MXPA01003475A - Materials and methods for the modification of plant lignin content - Google Patents

Materials and methods for the modification of plant lignin content

Info

Publication number
MXPA01003475A
MXPA01003475A MXPA/A/2001/003475A MXPA01003475A MXPA01003475A MX PA01003475 A MXPA01003475 A MX PA01003475A MX PA01003475 A MXPA01003475 A MX PA01003475A MX PA01003475 A MXPA01003475 A MX PA01003475A
Authority
MX
Mexico
Prior art keywords
dna
sequences
sequence
plant
seq
Prior art date
Application number
MXPA/A/2001/003475A
Other languages
Spanish (es)
Inventor
Leonard Nathan Bloksberg
Ilkka Jaakko Havukkala
Original Assignee
Leonard Nathan Bloksberg
Fletcher Challenge Forests Limited
Genesis Research And Development Corporation Limited
Ilkka Jaakko Havukkala
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leonard Nathan Bloksberg, Fletcher Challenge Forests Limited, Genesis Research And Development Corporation Limited, Ilkka Jaakko Havukkala filed Critical Leonard Nathan Bloksberg
Publication of MXPA01003475A publication Critical patent/MXPA01003475A/en

Links

Abstract

Novel isolated polynucleotides and polypeptides associated with the lignin biosynthetic pathway are provided, together with constructs including such sequences. Methods for the modulation of lignin content, lignin structure and lignin composition in target organisms are also disclosed, the methods comprising incorporating one or more of the polynucleotides of the present invention into the genome of a target organism.

Description

"MATERIALS AND METHODS FOR THE MODIFICATION OF LIGNIN CONTENT OF PLANTS" TECHNICAL FIELD OF THE INVENTION This invention relates to polynucleotides that are believed to be novel, including the partial and extended sequences as well as test probes and primers, constructs comprising the polynucleotides, biological materials (including plants, microorganisms and multicellular organisms) that incorporate the polynucleotides, the polypeptides encoded by the polynucleotides, and methods for use of the polynucleotides and polypeptides. The invention relates, more particularly, to the modification of the lignin content and the composition in the biological materials * including plants, with the polypeptides involved in the lignin biosynthetic access pathway, and with the polynucleotides encoding these enzymes.
BACKGROUND OF THE INVENTION Lignin is an insoluble polymer that is primarily responsible for the stiffness of the stems of plants. Specifically, lignin serves as a matrix around the polysaccharide components of some walls of the plant cell. The higher the lignin content, the more rigid the plant. For example, tree species synthesize large amounts of lignin, with the constituent lignin between 20 percent to 30 percent of the dry weight of the wood. In addition to providing rigidity, lignin aids in the transport of water within plants, making the walls of the cell hydrophobic and waterproof. Lignin also plays a role in the disease resistance of plants by preventing the penetration and spread of pathogenic agents. The high concentration of lignin in trees presents a significant problem in the paper industry, where considerable resources must be used to separate lignin from the cellulose fiber needed for paper production. The methods typically employed for lignin removal are highly energy and chemical intensive resulting in increased costs and increased levels of undesirable waste products. In the United States alone, approximately 20 million tons of lignin are removed from the wood per year. Lignin is largely responsible for the digestibility, or lack of it, of forage crops, with small increases in the lignin content of the plant resulting in relatively high decreases in digestibility. For example, crops with reduced lignin content provide more efficient forage for livestock, with the yield of milk and meat being higher in relation to the amount of fodder crop consumed. During the normal growth of the plant, the increase in the content of the dry matter is accompanied by a corresponding decrease in digestibility. When deciding on the optimum time to harvest the forage crops, farmers must therefore choose between a high yield of less digestible material and a lower yield of more digestible material. For some applications, an increase in the lignin content is desirable since increasing the lignin content of a plant will lead to increased mechanical strength of the wood, changes in its color and increased resistance to rot or decay. The composition and abundance of the Mycorrhizal species can also be manipulated favorably by modifying the lignin content and the structural composition. As will be discussed in detail below, lignin is formed by polymerization of at least three different onolignols that are synthesized in a multistep access pathway, with each step being catalyzed in the access pathway by a different enzyme. It has been shown that manipulation of the copy number of genes encoding certain enzymes such as cinnamyl alcohol dehydrogenase (CAD) and caffeic acid 3-0-methyltransferase (COMT) results in the modification of the amount of lignin produced.; see, for example, U.S. Patent Number 5,451,514 and PCT Publication Number WO 94/23044. Furthermore, it has been demonstrated that the expression of the antisense of the sequences encoding CAD in the poplar leads to the production of lignin having a modified composition (Grand C et al., Planta (Berl.) 163: 232-237, 1985). Even though the polynucleotides that encode some of the enzymes involved in the biosynthetic pathway of lignin have been isolated for certain plant species, the genes that encode many of the enzymes on a wide range of plant species have not yet been identified. . In this way a need remains in the art for materials useful in modifying the lignin content and composition in plants and for methods for their use.
DISCLOSURE OF THE INVENTION In short, the present invention provides isolated polynucleotides identified in the Sequence Listing annexed as SEQ ID NOS: 1-266 and 350-375, variants of those sequences, constructions comprising these sequences, extended sequences comprising the sequences of SEQ ID NOS: 1-266 and 350-375, and its variants, test probes and primers corresponding to the sequence indicated in SEQ ID NOS: 1-266, 350-375 and its variants, and the polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NOS: 1-266 and 350-375 (x-mers), all of which are referred to herein, together, as "polynucleotides of the present invention ". The polynucleotides of the present invention are preferably capable of being obtained from eucalyptus and pine species, and preferably encode the enzymes involved in the biosynthetic lignin access pathway. Constructs incorporating these sequences, methods for using these sequences and constructions, and biological materials including plant cells and plants having altered genomic and / or lignin content and composition are provided. The present invention also provides isolated polypeptide sequences identified in the Sequence Listing annexed as SEQ ID NOS: 267-349 and 376-401; polypeptide variants of those sequences; and the polypeptides comprising the polypeptide sequences and variants of those sequences. In one aspect, the present invention provides isolated polynucleotides, which encode the following enzymes, or portions of the following enzymes: cinnamate 4-hydroxylase (C4H), coumarate 3-hydroxylase (C3H), phenolase (PNL), O-methyl transferase (OMT), cinnamyl alcohol dehydrogenase (CAD), cinnamoyl-CoA reductase (CCR), phenylalanine ammonialiase (PAL), 4-coumarate: CoA ligase ( 4CL), coniferol glucosyl transferase (CGT), coniferin beta-glucosidase (CBG), laccase (LAC), peroxidase (POX), ferulate-5-hydroxylase (F5H), alpha amylase, caffeic acid methyl transferase, caffeoyl methyl transferase CoA, 6A coumerate ligase, P450 LXX1A cytochrome, diphenol oxidase, flavonol glucosyl transferase, flavonoid hydroxylase and isoflavone reductase. In one embodiment, the polynucleotides of the present invention encompass polynucleotides comprising a nucleotide sequence that is selected from the group consisting of: (a) the polynucleotides mentioned in SEQ ID NOS: 1-266 and 350-375; (b) complements of the polynucleotides mentioned in SEQ ID NOS: 1-266 and 350-375; (c) reverse complements of the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; (d) reverse sequences of the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; and (e) variants of the polynucleotides mentioned in SEQ ID NOS: 1-266 and 350-375. In another embodiment of the present invention, the polynucleotides comprise at least a specified number of contiguous residues (x-mers) of any of the polynucleotides of SEQ ID NOS: 1-266 and 350-375. In yet another aspect, the polynucleotides comprise test probes and primers corresponding to any of the polynucleotides of SEQ ID NOS: 1-266 and 350-375. In another aspect, the present invention provides constructs comprising a polynucleotide of the present invention, either alone or in combination with one or more of the sequences of the invention, or in combination with one or more of the most known polynucleotides; together with host cells and transgenic cells comprising these constructions. In a related aspect, the present invention provides constructs comprising, in the 5'-3 'direction, a gene activator sequence; an exposed reading frame that encodes at least a functional portion of an enzyme encoded by a polynucleotide of the present invention; and a gene termination sequence. An exposed reading frame can be oriented in any direction of sense or antisense. DNA constructs comprising a non-coding region of a gene encoding an enzyme encoded by the above-mentioned polynucleotides or a polynucleotide complementary to a non-coding region, together with a gene activator sequence and a terminator sequence of gene, are also provided. Preferably, the gene activator and termination sequences are functional in a host cell, such as a plant cell. More preferably, the promoter and gene termination sequences are those of the original enzyme genes but other original enzyme genes generally used in the art, such as the Mosaic Virus promoter of the invention, can be usefully employed in the present invention. Cauliflower (CMV), with or without improvers, such as the Kozak sequence or the Omega improver, and the nopaline synthase terminator Agrobacteri um tumefaci ens. Tissue-specific promoters can be used to carry out expression toward one or more of the desired tissues. In a preferred embodiment, the sequence of the gene promoter provides for transcription in xylem. The construct can also include a marker for the identification of the transformed cells.
In a further aspect, transgenic cells, such as transgenic plant cells, comprising the constructs of the present invention, are provided, together with the plants comprising these transgenic cells and fruits and seeds of these plants. In still another aspect, methods for modulating the lignin content and the composition of a target organism such as a plant are provided, including these methods stably incorporating into the genome of the target plant a construct comprising a polynucleotide of the present invention. invention. In a preferred embodiment, the target plant is a woody plant that is preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus granái s and Pinus radiata ta. In a related aspect, there is provided a method for producing a plant having an altered lignin content the method comprising transforming a plant cell with a construct comprising a polynucleotide of the present invention to provide a transgenic cell, and culturing the cell Transgenic under conditions that lead to regeneration and growth of the mature plant. In yet a further aspect, the present invention provides methods for modifying the activity of an enzyme in a target organism such as a plant, which comprises stably incorporating into the genome of the target organism a construct of the present invention. In a preferred embodiment, the target plant is a woody plant, which is preferably selected from the group consisting of the eucalyptus and pine species, most preferably from the group consisting of Eucalyptus granái s and Pinus radiata ta. The present invention also provides polypeptides comprising the isolated polypeptides identified as SEQ ID NOS: 267-349, 376-401 and variants of those polypeptides.
BRIEF DESCRIPTION OF THE FIGURES The aforementioned and additional features of the present invention and the manner for obtaining them will become apparent, and the invention will be better understood by reference to the following more detailed description, which is read together with the accompanying drawing. Figure 1 is a schematic total view of the lignin biosynthetic access pathway. Figure 2 illustrates samples of genomic DNA from tobacco plants created in an experiment using a unique Pinus sequence identifier (left panel) and a unique Eucalyptus identifier sequence (right panel). On both boards, zones A and B contain DNA samples from empty vector transformed control plants and the C-E zones contain DNA samples from the transformed plants with a unique sequence identifier. Figure 3 demonstrates the detection of a unique Pinus sequence identifier in transformed tobacco plants. Zones A and B show the hybridization of a test probe of SEQ ID NOS: 402 to the genomic DNA of tobacco plants with the lack of the singular sequence identifier Pinus (control plants transformed from empty vector). The C-E zones show the hybridization of the test probe to the genomic DNA of tobacco plants containing one to three copies of the Pinus unique sequence identifier. Figure 4 demonstrates the detection of a unique Eucalyptus sequence identifier in transformed tobacco plants. Zones A and B show the hybridization of a test probe of SEQ ID NO: 403 to the genomic DNA of tobacco plants lacking the unique sequence identifier Eucalyptus (control plants transformed from empty vector). The C-E zones show the hybridization of the test probe to the genomic DNA of tobacco plants containing one or two copies of the unique sequence identifier Eucalyptus. Figure 5 shows the amount of extractable lignin, as a percentage of the wild-type lignin content present in the tobacco plants transformed with sense and antisense genetic constructions of the present invention.
DETAILED DESCRIPTION Lignin is formed by polymerization of at least three different monolignoles, notably para-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Even though these three types of lignin subunits are well known, it is possible that slightly different variants of these subunits may be involved in the lignin biosynthetic pathway in several plants. The relative concentration of these residues in lignin vary between different plant species and within species. In addition, the composition of lignin can also vary between different tissues within a specific plant. The three monolignoles are derived from phenylalanine in a multi-step process and are believed to polymerize in lignin by a free radical mechanism. Figure 1 shows different steps in the biosynthetic access pathway for the coniferyl alcohol along with the enzymes responsible for catalyzing each step. The para-coumaryl alcohol and the sinapyl alcohol are synthesized by similar access routes. Phenylalanine is first deaminated by phenylalanine ammonia lyase (PAL) to provide cinnamate which can then be hydroxylated by cinnamate 4-hydroxylase (C4H) to form p-coumarate. The p-coumarate is hydroxylated by coumarate 3-hydroxylase to provide coffee. The freshly added hydroxyl group is then methylated by O-methyl transferase (OMT) to provide ferulate which is conjugated to coenzyme A by 4-coumarate: CoA ligase (4CL) to form feruloyl-CoA. The reduction of feruloyl-CoA in coniferaldehyde is catalyzed by CoA cinnamoyl reductase (CCR). The coniferaldehyde is further reduced by the action of cinnamyl alcohol dehydrogenase (CAD) to provide coniferyl alcohol which is then converted to its glycosylated form to be exported from the cytoplasm to the cell wall by coniferol glucosyl transferase (CGT) . After export, the deglycosylated form of the coniferyl alcohol is obtained by the action of coniferine beta-glucosidase (CBG). Finally, the polymerization of three monolignoles to provide lignin is catalyzed by phenolase (PNL), laccase (LAC) and peroxidase (POX). The formation of the sinapyl alcohol involves an additional enzyme, ferulate-5-hydroxylase (F5H). For a more detailed review of the lignin biosynthetic pathway, see Whetton R and Sederoff R. The Plant Cell, 7: 1001-1013, 1995. Quantitative and qualitative modifications in the lignin content of the plant are known to they are induced by external factors such as light stimulation, low calcium levels and mechanical stress. The synthesis of new types of lignins, sometimes in normally non-lignified tissues, can also be induced by infection with pathogens. In addition to lignin, several other kinds of plant products are derived from phenylalanine, including flavonoids, coumarins, stilbenes and benzoic acid derivatives, with the initial steps in the synthesis of all these compounds being equal. Therefore, the modification of the action of PAL, C4H, 4CL and other enzymes involved in the lignin biosynthetic pathway can affect the synthesis of other plant products besides lignin.
Using the methods and materials of the present invention, the lignin content of a plant can be modulated by modulating the expression of the polynucleotides of the present invention, or by modifying the polypeptides encoded by polynucleotides or the polynucleotides. The lignin content of a target organism, such as a plant, can be modified, for example, by incorporating copies of additional genes encoding the enzymes involved in the biosynthetic lignin access pathway in the genome of the target plant. Similarly, a modified lignin content can be obtained by transforming the target plant with antisense copies of these genes. further, the number of copies of genes coding for different enzymes in the lignin biosynthetic pathway can be manipulated to modify the relative amount of each monolignol synthesized, thereby leading to the formation of lignin having an altered composition. Alteration of the lignin composition would be advantageous, for example, in wood processing applications for paper, and may also be effective in altering the taste of wood materials to rotten or decomposed fungi. In a first aspect, the present invention provides isolated polynucleotide sequences identified in the Sequence Listing annexed as - 1 - SEQ ID NOS: 1-266 and 350-375, the variants of those sequences, the extended sequences comprising the sequences indicated in SEQ ID NOS: 1-266 and 350-375 and their variants, the corresponding test probes and primers. to the sequences set forth in SEQ ID NOS: 1-266 and 350-375 and their variants, the polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NOS: 1-266 and 350- 375 (x meros), and extended sequences comprising portions of the sequences set forth in SEQ ID NOS: 1-266 and 350-375, all of which are referred to herein, together, as "polynucleotides of the present invention" . The present invention also provides isolated polypeptide sequences identified in the Sequence Listing annexed as SEQ ID NOS: 267-349 and 376-401, the polypeptide variants of those sequences, and the polypeptides comprising the isolated polypeptide sequences and variants of those sequences. The polynucleotide disclosed herein was derived from forest plant sources, namely, Eucalyptus granái s and Pinus raáiata. Some of the polynucleotides of the present invention are "partial" sequences, since they do not represent a full-length gene encoding a full-length polypeptide. These partial sequences can be extended by analyzing and sequencing several DNA libraries using primers and / or test probes and well-known hybridization and / or PCR techniques. The partial sequences may be extended until an exposed reading frame encodes a polypeptide, a full length polynucleotide and / or a gene capable of expressing a polypeptide or other useful portion of the genome is identified. These extended sequences, including full-length polynucleotides and genes, are described as "corresponding to" a sequence identified as one of the sequences of SEQ ID NOS: 1-266, 350-375, or a variant thereof, or a portion of one of the sequences of SEQ ID NOS: 1-266, 350-375, or a variant thereof, when the extended polynucleotide comprises an identified sequence or its variant, or a contiguous portion identified (x) of a of sequences SEQ ID NOS: 1-266, 350-375, or a variant thereof. Similarly, RNA sequences, reverse sequences, complementary sequences, antisense sequences, and the like, which correspond to the polynucleotides of the present invention, can be routinely secured and obtained using the cDNA sequences identified as SEQ. ID NOS: 1-266 and 350-375 - lí The polynucleotides identified as SEQ ID NOS: 1-266 and 350-375 may contain exposed reading frames ("ORFs") or partial exposed reading frames encoding the polypeptides. In addition, the exposed reading frames encoding the polypeptides can be identified in extended or full length sequences corresponding to the sequences indicated as SEQ ID NOS: 1-266 and 350-375. The exposed reading frames can be identified using techniques that are well known in the art. These techniques include, for example, the analysis for the location of initiation and stop codons, known, of greater tendency to the identification of the reading frame based on the codon frequencies, etc. The appropriate tools and software for ORF analysis are available, for example, on the Internet at http: //www.ncbi .nlm.nih. gov / gorf / gorf.html. The exposed reading frames and portions of exposed reading frames can be identified in the polynucleotides of the present invention. Once a partial exposed reading frame is identified, the polynucleotide can be extended in the area of the partial exposed reading frame using techniques that are well known in the art, until the polynucleotide for the complete exposed reading frame is identified. In this way, the exposed reading frames that encode the polypeptides can be identified using the polynucleotides of the present invention. Once the reading frames exposed in the polynucleotides of the present invention are identified, the exposed reading frames can be isolated and / or synthesized. Genetic constructions capable of expression comprising the exposed reading frames and appropriate promoters, initiators, terminators, etc. They are well known in the industry, which can then be built. These genetic constructs can be introduced into a host cell to express the encoded polypeptide by the exposed reading frame. Appropriate host cells can include several prokaryotic and eukaryotic cells, including plant cells, mammalian cells, bacterial cells, algae and the like. The polypeptides encoded by the polynucleotides of the present invention can be expressed and used in various assays to determine their biological activity. These polypeptides can be used to provide antibodies, to isolate the corresponding interaction proteins or other compounds, and to quantitatively determine the levels of interaction proteins or other compounds.
The present invention also proposes methods for modulating the content of the polynucleotide and / or polypeptide and the composition of the forest species, these methods involving the stable incorporation into the genome of the organism a genetic construct comprising one or more polynucleotides of the present invention. In one embodiment, the target organism is a forest species preferably a woody plant, more preferably a woody plant of the Pinus or Eucalyptus species, and especially preferably Eucalyptus granái s or Pinus raáia ta. In a related aspect, a method for producing a forest plant having an altered genotype or phenotype is provided, the method comprising transforming a plant cell with a genetic construct of the present invention to provide a transgenic cell, and culturing the transgenic cell under conditions that lead to the regeneration and growth of a mature plant. Forest plants that have an altered genotype or phenotype as a consequence of modulating the level or content of a polynucleotide or polypeptide of the present invention compared to a wild-type organism, as well as the components (seeds, etc.) of these Forest plants, and the progeny of these forest plants, are proposed by and are encompassed within the present invention. The isolated polynucleotides of the present invention also have utility in the formation of genome maps, in physical map formation, and cloning of the position of the genes. In addition, polynucleotide sequences identified as SEQ ID NOS: 1-266, 350-375, and variants thereof, can be used to design test probes and oligonucleotide primers. The test probes and oligonucleotide primers have sequences that are essentially complementary to the polynucleotide of interest through a certain portion of the polynucleotide. Oligonucleotide test probes designed using the polynucleotides of the present invention can be used to detect the presence and examine patterns of expression genes in any organism that has sufficiently similar DNA and RNA sequences in their cells using the techniques that are well known in the art, such as DNA hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention can be used for PCR amplifications. Test probes and oligonucleotide primers designed using the polynucleotides of the present invention can also be used in connection with the various microformation technologies, including the microformation technology used by Synteni (Palo Alto, Califormia). The polynucleotides of the present invention can also be used to identify or label an organism or the reproductive material thereof. This labeling can be achieved, for example, by stably introducing a non-disruptive non-functional heterologous polynucleotide identifier into an organism, the polynucleotide comprising one of the polynucleotides of the present invention. The polypeptides of the present invention and the polynucleotides encoding the polypeptides having activity in biosynthetic access routes eliminate the plants. The polynucleotides were putatively identified by DNA and searches for polypeptide similarity. The polynucleotides and polypeptides of the present invention have demonstrated similarity to the following polypeptides that are known to be involved in the biosynthetic processes of lignin: TABLE 1 IDENTITY OF THE POLYPEPTIDE POLYPEPTIDE POLIPEPTIDE SEQ ID NO. SEQ ID NO.
