de achterzijde, respectievelijk van 25 het n-type monokristallijne silicium gebaseerde substraat.38. A photovoltaic element, for example a solar cell, comprising a semiconductor substrate with a front side and a rear side, the semiconductor substrate comprising n-type monocrystalline silicon-based material, wherein a p-type emitter is formed by means of first dopant atoms, for example boron 20 atoms, at the front and an n + -type back surface field portion is formed by means of second dopant atoms, for example phosphorus atoms, at the rear, respectively, wherein at least a portion of the first dopant atoms and at least a portion of the second dopant atoms are driven substantially simultaneously in the front side and the rear side, respectively, of the n-type monocrystalline silicon-based substrate. 39. Fotovoltaïsch element volgens conclusie 38, waarbij het photovoltaische element wordt verkregen door middel van een werkwijze volgens een van de voorgaande conclusies. 30The photovoltaic element of claim 38, wherein the photovoltaic element is obtained by a method according to any of the preceding claims. 30 40. Fotovoltaïsch element, bijvoorbeeld een zonnecel, omvattende een halgeleider substraat met een voorzijde en een achterzijde, waarbij het halfgeleider substraat n-type of p-type monokristallijn silicium gebaseerd materiaal omvat, waarbij een diffusie bronmateriaal omvattende eerste doteerstof atomen wordt aangebracht aan 35 de voorzijde voor het vormen van een emitter die een tegenovergesteld doping type als dat van het monokristallijne silicium gebaseerde substraat heeft, waarbij tweede doteerstof atomen worden aangebracht aan de achterzijde voor het vormen van een back surface field gedeelte dat een verhoogd doteringsniveau heeft in vergelijking met het doteringsniveau van het monokristallijne silicium gebaseerde substraat, 5 waarbij ten minste een gedeelte van de eerste doteerstof atomen en ten minste een gedeelte van de tweede doteerstof atomen in hoofdzaak simultaan worden gedreven in de voorzijde en de achterzijde, respectievelijk van het n-type of p-type monokristallijne silicium gebaseerde substraat.40. A photovoltaic element, for example a solar cell, comprising a semiconductor substrate with a front side and a rear side, the semiconductor substrate comprising n-type or p-type monocrystalline silicon-based material, wherein a diffusion source material comprising first dopant atoms is applied to the front side for forming an emitter that has an opposite doping type to that of the monocrystalline silicon-based substrate, wherein second dopant atoms are provided on the rear side for forming a back surface field portion that has an increased doping level compared to the doping level of the monocrystalline silicon-based substrate, wherein at least a portion of the first dopant atoms and at least a portion of the second dopant atoms are driven substantially simultaneously in the front and rear sides of the n-type or p-type, respectively monocrystalline s ilicium based substrate. 41. Fotovoltaïsch element volgens een van de conclusies 38-40, waarbij het fotovoltaïsche element een semivierkante of in hoofdzaak vierkante vorm heeft.The photovoltaic element according to any of claims 38-40, wherein the photovoltaic element has a semi-square or substantially square shape. 42. Fotovoltaïsch element volgens een van de conclusies 38-41, waarbij elektrische contacten worden aangebracht aan de voorzijde en achterzijde van het 15 monokristallijne silicium gebaseerde substraat.42. A photovoltaic element according to any of claims 38-41, wherein electrical contacts are provided on the front and back of the monocrystalline silicon-based substrate. 43. Fotovoltaïsch element volgens conclusie 42, waarbij de elektrische contacten aan de voorzijde van het monokristallijne silicium gebaseerde substraat een H-patroon hebben.The photovoltaic element of claim 42, wherein the electrical contacts on the front side of the monocrystalline silicon-based substrate have an H pattern.
NL2003511A 2009-09-18 2009-09-18 Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method. NL2003511C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2003511A NL2003511C2 (en) 2009-09-18 2009-09-18 Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method.
PCT/NL2010/050606 WO2011034430A1 (en) 2009-09-18 2010-09-17 Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2003511A NL2003511C2 (en) 2009-09-18 2009-09-18 Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method.
NL2003511 2009-09-18

Publications (1)

Publication Number Publication Date
NL2003511C2 true NL2003511C2 (en) 2011-03-22

Family

ID=42634749

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2003511A NL2003511C2 (en) 2009-09-18 2009-09-18 Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method.