Cinnamate 4-hydroxylase 2,3,17,48,49,92, 124,125,153-163 Coumarate 4-hydroxylase 4,18,50-52,93,101 (C3H) 126,127,149-152 Phenolase (NLP) 5,35,36, 81,116,183 O-methyl transferase 6.22-25.53-55.94, (OMT) 104-107,173-175 Alcohol dehydrogenase 1,7,30,71,95, cinnamyl (CAD) 112,164 CoA cinnamoyl reductase 8.26-29, 58-70, 96, (CCR) 108-111,128-134, 167 Phenylalanine ammonia- 9-11,16,45-47,97,98, lyase (PAL) 100,122,123,176 242-248 325- 331 4-coumarate: CoA ligase 2.56-57-90, 147, 15. (4CL) 265-266 348-349 Glucosyl transferase 31-33, 72, 113-115, coniferol (CGT) 135, 168 Beta -glucosidase of 34,73-80,136-141 Coniferina (CBG) 165,166 Laccasa (LAC) 37-41,82-84, 117,118, 142-144, 172 Peroxidase (POX) 13,42-44,85-89, 91, 119-121,145,146, 332-333 177-182,249-250, 347,376-401 264,350-375 TABLE 1 (CONTINUED) Ferulate-5-hydroxylase 19-21, 102, 103, (F5H) 169-171 Alpha-amylase 184--186 267-269 Methyl transferase of caffeic acid 187--192 270-275 Caffeoyl methyl transferase CoA 193--195 276-278 CoA coumerate ligase 196--200 279-283 Cytochrome P450 LXXIA 201--206 284-289 Diphenol Oxidase 207-217 290-300 251--263 334-346 Flavonol glucosyl transferase 218 301 Flavonoid Hydroxylase 219--233 302-316 Reductase of isoflavone 234--241 317-324 In one embodiment, the isolated polynucleotides of the present invention comprise a sequence that is selected from the group consisting of: (a) the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; (b) the complements of the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; (c) inverse complements of the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; (d) reverse sequences of the sequences mentioned in SEQ ID NOS: 1-266 and 350-375; and (e) sequences having at least one identity of 50 percent, 75 percent, 90 percent or 98 percent, as defined herein, for a sequence of (a) - (d) or a region specified from a sequence of (a) - (d). In a further aspect, the isolated polypeptides encoded by the polynucleotides of the present invention are provided of course. In one embodiment, these polypeptides comprise an amino acid sequence mentioned in SEQ ID NOS: 267-349 and 376-401, and variants thereof, as well as polypeptides expressed by the polynucleotides of the present invention, including polynucleotides comprising a sequence of SEQ ID NOS: 1-266 and 350-375. In another aspect, the invention provides genetic constructs comprising a polynucleotide of the present invention, either alone, in combination with one or more additional polynucleotides of the present invention, or in combination with one or more known polynucleotides, together with cells and organisms of objective that these constructions comprise. In a related aspect, the present invention provides genetic constructs comprising, in the 5'-3 'direction, a gene promoter sequence, an exposed reading frame encoding at least a functional portion of a polypeptide encoded by a polynucleotide of the present invention, and a gene termination sequence. The exposed reading frame can be oriented in either a sense or antisense direction. Genetic constructs comprising a gene promoter sequence, a polynucleotide of the present invention, and a gene termination sequence are also proposed, as well as genetic constructs comprising a gene promoter sequence, an untranslated region of the polynucleotide of the present invention, or a nucleotide sequence complementary to an untranslated region, and a gene termination sequence. The genetic construct can also include a marker for identification of the transformed cells. The sequences of the gene and termination promoter are preferably functional in a host plant and, especially preferably, those native to the host plant. The promoter and termination sequences that are commonly used in the art, such as the promoter of the Cauliflower Mosaic Virus (CMV), with or without enhancers such as the Kozak sequence and the Omega enhancer, and the synthase terminator of nopaline Agrobacteri um tumefaci ens, are useful. Tissue-specific promoters can be used to carry out the expression of one or more of the tissues.
In a further aspect, methods for producing forest plants having a modified content of a polynucleotide or polypeptide of the present invention as compared to a native organism are also provided. The methods involve transforming an objective forest plant with a genetic construct of the present invention to provide a transgenic cell, and culturing the transgenic cell under conditions that lead to regeneration and growth of the mature plant. The cells comprising the genetic constructs of the present invention are provided, together with the forest tissues and plants comprising these transgenic cells, and fruits, seeds and other products, derivatives, or progeny of these forest plants. The propagules of the transgenic plants of the invention are included in the present invention. As used herein, the word "propagule" means any part of a plant that can be used in reproduction or propagation, sexual or asexual, including clippings. Plant varieties, particularly, varieties of plants recordable in accordance with the Rights of Plant Breeders can be excluded from the present invention. A plant need not be considered simply a "plant variety" because it contains stably within its genome a transgene, introduced into a cell of the plant or an ancestor of it. The word "polynucleotide (s)", as used herein, means a polymeric collection of nucleotides and includes the corresponding DNA and RNA molecules and both the single and double chain molecules, including the RNAn and mRNA molecules, the sense and antisense strands of the DNA and RNA molecules, and cDNA, genomic DNA, and the polynucleotides synthesized completely or partially. An RNA molecule contains introns and "corresponds to" a DNA molecule in a generally one-to-one manner. A mRNA molecule "corresponds to" a molecule of RNA and DNA from which the introns have been cut. A polynucleotide of the present invention can be a whole gene or any portion thereof. A gene is a DNA sequence that codes for a functional protein or an RNA molecule. The operable antisense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable antisense fragments. Antisense polynucleotides and techniques involving antisense polynucleotides are well known in the art and are described, for example, in the Robinson-Benion et al. Article, "Antisense techniques", Methoás in Enzymol. 254 (23): 363-375, 1995; and Kawasaki and others. Artifi c. Organs 20 (8): 836-848, 1996. The complements of these isolated polynucleotides, the inverse complements of these isolated polynucleotides and the reverse sequences of these isolated polynucleotides, together with the variants of these sequences, are also provided. The definition of the terms "complement", "reverse complement" and "reverse sequence", as used herein is best illustrated in the following example. For the AGGACC 3 'sequence 51, the complement, the reverse complement and the reverse sequence are the following: complements 3'TCCTGG 5' reverse complement 3'GGTCCT 5 'reverse sequence 5' CCAGGA 3 '. As used herein, the term "oligonucleotide" refers to a relatively short segment of a polynucleotide sequence, generally comprising between 6 and 60 nucleotides, and comprises both test probes for use in hybridization assays and primers for use in the amplification of DNA by polymerase chain reaction. The identification of genomic DNA and heterologous DNA species can be achieved by normal DNA / DNA hybridization techniques, under appropriately stringent conditions using all or part of a cDNA sequence as a test probe to select an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on the known genomic sequences of DNA, cDNA and protein can be used to amplify and identify the genomic and cDNA sequences. Synthetic DNAs corresponding to the identified sequences and variants can be produced by conventional synthesis methods. All polynucleotides described herein are isolated and purified, just as those terms are commonly used in the art. In another aspect, the present invention provides isolated polypeptides encoded, or partially encoded, by the aforementioned polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide comprising an isolated DNA sequence or a variant that is provided herein. In specific embodiments, the polypeptides of the invention comprise an amino acid sequence that is selected from the group consisting of the sequences provided in SEQ ID NOS: 267-349 and 376-401, as well as variants of these sequences. The polypeptides of the present invention can be produced recombinantly by inserting a DNA sequence encoding a polypeptide into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those skilled in the art can be employed. Expression can be achieved in any appropriate host cell that has been transformed or transfected with an expression vector that contains a DNA molecule encoding a recombinant polypeptide. Appropriate host cells include prokaryotic, yeast and higher eukaryotic cells. Preferably, the host cells employed are E. coli, insect, yeast or the mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner can encode the naturally occurring polypeptides, naturally occurring portions of polypeptides or other variants thereof. In a related aspect, polypeptides are provided which comprise at least a functional portion of a polypeptide having an amino acid sequence that is selected from the group consisting of the sequences provided in SEQ ID NOS: 267-349 and 376-401 , and variants thereof. As used herein, the "functional portion" of a polypeptide is that portion which contains the active site essential to effect the function of the polypeptide, for example, the portion of the molecule that is capable of releasing one or more reagents. The active site may be comprised of separate portions present in one or more of the polypeptide chains and will generally exhibit high binding affinity. The functional portions of a polypeptide can be identified by first preparing fragments of the polypeptide either by chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide encoding the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are then tested to determine which portions retain the biological activity, using, for example, the representative assays that will be provided below. A functional portion comprising an active site can be comprised of separate portions present in one or more polypeptide chains and generally exhibit high substrate specificity. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide comprising a partial isolated polynucleotide of the present invention. The portions and other variants of the polypeptides of the invention can also be generated by synthetic or recombinant means. Synthetic polypeptides having less than about 100 amino acids, and generally less than about 50 amino acids, can be generated using techniques well known to those skilled in the art. For example, these polypeptides can be synthesized using any of the commercially available solid phase techniques, such as the Merrifield solid phase synthesis method, wherein the amino acids are sequenced to a growing amino acid chain. See, Merrifield, J. Am. Chem. Soc. 85: 2149-2146, 1963. The equipment for the automatic synthesis of the polypeptides can be obtained commercially from suppliers such as Perkin Elmer / Applied Biosystems, Inc. (Foster City, California), and can be operated in accordance with the manufacturer's instructions. . Variants of a native polypeptide can be prepared using normal mutagenesis techniques, such as site-specific mutagenesis directed to the oligonucleotide (Kunkel T, Proc. Na ti.
Acaá Sci. USA 82: 488-492, 1985). Sections of the DNA sequences can also be removed using standard techniques to allow preparation of the truncated polypeptides. Generally, the polypeptides disclosed herein are prepared in an essentially pure isolated form. Preferably, the polypeptides are at least about 80 percent pure; more preferably at least about 90 percent pure; and especially preferably, at least about 99 percent pure. In certain preferred embodiments, which will be described in detail below, the isolated polypeptides are incorporated into the pharmaceutical compositions or vaccines for use in the treatment of skin disorders. As used herein, the term "variant" comprises nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more of the nucleotides or amino acid residues is deleted, substituted or added. Variants can be allelic variants that occur naturally or variants that occur unnaturally. Sequences of variants (polynucleotide or polypeptide) preferably exhibit at least 50 percent, more preferably at least 75 percent and particularly preferably at least 90 percent identity to a sequence of the present invention. The percent identity is determined by aligning the two sequences to be compared as will be described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the sequence of the invention (subject to inquiry ), and multiplying the result by 100. The polynucleotide and polypeptide sequences can be aligned, and the percentage of identical nucleotides in a specified region can be determined against another polynucleotide, using computer algorithms that can be obtained publicly. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. The polynucleotides can also be analyzed using the BLASTX algorithm, which compares the conceptual transfer products of six scaffolds of a nucleotide search sequence (both strands) against a protein sequence database. The similarity of the polypeptide sequences can be examined using the BLASTP algorithm. The BLASTN, BLASTX and BLASTP programs are available on an anonymous FTP server from NCBI. (ftp: // ncbi .nlm.nih. gov) under / blast / executables /.
The algorithm BLASTN Version 2.0.4 [February-24-1998] and Version 2.0.6 [September-16-1998], supplied to the fault parameters described in the documentation and distributed with the algorithm, are preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm, established for the failure parameters described in the documentation and distributed with the program, is preferred for use in the determination of the polypeptide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP and BLASTX, is described on the NCBI site at URL http: // www. ncbi .nlm.nih. gov / BLAST / newblast .html and in the Altschul publication Stephen F, and others. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs" Nucleic Acias Res. 25: 3389-3402, 1997. The FASTA computer algorithm is available on the Internet at the ftp ftp: // ftp site. virginia.edu/pub/fasta/ Version 2.0.4, of February 1996, established for the failure parameters described in the documentation and distributed with the algorithm, can be used in the determination of the variants according to the present invention. The use of the FASTA algorithm is described in Pearson WR and Lipman DJ, "Improved Tools for Biological Sequence Analysis", Proc. Nati Here?. Sci. USA 85: 2444-2448, 1988; and Pearson WR, "Rapid and Sensitive Sequence Comparison with FASTP and FASTA", Metho? s in Enzymology 183: 63-98, 1990. The following parameters are preferred for the determination of the alignments and similarities using BLASTN that contribute to the E values. and the percent identity for the polynucleotide sequences: Unix operation command: blastall -p blastn -d embldb -e 10 -GO-EO -r 1 -v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [Cord]; -d Database [Cordon]; -e Expectation Value (E) [Real]; G Cost to open a space (zero invokes the fault behavior) [Integer]; -E Cost to extend a space (zero invokes the failure behavior) [Integer]; -r Reward for a nucleotide match (only blastn) [Integer]; -v Number of descriptions of a line (V) [Integer]; -b Number of alignments to display (B) [Integer]; -i Inquiry File [File Inside]; and o- Output file of the BLAST report [File Outside] Optional. The following operating parameters are preferred for the determination of alignments and similarities using BLASTP which contributes to the E values and the percent identity of the polypeptide sequences: blastall -p blastp -d swissprotdb -e 10 -G 0 -EO -v 30 -b -i queryseq -or results; the parameters are: -p Program Name [Cord]; -d Database [Cordon]; e- Expectation Value (E) [Real]; -G Cost to open a space (zero invokes the fault behavior) [Integer]; -E Cost to extend a space (zero invokes failure behavior) [Integer]; -v Number of descriptions of a line (v) [Integer]; -b Number of alignments to be displayed (b) [Integer]; -I Inquiry File [File Inside]; -o BLAST Output File report [File Out] Optional. "Successes" for one or more database sequences by an investigated sequence produced by BLASTN, FSTA, BLASTP or a similar algorithm, align and identify similar portions of the sequences. The successes are placed in the order of the degree of similarity and the length of the sequence overlap. The successes of a database sequence generally represent an overlap of only a fraction of the length of the sequence of the inquiry sequence. The BLASTN, FASTA, and BLASTP algorithms also produce "Expected" (E) values for alignments. The Expected value (E) indicates the number of successes that can be "expected" to see through a certain number of contiguous sequences when looking for a database of a certain size. The expected value is used as a threshold of significance to determine whether success for a database, such as the preferred EMBL database, indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide success is interpreted as implying that in a data base the size of the EMBL data base, one might expect to see 0.1 coincidence through the aligned portion of the sequence with a similar result simply by chance. By this criterion, the aligned and matching portions of the polynucleotide sequences then have a 90 percent probability of being equal. For sequences that have an E value of 0.01 or less across the aligned and matching portions, the probability of finding a coincidence by chance in the EMBL database is 1 percent or less using the BLASTN or FASTA algorithm. According to one embodiment, the "variant" polynucleotides and polypeptides with reference to each of the polynucleotides and polypeptides of the present invention preferably comprise sequences having the same or a smaller number of nucleic acids or amino acids than each of the polynucleotides and polypeptides of the present invention. polynucleotides or polypeptides of the present invention and which produce an E-value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a polynucleotide or polypeptide variant any sequence having at least a 99 percent probability of being the same as the polynucleotide or polypeptide of the present invention which is measured as having an E value of 0.01 or less using BLASTN or FASTA algorithms. or BLASTP that are provided as parameters that are described above. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or less number of nucleic acids as a polynucleotide of the present invention having at least a 99 percent probability of being the same as the polynucleotide of the present invention, which is measured as having an E-value of 0.01 or less using the BLASTP algorithms established as the parameters described above. In a similar way, in accordance with a preferred embodiment, a variant polypeptide is a sequence having the same number or less number of amino acids as a polypeptide of the present invention having at least 99 percent probability of being the same as the polypeptide of the present invention. invention, which is measured as having an E value of 0.01 or less using the BLAST algorithm established in the parameters described above. Alternatively, the variant polynucleotides of the present invention are hybridized to polynucleotide sequences mentioned in SEQ ID NOS: 1-266 and 350-375, or complements, reverse sequences, or inverse complements of those sequences under stringent conditions. As used herein, "stringent conditions" refers to prewash in a 6X SSC solution, 0.2 percent SDS; hybridizing at 65 ° C, 6 X SSC, 0.2 percent SDS during the night; followed by two washes of 30 minutes each in IX SSC, 0.1 percent SDS at 65 ° C and two washes of 30 minutes each in 0.2X SSC, 0.1 percent SDS at 65 ° C. The present invention also encompasses polynucleotides which differ from the disclosed sequences but which, as a consequence of the degeneracy of the genetic code, encode the same amino acid sequence and which are proposed by the present invention. These polynucleotides are said to be "degeneratively equivalent" to a polynucleotide disclosed herein. Similarly, polynucleotides that differ from the disclosed sequences but that encode a polynucleotide having similar enzymatic activity as a polypeptide encoded by a polynucleotide of the present invention are included within the present invention. In this manner, polynucleotides comprising sequences that differ from the polynucleotide sequences mentioned in SEQ ID NOS: 1-266 and 350-375, or the complements, inverse sequences, or inverse complements of those sequences as a result of conservative substitutions are proposed by and are encompassed within the present invention. In addition, polynucleotides comprising sequences that differ from the polynucleotide sequences mentioned in SEQ ID NOS: 1-266 and 350-375, or the complements, inverse complements or inverse sequences as a result of deletions and / or insertions that give a total less than 10 percent of the total sequence length, are also proposed by and are encompassed within the present invention. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences mentioned in SEQ ID NOS: 267-349 and 376-401 as a result of substitutions, insertions and / or deletions of the amino acid giving a total of less than 10 percent of the length of the total sequence, are proposed by and are encompassed within the present invention, as long as the variant polypeptide has activity in a biosynthetic lignin access pathway. The polynucleotides of the present invention, including variants, can be isolated from several assembled libraries of plant or non-plant organisms, or can be synthesized using techniques that are well known in the art. The polynucleotides of the present invention can be isolated by high throughput sequence from cDNA libraries prepared from Eucalyptus granáis and Pinus rataia as will be described below in Examples 1 and 2. Alternatively, oligonucleotide test probes based on the Sequences provided in SEQ ID NO: 1-266 and 350-375 can be synthesized and used to identify positive clones in either cDNA or genomic DNA libraries of Eucalyptus granái and Pinus raáia ta by means of hybridization or PCR techniques . The test probes may be shorter than the sequences provided herein but should at least be about 10, preferably at least about 15, and especially preferably at least 20 nucleotides in length. Hybridization and PCR techniques suitable for use with these oligonucleotide test probes are well known in the art. Positive clones can be analyzed by restriction enzyme digestion, DNA sequence or similar methods. The variants of the polynucleotides of the present invention derived from eucalyptus and pine, as well as from other commercially important known species used by the wood industry, are proposed of course. These include the following gymnosperms, by way of example: Pinus taeáa incense pine, Pinus elli otti pine, Pinus clausa pine, Pinus pal ustrus long-tailed pine, Pinus echinata short-leaf pine, Pinus ponderosa ponderosa pine., pine by Jeffrey Pinus j effrey, red pine Pinus resinosa, pine Pinus rigida pine, jack pine Pinus banksiana, pine Pinus serotina pine, Pinus Oriental Pinus strobus white pine, Pinus monticole Western Pinus pine, Pinus lambertiana pine pine, pine of Virginia Pinus virginiana, Pinus contorta pine, Caribbean Pine Pinus caribaea, P. pinaster, Calabria pine P. brutia, Afghan P. eldari ca pine, Cooulter pine P. coul teri, European pine P. nigra and P syvestri s; Oregon pine Pseu? otsuga menziesii; the firs that include the Western spruce Tsuga heterophylla, Eastern spruce Tsuga cana? ensi s, Mountain spruce Tsuga mertensiana; Firs that include the Norway spruce Picea abi es, the red fir Pi cea rubens, the white spruce Picea glauca, the spruce black Picea mariana, the spruce Sitka Picea si tchensi s, the spruce Englemann Pi cea engelmanni, the blue spruce Pi cea pungens; the redwood fir Sequoia sempervirens; True firs include the Alpine fir Abi is lasiocarpa, the silver fir Abies amabili s, the large fir Abies granáis, the white pine Abies procera, the white fir Abies concolor, the red pine of California Abi is magnifi ca and the spruce balsama Abis balsamea, firs including the western red fir Thuja plicata, the incense fir liboce? rus? ecurrens, the northern white fir Thuja occi? entalis, the fir of Port Orford Chamaecyparis lawsoniona, the white spruce of the Atlantic Chamaecyparis thyoi? is, the yellow spruce of Alaska Chamaecyparis nootkatensis, and the red spruce Oriental Huniperus virginiana; the larches that include the larch Oriental Larix laricina, the Western Larix occi? entalis, the Larix? eci? ua European lariat, the Laris Leptolepis Japanese lark, and the Siberian larch Larix siberica; the cypress Taxo? ium? istichum and the giant sequoia Sequoia gigantea; and the following angiosperms, by way of example: Eucalyptus alba, E. bancroftii, E. botyroides, E. bridgesiana, E. calophylla, E. camaldulensis, E. citriorara, E. cla? ocalyx, E. coccifera, E curtisii, E.? alrympleana, E.? eglupta, E.? elagatensis, E.? Iresicolor, E.? Unnii, E. ficifolia, E. globulus, E. gomphocephala, E. gunnii, E. henryi, E. laevopinea, E. marcarthurii, E macrorhyncha, E. maculata, E. marginata, E megacarpa, E. milliodora, E. nicholii, E. nitens, E. nova-angelica, E. obliqua, E. obtusiflora, E. orea? es, E. pauci flora, E. polybractea, E. regnans, E. resiniferous, E. robusta, E. ruáis, E. saligna, E. si? eroxilon, E. stuartiana, E. tereticornis, E. torelliana, E. urnigera, E. urophylla, E. viminali s, E. viri? is , E. wan? Oo and E. youmanni. The polynucleotides of the present invention can alternatively be synthesized, for example, using the automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer) to obtain the polynucleotide segments up to 50 or more nucleic acids. A plurality of these polynucleotide segments can then be ligated using normal DNA manipulation techniques that are well known in the field of molecular biology. A conventional and exemplary polynucleotide synthesis technique involves the synthesis of a single strand polynucleotide segment having, for example, 80 nucleic acids, and hybridizing that segment to a complementary synthesized nucleic acid segment to produce one of 5 nucleotides . The next segment can then be sintered in a similar way, with one of 5 nucleotides in the opposite strand. The "sticky" ends ensure proper bonding when the two portions are hybridized. In this way, a complete polynucleotide of the present invention can be synthesized entirely in vi tro. The polynucleotides identified as SEQ ID NOS: 1-266 and 350-375 may be "partial" or full length sequences. The partial sequences do not represent the entire coding portion of a gene encoding a naturally occurring polypeptide. The partial polynucleotide sequences disclosed herein can be used to obtain the corresponding full-length genes for various species of organisms by, for example, selecting the DNA expression libraries using hybridization test probes based on the polynucleotides of the present invention. invention, or using PCR amplification with primers based on the polynucleotides of the present invention. In this way it is possible, using methods well known in the art, to extend a polynucleotide of the present invention upstream and downstream of the corresponding mRNA, as well as to identify the corresponding genomic DNA, including the promoter and enhancer regions, of the complete gene. The present invention therefore comprises isolated polynucleotides comprising a sequence identified in SEQ ID NOS: 1-266 and 350-375, or a variant of one of the specified sequences, which encode a functional polypeptide, including full-length genes . These extended polynucleotides can have a length of about 50 to about 4,000 nucleic acids or base pairs and preferably have a length of less than about 4,000 nucleic acids or base pairs, more preferably, a length of less than about 3,000 nucleic acids or base pairs, more preferably still a length of less than about 2,000 nucleic acids or base pairs. Under some circumstances, the extended polynucleotides of the present invention can have a length of less than about 1800 nucleic acids or base pairs preferably less than about 1,600 nucleic acids or base pairs, more preferably less than about 1,400 nucleic acids or pairs of base, more preferably still less than about 1,200 nucleic acids or base pairs, and especially preferably less than about 1,000 nucleic acids or base pairs. The polynucleotides of the present invention also comprise polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NOS: 1-266 and 350-375 or their variants. In accordance with the preferred modalities, the value of x preferably is at least 20, more preferably at least 40, especially preferably still less than 60, and most preferably less than 80. Thus, polynucleotides of the present inventinclude polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a mer-100, a mer-120, a mer-150, a mer-mer, an 220-mer, a 250-mer, or a 300-mer, 400-mer, 500-mer, or 600-mer of a polynucleotide identified as SEQ ID NOS: 1-266 and 350-375, or a variant of any x- Mere. That is, the definit for variants that are described above in terms of E-values, percentage of similarity and hybridizat also apply to any x-mer of any polynucleotide of the present invent Polynucleotide test probes and primers complementary to and / or corresponding to SEQ ID NOS: 1-266 and 350-375, and variants of those sequences, are also encompassed by the present invent These test probes and oligonucleotide primers are essentially complementary to the polynucleotide of interest. An oligonucleotide probe or primer is described as "corresponding to" a polynucleotide of the present invent including one of the sequences designated as SEQ ID NOS: 1-266 and 350-375 or a variant, if the test probe or oligonucleotide primer or its complement is contained within one of the sequences indicated as SEQ ID NOS: 1-266 and 350-375 or a variant of one of the specified sequences.
Two sequences of a single strand are said to be essentially complementary when the nucleotides of a strand, aligned and optimally compared to the appropriate insertions and / or nucleotide deletions, are placed in pair with at least 80 percent, preference at least 90 percent to 95 percent, and especially preferably at least 98 percent to 100 percent of the nucleotides of the other strand. Alternatively, there is a considerable complementary shape when a first strand of DNA will selectively hybridize to a second strand of DNA under stringent hybridization conditions. The stringent hybridization conditions for determining the complete manner include salt conditions of less than about 1 M, usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures may be as low as 5 ° C, but are generally greater than about 22 ° C, more preferably greater than about 30 ° C and especially preferred greater than about 37 ° C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the strict manner of hybridization can be affected by other factors such as the composition of the test probe, the presence of organic solvents and the degree of base mismatch, the combination of parameters is more important than the absolute measure of any of them alone. The DNAs of the plants or samples or products containing the plant material can either be genomic DNA or the DNAs derived by preparing the cDNA of the RNAs present in the sample. In addition to DNA-DNA hybridization, DNA-RNA or RNA-RNA hybridization assays are also possible. In the first case, the mRNAs of the expressed genes would then be detected instead of the genomic DNA or cDNA that is derived from mRNA in the sample. In the second case, the RNA test probes could be used. In addition, artificial analogs of DNA hybridization specifically to the reference sequences could also be used. In the specific embodiments, the test probes and / or nucleotide primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and especially preferably at least about 20 contiguous residues complementary to one another. polynucleotide sequence of the present invention. The test probes and primers of the present invention can be from about 8 to 100 base pairs in length, or, preferably, from about 10 to 50 base pairs in length or, especially preferably, from about 15 to 40 base pairs in length. base pairs in length The test probes are easily selected using procedures well known in the art, taking into account the requirements for 'DNA-DNA hybridization, the annealing and melting temperatures, the potential for bond formation and other factors, which are well known in the field. Appropriate tools and software for designing test probes, and especially suitable for designing PCR primers, are available on the Internet, for example, at http: //www.horizonpress. com / per /. Preferred techniques for designing PCR primers are also disclosed in Dieffenbach CW and Dvksler GS, PCR primer: a laboratory manual, SCHL Press: Cold Spring Harbor, NY, 1995. A plurality of oligonucleotide test probes or oligonucleotide primers The polynucleotides of the present invention can be provided in the form of a kit. These kits usually comprise multiple DNA or oligonucleotide probes, each test probe being specific for a polynucleotide sequence. The kits of the present invention may comprise one or more test probes or primers corresponding to a polynucleotide of the present invention including a polynucleotide sequence identified in SEQ ID NOS: 1-266 and 350-375. In a useful modality for a high performance test, the oligonucleotide test probe kits of the present invention comprise multiple test probes, in an array format wherein each test probe is immobilized at a predefined location, capable of spatially targeting the surface of a solid substrate. Array formats that can be usefully employed in the present invention are disclosed, for example, in U.S. Patent Nos. 5,412,087, 5,545,531, and PCT Publication Number WO 95/00530, the expositions of which are incorporated herein by reference. the present by reference. The importance of high yield selection systems is important for applications such as plant breeding and quality control operations where there is a need to identify large numbers of seed lots and plant shoots, to examine samples or products for Unwanted plant materials, to identify plants or samples or products that contain plant material for quarantine purposes etc. or to ensure the true origin of the plants or samples or products that contain the material of the plant. The selection to determine the presence or absence of polynucleotides of the present invention that are used as identifiers to label the plants is valuable to subsequently detect the amount of gene flow in the breeding of the plant, introgression of genes through pollen. scattered, etc. In this manner, the oligonucleotide test probe kits of the present invention can be used to examine the presence / absence (or relative amounts in case of mixtures) of the polynucleotides of the present invention in different samples or products containing different materials. quickly and in an effective way in cost. Examples of plant species that can be examined using the present invention include forest species, such as pine and eucalyptus species, other tree species, agricultural plants including crop and forage plants and horticultural plants. Another aspect of the present invention involves collections of polynucleotides of the present invention. A collection of polynucleotides of the present invention particularly the polynucleotides identified as SEQ ID NOS: 1-266, 350-375 and variants and x-mers thereof can be recorded and / or stored in a storage medium and subsequently accessed by the same - for purposes of analysis, comparison, etc. Suitable storage means include magnetic means such as magnetic diskettes, magnetic tapes, CD-ROM storage media, optical storage media and the like. Appropriate storage means and methods for recording and storing information as well as accessing information such as the polynucleotide sequence that is recorded in these media are well known in the art. The polynucleotide information stored in the storage medium is preferably readable in a computer and can be used for analysis and comparison of the polynucleotide information. Another aspect of the present invention therefore involves a storage medium in which a set of polynucleotides of the present invention are registered, particularly a set of the polynucleotides identified as SEQ ID NOS: 1-266, 350-375 and variants of the same, as well as the x-mers of the polynucleotides of SEQ ID NOS: 1-266 and 350-375, and the extended sequences, test probes and primers comprising or corresponding to a polynucleotide of SEQ ID NOS: 1 -266 and 350-375. According to one embodiment, the storage medium includes a collection of at least 20, preferably at least 50, and more preferably at least 100, and especially preferably at least 200 of the polynucleotides of the present invention. invention, preferably the polynucleotides identified as SEQ ID NOS: 1-266 and 350-375, or the variants of those polynucleotides. In another aspect, the present invention provides genetic constructs comprising, in the 5'-3 'direction, a gene promoter sequence; an exposed reading frame that encodes at least a functional portion of a polypeptide encoded by the polynucleotide of the present invention; and a gene termination sequence. As used herein, the "functional portion" of an enzyme is a portion that contains an active site essential to carry out a metabolic step, i.e., a portion of the molecule that is capable of binding one or more of the reagents or that is able to improve or regulate the reaction regime. An active site can be constituted of the separate portions present in one or more of the polypeptide chains and will generally exhibit high substrate specificity. The term "enzyme encoded by a nucleotide sequence" as used herein includes enzymes encoded by a nucleotide sequence that includes the partial isolated polynucleotides of the present invention.
The open reading frame can be oriented in a direction of sense or antisense. For applications where the amplification of lignin synthesis is desired, the open reading frame can be inserted into the construction in a sense orientation, such as the transformation of an organism with construction that will lead to an increase in the number of copies of the gene and therefore an increase in the amount of the enzyme. When the down regulation of lignin synthesis is desired, the open reading frame can be inserted into the construct in an antisense orientation, such that the RNA produced by transcription of the polynucleotide is complementary to the endogenous mRNA sequence. This in turn, will result in a decrease in the number of copies of the gene and therefore a decrease in the amount of enzyme. Alternatively, regulation can be achieved by inserting the appropriate sequences or subsequences (e.g., DNA or RNA) into the ribozyme constructs. Genetic constructs comprising a non-coding region of a gene encoding an enzyme encoded by the aforementioned DNA sequences or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a sequence of gene termination, are also provided. As used herein the term "non-coding region" includes both the transcribed sequences that do not move, and the non-transcribed sequences within approximately 2000 base pairs of 5 'or 3' of the translated sequences or reading frames open Examples of non-coding regions that can be usefully employed in the constructions of the invention include introns and 5 'non-coding sequences. The transformation of a reference plant with this DNA construct can lead to a reduction in the amount of lignin synthesized by the plant through the ccsuppression process, similar to that discussed, for example, by Napoli et al., Plant Cell 2 : 279-290, 1990; and de Carvalho Niebel et al., Pl ant Cell 7: 347-358, 1995. The genetic constructs of the present invention further comprise a gene promoter sequence and a gene terminator sequence, operably linked to the polynucleotide to be transcribed, that controls the expression of the gene. The sequence of the gene promoter is usually placed at the 5 'end of the polynucleotide for transcription, and is used to initiate the transcription of the polynucleotide. Gene promoter sequences are generally found in the 5 'non-coding region of a gene but introns may exist (Luehrsen KR, Mol. Gen. Genet. 225: 81-93, 1991, or in the region of coding, as for example in tomato PAL (Bloksberg, Stuáies on the Biology of Phenilalanine Ammonia Lyase an? Plant Pathogen Interactive, Ph.D. Thesis, University of California, Davis, 1991, University Microfilms International Order Number 9217564). the construction includes an open reading frame in a sense orientation, the gene promoter sequence also initiates the transfer of the open reading frame, for DNA constructs comprising either an open reading image in an antisense orientation or a In the non-coding region, the gene promoter sequence consists only of a transcription initiation site having an RNA polymerase binding site. Genes that can be usefully employed in the DNA constructs of the present invention are well known in the art. The promoter gene sequence, and also the gene termination sequence, can be endogenous to the host of the reference plant or can be exogenous, as long as the promoter is functional in the reference host. For example, the promoter and termination sequences can be from other plant species, plant viruses, bacterial plasmids and the like. Preferably, the promoter and gene termination sequences are from the sequences of the invention itself. Factors that influence the selection of the promoter include the specificity of the desired tissue of the construct, and the relationship of transcription and transfer time. For example, constitutive promoters such as the 35S Cauliflower Mosaic Virus (CaMV 35S) promoter will affect the activity of the enzyme in all parts of the plant. The use of the tissue-specific promoter will result in the production of desired sense or antisense RNA only in the tissue of interest. With DNA constructs employing the inducible gene promoter sequences, the RNA polymerase binding regimen and initiation can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and similar factors . The temporarily regulated promoters can be used to carry out the modulation of the RNA polymerase binding and initiation rate at a specific time during the development of a transformed cell. Preferably, the original promoters of the enzyme gene in question are used, or the promoters of a specific gene directed to the tissue in the organism to be transformed, such as eucalyptus or pine. Other examples of gene promoters that can be usefully employed in the present invention include, manopino synthase (mas), octopine synthase (oes) and those reviewed by Chua et al., Sci en 244: 174-181, 1989. The gene termination sequence, which is located 3 'to the polynucleotide to be transcribed, may come from the same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art can be usefully employed in the present invention, such as the 3 'end and the nopaline synthase gene Agrobacteri um tumefaci ens. However, the preferred gene terminator sequences are those of the original enzyme gene or target species to be transformed. The genetic constructs of the present invention may also contain a selectable marker that is effective in plant cells, to allow detection of the transformed cells containing the construction of the invention. These markers, which are well known in the art, typically confer resistance to one or more toxins. An example of this marker is the NPTII gene, whose expression results in resistance to kanamycin or hydromycin, antibiotics that are usually toxic to plant cells at a moderate concentration (Rogers et al., In Weissbach A and H, editors Methoas for Plant Molecular Biology, Academic Press Inc .: San Diego, CA. 1988). Alternatively, the presence of the desired construction of the transformed cells can be determined by means of other techniques well known in the art, such as those from Sudan and the West. Techniques for operably linking the components of the genetic constructs of the invention are well known in the art and include the use of synthetic linkers that contain one or more restriction endonuclease sites as described, for example by Maniatis and others ( Molecular cloning: a labora tory manual, CSHL Press: Cold Spring Harbor, NY, 1989). The DNA construct of the present invention can be linked to a vector having at least one duplication system, for example, E. coli, whereby after each manipulation, the resulting construct can be cloned and sequenced and determined as correct handling. The genetic constructions of the present invention can be used to transform a variety of plants, both monocotyledonous (eg, grasses, corn, grains, oats, wheat and barley), dicotyledonous (eg, Arabiaopsis, tobacco, pulses, alfalfa, oaks, eucalyptus, maple), and gymnosperms (eg, Scots pine)No N. ; see Aronen, Finni sh Forest Res. Papers. Volume 595, 1996), white spruce (Ellis et al., Biotechnology ogy 11: 94-92, 1993), and larch (Huang et al., In Vi tro Cell 27: 201-207, 1991). In a preferred embodiment, the genetic constructions of the invention are employed to transform the woody plants defined herein as a tree or shrub whose stem lives for a number of years and increases in diameter each year by the addition of the woody tissue. Preferably, the target plant is selected from the group consisting of the species of eucalyptus and pine, most preferably of the group consisting of Eucalyptus granái s and Pinus raáia ta. As discussed above, the transformation of a plant with a genetic construct that includes an open reading image encoding an enzyme encoded by the polynucleotide of the invention wherein the exposed reading frame is oriented in a sense direction will produce a modified lignin content in the plant. The transformation of a genetically engineered plant comprises a reading frame exposed in an antisense orientation or a coding region (not translated) of a gene will also produce a modification in the lignin content of the transformed plant.
The production of RNA in the target cells can be controlled by selection of the promoter sequence, or by selecting the number of functional copies or the integration site of the polynucleotides incorporated into the genome of the target organism. A target plant can be transformed with more than one construction of the present invention, thereby modulating the lignin biosynthetic pathway for the activity of more than one enzyme, by carrying out the activity of the enzyme on more than one tissue or by effecting the activity of the enzyme in more than one time of expression. Similarly, a construct containing more than one exposed reading frame can be assembled by coding for an enzyme encoded by a polynucleotide of the present invention or more than one non-coding region of a gene encoding this enzyme. The polynucleotides of the present invention can also be used in combination with other known sequences encoding enzymes involved in the lignin biosynthetic pathway. In this way, it may be possible to add a biosynthetic pathway of lignin to a non-woody plant to produce a new woody plant. Techniques for stably incorporating DNA constructs into the genome of target plants are well known in the art and include introduction mediated with Agrobacterium um tumefaci ens, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, introduction of high velocity projectile and similar. The selection of the technique will depend on the target plant that is to be transformed. For example, dicotyledonous plants and certain monocots and gymnosperms can be transformed by the plasmid technology of Agrobacterium um Ti, as described for example by Bevan (Nucí Aci? Res. 12: 8711-8721, 1984). Targets for the introduction of the DNA constructs of the present invention include tissues, such as leaf tissue, disseminated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. A preferred method for transforming eucalyptus and pine is a biolistic method using pollen (see, for example, Aronen, Finnish Forest Res. Papers, Volume 595: 53, 1996), or easily regenerable embryonic tissues. Other transformation techniques can be usefully employed in the methods of the invention and include those disclosed by Ellis et al. (Plant Cell Reports, 8: 16-20, 1989), Wilson et al. (Plant Cell Reports 7: 704- 707, 1989) and Tautorus and others (Theor, Appl. Genet, 78: 531-536, 1989). Once the cells are transformed, the cells having the DNA construct of the invention incorporated into their genome can be selected by means of a label, such as the kanamycin resistance marker discussed above. The transgenic cells can then be cultured in an appropriate medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, a germination initiation medium or appropriate callus is used. For the explants, an appropriate regeneration medium is used. The regeneration of plants is well established for many species. For a review of forest tree regrowth, see Dunstan and others' article, "Somatic embryogenesis in woody plants", in Thorpe TA, editor, In vi tro embryogenesis of plants, Current Plant Science and Biotechnology in Agriculture 20 (12 ): 471-540, 1995. Specific protocols for fir regeneration are discussed by Roberts et al., ("Somatic embryogenesis of spruce", in Redenbaugh K, editor, Synsee ?: applications of synthetic see to crop improvement, CRC Press : Chapter 23, pages 427-449, 1993). The resulting transformed plants can reproduce sexually or asexually, using methods well known in the art, to provide successive generations of the transgenic plants.
In yet a further aspect, the present invention provides methods for modifying the level (concentration) or activity of a polypeptide in a host organism, comprising stably incorporating into the plant genome a construct comprising a polynucleotide of the present invention. The genetic NA constructs of the present invention can be used to transform a variety of organisms. These organisms include plants, such as monocotyledonous angiosperms (eg, grasses, corn, grains, oats, wheat, and barley), and dicotyledonous angiosperms (eg, Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and gymnosperms (eg, Scots pine, see Aronen, Finni sh Forest Res. Papers, Volume 595, 1996) white spruce (Ellis et al., Biotechnology 11: 94-92, 1993) and larch (Huang et al., In Vi tro Cell 27: 201-207, 1991. In the preferred embodiments, the genetic constructs of the present invention are employed to transform woody plants, defined herein as a tree or shrub that has a stem that lives for a number of years and increases in diameter each As a consequence of the addition of the woody tissue, the target plant is preferably selected from the group consisting of the species of eucalyptus and pine, most preferably from the group consisting of Eucalyptus granái and Pinus raáiata, but including t also any of the species in the following list: Pines: Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus el? arica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus monticola, Pinus nigra, Pinus palustrus, Pinus pinaster, Pinus poncerosa, Pinus resinosa, Pinus rigia, Pinus serotina, Pinus strobus, Pinus sylvestris, Pinus taeda, Pinus viginiana. Other gymnosperms: Abies amabilis, Abies balsamea, Abies concolor, Abies granáis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Huniperus virginiana, Larix? Eci? Ua, Larix laricina, Larix leptolepis, Larix occi? Entalis, Larix siberica, Liboce? Rus? Ecurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseu? Otsuga menziesíí, Sequoia gigantea, Sequoia sempervirens, Taxo? Ium? Istichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occi? Entalis, Thuja pli cata. Eucalyptus: Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botyroi? Is, Eucalyptus bri? Gesiana, Eucalyptus calophylla, Eucalyptus camal? Ulensis, Eucalyptus citrio? Ora, Eucalyptus cla? Ocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus? Alrympleana, Eucalyptus? Eglupta, Eucalyptus? elagatensis, Eucalyptus? iversicolor, Eucalyptus? unnii, Eucalyptus ficifolia, Eucalyptus globul us, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevapinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus mellio lady , Eucalyptus nicholii, Eucalyptus ni tens, Eucalyptus nova-anglia, Eucalyptus obliqua, Eucalyptus obtusiflora, Eucalyptus orea? Is, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resiniferous, Eucalyptus robusta, Eucalyptus ruis, Eucalyptus saligna, Eucalyptus si? Eroxylon, Eucalyptus stuartiana, Eucalyptus tereticornis, Eucalyptus torelliana, Eucalyptus urnigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viri? is, Eucalyptus wan? oo, Eucalyptus youmanni; and the hybrids of any of the aforementioned species. In addition, the polynucleotides of the present invention have specific application for use as non-disruptive tags to label organisms, particularly plants. Other organisms, however, can be labeled with the polynucleotides of the present invention, including commercially valuable animals, fish, bacteria and yeasts. Constructs comprising the polynucleotides of the present invention can be introduced stably into an organism such as heterologous tags., not workable, not disruptive. It is then possible to identify the source or source of the organism at a later date by determining the presence or absence of the label (s) in a sample of material. The detection of the tag (s) can be achieved using a variety of conventional techniques, and usually involves the use of nucleic acid probe probes. The sensitivity for testing the presence of the test probe can be usefully increased using branched oligonucleotides, as described in the article by Horn T, Chang CA and Urdea MS, "Chemical synthesis and characterization of branched oligodeoxyribonucleotides (ADNb) for used as signal amplifiers in nucleic acid quantitation assays, "Nucleic Acids Research 25 (23): 4842-4849, 1997), allowing the detection of as few as 50 molecules of DNA in the sample. The following examples are offered by way of illustration and not by way of limitation.
Example 1 Isolation and Characterization of Eucalyptus granáis cDNA clones Two Eucalyptus granáis cDNA expression libraries (one from a mixture of several tissues from a single tree and one from the leaves of a single tree) were constructed and selected from as follows: The mRNA was extracted from the tissue of the plant using the protocol of Chang et al. (Plant Molecular Biology Reporter 11: 113-116, 1993) with small modifications. Specifically, the samples were dissolved in CPC-RNAXB (100 mM Tris-Cl, pH 8.0, 25 mM EDTA, 2.0 M NaCl; 2 percent of C ; 2 percent PVP and 0.05 percent Spermidine * 3 HCl) and extracted with chloroform: isoamyl alcohol, 24: 1. The mRNA was precipitated with ethanol and the total RNA preparation was purified using a Poly (A) Rapid mRNA Isolation Case.
(Stratagene, La Jolla, CA). an expression library of CDNA was constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones into Lambda ZAP using a Express ZAP cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packing Extract (Stratagene) using 1 microliter of the sample DNA of the 5 microliter binding mixture. Mass excision of the library was carried out using XLl-Blue MRF 'cells and XLOLR cells (Stratagene) with a bacteriophage-aid ExAssist (Stratagene). The cut phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, MD) and plated on LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG). Of the colonies prepared and collected for DNA minipreparation, 99 percent contained an insert suitable for sequence. Positive colonies were grown in NZY broth with kanamycin and the cDNA was purified by alkaline lysis and polyethylene glycol (PEG) precipitation. The 1 percent agarose gel was used to select the selection sequence templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer / Applied Biosystems, Foster City, CA) according to the manufacturer's protocol. DNA sequences for positive clones were obtained using a Perkin Elmer / Applied Biosystems Prism 377 sequencing apparatus. The cDNA clones were sequenced first from the 5 'end and, in some cases, also from the 3' end. For some clones, the internal sequence was obtained using subcloned fragments. Subcloning was carried out using normal restriction map preparation and subcloning processes of the pBluescript II SK + vector. The determined cDNA sequences were compared with the known sequences in the EMBL database (release 46, March 1996) using the FASTA algorithm of February 1996 (Version 2.0.4) (available on the Internet at the ftp ftp site: // ftp. virginia.edu/pub/fasta/) or the BLASTN Version 2.0.4 algorithm [February-24-1998], or Version 2.0.6 [September-16-1998], established for the preferred parameters described above . Multiple alignments of the redundant sequences were used to construct reliable consensus sequences. Based on the similarity of known sequences of other plant species, the isolated polynucleotides of the present invention were identified as encoding a specified enzyme. Using the procedures described above, the cDNA sequences derived from the Eucalyptus granái s library encoding the following polypeptides were isolated: PAL (SEQ ID NOS: 16, 100, 242-246); C4H (SEQ ID NOS: 17, 153, 154 and 161); C3H (SEQ ID NOS: 18, 101, 149 and 150): F5H (SEQ ID NOS: 19-21, 102, 103 and 169-171); OMT (SEQ ID NOS: 22-25, 104-107, 173 and 174); CCR (SEQ ID NOS: 26-29 and 108-111); CAD (SEQ ID NOS: 1, 30 and 112); CGT (SEQ ID NOS: 31-33 and 113-115); CBG (SEQ ID NOS: 34, 165 and 166); NLP (SEQ ID NOS: 35, 36 and 116); LAC (SEQ ID NOS: 37-41, 117 and 118); POX (SEQ ID NOS: 42-44, 119-121, 179, 249-250 and 350-358); methyl transferase of caffeic acid (SEQ ID NOS: 187-192); caffeoyl CoA methyl transferase (SEQ ID NOS: 193-195); coumarate ligase Co-A (SEQ ID NOS: 196-198); cytochrome P450 LXX1A (SEQ ID NOS: 201-206); diphenol oxidase (SEQ ID NOS: 207-217); flavonol glucosyl transferase (SEQ ID NOS: 218); flavonoid hydroxylase (SEQ ID NOS: 219-223); and isoflavone reductase (SEQ ID NOS: 234-240).