Country Status (2)

Country Link
NL (1) NL2003511C2 (en)
WO (1) WO2011034430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837217A (en) * 2018-01-08 2020-10-27 索拉昂德有限公司 Double-sided photovoltaic cell and method of making same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170019597A (en) * 2015-08-12 2017-02-22 엘지전자 주식회사 Solar cell and manufacturing method thereof
JP6559326B2 (en) * 2016-03-14 2019-08-14 三菱電機株式会社 Manufacturing method of solar cell
CN114335237B (en) * 2020-09-29 2024-09-17 一道新能源科技股份有限公司 Preparation method of crystalline silicon solar cell and crystalline silicon solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206026A (en) * 1977-12-09 1980-06-03 International Business Machines Corporation Phosphorus diffusion process for semiconductors
GB2077996A (en) * 1980-06-16 1981-12-23 Philips Nv Method of manufacturing solar cells
ES2005779A6 (en) * 1988-02-17 1989-03-16 Fundacion General De La Univer Crystalline silicon solar cell mfr.
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
EP1876651A1 (en) * 2005-04-26 2008-01-09 Shin-Etsu Handotai Co., Ltd Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method
US20090205712A1 (en) * 2008-02-20 2009-08-20 Peter John Cousins Front contact solar cell with formed emitter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206026A (en) * 1977-12-09 1980-06-03 International Business Machines Corporation Phosphorus diffusion process for semiconductors
GB2077996A (en) * 1980-06-16 1981-12-23 Philips Nv Method of manufacturing solar cells
ES2005779A6 (en) * 1988-02-17 1989-03-16 Fundacion General De La Univer Crystalline silicon solar cell mfr.
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
EP1876651A1 (en) * 2005-04-26 2008-01-09 Shin-Etsu Handotai Co., Ltd Solar cell manufacturing method, solar cell, and semiconductor device manufacturing method
US20090205712A1 (en) * 2008-02-20 2009-08-20 Peter John Cousins Front contact solar cell with formed emitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARTITI B ET AL: "LOW TEMPERATURE FORMATION OF EMITTER AND BSF BY RAPID THERMAL CO-DIFFUSION OF P, AL OR B", WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY. WAIKOLOA, DEC. 5 - 9, 1994; [WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY], NEW YORK, IEEE, US LNKD- DOI:10.1109/WCPEC.1994.520502, vol. CONF. 1, 5 December 1994 (1994-12-05), pages 1519 - 1522, XP000680114, ISBN: 978-0-7803-1460-3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837217A (en) * 2018-01-08 2020-10-27 索拉昂德有限公司 Double-sided photovoltaic cell and method of making same

Also Published As

Publication number Publication date
WO2011034430A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
US8420517B2 (en) Methods of forming a multi-doped junction with silicon-containing particles
US8394658B2 (en) Methods of using a silicon nanoparticle fluid to control in situ a set of dopant diffusion profiles
US7846762B2 (en) Integrated emitter formation and passivation
US20120138135A1 (en) Method of forming contacts for a back-contact solar cell
AU2015267299B2 (en) Relative dopant concentration levels in solar cells
KR20100102255A (en) Solar cell and manufacturing method of the same
US9893224B2 (en) Emitters of a backside contact solar cell
NL2003511C2 (en) Method for fabricating a photovoltaic cell and a photovoltaic cell obtained using such a method.
KR102320551B1 (en) Method for manufacturing solar cell
CN114267753A (en) TOPCon solar cell, preparation method thereof and photovoltaic module
CN112466996B (en) Solar cell and method of forming
US20160240724A1 (en) Method for producing a solar cell
CN116994945A (en) Impurity diffusion method, solar cell, and method for manufacturing solar cell
KR101383426B1 (en) Method for fabricating bi-facial solar cell
CN102122683A (en) Process for preparing selective emitter of monocrystalline silicon solar cell with corrosion slurry method
WO2016049091A1 (en) Solar cell fabricated by simplified deposition process
Fichtner et al. Gettering efficacy of diffusion processes based on doped APCVD glasses
KR101348836B1 (en) Method for fabricating p-type and n-type doping layer of solar cell
Payo et al. Opportunities for silicon epitaxy in bulk crystalline silicon photovoltaics
KR20110101698A (en) Solar cell and method for manufacturing the same
KR20110127540A (en) Method for fabricating solar cell
KR20160142169A (en) Method for manufacturing solar cell
KR20130016855A (en) Method for fabricating emitter of solar cell

Legal Events

Date Code Title Description
V1 Lapsed because of non-payment of the annual fee

Effective date: 20130401