Example 2 Isolation and Characterization of Pinus ra? A cDNA clones a) Isolation of cDNA clones by high throughput selection A Pinus ra? A ta cDNA expression library was constructed from xylem and selected as described above in the Example 1. The DNA sequence for positive clones were obtained using forward and reverse primers in a Perkin Elmer / Applied Biosystems Prism 377 sequence apparatus and the determined sequences were compared with known sequences in the EMBL database as described in the foregoing.
Based on the similarity of known sequences from other plant species, the isolated DNA sequences were identified as encoding the C4H enzymes (SEQ ID NOS: 2, 3, 48, 49, 92, 124, 125, 155-160, 162 and 163); C3H (SEQ ID NOS: 4, 50-52, 93, 126, 127, 151 and 152); NLP (SEQ ID NOS: 5, 81 and 183): OMT (SEQ ID NOS: 6, 53-55, 94 and 175): CAD (SEQ ID NOS: 7, 71, 95 and 164); CCR (SEQ ID NOS: 8, 58-70, 96, 128-134 and 167); PAL (SEQ ID NOS: 9-11, 45-47, 97, 98, 122, 123 and 176 247 and 248); 4CL (SEQ ID NOS: 12, 56, 57, 90, 99, 147, 148, 265 and 266); CGT (SEQ ID NOS: 72, 135 and 168); CBG (SEQ ID NOS: 73-80 and 136-141); LAC (SEQ ID NOS: 82-84, 142-144 and 172); POX (SEQ ID NOS: 85-89, 91, 145, 146, 177, 178, 180-182, 264, 359-375); alpha amylase (SEQ ID NOS: 184-186); 6A coumarate ligase (SEQ ID NOS: 199 and 200); flavonoid hydroxylase (SEQ ID NOS: 224-233); Isoflavone reductase (SEQ ID NOS: 241); and diphenol oxidase (SEQ ID NOS: 251-263). b) Isolation of cDNA clones by PCR Two PCR test probes, which will be referred to below as LNB010 and LNB011 (SEQ ID NO: 14 and 15, respectively) were designed based on the conserved domains in the following sequences of peroxidase previously identified in other species: vanpox, hvupoxd, taepox, hvupoxl, osapox, ntopox2, ntopoxl, lespox, pokpox, luspox, athpox, hrpox, spopox, and tvepox (Access Numbers of Genbank D11337, M83671, X56011, X58396, X66125 , J02979, D11396, X71593, D11102, L07554, M58381, X57564, Z22920 and Z31011, respectively). RNA was isolated from pine xylem and first strand cDNA was synthesized as described above. This cDNA was subjected to PCR using 4 μM of LNB010, 4 μM of LNB011, 1 x of Kogen stabilizer, 0.1 milligram per milliliter of BSA, 200 mM of dNTP, 2 M of Mg2 +, and 0.1 U / μL of Taq polymerase ( Gibco BRL). The conditions were 2 cycles of 2 minutes at 94 ° C. 1 minute at 55 ° C and 1 minute at 72 ° C; 25 cycles of 1 minute at 94 ° C, 1 minute at 55 ° C, and 1 minute at 72 ° C; and 18 cycles of 1 minute at 94 ° C, 1 minute at 55 ° C, and 3 minutes at 72 ° C in a Stratagene Robocycler. The gene was re-amplified in the same way. A band of approximately 200 bp was purified from TAE agarose gel using a Schleicher & amp; DNA purification kit. Schuell Elu-Quik and cloned into a pBluescript vector of tail T (Marchuk D et al., Nuclei c Aci s Res. 19: 1154, 1991). Based on the similarity to known sequences, the isolated gene (SEQ ID NO: 13) was identified as coding pine peroxidase (POX) EXAMPLE 3 Use of 0-methyl Transferase Gene (OMT) to Modify Lignin Biosynthesis a) Transformation of tobacco plants with a Pinus raaiata OMT gene Sense and antisense constructs containing a polynucleotide including the coding region of OMT (SEQ ID NO: 53) from Pínus Ra? ia ta were inserted into Agrobacteri um tumefaciens LBA4301 (which is provided as a gift by Dr. C. Kado, University of California, Davis, CA) by direct transformation using published methods (see An G, Ebert PR, Mitra A, Ha SB, "Binary Vectors", in Gelvin SB, Schilperoort RA, editors, Plant Mol ecular Biology Manual , Kluwer Academic Publishers: Dordrecht, 1988). The presence and integrity of the transgenic constructs was verified by restriction digestion and DNA sequence. Tobacco leaf sections (Ni cotiana tabacum cv. Samsun) were transformed using the method of Horsch et al. (Science, 227: 1229-1231, 1985). Five independent transformed plant lines were established for sense construction and eight independent transformed plant lines were established for the construction of antisense for OMT. Transformed plants containing the appropriate lignin gene construct were verified using Sdenian experiments. A "+" in the column marked "Sudeño" in Table 2 below indicates that the transformed plant lines were confirmed as independent transformed lines. b) Pinus OMT expression in transformed plants Total RNA was isolated from each independent transformed plant line created with the OMT sense and antisense constructs. The RNA samples were analyzed in Northern blot experiments to determine the expression level of the transgene in each transformed line. The data shown in the column marked "Norteña" in Table 2 shows that the transformed plant lines containing the sense and antisense constructs for OMT all exhibited high levels of expression, relative to the background of the Northern spots. The OMT expression at number 2 of the sense plant line was not measured because the RNA sample showed signs of degradation. There was no detectable hydridization in the RNA samples from the control plants transformed with the empty vector. c) Modulation of OMT enzyme activity in the transformed plants The total activity of the OMT enzyme, encoded by the Pinus OMT gene and by the endogenous tobacco gene OMT, in the transformed tobacco plants was analyzed for each line of transformed plant created with the constructions of sense and antisense OMT. Crude protein extracts were prepared from each transformed plant and tested using the method of Zhang et al. (Plant Physiol., 113: 65-74, 1997). The data contained in the column marked "Enzyme" in Table 1 shows that the lines of the transformed plant containing the OMT sense construction generally had high OMT enzyme activity, with a maximum of 199 percent, while Transformed plant lines containing the OMT antisense construct generally had reduced OMT enzyme activity, with a minimum of 35 percent, relative to the control plants transformed by the empty vector. The activity of the OMT enzyme was not calculated in the plant line of sense number 3. d) Effects of Pinus OMT in concentration of lignin in the transformed plants The concentration of lignin in the transformed tobacco plants was determined using the well-established procedure of extraction of thioglycolic acid (see, Freudenberg et al., Consti tuti on an? Biosynthesi s of Lignin, Springer-Verlag, Berlin, 1968). Abbreviating, whole tobacco plants, with an average age of 38 days, 10 - they were frozen in liquid nitrogen and ground to a fine powder in a mortar and pestle. 100 milligrams of frozen powder from a control plant line transformed by empty vector, the five independent transformed plant lines containing the sense construction for OMT and eight independent transformed plant lines containing the antisense construct for OMT were extracted individually with methanol, followed by 10 percent thioglycolic acid and finally dissolved in one M NaOH. The final extracts were tested for absorbance at 280 nm. The data shown in the column called "TGA" in Table 2 shows that the transformed plant lines containing the sense and antisense OMT gene constructs all exhibited significantly decreased levels of lignin relative to the transformed control plant lines. by the empty vector. 1 - Table 2 Transgene Northern orientation Enzyme TGA plant line Sudeña 1 control na + blank 100 104 1 OMT direction + 2.9E + 6 86 55 2 OMT direction + na 162 58 3 OMT direction + 4.1E + 6 na 63 4 OMT direction + 2.3E + 6 142 66 5 OMT direction + 3.6 E + 5 199 75 1 OMT anti + 1.6E + 4 189 66 direction OMT anti + 5.7E + 3 35 70 direction 3 OMT anti + 8.0E + 3 105 73 direction OMT anti + 1.4E + 4 109 74 direction 5 OMT anti + 2.5E + 4 87 78 direction 6 OMT anti + 2.5E + 4 58 84 direction OMT anti + 2.5E + 4 97 92 direction 8 OMT anti + 1.1E + 4 151 94 sense These data clearly indicate that the concentration of lignin, as measured by the test TGA can be manipulated directly either by the sense or antisense expression of a biosynthetic lignin gene such as OMT.
Example 4 Use of a 4-Coumarate Gene: CoA Ligase (4CL) to Modify Lignin Biosynthesis a) Transformation of Tobacco Plants with the Pinus Rataia 4CL Gene The sense and antisense constructs containing a polynucleotide including the region of 4CL coding (SEQ ID NO: 56) of Pinus ra? iata were inserted into Agrobacteri um tumefaciens LBA4301 by direct transformation as described above.
The presence and integrity of the transgenic constructs were verified by restriction digestion and DNA sequence. The sections of tobacco leaf (Nicotiana tabacum cv. Samsun) were transformed as described above. Five independent transformed plant lines were established for sense construction and eight independent transformed plant lines were established for the construction of anti-sense for 4CL. Transformed plants containing the appropriate lignin gene construct were verified using Sudeñas spotting experiments. A "+" in the column marked "Sudeña" in Table 3 indicates that the transformed plant lines listed were confirmed as independent transformed lines. b) Expression of Pinus 4CL in transformed plants Total RNA was isolated from each independent transformed plant line created with sense and antisense 4CL constructs. The RNA samples were analyzed in Northern blot experiments to determine the expression level of the transgene in each transformed line. The data shown in the column marked "Norteña" in Table 3 shown below shows that the transformed plant lines containing the sense and antisense constructions for 4CL all exhibit high levels of expression relative to the background in Northern blotches. . The expression 4CL in the antisense plant line number 1 was not measured because RNA was not available at the time of the experiment. There was no detectable hybridization for the RNA samples from the control plants transformed by the empty vector. c) Modulation of 4CL enzyme activity in transformed plants ¡4 - The total activity of the 4CL enzyme, encoded by the Pinus 4CL gene and by the 4CL endogenous tobacco gene, in the transformed tobacco plants was analyzed for each transformed plant line created with the 4CL sense and antisense constructs. Crude protein extracts were prepared from each transformed plant and tested using the method of Zhang et al. (Plant Physi ol., 113: 65-74, 1997). The data contained in the column marked "Enzyme" in Table 3 shows that the transformed plant lines containing the 4CL direction construction had a high 4CL enzyme activity, with a maximum of 258 percent, and the transformed plant lines containing the 4CL antisense construct having reduced 4CL enzyme activity, with a minimum of 59 percent relative to the control plants transformed by the empty vector. d) Effects of Pinus 4CL on the concentration of lignin in the transformed plants The concentration of lignin in the material samples of the transformed plant was determined as described in Example 3. The data shown in the column marked "TGA" in the Table 3 shows that the transformed plant lines containing the constructions of the sense and antisense 4CL gene all exhibited significantly decreased lignin levels in relation to 5 - the control plant lines transformed by the empty vector. These data clearly indicate that the concentration of lignin, as measured by the TGA assay, can be manipulated directly either by the sense or antisense expression of a lignin biosynthetic gene such as 4CL. Table 3 transgender line Orientation Sudeña Norteña Enzyme TGA plant 1 control na + white 100 92 2 control na + white 100 104 1 4CL direction + 2.3E + 4 169 64 2 4CL direction + 4.5E + 4 258 73 3 4CL direction + 3.1E + 4 174 77 4 4CL direction + 1.7E +4 164 80 5 4CL sense + 1.6E + 4 184 92 1 4CL antisense + na 59 75 2 4CL antisense + 1.0E + 4 70 75 3 4CL antisense + 9.6E + 3 81 80 4 4CL antisense + 1.2E + 4 90 83 5 4CL antisense + 4.7E + 3 101 88 6 4CL antisense + 3.9E + 3 116 89 7 4CL antisense + 1.8E + 3 125 94 4CL antisense + 1.7E + 4 106 97 ¡6 - Example 5 Tobacco Transformation Using the Lignin Biosynthetic Genes of the Invention The polynucleotides containing the sense and antisense constructs including the coding regions of C3H (SEQ ID NO: 18), F5H (SEQ ID NO: 19), CCR (SEQ ID NO: 26) and CGT (SEQ ID NO: 31) ) of Eucalyptus granái s, and OMT (SEQ ID NO: 6), PAL (SEQ ID NO: 45 and 47), C4H (SEQ ID NO: 48 and 49), NLP (SEQ ID NO: 81) and LAC (SEQ) ID NO: 83) from Pinus raáia ta were inserted into Agrobacteri um tumefaci ens LBA4301 by direct transformation as described above. The presence and integrity of the transgenic constructs were verified by restriction digestion and DNA sequence. The tobacco leaf sections (Nicotiana tabacum cv. Samsun) were transformed as described in Example 3. Up to twelve independent transformed plant lines were established for each sense construct and each antisense construct listed in the previous paragraph. Transformed plants containing the appropriate lignin gene construct were verified using Sudeña spotting experiments. All the transformed plant lines analyzed were confirmed as independent transformed lines.
Example 6 Manipulation of Lignin Content in Transformed Plants a) Determination of transgene expression by Northern blot experiments Total RNA was isolated from each independent transformed plant line described in Example 5. RNA samples were analyzed in Northern blot experiments to determine the expression level of the transgene in each transformed line. The column marked "Norteña" in Table 4 shows the transgene expression level for all plant lines tested, in relation to the background in the northern spots. There was no detectable hybridization for the RNA samples from the control plants transformed by the empty vector. b) Determination of lignin concentration in the transformed plants The concentration of lignin in the control plant lines transformed by the empty vector and up to twelve independent transformed lines for each sense construction and each antisense construct that are described in Example 5 , was determined as described in Example 3. The column marked "TGA" in Table 4 shows the extractable lignins with thioglycolic acid for the plant lines transformed with C3H, F5H, CCR, PAL, C4H, NLP and LAC, which they are expressed as the average percentage of the extractable lignins with TGA in the transformed plants versus the control plants. The scale of variation is shown in parentheses.
Table 4 transpose orientation no. from Norteña TGA lines control na 3 blank 100 (92-104) C3H direction 5 3.7E + 4 74 (67-85) F5H direction 10 5.8E + 4 70 (63-79) F5H anti-sense 9 5.8E + 4 73 (35-93) CCR direction 1 to 74 CCR antisense 2 to 74 (62-86) PAL direction 5 1.9E + 5 77 (71-86) PAL antisense 4 1.5E + 4 62 (37-77) C4H antisense 10 5.8E + 4 86 (52-113) Antisense NLP 6 1.2E + 4 88 (70-114) LAC sense 5 1.7E + 5 na LAC antisense 12 1.7E + 5 88 (73-114) ¡9 - Figure 5 illustrates the amount of extractable lignin, as a percentage of the wild-type lignin content, in tobacco plants transformed with the PAL (sense and antisense), C4H (antisense), C3H (sense), F5H (sense and antisense), C5H (sense and antisense) C3H (sense, referred to as COMT in Figure 5), OMT (sense and antisense, referred to as CCOMT in Figure 5), 4CL (sense and antisense) ), CCR (sense and antisense) and CGT (antisense) as described in Example 5. The amounts of lignin extractable with thioglycolic acid were measured in transgenic plants, normalized for empty vector control plants. These extracts were derived independently from each of approximately 10 transgenic plants derived independently. The average of three extracts is shown by a black dot, such as the value of lignin for that plant. The average of ten independent transgenic plants transformed with a given cDNA construct is shown as a bar. The average of control plants transformed by empty vector is shown as an X. The value for the controls is extrapolated through the field to facilitate comparison. The black bars indicate means that are significantly reduced (p <0.05) in the lignin content with respect to the control plants. The gray bars indicate media that does not change significantly from the control plants. The lines of the transformed plant containing the sense and antisense biosynthetic biosynthetic gene constructs exhibited a mean level of lignin content that was significantly lower than that of the control plant lines transformed by the empty vector. The dramatic effects on the concentration of lignin can be seen in the plants of the OMT sense and the PAL sense plants. These data clearly indicate that the concentration of lignin, as measured by the TGA assay, can be manipulated directly by conventional antisense methodology and also by over-expression of sense using the biosynthetic lignin genes of the invention.
Example 7 Modulation of Lignin Enzyme Activity in Transformed Plants The activities and substrate specificities of the selected lignin biosynthetic enzymes were tested in crude extracts from the transformed tobacco plants containing the sense and antisense constructs for PAL (SEQ ID NO: 45), NLP (SEQ ID NO: 81) and LAC (SEQ ID NO: 83) of Pinus raáia ta, and CGT (SEQ ID NO: 31) of Eucalyptus granáis. Enzyme assays were carried out using published methods for PAL (Southerton SG and Deverall BJ, Plant Pa. 39: 223-230, 1990) CGT (Vellekoop P et al., FEBS, 330: 36-40, 1993) , NLP (Espin CJ et al., Phytochemi stry 44: 17-22, 1997) and LAC (Bao W et al., Sci ence, 260: 672-674, 1993). The data shown in the column marked "Enzyme" in Table 5 shows the average activity of the enzyme of duplicate measurements for all plant lines tested, expressed as a percentage of enzyme activity in the control plants transformed by the empty vector . The scale of variation is shown in parentheses. Table 5 Transpose orientation no. of control enzyme lines na 3 100 PAL sense 5 87 (60-124) PAL antisense 3 53 (38-80) CGT antisense 1 89 NLP antisense 6 144 (41-279) LAC sense 5 78 (16-240) LAC antisense 11 64 (14-106) All transformed plant lines, except transformed NLP antisense plant lines showed average lignin enzyme activities that were significantly lower than the observed activities in the control plants transformed by the empty vector. The most dramatic effects on lignin enzyme activities are seen in the transformed PAL antisense plant lines where all the lines showed reduced PAL activity and in the transformed LAC antisense plant lines that showed as little as 14 percent of LAC activity in control plant lines transformed by the empty vector.
Example 8 Functional Identification of Lignin Biosynthetic Genes The sense constructs containing polynucleotides including the coding regions for PAL (SEQ ID NO: 47), OMT (SEQ ID NO: 53), 4CL (SEQ ID NO: 56 and 57) and POX (SEQ ID NO: 86) of Pinus radiata, and OMT (SEQ ID NO: 23 and 24), CCR (SEQ ID NO: 26-28), CGT (SEQ ID NO: 31 and 33) and POX (SEQ ID NO: 42 and 44) of Eucalyptus granáis were inserted into the commercially available protein expression vector pProEX-1 (Gibco BRL). The - - Resulting constructs were transformed into XLl-Blue E coli (Stratagene), which were then induced to produce recombinant protein by the addition of IPTG. Purified proteins were produced for the Pinus OMT and 4CL constructs and Eucalyptus OMT and POX constructs using Ni column chromatography (Janknecht R et al., Proc. Na ti. Aca ?. Sci., 88: 8972-8976, 1991) . Enzyme assays for each of the purified proteins conclusively demonstrated the expected substrate specificity and enzymatic activity for the tested genes. The data for two representative enzyme assay experiments demonstrating the verification of the enzymatic activity of a Pinus ra ia ta ta gene 4CL (SEQ ID NO: 56) and a Pinus ra? Ia t to OMT gene (SEQ ID NO: 53) , are shown in Table 6. For the 4CL enzyme, one unit is equal to the amount of protein required to convert the substrate into a product at the rate of 0.1 absorbance units per minute. For the OMT enzyme, one unit is equal to the amount of protein required to convert 1 pmol of the substrate to produce per minute.
- Table 6 trans-step of ml mg activi-% purifi-purifi- purifi- total totality of activcion cation of the unit of total protein extract yield-fold 4CL ccrruuddoo 1 100 mmll 51 mg 4200 100 1 column of Ni 4 ml 0.84 mg 3680 88 53 OMT ccrruuddoo 1 100 mmll 74 mg 4600 100 1 column of Ni 4 ml 1.2 mg 4487 98 60 The data shown in Table 6 indicate that both the purified 4CL enzyme and the purified OMT enzyme show high activity in the enzyme assays confirming the identification of the 4CL and OMT genes described in this application. The preparation of crude protein of E. coli transformed with the empty vector shows that there is no activity neither in the enzyme assay of 4CL and OMT.
Example 9 Demonstration of the Presence / Absence of the Identifiers of the Singular Sequence in the Plants Transgenic tobacco plants were created using unique identifying sequences not found in tobacco. The inserted unique identifier sequences were isolated from Pinus rataia ta, SEQ ID NO: 402, and Eucalyptus granái s, SEQ ID NO: 403. The unique identifying sequences were inserted in Agrabacteri um tumefaci ens LBA 4301 (which is provided with a gift from the Dr. C. Kado, University of California, Davis, CA) by direct transformation using published methods (see, An G. Ebert PR, Mitra A, Ha SB, "Binary Vectors", in Gelvin SB, Schilperoort RA, editors, Plan t Molecular Biology Manual, Kluwer Academic Publishers: Dordreacht, 1988). The presence and integrity of the unique identifier sequences in the transgenic construction Agrobacterium um was verified by restriction digestion and DNA sequence. Leaf sections of tobacco (Nicotiana tabacum cv. Samsun) were transformed using the methods of Horsch et al., 227: 1229-1231, 1985). Three independent transformed plant lines were established for each unique sequence identifier used. Two empty vector control plant lines were established using an empty gene transfer vector lacking a unique sequence identifier. The uniqueness of the sequence identifiers was tested using Sudeña spot analysis to test in order to determine the presence of the sequence identifier in the plant genome. If the sequence identifier is unique and therefore useful as a label, then the sequence identifier must be clearly absent in the plants that have not been marked with labels and must be clearly present in plants that have been marked with labels. In the present example, the unique identifiers would be expected to be absent in the control plants transformed by the empty vector. The unique identifier would be expected to be present in transgenic plants transformed with the unique sequence identifiers. Genomic DNA was prepared from transformed vector control plants and transformed plants with unique sequence identifiers using cetyltrimethylammonium bromide (C ) an extraction method from Murray and Thompson (Nucl ei c Acias Research 8: 4321-4325, 1980) . The DNA samples were digested with EcoRI of restriction enzyme in the case of plants transformed with the unique sequence identifier Pinus (SEQ ID NO: 402) and the restriction enzyme Xbal in the case of plants transformed with the identifier of singular sequence of Eucalyptus (SEQ ID NO: 403). The DNA fragments produced in the restriction digestions were resolved in the 1 percent agarose gel; the left panel of Figure 2 and the right panel of Figure 2 show the patterns of the DNA fragment of the DNA samples from the Pinus and Eucalyptus experiments, respectively. After passage of agarose gel electrophoresis, the DNA samples were transferred to the Hybond-N + brand nylon membranes (Amersham Life Science, Little Chalfont, Buckinghamshire, England) using the methods established by the Sudeña line (J. Mol. Bi o. 98: 503-517). The nylon membranes were tested with radioactively labeled test probes for the unique sequence identifiers identified above and washed highly stringent (final wash: 0.5 X sodium citrate salt stabilizer (SSC) plus 0.1 percent of sodium dodecyl sulfafo (SDS), 15 minutes at 65 ° C). Hybridization of the test probes to complementary sequences in the genomic DNA samples was detected using autoradiography. The results are shown in Figures 3 and 4. Figure 3 (corresponding to the left panel of Figure 2) shows the hybridization pattern detected in the Sudeña spot analysis using a test probe derived from the Pinus sequence identifier (FIG. SEQ ID NO: 402). The AB zones contain DNA samples from the control plants transformed by the empty vector and the CE zones containing DNA from plants transformed with SEQ ID NO: 402. There is no hybridization in the AB areas indicating that SEQ ID NO: 402 is not present in tobacco plants transformed by the empty vector; that is, SEQ ID NO: 402 is a unique label suitable for unambiguously marking tobacco plants. There is intense hybridization in the C-E zones indicating that the plants that received SEQ ID NO. 402 through transformation have been labeled with labels clearly and unambiguously with the singular sequence contained in SEQ ID NO: 402. Figure 4 (corresponding to the right panel of Figure 2) shows the hybridization pattern detected in the Sudeña spot analysis using a test probe derived from the sequence identifier Eucalyptus (SEQ ID NO: 403). The AB zones contain DNA samples from the control plants transformed by the empty vector and the CE zones contain DNA from plants transformed with SEQ ID NO: 403. There is no hybridization in the AB areas indicating that SEQ ID NO: 403 is not present in tobacco plants transformed by the empty vector; that is, SEQ ID NO: 403 is a unique label appropriate for the unambiguous brand of tobacco plants. There is intense hybridization in the EC zones indicating that the plants that received SEQ ID NO: 403 through transformation have been marked with labels clearly and unambiguously with the unique sequence contained in SEQ ID NO: 403. The present example demonstrates clearly the utility of the sequences disclosed in the specification for the purpose of labeling the transgenic materials with unambiguous labels. A unique sequence of a large number of potency labels was selected and is shown to be absent in the genome of the organism to be marked with labels. The tag was inserted into the genome of the organism to be tagged and a well-established DNA detection method was used to clearly detect the unique sequence identifier used on the tag. Due to the sequence-specific detection methods used in the example, a user of the invention disclosed in this specification has both a high chance of finding a sequence identifier, among a list that has been disclosed, which will be useful for mark any given organism with a label and an unequivocal method to demonstrate that an organism marked with a label could only have acquired a certain label through the deliberate addition of the singular sequence to the genome of the organism to be marked with labels. If the user of this invention maintains the precise sequence of the label used in a given organism, a secret, then any dispute as to the origin and history of the organism can be resolved unambiguously using the tag detection techniques demonstrated in the present example. SEQ ID NOS: 1-403 are indicated in the attached Sequence List. The codes for nucleotide sequences used in the attached Sequence Listing, including the "n" symbol, conform to WIPO Standard Number ST.25 (1998), Annex 2, Table 1. All references cited herein, including references Patent and non-patent publications are hereby incorporated by reference in their entirety. Although in the specification which precedes this invention has been described in relation to certain preferred embodiments and many details have been pointed out for purposes of illustration, it will be apparent to those skilled in the art and the invention is susceptible to additional modalities and that certain the details described herein may be varied considerably without deviating from the basic principles of the invention.
ISTADO OF SEQUENCES < 110 > Blo sberg, Leonard N. Havukkala, Ilkka < 120 > MATERIALS AND METHODS FOR MODIFYING THE LIGNIN CONTENT OF PLANTS < 130 > 11000.1003c4PCT < 150 > US 09 / 169,789 < 151 > 1998-10-09 < 150 > US 60 / 143,811 < 151 > 1999-07-14 < 160 > 403 < 170 > FastSEQ for Windows Version 3.0 < 210 > 1 < 211 > 535 < 212 > DNA < 213 > Eucalyptus granáis < 220 > < 221 > unsafe < 222 > (110) ... (110) < 400 > 1 cttcgcgcta ccgcatactc caccaccgcg tgcagaagat gagctcggag ggtgggaagg 60 aggattgcct cggttgggct gcccgggacc cttctgggtt cctctccccn tacaaattca 120 cccgcaggcc gtgggaagcg aagacgtctc gattaagatc acgcactgtg gagtgtgcta 180 cgcagatgtg gcttggacta ggaatgtgca gggacactcc aagtatcctc tggtgccggg 240 gcacgagata gttggaattg tgaaacaggt tggctccagt gtccaacgct tcaaagttgg 300 ggggtgggaa cgatcatgtg cttatgtcaa ttcatgcaga gagtgcgagt attgcaatga 360 caggctagaa gtccaatgtg aaaagtcggt tatgactttt gatggaattg atgcagatgg 420 tacagtgaca aagggaggat attctagtca cattgtcgtc catgaaaggt attgcgtcag 480 gattccagaa aactacccga tggatctagc agcgcattgc tctgtgctgg atcac 535 < 210 > 2 < 211 > 671 < 212 > DNA < 213 > Pinus radiata < 400 > 2 gcgcctgcag gtcgacacta gtggatccaa agaattcggc acgaggttgc aggtcgggga 60 tgatttgaat cacagaaacc tcagcgattt tgccaagaaa tatggcaaaa tctttc-gct 120 caagatgggc cagaggaatc ttgtggtagt ttcatctccc gatctcgcca AGGAGG-cct 180 gcacacccag ggcgtcgagt ttgggtctcg aacccggaac gtggtgttcg átate- -cae 240 gggcaagggg caggacatgg tgttcaccgt ctatggagat cactggagaa agatcegeag 300 gatcatgact gtgcctttct ttacgaataa agttgtccag cactacagat tcgcg- GGGA 360 agacgagatc agccgcgtgg tcgcggatgt gaaatcccgc gccgagtctt CCACC-CGGG 420 cattgtcatc cgtagcgcct ccagctcatg atgtataata ttatgtatag gatga.gttc 480 gacaggagat tcgaatccga ggacgacccg cttttcctca cctcaacgga agctcaaggc 540 gattggccca gagcgaagtc gagctttgag tacaattatg gggatttcat tcccag-ctt 600 aggcccttcc tcagaggtta tcacagaatc tgcaatgaga ttaaagagaa acggctctct cttttcaagg 660 671 < 210 > 3 < 211 > 940 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (463) ... (463) < 400 > 3 cttcaggaca agggagagat caatgaggat aatgttttgt acatcgttga gaacatcaac 60 gttgcagcaa ttgagacaac gctgtggtcg atggaatggg gaatagcgga gctggtgaac 120 ttcagagcaa caccaggaca ggtgcgcgca gagctggacg ctgttcttgg accaggcgtg 180 cagataacgg aaccagacac gacaaggttg ccctaccttc aggcggttgt gaaggaaacc 240 cttcgtctcc gcatggcgat cccgttgctc gtcccccaca tgaatctcca cgacgccaag 300 ctcgggggct acgatattcc ggcagagagc aagatcctgg tgaacgcctg gtggttggcc 360 aacaaccccg ccaactggaa gaaccccgag gagttccgcc ccgagcggtt cttcgaggag 420 gagaagcaca ccgaagccaa tggcaacgac ttcaaattcc tgnccttcgg tgtggggagg 480 aggagctgcc cgggaatcat tctggcgctg ctctcctcgc actctccatc ggaagacttg 540 ttcagaactt ccaccttctg ccgccgcccg ggcagagcaa agtggatgtc actgagaagg 600 gcgggcaatt cagccttcac attctcaacc attctctcat cgtcgccaag cccatagctt 660 ctgcttaatc ccaacttgtc agtgactggt atataaatgc acaaaaaaca gcgcacctga 720 ctccatctat catgactgtg tgtgcgtgtc cactgtcgag tctactaaga gctcatagca 780 cttcaaaagt ttgctaggat ttcaataaca attatgtcat gacaccgtca gtttcaataa 840 aagtttgcat aaattaaa tg atatttcaat atactatttt gactctccac caattgggga 900 attttactgc taaaaaaaaa aaaaaaaaaa aaaaaaaaaa 940 < 210 > 4 < 211 > 949 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (1) ... (949) < 223 > n in all cases indicates insecure < 400 > 4 nngctcnacc gacggtggac ggtccgctac tcagtaactg agtgggatcc cccgggctga 60 caggcaattc gatttagctc actcattagg caccccaggc tttacacttt atgcrtccgg 120 ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc 180 atgattacgc caagcgcgca attaaccctc actaaaggga acaaaagctg gagctccacc 240 gcggtggcgg ccgctctaga actagtggat ccaaagaatt cggcacgaga cccagtgacc 300 ttcaggcctg agagatttct tgaggaagat gttgatatta agggccatga ttacaggcta 360 ctgccattgg tgcagggcgc aggatctgcc ctggtgcaca attgggtatt aatttagttc 420 agtctatgtt gggacacctg cttcatcatt tcgtatgggc acctcctgag ggaatgaagg 480 agatctcaca cagaagacat gagaatccag ggcttgttac tttcatggcc aagcctgtgc 540 aggccattgc tattcctcga ttgcctgatc atctctacaa gcgacagcca ctcaattgat 600 caattgatct gatagtaagt ttgaattttg ttttgataca aaacgaaata acgtgcagtt 660 tctccttttc catagtcaac atgcagcttt ctttctctga agcgcatgca gctttctttc 720 tctgaagccc aacttctagc aagcaataac tgtatatttt agaacaaata cctattcctc 780 tttctctgta aaattgagwa ggggnngnta attgtgcaat ttgcaagnaa tagtaaagtt 840 tantttaggg gtcctangta nattttaata anangnggna atgntagngg gcattnagaa 900 anccctaata gntgttggng gnngntaggn tttrtnacca aaaaaaaaa 949 <; 210 > 5 < 211 > 959 < 212 > DNA < 213 > Pinus radiata < 220 > "< 221 > unsure < 222 > (697) ... (697) < 400 > 5 gaattcggca cgagaaagcc ctagaatttt ttcagcatgc tatcacagcc ccagcgacaa 60 ctttaactgc aataactgtg gaagcgtaca aaaagtttgt cctagtttct ctcattcaga 120 ctggtcaggt tccagcattt ccaaaataca cacctgctgt tgtccaaaga aatttgaaat 180 cttgcactca gccctacatt gatttagcaa acaactacag tagtgggaaa atttctgtat 240 tggaagcttg tgtcaacacg aacacagaga agttcaagaa tgatagtaat ttggggttag 300 tcaagcaagt tttgtcatct ctttataaac gagattgaca ggaatattca cagacatatc 360 tgaccctctc tcttcaagac atagcaagta cggtacagtt ggagactgct aagcaggctg 420 aactccatgt tctgcagatg attcaagatg gtgagatttt tgcaaccata aatcagaaag 480 atgggatggt gagcttcaat gaggatcctg aacagtacaa aacatgtcag atgactgaat 540 atatagatac tgcaattcgg agaatcatgg cactatcaaa gaagctcacc acagtagatg 600 agcagatttc gtgtgatcat tcctacctga gtaaggtggg gagagagcgt tcaagatttg 660 acatagatga ttttgatact gttccccaga agttcanaaa tatgtaacaa atgatgtaaa 720 tcatcttcaa gactcgctta tattcattac tttctatgtg aattgatagt ctgttaacaa 780 tagtactgtg gctgagtcca ctcggtatta gaaaggatct tgccatcaaa tcacttgaca 840 aaaatctcaa atttctcgat gtctagtctt gattttgatt atgaatgcga cttttagttg 900 tgacatttga gcacctcgag tgaactacaa agttgcatgt taaaaaaaaa aaaaaaaaa 959 < 210 > 6 - < 211 > 1026 < 212 > DNA < 213 > Pinus radiata < 400 > 6 cgagctttga gaattcggca ggcaacctac attcattgaa tcccaggatt tcttcttgtc 60 caaacaggtt taaggaaatg gcaggcacaa gtgttgctgc agcagaggtg aaggctcaga 120 caacccaagc agaggagccg gttaaggttg agaagtggga tccgccatca cacaaaagtc 180 ttttgcagag cgatgccctc tatcagtata tattggaaac gagcgtgtac cctcgtgagc 240 gaaggagctc ccgagccaat ctgccaagca cgcgaagtga tccctggaac ctcatgacta 300 cttctgccga tgagggtcaa tttctgggcc tcctgctgaa gccaagaaca gctcattaac 360 ccatggagat tggggtgtac actggttact cgcttctcag cacagccctt gcattgcccg 420 atgatggaaa gattctagcc atggacatca ctatgatatc acagagagaa ggattgccta 480 ttattgagaa agcaggagtt gcccacaaga ttgacttcag agagggccct gctctgccag 540 ttctggacga actgcttaag aatgaggaca tgcatggatc gttcgatttt gtgttcgtgg 600 atgcggacaa agacaactat ctaaactacc acaagcgtct gatcgatctg gtgaaggttg 660 gaggtctgat tgcatatgac aacaccctgt ggaacggatc tgtggtggct ccacccgatg 720 ctcccctgag gaaatatgtg agatattaca gagatttcgt gatggagcta aacaaggccc 780 ttgctgtcga tccccgcatt gagatcagcc aaatcccagt cggtgacggc gtcacccttt 840 gcaggcgtgt ctattgaa aa caatccttgt ttctgctcgt ctattgcaag cataaaggct 900 ctctgattat aaggagaacg ctataatata tggggttgaa gccatttgtt ttgtttagtg 960 tattgataat aaagtagtac agcatatgca aagtttgtat caaaaaaaaaaaaaaaaaaa 1020 aaaaaa 1026 < 210: > 7 < 211: > 1454 < 212 > DNA < 213 > Pinus radiata < 400 > 7 gaattcggca cgaggccaac tgcaagcaat acagtacaag agccagacga tcgaatcctg 60 tgaagtggtt ctgaagtgat gggaagcttg gaatctgaaa aaactgttac aggatatgca 120 ccagtggcca gctcgggact tacacttaca cttgtcccct gaaaggacct atctcagaaa 180 gaggatgtaa ttg'taaaggt catttactgc ggaatctg? C actctgattt agttcaaatg 240 cgtaatgaaa tggacatgtc tcattaccca atggtccctg ggcatgaagt ggtggggatt 300 gtaacagaga ttggcagcga ggtgaagaaa ttcaaagtgg gagagcatgt aggggttggt 360 tgcattgttg ggtcctgtcg cagttgcggt aattgcaatc agagcatgga acaatactgc 420 tttggaccta agcaagagga caatgatgtg aaccatgacg gcacacctac tcagggcgga 480 tttgcaagca gtatggtggt tgatcagatg twtgtggttc gaatcccgga gaatcttcct 540 ctggaacaag cggcccctct gttatgtgca ggggttacag ttttcagccc aatgaagcat 600 ttcgccatga cagagcccgg gaagaaatgt gggattttgg gtttaggagg cgtggggcac 660 agattgccaa atgggtgtca agcctttgga ctccacgtga cggttatcag ttcgtctgat 720 aaaaagaaag aagaagccat ggaagtcctc ggcgccgatg cttatcttgt tagcaaggat 780 actgaaaaga tgatggaagc agcagagagc ctagattaca taatggacac cattccagtt 840 gctcatcctc tggaacc ata tcttgccctt ctgaagacaa atggaaagct agtgatgctg 900 ggcgttgttc cagagtcgtt gcacttcgtg actcctctct taatacttgg gagaaggagc 960 atagctggaa gtttcattgg cagcatggag gaaacacagg tttctgtgca aaactctaga 1020 gagaagaagg tatcatcgat gattgaggtt gtgggcctgg actacatcaa cacggccatg 1080 gaaaggttgg agaagaacga tgtccgttac agatttgtgg tggatgttgc tagaagcaag 1140 ttggataatt agtctgcaat caatcaatca gatcaatgcc tgcatgcaag atgaatagat 1200 ctggactagt agcttaacat gaaagggaaa ttaaattttt atttaggaac tcgatactgg 1260 tttttgttac tttagtttag cttttgtgag gttgaaacaa ttcagatgtt tttttaactt 1320 gtatatgtaa agatcaattt ctcgtgacag taaataataa tccaatgtct tctgccaaat 1380 attcgtattt taatatatgt ttatatgaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa yyyy 1440 1454 < 210 > 8 < 211 > 740 < 212 > DNA < 213 > Pinus rad: Can < 400 > 8 gaattcggca cgagaccatt tccagctaat attggcatag caattggtca ttctatcttt 60 gtcaaaggag atcaaacaaa ttttgaaatt ggacctaatg gtgtggaggc tagtcagcta 120 tacccagatg tgaaatatac cactgtcgat gagtacctca gcaaatttgt gtgaagtatg 180 cgagattctc ttccacatgc ttcagagata cataacagtt tcaatcaatg tttgtcctag 240 gcatttgcca aattgtgggt tataatcctt cgtaggtgtt tggcagaaca gaacctcctg 300 tttagtatag tatgacgagc taggcactgc agatccttca ttccataaga cacttttctc 360 aacaaatact cacctgtggt ttgttttctt tctttctgga actttggtat ggcaataatg 420 tctttggaaa ccgcttagtg tggaatgcta agtactagtg tccagagttc taagggagtt 480 ccaaaatcat ggctgatgtg aactggttgt tccagagggt gtttacaacc aacagttgtt 540 ttttgttaga cagtgaataa gtgtttagat ccatctttac aaggctattg agtaaggttg 600 gtgttagtga acggaatgat gtcaaatctt gatgggctga tgtgatgtca ctgactctct aatcttgatg 660 aaaaaaaaaa aaaaaaaaaa gattgtgtct ttttcaatgg taaaaaaaaa aaaaaaaaaa aaaaaaaaaa 720 740 < 210 > 9 < 211 > 624 < 212 > DNA < 213 > Pinus radiata < 400 > 9 gaattcctgc agcccggggg atccactagt tctagagcgg ccgccaccgc ggtggagctc 60 gcgcgcctgc aggtcgacac tagtggatcc aaagaattcg gcacgaggcc cgacggccac 120 ttgttggacg ccatggaagc tctccggaaa gccgggattc tggaaccgtt taaactgcag 180 cccaaggaag gactggctct cgtcaacggc acagcggtgg gatccgccgt ggccgcgtcc 240 gtctgtgttg acgccaacgt gctgggcgtg ctggctgaga ttctgtctgc gctcttctgc 300 gaggtgatgc aagggaaacc ggagttcgta gatccgttaa cccaccagtt gaagcaccac 360 ccagggcaga tcgaagccgc ggccgtcatg gagttcctcc tcgacggtag cgactacgtg 420 aaagaagcag cgcggcttca cgagaaagac ccgttgagca aaccgaaaca agaccgctac 480 gctctgcgaa catcgccaca gtggttgggg cctccgatcg aagtcatccg cgctgcyact 540 cactccatcg agcgggagat caattccgtc aacgacaatc cgttaatcga tgtctccagg 600 gacatggctg tccacggcgg caac 624 < 210 > 10 < 211 > 278 < 212 > DNA < 213 > Pinus rad: iata < 400 > 10 gaattcctgc agcccggggg atccactagt tctagagcgg ccgccaccgc ggtggagctc 60 cagtacctgg ccaaccccgt cacgactcac gtccagagcg ccgaacaaca caaccaggat 120 gtcaattccc tcggcttgat ctccgccaga aagactgccg aggccgttga gattttaaag 180 ctgatgttcg ctacatatct ggtggcctta tgccaggcga tcgatctccg gcacctggaa 240 gatccgttgt gaaaacatgc gtcttgca gaagcacgta 278 < 210 > 11 < 211 > 765 < 212 > DNA < 213 > Pinus radiata < 400 > • 11 gagctcctgc aagtcatcga tcatcagccc gttttctcgt acatcgacga tcccacaaat 60 ccatcatacg cgcttatgct ccaactcaga gaagtgctcg tagatgaggc tctcaaatca 120 tcttgcccag acgggaatga cgaatccgat cacaatttgc gagcgctgga agcccgctga 180 gctgctggaa tattacccaa ttgggtgttt agcaggatcc ccatatttca agaggagttg 240 aaggcccgtt tagaggaaga ggttccgaag gcgagggaac gattcgataa tggggacttc 300 ccaattgcaa acagaataaa caagtgcagg acatatccca cgtgagatca tttacagatt 360 ccgatttgct gagttgggaa aacagggccc aagtggagaa agatatagaa gccccggcga 420 aaggtatttg agggcatttg ccaagggaaa attggaaacg tgatcctcaa atgtctggac 480 gcttggggtg ggtgcgctgg accattcact ccacgtgcat atcctgcgtc tcctgcagcg 540 ttcaatgcct catattgggc atggtttgat agcaccaaat caccctctgc aacgagcggc 600 ggagcgccca agaggtttct acaacaacaa gttctttgat ttaactgact cttaagcatt 660 cctaaacagc ttgttcttcg caataacgaa tctttcatct tcgttacttt gtaaaagatg 720 gggttccaac aaaatagaag aaatattttc gatccaaaaa aaaaa 765 < 210 > 12 < 211 > 453 < 212 > DNA < 213 > Pinus radiata < 400 > 12 tgattatgcg gatccttggg cagggatacg gcatgacaga agcaggcccg gtgctggcaa 60 tgaacctagc cttcgcaaag aatcctttcc ccgccaaatc tggctcctgc ggaacagtcg 120 tccggaacgc tcaaataaag atcctcgatt acaggaactg gcgagtctct cccgcacaat 180 caagccggcg aaatctgcat ccgcggaccc gaaataatga aaggatatat taacgacccg 240 gaatccacgg ccgctacaat cgatgaagaa ggctggctcc acacaggcga cgtcgggtac 300 attgacgatg acgaagaaat cttcatagtc gacagagtaa aggagattat caatataaag 360 gcttccaggt ggatcctgct aatcgaattc ctgcagcccg ggggtccact agttctagag 420 cggccgccac cgcggtggag ctccagc tt tgt 453 < 210 > 13 < 211 > 278 < 212 > DNA < 213 > Pinus radiata < 400 > 13 tcttcgaatt ctctttcacg actgcttcgt taatggctgc gatggctcga tattgttaga 60 tgataactca acgttcaccg gagaaaagac tgcaggccca aatgttaatt ctgcgagagg 120 atagacacca attcgacgta tcaaaactca agttgaggca gcctgcagtg gtgtcgtgtc 180 agttgccgac attctcgcca ttgctgcacg cgattcagtc gtccaactgg ggggcccaac 240 cttctgggag atggacggta tccgatca aaaagacgga 278 < 210 > 14 < 211 > 23 < 212 > DNA < 213 > Pinus radiata < 400 > 14 cttcgaattc wyttycayga ytg 23 < 210 > 15 < 211 > 22 < 212 > DNA < 213 > Pinus radiata < 400 > 15 gatcggatcc rtcyykycty ce 22 < 210 > 16 < 211 > 472 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 16 aattcggcac gagaegaect cttgtatcgg acccggatcc gctatcgtta acgtacacac 60 gttctagtgc tgaatggaga tggagagcac caccggcacc ggcaacggcc ttcacagcct 120 ctgcgccgcc gggagccacc atgccgaccc actgaactgg ggggcggcgg cagcagccct 180 cacagggagc cacctcgacg aggtgaagcg gatggtcgag gagtaccgga ggccggcggt 240 gcgcctcggc ggggagtccc teaegatage ccaggtggcg gcggtggcga gtcaggaggg 300 ggtaggggtc gagetetegg aggcggcccg tcccagggtc aaggccagca gcgactgggt 360 catggagagc atgaacaagg gaactgacag ctacggggtc accaccgggt tcggcggcaa 420 cttctcaaac cggaggccga agcaaggcgg tccttttcag aaggaactta ta 472 < 210 > 17 < 211 > 622 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 17 tagtgeetca ccaaagctcc tgagtctgct gaggattgca caattggcgg gttcgacgtg 60 ccccgaggca ccatgatcct ggttaatgcg tgggcaattc aaagagaece aaaagtgtgg 120 caaattttaa gacgatccca accggagagg tacgagggat tggaaggtga tcatgcctac 180 cgactattgc cgtttgggat ggggaggaga agttgtcctg gtgctggcct tgecaataga 240 gtggtgagct tggtcctggc ggcgcttatt cagtgcttcg aatgggaacg agttggcgaa 300 acttgtccga gaattggtgg ggggacggga ctcacaatgc caaagagaga gccattggag 360 aagcgcgtga gccttgtgca atgcatgata gctaatgttc ttgcgcacct ttaagaaggt 420 cgttgtctaa tgaatttaca ttggtgatgt atctccaatg tttttgaata atcaaataga 480 ctgaaaatag gccagtgcag ctttaggaat gatcgtgagc atcaatagca tcctgaggag 540 gccaatgcag ctttaggcct ttctcttagg agaaaaatga tggtttatat aggtactggc 600 aacattgttc aaaaaaaaaa aa 622 < 210 > 18 < 211 > 414 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 18 gaattcggta cacgctcgac gaaatcgata ccccgggttc caaagcaaca agcttggatc 60 cattgaactc tctctctctc tctctctctc tctctctctc tcccccaccc ccccttccca 120 catacagaca accccaccca agtagatacg cgcacacaga agaagaaaag atgggggttt 180 caatgcagtc aatcgcacta gcgacggttc tggccgtcct aacgacatgg gcgtggaggg 240 cggtgaactg ggtgtggctg aggccgaaga ggctcgagag gcttctgaga cagcaaggtc 300 tctccggcaa gtcctacacc ttcctggtcg gcgacctcaa ggagaacctg cggatgctca 360 aggaagccaa gtccaagccc atcgccgtct ccgatgacat caagcctcgt CTCT 414 < 210 > 19 < 211 > 469 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 19 gaattcggca cgagtgtctc tctctctctc tctctctgta aaccaccatg ctcttcctca 60 ctcatctcct agcagttcta ggggttgtgt tgctcctgct aattctatgg agggcaagat 120 caaacccaaa cttctccgaa tacccccgga ggtactgcct gcatggccga gctgccgggc 180 tcataggcca catccacttg ctgggcggcg agaccccgct ggccaggacc ctggccgcca 240 tggcggacaa gcagggcccg atgtttcgga tccgtctcgg agtccacccg gcgaccatca 300 taagcagccg tgaggcggtc cgggagtgct tcaccaccca cgacaaggac ctcgcttctc 360 caaggcggga gccccaaatc atccacttgg gctacgggta tgccggtttt ggcttcgtag 420 aatacgggga cttttggcgc gagatgagga agatcaccat gctcgagct 469 < 210 > 20 < 211 > 341 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 20 cgggctcgtg gctcggctcc ggcgcaacgc ccttcccacc gggcccgagg ggcctcccgg 60 tcatcgggaa catgctcatg atgggcgagc tcacccaccg cggcctcgcg agtctggcga 120 agaagtatgg cgggatcttc cacctccgca tgggcttcct gcacatggtt gccgtgtcgt 180 cccccgacgt ggcccgccag gtcctccagg tccacgacgg gatcttctcg aaccggcctg 240 ccaccatcgc gatcagctac ctcacgtatg accgggccga catggccttc gcgcactacg 300 gcccgttctg gcggcagatg cggaagctgt gcgtgatgaa 341 < 210 > 21 < 211 > 387 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 21 gaattcggca cgagcgggct cgtggctcgg ctccggcgca acgcccttcc caccgggccc 60 gaggggcctc ccggtcatcg ggaacatgct catgatgggc gagctcaccc accgcggcct 120 cgcgagtctg gcgaagaagt atggcgggat cttccacctc cgcatgggct tcctgcacat 180 ggttgccgtg tcgtcccccg acgtggcccg ccaggtcctc caggtccacg acgggatctt 240 ctcgaaccgg cctgccacca tcgcgatcag ctacctcacg tatgaccggg ccgacatggc 300 cttcgcgcac tacggcccgt tctggcggca gatgcggaag ctgtgcgtga tgaaagctct 360 387 tcagcggaag cgggctgagt cgtggga < 210 > 22 < 211 > 443 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 22 cacgagctcg tgagccttcc cggagacaag gccatcttac ttcgcaacaa attgcgtccg 60 cactcctttc tcaagaaacc tagtcatcca agaagcagag cattgcaact gcaaacagcc 120 ctcgtacaga aaagcccaaa aggagagaga gagagagaat agaageatga gtgcatgcac 180 atcacgacgg gaaccaagca tgaagagttc ccagtgaaga tggaaatgaa ttgttcgcca 240 tgctctgata gcactcccct tggtcttgaa ggccaccatc gaactgggga tcctcgaaat 300 actggccgag tgcgggccta tggctccact ttcgcctgct cagattgcct cccgtctctc 360 cgcaaagaac ccggaagccc ccgtaaccct tgaccggatc ctccggtttc tcgccagcta 420 ctccatcctc tcttgcactc teg 443 < 210 > • 23 < 211 > • 607 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 23 gaattcggca cgagccaacc ctggaccagg tacttttggc aggcggtcca ttgcccttca 60 aaccggtcca aaccggacca tcactgtcct tatatacgtt gcatcatgcc tgetcataga 120 acttaggtca actgcaacat ttcttgatca caacatatta caatattect aagcagagag 180 agagagagag agagagagag agagagagag tcaatggcca agagtttgaa ccgccggaga 240 ggagagccag acccaagccg ggaggcacca ggaggttggc cacaagtctc teetteagag 300 tgatgctctt taccaatata ttttggagac cagcgtgtac ecaagagage ctgagcccat 360 agggaaataa gaaggagctc cagcaaaaca tccatggaac ataatgacaa catcageaga 420 ttcttgaaca cgaagggcag tgettetcaa gctcatcaaa gccaagaaca ccatggagat 480 tggtgtcttc actggctact ctctcctcgc caccgctctt gctcttcctg atgacggaaa 540 gattttggct atggacatta acagagagag ctatgaactt ggcctgccgg catccaaaaa 600 gccggtg 607 < 210 > 24 < 211 > 421 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 24 gaattcggca cgagccgttt tatttcctct gatttccttt gctcgagtct cgcggaagag 60 ggagaggaga agagaagaga gaatgggttc gaccggatcc gagaeccaga tgaccccgac 120 ccaagtctcg gacgaggagg cgaacctctt cgccatgcag ctggcgagcg cctccgtgct 180 ccccatggtc ctcaaggccg ccatcgagct cgacctcctc gagatcatgg ccaaggccgg 240 gccgggcgcg ttcctctccc cgggggaagt cgcggcccag ctcccgaccc agaaccccga 300 ggcacccgta atgctcgacc ggatcttccg gctgctggcc agctactccg tgctcacgtg 360 caccctccgc gacctccccg atggcaaggt cgagcggctc tacggcttag cgccggtgtg 420 c 421 < 210 > 25 < 211 > 760 < 212 > DNA < 213 > Eucalyptu: 3 grandis < 400 > 25 ggaagaagcc gagcaaacga attgcagacg ccattgaaaa aagacacgaa agagatcaag 60 aaggagctta agaagcatca tcaatggcag ccaacgcaga gcctcagcag acccaaccag 120 cgaagcattc ggaagtcggc cacaagagcc tcttgcagag cgatgctctc taccagtata 180 tattggagac cagcgtctac ccaagagagc cagagcccat gaaggagctc agggaaataa 240 tccatggaac cagccaaaca ctgatgacca catcggcgga ttcctgaaca tgaagggcag 300 tgctcctcaa gctcatcaac gccaagaaca ccatggagat cggcgtctac accggctact 360 ctctcctcgc aaccgccctt gctcttcccg atgacggaaa atggccatca gatcttggcc 420 atagggagaa cttcgagatc gggctgcccg tcatccagaa ggccggcctt gcccacaaga 480 tcgatttcag agaaggccct gccctgccgc gctcgtgcaa tccttgatca gatgagaaga 540 accatggaac gtacgacttc ttctcaatcc ttaatcgttc atttgaatac aaatacatgc 600 aaagacaaca tcaatggttc gatggaaaaa taagacagaa atagaaagga aggaaagtat 660 taagggtagt ttctcatttc atcaatgctt gattttgaga tctcctttct ggtgcgatca 720 gctgacccgg cggcacaggt gatgccatcc ccgacgggaa 760 < 210 > 26 < 211 > 508 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 26 gaattcggta cccgggttcg aaatcgataa gcttggatcc aaagaattcg gcacgagatc 60 actaaccatc tgcctttctt catcttcttt cttctgcttc tcctccgttt cctcgtttcg 120 atatcgtgaa aggagtccgt cgacgacaat ggccgagaag agcaaggtcc tgatcatcgg 180 agggacgggc tacgtcggca agttcatcgt ggaagcgagt gcaaaagcag ggcatcccac 240 gttcgcgctg gttaggcaga gcacggtctc cgaccccgtc aagggccagc tcgtcgagag 300 ttgggcgtca cttcaagaac ctctgctcat cggtgatctg tacgatcatg agagcttggt 360 gaaggcaatc aagcaagccg acgtggtgat atcgacagtg gggcacatgc aaatggcgga 420 tcagaccaaa gaatcgtcga cgccattaaa ggaagctggc aacgttaagg tttgttggtt 480 ggttcatttg atctggtttg ggggggtc 508 < 210 > 27 < 211 > 495 < 212 > DNA < 213 > Eucalyptus granáis < 400 > 27 gaattcggca cgaggttaat ggcagtgcag cctcaacacc acccaccttc ctccatctct 60 ctcctccctt cttctttctc tgacttcaat ggcagccgac tccatgcttg cgttcagtat 120 aagaggaagg tggggcagcc taaaggggca ctgcgggtca ctgcatcaag caataagaag 180 atcctcatca tgggaggcac ccgtttcatc ggtgtgtttt tgtcgagact acttgtcaaa 240 gaaggtcatc aggtcacttt gtttaccaga ggaaaagcac ccatcactca acaattgcct 300 ggtgagtcgg acaaggactt cgctgatttt tcatccaaga tcctgcattt gaaaggagac 360 agaaaggatt ttgattttgt taaatctagt cttgctgcag aaggctttga cgttgtttat 420 gacattaacg gcgagaggcg gatgaagtcg caccaatttt ggatgcctgc caaaccttga 480 accagtcaac tactg 495 < 210 > 28 < 211 > 472 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 28 gaattcggca cgagcataag ctctcccgta atcctcacat cacatggcga agagcaaggt 60 cctcgtcgtt ggcggcactg gctacctcgg gcggaggttc gcctggacca gtgagggcga 120 gggccacccc acgtacgtcc tccagcgtcc ggagaccggc ctcgacattg agaagctcca 180 gacgctactg cgcttcaaga ggcgtggcgc ccaactcgtc gaggcctcgt tctcagacct 240 gaggagcctc gtcgacgctg tgaggcgggt cgatgtcgtc gtctgtgcca tgtcgggggt 300 ccacttccgg agccacaaca tcctgatgca gctcaagctc gtggaggcta tcaaagaagc 360 tggaaatgtc aagcggtttt tgccgtcaga gttcggaatg gacccggccc tcatgggtca 420 tgcaattgag ccgggaaggg tcacgttcga tgagaaatgg aggtgagaaa ag 472 < 210 > 29 < 211 > 396 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 29 cgaggaggca gaattcggca cctcctcgaa acgaagaaga agaaggacga aggacgaagg 60 agacgaaggc gagaatgagc gcggcgggcg gtgccgggaa ggtcgtgtgc gtgaccgggg 120 cgtccggtta catcgcctcg tggctcgtca agctcctcct ccagcgcggc tacaccgtca 180 aggccaccgt ccgcgatccg aatgatccaa aaaagactga acatttgctt ggacttgatg 240 tagacttcaa gagcgaaaga ctgttcaaag caaacctgct ggaagagggt tcatttgatc 300 gggttgtgca ctattgttga ggcgtttttc aaactgcctc tcccttttat catgatgtca 360 aggatccgca. ggcagaatta cttgatccgg ctgtaa 396 < 210 > 30 < 211 > 592 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 30 cgaggttgaa gaattcggca cctcccgtcc tcggctctgc tcggctcgtc accctcttcg 60 tactccacca cgctcccgca ccgcgtacag aagatgagct cggagggtgg gaaggaggat 120 tgcctcggtt gggctgcccg ggacccttct gggttcctct ccccctacaa attcacccgc 180 agggccgtgg gaagcgaaga cgtctcgatt aagatcacgc actgtggagt gtgctacgca 240 ggactaggaa gatgtggctt tgtgcaggga cactccaagt atcctctggt gccagggcac 300 gagatagttg gaattgtgaa acaggttggc tccagtgtcc aacgcttcaa agttggcgat 360 catgtggggg tgggaactta tgtcaattca tgcagagagt gcgagtattg caatgacagg 420 ctagaagtcc aatgtgaaaa gtcggttatg acttttgatg gaattgatgc agatggtaca 480 gtgacaaagg gaggatattc tagtcacatt gtcgtccatg aaaggtattg cgtcaggatt 540 ccagaaaact acccgatgga tctagcagcg catttgctct gtgctggatc ac 592 < 210 > 31 < 211 > 468 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 31 cgagaactca gaattcggca tcttgaaatg tcattggagt catcatcctc tagtgagaag 60 aaacaaatgg gttccgccgg attcgaatcg gccacaaagc cgcacgccgt ttgcattccc 120 taccctgcac aaagccacat tggcgccatg ctcaagctag caaagctcct ccatcacaag 180 ggcttccaca tctccttcgt caacaccgag ttcaaccacc ggcggctcgc cagggctcga 240 ggccccgagt tcacaaatgg aatgctgagc gactttcagt tcctgacaat ccccgatggt 300 cttcctcctt cggacttgga gacatcaaga tgcgatccaa tgctctgcga atcgtccagg 360 aactatatgg tcagccccat caacgatctt gtatcgagcc tgggctcgaa cccgagcgtc 420 cctccggtga cttgcatcaa tctcggatgg tttcatgaca ctcgtgac 468 < 210 > 32 < 211 > 405 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 32 ctttactccg ccaagaagat ccaatcgcag ttttcgcaat tggcccatta cacaaatgcg 60 gtccatcttc atcgggaagt ctcttggcag aagaccggag ttgcatttcc tggctggaca 120 agcaagcccc taactcagtg gtctatgtga gtcttgggag catcgcctct gtgaacgagt 180 cggaattttc cgaaatagct ttaggtttag ccgatagcca gcagccattc ttgtgggtgg 240 ttcgacccgg gtcagtgagc ggctcggaac tcttagagaa tttgcccggt tgctttctgg 300 aggcattaca ggagaggggg aagattgtga aatgggcgcc tcaacatgaa gtgctggctc 360 atcgggctgt cggagcgttt tggactcaca ctcca atggatggaa 405 < 210 > 33 < 211 > 380 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 33 ggcaaacacg cccgttttcg ttttactaag agaagatggt gagcgttgtg gctggtagag 60 tcgagagctt gtcgagcagt ggcattcagt cgatcccgca ggagtatgtg aggccgaagg 120 aggagctcac aagcattggc gacatcttcg aggaggagaa gaagcatgag ggccctcagg 180 tcccgaccat cgacctcgag gacatagcgt ctaaagaccc cgtggtgagg gagaggtgcc 240 acgaggagct caggaaggct gccaccgact ggggcgtcat gcacctcgtc aaccatggga 300 tccccaacga cctgattgag cgtgtaaaga aggctggcga ggtgttcttc aacctcccga 360 380 tcgaggagaa ggacaagcat < 210 > 34 < 211 > 305 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 34 ttgtacccga agatctccgg gaccgttcga cggcgacatc gccgtcggcc gggaacccgt 60 cgaggccgcc gccggaggcc ggggagaagc tggagtagcc gccgtagccg gagaaggcgc 120 ggcggcggcg cgtcgtggtc gcgtggtgga cctcatcgcc gtccatgctg aaggcgtcga 180 aggaagcgga catggctggg ggatcgatcg accgatccga tcggccggag gatttcgaga 240 agagatggaa tcggagatgg atgaaagaga gagagagaga gagatccggt ggactggtgg tgttt 300 305 < 210 > 35 < 211 > 693 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 35 cgagctaaga gaattcggca gaggagagga gaggagcaag atggcactag caggagctgc 60 accgtggtga actgtcagga gctccccctt tgtgaggatg cagcctgtga acagactcag 120 ggcattcccc aatgtgggtc aggccctgtt tggtgtcaac tctggccgtg gcagagtgac 180 tgccatggcc gcttacaagg tcaccctgct cacccctgaa ggcaaagtcg aactcgacgt 240 ccccgacgat gtttacatct tggactacgc cgaggagcaa ggcatcgact tgccctactc 300 ctgccgtgcc ggctcttgct cctcctgcgc gggcaaggtc gcgtcgacca gtggcgggga 360 gagcgacggc agcttcctgg atgatgatca gattgaggaa ggttgggtcc tcacttgtgt 420 cgcctaccct aagtctgagg tcaccattga gacccacaag gaagaggagc tcactgcttg 480 aagctctcct atatttgctt ttgcataaat cagtctcact ctacgcaact ttctccactc 540 tctcccccct tcactacatg tttgttagtt cctttagtct cttccttttt tactgtacga 600 gggatgattt gatgttattc tgagtctaat gtaatggctt ttctttttcc tatttctgta 660 693 aaa tgaggaaata aaactcatgc tctaaaaaaa < 210 > 36 < 211 > 418 < 212 > DNA < 213 > Eucalyptus grandis <; 400 > 36 aggactttat tataagcatt gtaaaaagag tcaaactaat acatcgcaag aattgggtta 60 tccaataatc tacaaaaaga aaaaagtttg atgcattgag atggtaactg cttaattcaa 120 atgccttagt ttgaaaaatt aaccaactat taaaattaat gatgatgaat atggattatg 180 tgtgaaaaac tatatagact taaaattgac tcagaagaca ttcttttctt cttattttat 240 attcggtcta gatatgatga aacaggcaaa tggtgtcaaa cgggaagtcg gcaaaactct 300 tcctcggcag tgactaccgg gcgggcgatg atgcggatcc gggggccggg tcgctggaga 360 acatcccgca cggaccggtc gcggtgacaa cacgtttggt aacctgga caggcagccc 418 < 210 > - 37 < 211 > • 777 < 212 > • DNA < 213 > • Eucalyptus grandis < 400 > 37 gaattcggca cgagcataca actacactgc gacgccgccg cagaacgcga gcgtgccgac 60 catgaacggc accaaggtct accggttgcc gtataacgct acggtccagc tcgttttaca 120 ggacaccggg ataatcgcgc cggagaccca ccccatccat ctgcacggat tcaacttctt 180 cggtgtgggc aaaggagtgg ggaattatga cccaaagaag gatcccaaga agttcaatct 240 gtggagagga ggttgaccca acaccattgg aatcccatct ggtggatgga tagccatcag 300 attcacagca gacaatccag gagtttggtt cctgcactgc catctggaag tgcacacaac 360 ttggggactg aagatggcat tcttggtgga caatgggaag gggcctaaag agaccctgct 420 tccacctcca agtgatcttc caaaatgttg atcatttgat catgaggacg acaagcgatt 480 actaatgaca ccaagttagt ggaatcttct ctttgaaaaa gaagaagaag agcaagaaga 540 tgaggagaga ataagaaaga agccatagaa gatttgacca gggcaataaa agaagagaga 600 ccaaagagac ccttgagatc acgacatccc gcaattgttt ctagagtaat agaaggattt 660 tgctacaata actccgacac aattaaggaa gacaaggaat ttggtttttt tcattggagg 720 agtgtaattt gttttttggc aagctcatca atggaaaaaa catgaatcac aaaaaaa 777 < 210 > 38 < 211 > 344 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 38 atatgttcag aatttcaaat gtgggaatgt caacctcctt gaacttcaga attcagggcc 60 atacgttgaa gctagtcgag gttgaaggat ctcacaccgt ccagaacatg tatgattcaa 120 cgtgggccaa tcgatgttca tccatggctg tcttagtgac cttaaatcag cctccaaagg 180 actactacat tgtcgcatcc acccggttca ccaagacggt tctcaatgca actgcagtgc 240 tacactacac caactcgctt accccagttt ccgggccact accagctggt ccaacttacc 300 aaaaacattg gtccatgaag caagcaagaa caatcaggtg GAAC 344 < 210 > 39 < 211 > 341 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 39 gccgcaactg caattctctt cgtaaaacat gacggctgtc ggcaaaacct ctttcctctt 60 gggagctctc ctcctcttct ctgtggcggt gacattggca tttactacca gatgcaaaag 120 gttcaagcga tgattttgtc ccaaggtgaa gaggctgtgc acgacccaca acaccatcac 180 ggtgaacggg caattcccgg gtccgacttt ggaagttaac gacggcgaca ccctcgttgt 240 caatgtcgtc aacaaagctc gctacaacgt caccattcac tggcacggcg tccggcaggt 300 gagatctggt tgggctgatg gggcggaatt tgtgactcaa t 341 < 210 > 40 < 211 > 358 12 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 40 gaattcggca cgagatatgt tcagaatttc aaatgtggga atgtcaacct ccttgaactt 60 cagaattcag ggccatacgt tgaagctagt ggatctcaca cgaggttgaa ccgtccagaa 120 catgtatgat tcaatcgatg ttcacgtggg ccaatccatg gctgtcttag tgaccttaaa 180 tcagcctcca aaggactact acattgtcgc atccacccgg cggttctcaa ttcaccaaga 240 tgcaactgca gtgctacact acaccaactc gcttacccca gtttccgggc cactaccagc 300 tggtccaact taccaaaaac attggtccat agaacaatca gaagcaagca ggtggaac 358 < 210 > 41 < 211 > 409 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 41 atcaagagtt tgagtctaaa ccttgtctaa tcctctctcg catagtcatt tggagacgaa 60 tgctgatcgg ccgcagctgc attctcttcg taaaacatga cggctgtcgg caaaacctct 120 ttcctcttgg gagctctcct cctcttctct gtggcggtga cattggcaga tgcaaaagtt 180 tactaccatg attttgtcgt tcaagcgacc aaggtgaaga ggctgtgcac gacccacaac 240 accatcacgg tgaacgggca attcccgggt ccgactttgg aagttaacga cggcgacacc 300 ctcgttgtca atgtcgtcaa tacaacgtca caaagctcgc ccattcactg gcacggcgtc 360 cggcaggtga gatctggttg ggctgatggg gcggaatttg tgactcaat 409 < 210 > 42 < 211 > 515 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 42 ctctctctct ctctctctct gtgtgttcat tctcgttgag ctcgtggtcg cctcccgcca 60 tggatccgca caagtaccgt ccatccagtg ctttcaacac ttctttctgg actacgaact 120 ctggtgctcc tgtctggaac aataactctt cgttgactgt tggaagcaga ggtccaattc 180 ttcttgagga ttatcacctc gtggagaaac ttgccaactt tgatagggag aggattccag 240 agcgtgtggt gcatgccaga ggagccagtg caaagggatt ctttgaggtc actcatgaca 300 tttcccagct tacctgtgct gatttccttc gggcaccagg agttcaaaca cccgtgattg 360 tccgtttctc cactgtcatc cacgaaaggg gcagccctga aaccctgagg gaccctcgag 420 gttttgctgt gaagttctac acaagagagg gtaactttga tctggtggga aacaatttcc 480 ctgtcttctt tgtccgtaat gggataaatt ccccg 515 < 210 > 43 < 211 > 471 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 43 gaattcggca cgaggctccc tctcgtactg ccatactcct gggacgggat tcggataggg 60 atttgcggcg atccatttct cgattcaagg ggaagaatca tggggaagtc ctacccgacc 120 gtaagccagg agtacaagaa ggctgtcgag aaatgcaaga agaagttgag aggcctcatc 180 gctgagaaga gctgcgctcc gctcatgctc cgcatcgcgt ggcactccgc cggtaccttc 240 gatgtgaaga cgaagaccgg aggcccgttc gggaccatga agcacgccgc ggagctcagc 300 cacggggcca acagcgggct cgacgttgcc gatcaggtct tgcagccgat caaggatcag 360 ttccccgtca tcacttatgc tgatttctac cagctggctg gcgtcgttgc tgtggaagtt 420 actggtggac ctgaagttgc ttttcacccg gaagagaggc aaaccacaac c 471 < 210 > 44 13 < 211 > 487 < 212 > DNA < 213 > Eucalyptus grandis < 400 > . 44 cgagctccca gaattcggca cttctgtctc gccaccat.ta ctagcttcaa agcccagatc 60 tcagtttcgt gctctcttcg tcatctctgc ctcttgccat ggatccgtac aagtatcgcc 120 cgtccagcgc ttacgattcc caaccaacta agcttttgga gtctggaaca cggtgctccc 180 atgactcatc gctgactgtt ggaactagag gtccgattct cctggaggac taccatctga 240 ttgagaaact tgccaacttc gagagagaga ggattcctga gcgggtggtc catgcacggg 300 gagccagcgc gaaagggttc ttcgaggtca cccacgacat ctctcacttg acctgtgctg 360 atttcctccg ggctcctgga gtccagacgc ccgtaatcgt ccgtttctcc accgtcatcc 420 acgagcgcgg cagcccgaac ctcagggacc ctcgtggttt tgcagtgaag ttctacacca 480 gagaggg 487 < 210 > 45 < 211 > 684 < 212 > DNA < 213 > Pinus radiata < 400 > 45 gaattcctgc agcccggggg atccactagt tctagagcgg ccgccaccgc ggtggagctc 60 gcgcgcctgc aggtcgacac tagtggatcc aaagaattcg gcacgaggcc cgacggccac 120 ttgttggacg ccatggaagc tctccggaaa gccgggattc tggaaccgtt taaactgcag 180 cccaaggaag gactggctct cgtcaacggc acagcggtgg gatccgccgt ggccgcgtcc 240 gtctgttttg acgccaacgt gctgggcgtg ctggctgaga ttctgtctgc gctcttctgc 300 gaggtgatgc aagggaaacc ggagttcgta gatccgttaa cccaccagtt gaagcaccac 360 ccagggcaga tcgaagccgc ggccgtcatg gagttcctcc tcgacggtag cgactacgtg 420 aaagaagcag cgcggcttca cgagaaagac aaccgaaaca ccgttgagca agaccgctac 480 catcgccaca gctctgcgaa gtggttgggg cctccgatcg aagtcatccg cgctgctact 540 cactccatcg agcgggagat caattccgtc aacgacaatc cgttaatcga tgtctccagg 600 gacatggctc tccacggcgg caacttccag ggaacaccca tcggagtttc catggacaac atgcgaatct ctttggcagc CGTC 660 684 < 210 > 46 < 211 > 418 < 212 > DNA < 213 > Pinus radiata < 400 > 46 gaattcggca cgaggacaag gtcataggcc ctctcttcaa atgcttggat gggtggaaag 60 gaactcctgg cccattctga aataaataat cttccaagat cgcctttata caacgactgc 120 tatgatttga gtcctcggat ctttttgttg atgcagttgt ttaccgatct ggaatttgat 180 tggtcataaa gcttgatttt gtttttcttt cttttgtttt atactgctgg atttgcatcc 240 cattggattt gccagaaata tgtaagggtg gcagatcatt tgggtgatct gaaacatgta 300 aaagtggcgg atcatttggg tagcatgcag atcagttggg tgatcgtgta ctgctttcac 360 tattacttac atatttaaag atcgggaata aaaacatgat tttaattgaa aaaaaaaa 418 < 210 > 47 < 211 > 479 < 212 > DNA < 213 > Pinus radiata < 400 > 47 gatatcccaa cgaccgaaaa cctgtatttt cagggcgcca tggggatccg gaattcggca 60 cgagcaagga agaaaatatg gttgcagcag cagaaattac gcaggccaat gaagttcaag 120 ttaaaagcac tgggctgtgc acggacttcg gctcgtctgg cagcgatcca ctgaactggg 180 14 ttcgagcagc caaggccatg gaaggaagtc actttgaaga agtgaaagcg atggtggatt 240 cgtatttggg agccaaggag atttccattg aagggaaatc tctgacaatc tcagacgttg 300 ctgccgttgc tcgaagatcg caagtgaaag tgaaattgga tgctgcggct gccaaatcta 360 gggtcgagga gagttcaaac tgggttctca cccagatgac caaggggacg gatacctatg 420 gtgtcactac tggtttcgga gccacttctc acaggagaac gaaccaggga gccgagctt 479 < 210 > 48 < 211 > 1785 < 212 > DNA < 213 > Pinus radiata < 400 > 48 tatcgataag cttgatatcg aattcctgca gcccggggga tccactagtt ctagagcggc 60 cgccaccgcg gtggagctcg cgcgcctgca ggtcgacact agtggatcca aagaattcgg 120 cacgaggttg caggtcgggg atgatttgaa tcacagaaac ctcagcgatt ttgccaagaa 180 atatggcaaa atctttctgc tcaagatggg ccagaggaat cttgtggtag tttcatctcc 240 cgatctcgcc aaggaggtcc tgcacaccca gggcgtcgag tttgggtctc gaacccggaa 300 gatatcttca cgtggtgttc cgggcaaggg gcaggacatg gtgttcaccg tctatggaga 360 aagatgcgca tcactggaga tgtgcctttc ggatcatgac aagttgtcca tttacgaata 420 gcactacaga ttcgcgtggg aagacgagat cagccgcgtg gtcgcggatg tgaaatcccg 480 cgccgagtct tccacctcgg gcattgtcat ccgtaggcgc tgatgtataa ctccagctca 540 tattatgtat aggatgatgt tcgacaggag attcgaatcc gaggacgacc cgcttttcct 600 caagctcaag gccctcaacg gagagcgaag tcgattggcc cagagctttg agtacaatta 660 tggggatttc attcccattc ttaggccctt cctcagaggt tatctcagaa tctgcaatga 720 gattaaagag aaacggctct ctcttttcaa ggactacttc gtggaagagc gcaagaagct 780 caacagtacc aagactagta ccaacaccgg gggagctcaa gtgtgcaatg gaccatattt 840 tagatgctca ggacaag gga gagatcaatg aggataatgt tttgtacatc gttgagaaca 900 tcaacgttgc agcaattgag acaacgctgt ggtcgatgga atggggaata gcggagctgg 960 tgaaccacca ggacattcag agcaaggtgc gcgcagagct ggacgctgtt cttggaccag 1020 aacggaacca gcgtgcagat gacacgacaa ggttgcccta ccttcaggcg gttgtgaagg 1080 aaacccttcg tctccgcatg gcgatcccgt tgctcgtccc ccacatgaat ctccacgacg 1140 ccaagctcgg gggctacgat attccggcag agagcaagat cctggtgaac gcctggtggt 1200 tggccaacaa ccccgccaac tggaagaacc ccgaggagtt ccgccccgag cggttcttcg 1260 gcacaccgaa aggaggagaa gccaatggca acgacttcaa attcctgcct tcggtgtggg 1320 gaggaggagc tgcccgggaa tcattctggc gctgcctctc ctcgcactct ccatcggaag 1380 acttgttcag aacttccacc ttctgccgcc gcccgggcag agcaaagtgg atgtcactga 1440 gaagggcggg cagttcagcc ttcacattct caaccattct ctcatcgtcg ccaagcccat 1500 agcttctgct taatcccaac ttgtcagtga aatgcgcgca ctggtatata cctgaacaaa 1560 tctatcatga aaacactcca ctgtgtgtgc gtgtccactg tcgagtctac taagagctca 1620 tagcacttca aaagtttgct aggatttcaa taacagacac cgtcaattat gtcatgtttc 1680 aataaaagtt tgcataaatt aaatgatatt tcaatatact attttgactc tccaccaatt aaaaaaaaaa aaaaaaaaaa 1740 aaaaa actgctaaaa ggggaatttt 1785 < 210 > 49 < 211 > 475 < 212 > DNA < 213 > Pinus radiata < 400 > 49 gaattcggca cgagatttcc atggacgatt ccgtttggct tcaattcgtt tcctctggct 60 gtcctcgtcc tcgttttcct tgttcttcct cc? Acttttt ctctggaagc tatggcgtaa 120 taggaacctg ccgccaggac ccccggcatg gccgatcgta gggaacgtcc ttcagattgg 180 attttccagc ggcgcgttcg agacctcagt gaagaaattc catgagagat acggtccaat 240 attcactgtg tggctcggtt cccgccctct gctgatgatc accgaccgcg agcttgccca 300 cgaggcgctc gtacagaagg gctccgtctt cgctgaccgc ccgcccgccc tcgggatgca 360 gaaaatcttc agtagcaacc agcacaacat cacttcggct gaatacggcc cgctgtggcg 420 gagccttcgc aggaatctgg ttaaagaagc cctgagactt cggcgatgaa ggctt 475 < 210 > 50 < 211 > 801 < 212 > DNA < 213 > Pinus radiata < 400 > 50 gctccaccga cggtggacgg tccgctactc agtaactgag tgggatcccc cgggctgaca 60 ggcaattcga tttagctcac tcattaggca ccccaggctt tacactttat gcttccggct 120 cgtatgttgt gtggaattgt gagcggataa caatttcaca caggaaacag ctatgaccat 180 gattacgcca agcgcgcaat taaccctcac taaagggaac aaaagctgga gctccaccgc 240 ggtggcggcc gctctagaac tagtggatcc aaagaattcg gcacgagacc cagtgacctt 300 caggcctgag agatttcttg aggaagatgt tgatattaag ggccatgatt acaggctact 360 gcagggcgca gccattcggt ggatctgccc tggtgcacaa atttagttca ttgggtatta 420 gtctatgttg ggacacctgc ttcatcattt cgtatgggca cctcctgagg gaatgaaggc 480 agaagacata gatctcacag agaatccagg gcttgttact agcctgtgca ttcatggcca 540 ggccattgct attcctcgat tgcctgatca tctctacaag cgacagccac tcaattgatc 600 aattgatctg atagtaagtt tgaattttgt tttgatacaa aacgaaataa cgtgcagttt 660 atagtcaaca ctccttttcc tgcagctttc tttctctgaa gcgcatgcag ctttctttct 720 acttctagca ctgaagccca agcaataact gtatatttta ctattcctca gaacaaatac aattgagtat ttctctgtag g 801 780 < 210 > 51 < 211 > 744 < 212 > DNA < 213 > Pinus radiata < 400 > 51 tcgaggtgga gggcccccct cactagtgga tccaaagaat tcggcacgag gttttatctg 60 aaggacgctg tgcttgaagg ctcccagcca ttcaccaaag cccatggaat gaatgcgttc 120 gagtacccgg ccatcgatca gagattcaac aagattttca acagggctat gtctgagaat 180 tctaccatgt tgatgaacaa gattttggat acttacgagg gttttaagga ggttcaggag 240 ttggtggatg tgggaggagg tattgggtcg actctcaatc tcatagtgtc taggtatccc 300 cacatttcag gaatcaactt cgacttgtcc catgtgctgg ccgatgctcc tcactaccca 360 gctgtgaaac atgtgggtgg agacatgttt gatagtgtac caagtggcca agctattttt 420 atgaagtgga ttctgcatga ttggagcgat gatcattgca ggaagctttt gaagaattgt 480 cacaaggcgt tgccagagaa ggggaaggtg attgcggtgg acaccattct cccagtggct 540 gcagagacat ctccttatgc tcgtcaggga tttcatacag atttactgat gttggcatac 600 aacccagggg gcaaggaacg cacagagcaa gaatttcaag atttagctaa ggagacggga 660 tttgcaggtg gtgttgaacc tgtatgttgt gtcaatggaa tgtgggtaat ggaattcctg 720 744 cagcccgggg gatccactag TTCT < 210 > 52 < 211 > 426 < 212 > DNA < 213 > Pinus radiata < 400 > 52 gtggccctgg aagtagtgtg cgcgacatgg attccttgaa tttgaacgag tttatgttgt 60 ggtttctctc ttggcttgct ctctacattg gatttcgtta tcgaacttga tgttttgaga 120 agctcaagaa gaggcgcctc ccgccgggcc catcgggatg gccagtggtg ggaagtctgc 180 cattgctggg agcgatgcct cacgttactc tctacaacat gtataagaaa tatggccccg 240 ttgtctatct caaactgggg acgtccgaca tggttgtggc ctccacgccc gctgcagcta 300 aggcgtttct gaagactttg gatataaact tctccaaccg gccgggaaat gcaggagcca 360 cgtacatcgc ctacgattct caggacatgg tgtgggcagc cggtggaaga gtatggagga 420 tggagc 426 16 < 210 > 53 < 211 > 562 < 212 > DNA < 213 > Pinus radiata < 400 > 53 cagttcgaaa ttaacctcac taaagggaac aaaagctgga gttcgcgcgc ctgcaggtcg 60 acactagtgg atccaaagaa ttcggcacga gctttgaggc aacctacatt cattgaatcc 120 tcttgtccaa caggatttct ggaaatggca acaggtttaa ggcacaagtg ttgctgcagc 180 agaggtgaag gctcagacaa cccaagcaga ggagccggtt aaggttgtcc gccatcaaga 240 agtgggacac aaaagtcttt tgcagagcga tgccctctat cagtatatat tggaaacgag 300 cgtgtaccct cgtgagcccg agccaatgaa ggagctccgc gaagtgactg ccaagcatcc 360 ctggaacctc atgactactt ctgccgatga gggtcaattt ctgggcctcc tgctgaagct 420 cattaacgcc aagaacacca tggagattgg ggtgtacact ggttactcgc ttctcagcac 480 agcccttgca ttgcccgatg atggaaagat tctagccatg gacatcaaca gagagaacta 540 tgatatcgga ttgcctataa tt 562 <; 210 > 54 < 211 > 1074 < 212 > DNA < 213 > Pinus radiata < 400 > 54 tcgtgccgct cgatcctcac aggccctttt tatttccctg gtgaacgata cgatgggctc 60 gcacgctgag aatggcaacg gggtggaggt tgttgatcca acggacttaa ctgacatcga 120 gaatgggaaa ccaggttatg acaagcgtac gctgcctgcg gactggaagt ttggagtgaa 180 gcttcaaaac gttatggaag aatccattta caagtacatg ctggaaacat tcacccgcca 240 gaggcgtcca tcgagaggac aggagctctg ggaacgaaca tggaacctga cacagagagg 300 ggagatgatg acattgccag atcaggtgca gttcctgcgc ttgatggtaa agatgtcagg 360 tgctaaaaag gcattggaga tcggagtttt cactggctat tcattgctca atatcgctct 420 cgctcttcct tctgatggca aggtggtagc tgtggatcca ggagatgacc ccaaatttgg 480 ctggccctgc ttcgttaagg ctggagttgc agacaaagtg gagatcaaga aaactacagg 540 gttggactat ttggattccc ttattcaaaa gggggagaag gattgcttcg actttgcatt 600 gacaaagtga cgtggacgca ctatcatcca actacgtgaa cggctgatga agttagtgcg 660 cgtggggggc gtcataattt acgacgacac cctctggttt ggtctggtgg gaggaaagga 720 tccccacaac ctgcttaaga atgattacat gaggacttct ctggagggta tcaaggccat 780 caactccatg gtagccaacg accccaactt ggaggtcgcc acagtcttta tgggatatgg 840 tgtcactgtt tgttacc gca ctgcttagtt agctagtcct ccgtcattct gctatgtatg 900 tatatgataa tggcgtcgat ttctgatata ggtggttttt caatgtttct atcgtcatgt 960 tttctgttta gccagaatgt ttcgatcgtc atggtttctg ttaaagccag aataaaatta 1020 gccgcttgca gttcaaaaaa aaaaaaaaaa aaaaactcga gactagttct cttc 1074 < 210 > 55 < 211 > 1075 < 212 > DNA < 213 > Pinus radiata < 400 > 55 tcggagctct cgaatcctca caggcccttt ttatttccct ggtgaacgat acgatgggct 60 cgcacgctga gaatggcaac ggggtggagg ttgttgatcc aacggactta actgacatcg 120 aaccaggtta aagaatggga tgacaagcgt cgctgcctgc ggactggaag tttggagtga 180 agcttcaaaa cgttatggaa gaatccattt acaagtacat gctggaaaca ttcacccgcc 240 atcgagagga cgaggcgtcc aaggagctct gggaacgaac atggaacctg acacagagag 300 gggagatgat gacattgcca gatcaggtgc agttcctgcg cttgatggta aagatgtcag 360 gtgctaaaaa ggcattggag atcggagttt tcactggcta ttcattgctc aatatcgctc 420 tcgctcttcc ttctgatggc aaggtggtag ctgtggatcc aggagatgac cccaaatttg 480 gctggccctg cttcgttaag gctggagttg cagacaaagt ggagatcaag aaaactacag 540 17 ggttggacta tttggattcc cttattcaaa agggggagaa ggattgcttc gactttgcat 600 tcgtggacgc agacaaagtg aactacgtga actatcatcc acggctgatg aagttagtgc 660 gcgtgggggg cgtcataatt tacgacgaca ccctctggtt tggtctggtg ggaggaaagg 720 atccccacaa cctgcttaag aatgattaca tgaggacttc tctggagggt atcaaggcca 780 tcaactccat ggtagccaac gaccccaact tggaggtcgc cacagtcttt atgggatatg 840 gtgtcactgt ttgttaccgc actgcttagt tagctagtpc tccgtcattc tgctatgtat 900 atggcgtcga gtatatgata tttctgatat aggtggtttt tcaatgtttc tatcgtcatg 960 ttttctgttt agccagaatg tttcgatcgt catggtttct gttaaagcca gaataaaatt 1020 agccgcttgc agttcaaaaa aaaaaaaaaa aaaaaactcg agactagttc tcttc 1075 < 210 > 56 < 211 > 1961 < 212 > DNA < 213 > Pinus radiata < 400 > 56 gttttccgcc atttttcgcc tgtttctgcg gagaatttga tcaggttcgg attgggattg 60 aatcaattga aaggttttta ttttcagtat ttcgatcgcc atggccaacg gaatcaagaa 120 ggtcgagcat ctgtacagat cgaagcttcc cgatatcgag atctccgacc atctgcctct 180 tcattcgtat tgctttgaga gagtagcgga attcgcagac agaccctgtc tgatcgatgg 240 ggcgacagac agaacttatt gcttttcaga ggtggaactg atttctcgca aggtcgctgc 300 cggtctggcg aagctcgggt tgcagcaggg gcaggttgtc atgcttctcc ttccgaattg 360 catcgaattt gcgtttgtgt tcatgggggc ctctgtccgg ggcgccattg tgaccacggc 420 caatcctttc tacaagccgg gcgagatcgc caaacaggcc aaggccgcgg gcgcgcgcga 480 tcatagttac cctggcagct tatgtggaga aactggccga tctgcagagc cacgatgtgc 540 tcgtcatcac aatcgatgat gctcccaagg aaggttgcca acatatttcc gttctgaccg 600 aagccgacga aacccaatgc ccggccgtga caatccaccc ggacgatgtc gtggcgttgc 660 cctattcttc cggaaccacg gggctcccca agggcgtgat gttaacgcac aaaggcctgg 720 tgtccagcgt tgcccagcag gtcgatggtg aaaatcccaa tctgtatttc cattccgatg 780 acgtgatact ctgtgtcttg cctcttttcc acatctattc tctcaattcg gttctcctct 840 gcgcgctcag agccggg gct gcgaccctga ttatgcagaa attcaacctc acgacctgtc 900 tggagctgat tcagaaatac aaggttaccg ttgccccaat tgtgcctcca attgtcctgg 960 acatcacaaa gagccccatc gtttcccagt acgatgtctc ggccgtccgg ataatcatgt 1020 ccggcgctgc gcctctcggg aaggaactcg aagatgccct cagagagcgt tttcccaagg 1080 ccattttcgg gcagggctac ggcatgacag aagcaggccc ggtgctggca atgaacctag 1140 ccttcgcaaa gaatcctttc cccgtcaaat ctggctcctg cggaacagtc gtccggaacg 1200 ctcaaataaa gatcctcgat acagaaactg gcgagtctct cccgcacaat caagccggcg 1260 aaatctgcat ccgcggaccc gaaataatga aaggatatat taacgacccg gaatccacgg 1320 ccgctacaat cgatgaagaa ggctggctcc acacaggcga cgtcgggtac attgacgatg 1380 acgaagaaat cttcatagtc gacagagtaa aggagattat caaatataag ggcttccagg 1440 tggctcctgc tgagctggaa gctttacttg ttgctcatcc gtcaatcgct gacgcagcag 1500 tcgttcctca aaagcacgag gaggcgggcg aggttccggt ggcgttcgtg gtgaagtcgt 1560 cggaaatcag cgagcaggaa atcaaggaat tcgtggcaaa gcaggtgatt ttctacaaga 1620 aaatacacag agtttacttt gtggatgcga ttcctaagtc gccgtccggc aagattctga 1680 gagaagcaga gaaaggattt ctgg cagcaa aatgaaaatg aatttccata tgattctaag 1740 attcctttgc cgataattat aggattcctt tctgttcact tctatttata taataaagtg 1800 gtgcagagta agcgccctat aaggagagag agagcttatc aattgtatca tatggattgt 1860 caacgcccta cactcttgcg atcgctttca atatgcatat tactataaac gatatatgtt 1920 atttactgca ttttttataa cttctcgttc aaaaaaaaaa 1961 < 210 > 57 < 211 > 1010 < 212 > DNA < 213 > Pinus radiata < 400 > 57 gacaaacttg gtcgtttgtt taggttttgc tgcaggtgaa cactaatatg gaaggccaga 60 18 ttgcagcatt aagcaaagaa gatgagttca tttttcacag cccttttcct gcagtacctg 120 ttccagagaa tataagtctt ttccagtttg ttctggaagg tgctgagaaa taccgtgata 180 aggtggccct cgtggaggcc tccacaggga aggagtacaa ctatggtcag gtgatttcgc 240 tcacaaggaa tgttgcagct gggctcgtgg acaaaggcat tcaaaagggc gatgttgtat 300 ttgttctgct tccaaatatg gcagaatacc ccattattgt gctgggaata atgttggccg 360 ttctggggca gcgcagtgtt aatccttctg cacacatcaa tgaagttgaa aaacatatcc 420 aggattctgg agcaaagatt gttgtgacag ttgggtctgc ttatgagaag gtgaggcaag 480 tgaaactgcc tgttattatt gcagataacg agcatgtcat gaacacaatt ccattgcagg 540 aaatttttga gagaaactat gaggccgcag ggccttttgt acaaatttgt caggatgatc 600 tgtgtgcact cccttattcc tctggcacca caggggcctc taaaggtgtc atgctcactc 660 acagaaatct gattgcaaat ctgtgctcta gcttgtttga tgtccatgaa tctcttgtag 720 gaaatttcac cacgttgggg ctgatgccat tctttcacat atatggcatc acgggcatct 780 gttgcgccac tcttcgcaac ggaggcaagg tcgtggtcat gtccagattc gatctccgac 840 actttatcag ttctttgatt acttatgagg tcaacttcgc gcctattgtc ccgcctataa 900 tgctctccct ccggtttaaa aatcctatcg ttaacgagtt cgatctcagc cgcttgaaac 960 tccaaagctg ttcatgactg cggctgctc c actggcgccg gatctactgc 1010 < 210 > 58 < 211 > 741 < 212 > DNA < 213 > Pinus radiata < 400 > 58 gaattcggca cgagaccatt tccagctaat attggcatag caattggtca ttctatcttt 60 gtcaaaggag atcaaacaaa ttttgaaatt ggacctaatg gtgtggaggc tagtcagcta 120 tacccagatg tgaaatatac cactgtcgat gagtacctca gcaaatttgt gtgaagtatg 180 cgagattctc ttccacatgc ttcagagata cataacagtt tcaatcaatg tttgtcctag 240 gcatttgcca aattgtgggt tataatcctt cgtaggtgtt tggcagaaca gaacctcctg 300 tttagtatag tatgacgagc taggcactgc agatccttca ttccataaga cacttttctc 360 aacaaatact cacctgtggt ttgttttctt tctttctgga actttggtat ggcaataatg 420 tctttggaaa ccgcttagtg tggaatgcta agtactagtg tccagagttc taagggagtt 480 ccaaaatcat ggctgatgtg aactggttgt tccagagggt gtttacaacc aacagttgtt 540 ttttgttaga cagtgaataa gtgtttagat ccatctttac aaggctattg agtaaggttg 600 gtgttagtga acggaatgat gtcaaatctt gatgggctga tgtgatgtca ctgactctct aatcttgatg 660 aaaaaaaaaa aaaaaaaaaa gattgtgtct ttttcaatgg taaaaaaaaa aaaaaaaaaa aaaaaaaaaa 720 741 < 210 > 59 < 211 > 643 < 212 > DNA < 213 > Pinus radiata < 400 > 59 ctcatctcgg agttgcaggc tgcagctttt ggcccaaagc atgatatcag atcaaacgac 60 gcagatgaag caaacggatc aaacagtttg cgttactgga gcagcgggtt tcattgcctc 120 atggcttgtc aagatgctcc tcatcagagg ttacactgtc agagcagcag ttcggaccaa 180 cccagctgat gataggtgga agtatgagca tctgcgagag ttggaaggag caaaagagag 240 gcttgagctt gtgaaagctg atattctcca ttaccagagc ttactcacag tcatcagagg 300 ttgccacggt gtctttcaca tggcttcagt tctcaatgat gaccctgagc aagtgataga 360 accagcagtc gaagggacga ggaatgtgat ggaggcctgc gcagaaactg gggtgaagcg 420 cgttgttttt acttcttcca tcggcgcagt ttacatgaat cctcatagag acccgctcgc 480 gattgtccat gatgactgct ggagcgattt gactactgcg tacaaaccaa gaattggtat 540 tgctatgcaa aaaccttggc agagaaatct gcatgggata ttgctaaggg aaggaattta 600 gagcttgcag tgataaatcc aggcctggcc ttaggtccct tga 643 < 210 > 60 < 211 > 441 19 < 212 > DNA < 213 > Pinus radiata < 400 > 60 gaattcggca cgagaatttt tctgtggtaa gcatatctat ggctcaaacc agagagaagg 60 acgatgtcag cataacaaac tccaaaggat tggtatgcgt gacaggagcg gctggttact 120 tggcatcttg gcttatcaag cgtctcctcc agtgtggtta ccaagtgaga ggaactgtgc 180 gggatcctgg caatgagaaa aagatggctc atttatggaa gttagatggg gcgaaagaga 240 gactgcaact aatgaaagct gatttaatgg acgagggcag cttcgatgag gtcatcagag 300 gctgccatgg tgtttttcac acagcgtctc cagtcgtggg tgtcaaatca gatcccaaga 360 tatggtatgc tctggccaag actttagcag aaaaagcagc atgggatttt gcccaagaaa 420 accatctgga catggttgca g 441 < 210 > 61 < 211 > 913 < 212 > DNA < 213 > Pinus radiata < 400 > 61 gaattcggca cgaggaaaac atcatccagg cattttggaa atttagctcg ccggttgatt 60 caggatcctg caatggcttt tggcgaagag cagactgcct tgccacaaga aacgcctttg 120 aatcctccgg tccatcgagg aacagtgtgc gttacaggag ctgctgggtt catagggtca 180 tggctcatca tgcgattgct tgagcgagga tatagtgtta gagcaactgt gcgagacact 240 ggtaatcctg taaagacaaa gcatctgttg gatctgccgg gggcaaatga gagattgact 300 ctctggaaag cagatttgga tgatgaagga agctttgatg ctgccattga tgggtgtgag 360 ggtgttttcc atgttgccac tcccatggat ttcgagtccg gaatgagata aggatcccga 420 attaagccaa caatcaacgg ggtcttgaat gttatgagat cgtgtgcaaa agccaagtcc 480 gtgaagcgag ttgttttcac gtcatctgct attttacaga gggactgtga tgatttccaa 540 aagtttttga acaccaggca cgaatcatgc tggaccaacg tggatctttg cagaaaagtt 600 aaaatgacag gatggatgta ctttgtatcg aagacattag cagagaaagc tgcttgggat 660 tttgcagagg agaacaagat cgatctcatt actgttatcc ccacattggt cgttggacca 720 ttcattatgc agaccatgcc accgagcatg atcacagcct tggcactgtt aacgcggaat 780 gaaccccact acatgatact gagacaggta cagctggttc acttggatga tctctgtatg 840 tcacatatct ttgtata tga acatcctgaa gcaaagggca gatacatctc ttccacatgt 900 gatgctaccc att 913 < 210 > 62 < 211 > 680 < 212 > DNA < 213 > Pinus radiata < 400 > 62 gaattcggca cgagatcaat ttttgcatat tattaaaaag taagtgtatt cgttctctat 60 attgatcagt cacagagtca tggccagttg tggttccgag aaagtaagag ggttgaatgg 120 tgcgaagaga agatgaagca ggtttgtgta acaagagagt actggggcaa atgggtacat 180 cggctcttgg ctggtcatga gattactgga acatggctat tatgttcatg gaactgttag 240 gacacaggga ggacccagaa aggttgggca tttgctgcgg ctcccagggg caagtgagaa 300 gctaaagctg ttcaaggcag agcttaacga cgaaatggcc tttgatgatg ctgtgagcgg 360 ttgtcaaggg gttttccacg ttgccaagcc tgttaatctg gactcaaacg ctcttcaggg 420 ggaggttgtt ggtcctgcgg tgaggggaac agtaaatctg cttcgagcct gcgaacgatc 480 gggcactgtg aaacgagtga tacatacctc gtccgtttca gcagtgagat tcactgggaa 540 acctgacccc cctgatactg tgctggatga atctcattgg acttcggtcg agtattgcag 600 aaagacaaag atggtcggat ggatgtacta catcgccaac acttatgcag aagagggagc ggatcagaga ccataagttc 660 680 < 210 > 63 < 211 > 492 < 212 > DNA < 213 > Pinus radiata < 400 > 63 gaattcggca cgaggctggt tcaagtgtca gcccaatggc ctcccctaca gagaatcccc 60 agagctgcta agatttcaga tccatcaa aatcatgaga, gg aagtacagta tgtgtgacag 120 gagctgctgg cttcatagga tcatggctcg tcatgcgttt gcttgagcga ggatatactg 180 ttagaggaac tgtgcgagac actggtaatc cggtgaagac gaagcatcta ttggatctgc 240 tgagaggtta ctggggcgaa actctctgga aagcagattt ggatgatgaa ggaagctttg 300 acgccgccat tgatggttgt gagggagttt tccatgttgc cactcccatg gattttgaat 360 ccgaggaccc cgagaacgag ataattaaac ccgctgtcaa tgggatgttg aatgttttga 420 gatcgtgtgg gaaaaccaag tctatgaagc gagttgtttt cacgtcgtct gctgggactc 480 tgctttttac gg 492 < 210 > 64 < 211 > 524 < 212 > DNA < 213 > Pinus radiata < 400 > 64 cgagcttgtt gaattcggca caaagtcaca tatcttattt tctttgtgat atctgcaatt 60 tccaagcttt tcgtctacct ccctgaaaag atgagcgagg tatgcgtgac aggaggcaca 120 ggcttcatag ctgcttatct cattcgtagt cttctccaga aaggttacag agttcgcact 180 acagttcgca acccagataa tgtggagaag tttagttatc tgtgggatct gcctggtgca 240 aacgaaagac tcaacatcgt gagagcagat ttgctagagg aaggcagttt tgatgcagca 300 gtagatggtg tagatggagt attccatact gcatcacctg tcttagtccc atataacgag 360 cgcttgaagg aaaccctaat agatccttgt gtgaagggca ctatcaatgt cctcaggtcc 420 tgttcaagat caccttcagt aaagcgggtg gtgcttacat cctcctgctc atcaataccg 480 atacgactat aatagcttag agcgttccct gctggactga gtca 524 < 210 > 65 < 211 > 417 < 212 > DNA < 213 > Pinus radiata < 400 > 65 tcctaattgt tcgatcctcc cttttaaagc ccttccctgg ccttcattcc aggtcacaga 60 gttgttcatg cagtgctagc aggaggagca gcgttgcaat tggggaaaat tccaaaatca 120 gacagaagta ataacgagag agtttgtgga aatagcaacc atgccggtgt ttccttctgg 180 tctggacccc tctgaggaca atggcaagct cgtttgtgtc atggatgcgt ccagttatgt 240 aggtttgtgg attgttcagg gccttcttca acgaggctat tcagtgcatg ccacggtgca 300 gagagacgct ggcgaggttg agtctctcag aaaattgcat ggggatcgat tgcagatctt 360 ctatgcagat gtcttggatt atcacagcat tactgatgcg ctcaagggct gttctgg 417 < 210 > 66 < 211 > 511 < 212 > DNA < 213 > Pinus radiata < 400 > 66 atgacacgaa tttgtgcctc tctctgacca gagcttgaag ctctgtcttc tctgatatcg 60 tcatccagga cttcattcca gcttctgtta tatccatttc ctcaaaatgg atgcctacct 120 tgaagaaaat ggatacggcg cttccaattc tcggaaatta atgtgcctta ccgggggctg 180 gagtttcctg gggattcata tcgcaagaat gctgctcggc cggggttact cagtccgttt 240 cgcaattccg gtaacgccag aagaggcagg ctcacttatg gaatccgaag aagcattatc 300 ggggaagctg gagatatgcc aagccgatct cttggattat cgcagcgttt tcggcaacat 360 caatggttgc tccggagtct tccacgtccc tgcgccctgt gatcatctgg atggattaca 420 21 ggagtatccg gtatgattag tttaatagat tgacggggta tcctgtatga attagtttat 480 gaatttaagg ttttcttaga atttggatac t 511 < 210 > 67 < 211 > 609 < 212 > DNA < 213 > Pinus radiata '< 400 > 67 tgatggaaga cattgatagt agcatgaaaa ccatcagtaa agaaattgtt ccaaggtgaa 60 gaagtcagtt gctccagcag aaccttttta gcaattgttt ttgtatcctt tttgcctttg 120 aatatgtaat ccataaactt atgcaggaag tgcctcgtgc cgaattcggc acgagaatca 180 ctgaccttca catatttatt ccaattctaa tatctctact cgctgtctac ctgatttttc 240 caacttgaca agtggcgaac gggttggaca tggccaacag cagcaagatt ctgattattg 300 gaggaacagg ctacattggt cgtcatataa ccaaagccag ccttgctctt ggtcatccca 360 cattccttct tgtcagagag acctccgctt ctaatcctga gaaggctaag cttctggaat 420 ccttcaaggc ctcaggtgct attatactcc atggatcttt ggaggaccat gcaagtcttg 480 tggaggcaat caagaaagtt gatgtagtta tctcggctgt caagggacca cagctgacgg 540 ttcaaacagg atatttatcc aggg'tattta aagggagggt tggaacccat caagaagggt 600 tttggccaa 609 < 210 > 68 < 211 > 474 < 212 > DNA < 213 > Pinus radiata '< 400 > 68 gcaagatagg ttttattctt ctggagttgg gtgaggcttg gaaatttaag taaaaagggt 60 gcatagcaat taagcagttg cagccatggc ggtctgtgga actgaagtag ctcatactgt 120 gctgcagaca gctctatgta tggtggaaaa attgtgacca caacacgtct cctctatggc 180 tgcagcaaat tgtgagatgg agaagcctct tctaaattcc tctgccacct caagaatact 240 ggtgatggga gccacaggtt acattggccg ttttgttgcc caagaagctg ttgctgctgg 300 tcatcctacc tatgctctta tacgcccgtt tgctgcttgt gacctggcca aagcacagcg 360 cgtccaacaa ttgaaggatg ccggggtcca tatcctttat gggtctttga gtgatcacaa 420 cctcttagta aatacattga aggacatggg ccgttgttat ctctaccatt ggag 474 < 210 > 69 < 211 > 474 < 212 > DNA < 213 > Pinus radiata < 400 > 69 gcaagatagg ttttattctt ctggagttgg gtgaggcttg gaaatttaag taaaaagggt 60 gcatagcaat taagcagttg cagccatggc ggtctgtgga actgaagtag ctcatactgt 120 gctgcagaca gctctatgta tggtggaaaa attgtgacca caacacgtct cctctatggc 180 tgcagcaaat tgtgagatgg agaagcctct tctaaattcc tctgccacct caagaatact 240 ggtgatggga gccacaggtt acattggccg ttttgttgcc caagaagctg ttgctgctgg 300 tcatcctacc tatgctctta tacgcccgtt tgctgcttgt gacctggcca aagcacagcg 360 cgtccaacaa ttgaaggatg ccggggtcca tatcctttat gggtctttga gtgatcacaa 420 cctcttagta aatacattga aggacatggg ccgttgttat ctctaccatt ggag 474 < 210 > 70 < 211 > 608 < 212 > DNA < 213 > Pinus radiata < 400 > 70 22 tgatggaaga cattgatagt agcatgaaaa ccatcagtaa agaaattgtt ccaaggtgaa 60 gaagtcagtt gctccagcag aaccttttta gcaattgttt ttgtatcctt tttgcctttg 120 aatatgtaat ccataaactt atgcaggaag tgcctcgtgc cgaattcggc acgagaatca 180 ctgaccttca aatatttatt ccaattctaa tatctctact cgctgtctac ctgatttttc 240 caacttgaca agtggcgaac gggttggaca tggccaacag cagcaagatt ctgattattg 300 gaggaacagg ctacattggt cgtcatataa ccaaagccag ccttgctctt ggtcatccca 360 cattccttct tgtcagagag acctccgctt ctaatcctga gaaggctaag cttctggaat 420 ccttcaaggc ctcaggtgct attatactcc atggatcttt ggaggaccat gcaagtcttg 480 tggaggcaat caagaaagtt gatgtagtta tctcggctgt caagggacca cagctgacgg 540 atcaaacagg atatttatcc agggtattta aagggaggtt ggaacccatc aagaagggtt 600 ttggccaa 608 < 210 > 71 < 211 > 1474 < 212 > DNA < 213 > Pinus radiata < 400 > 71 gaattcggca cgagaaaacg tccatagctt ccttgccaac tgcaagcaat acagtacaag 60 agccagacga tcgaatcctg tgaagtggtt ctgaagtgat gggaagcttg gaatctgaaa 120 aggatatgca aaactgttac ccagtggcca gctcgggact tacacttaca cttgtcccct 180 atctcagaaa gaaaggacct gaggatgtaa ttgtaaaggt catttactgc ggaatctgcc 240 actctgattt agttcaaatg cgtaatgaaa tggacatgtc tcattaccca atggtccctg 300 ggcatgaagt ggtggggatt gtaacagaga ttggcagcga ggtgaagaaa ttcaaagtgg 360 gagagcatgt aggggttggt tgcattgttg ggtcctgtcg cagttgcggt aattgcaatc 420 agagcatgga agcaagagga acaatactgc tttggaccta caatgatgtg aaccatgacg 480 gcacacctac tcagggcgga tttgcaagca gtatggtggt tgatcagatg tttgtggttc 540 gaatcccgga gaatcttcct ctggaacaag cggcccctct gttatgtgca ggggttacag 600 ttttcagccc aatgaagcat ttcgccatga cagagcccgg gaagaaatgt gggattttgg 660 gtttaggagg cgtggggcac atgggtgtca agcctttgga agattgccaa ctccacgtga 720 cggttatcag ttcgtctgat aaaaagaaag aagaagccat ggaagtcctc ggcgccgatg 780 cttatcttgt tagcaaggat actgaaaaga tgatggaagc agcagagagc ctagattaca 840 taatggacac cattcca gtt gctcatcctc tggaaccata tcttgccctt ctgaagacaa 900 atggaaagct agtgatgctg ggcgttgttc cagagccgtt gcacttcgtg actcctctct 960 taatacttgg gagaaggagc atagctggaa gtttcattgg cagcatggag gaaacacagg 1020 tttctgtgca aaactctaga gagaagaagg tatcatcgat gattgaggtt gtgggcctgg 1080 actacatcaa cacggccatg gaaaggttgg agaagaacga tgtccgttac agatttgtgg 1140 tggatgttgc tagaagcaag ttggataatt agtctgcaat caatcaatca gatcaatgcc 1200 tgcatgcaag atgaatagat ctggactagt agcttaacat gaaagggaaa ttaaattttt 1260 atttaggaac tcgatactgg tttttgttac tttagtttag cttttgtgag gttgaaacaa 1320 ttcagatgtt tttttaactt gtatatgtaa agatcaattt ctcgtgacag taaataataa 1380 tccaatgtct tctgccaaat taatatatgt attcgtattt ttatatgaaa aaaaaaaaaa 1440 aaaaaaaaaa aaaaaaaaaa aaaa aaaaaaaaaa 1474 < 210 > 72 < 211 > 1038 < 212 > DNA < 213 > Pinus radiata < 400 > 72 gaattcggca cgagagaggg ttatatatct tgattctgac ctgattgtcg tcgacgacat 60 tgccaagctc tgggccacgg atttggaatc tcgtgtcctc ggggcaccag agtactgcaa 120 ggcgaatttc acaaagtatt tcaccgataa tttctggtgg gatcccgcat tatccaagac 180 aaaaaaccct ctttgaggga gctacttcaa cacaggcgta atggtgatcg atcttgaaaa 240 ggggaattca atggcgggca caagaaagat cgaaatctgg atggacatac agaaggaacg 300 ccgtatctat gagctcggat cattaccgcc atttttactg gtatttgctg gtttggttaa 360 gcaagtcgat catcgttgga atcagcacgg tttaggcgga gataatttgc aaggcctttg 420 23 ccgagatctt caccctggac ctgtcagttt gttgcattgg agtggtaagg gcaaaccttg 480 gctacgcctg gaatgccaag cggacttgcc ctctggatac tttatgggct ccttatgatc 540 tttatcgatc aacgtattac ctaaatgggt gagagagcct ctctcctcgg ggtgcttttt 600 atcgaattaa acctgatttg ataaaatgcc aaatagaact ttacgcctat gcatctttca 660 gttttgaatt tcaattctgg taacgaatag aagaaaacaa tagcacagcc acaggcagga 720 caaatccatc atgagggacc aatcgtttga atttagta.tt aataaggttg ttccatataa 780 cgcctgtgaa gaatgatatt gtggactgat ctatttatat ttgtactgcc atgccatcct 840 cagccagcag agaggcaagc aatgccgctg caagtcatgt agggaaggcg ttgtgaactc 900 aattttcggc gactgtacag gatgtaaatt tttggaacat taatatcatt atgataagtt 960 cctgaaccaa caactgtata ataccttata aatgtatctg caactccatt tttgcataaa 1020 aaaaaaaaaa aaaaaaaa 1038 < 210 > 73 < 211 > 372 < 212 > DNA < 213 > Pinus radiata < 400 > 73 ctaggggtct tggggggttc ctgatgccca attgttgctg tgcttggcat gaacccaaaa 60 catgcaagag atctgtagtc agtagtcttg ttggatctat agcttttaga aaagagtcac 120 gtccttttag ggtaacatca ttccaaccat atccagttcc accaccggct acaccttcaa 180 cgggaggagg agcaagatat tcagcattgc tttgggcacc agatggatag gcattatttt 240 ccatcggaat tcagccgagc tcgccccctc agtccaatcg tcgtgaaaat ccctcaaaat 300 tggctcgaaa tgggcaattc tcgccaaatt atgggctaca acaggattaa aattgcacag gt aaatctgcca 360 372 < 210 > 74 < 211 > 545 < 212 > DNA < 213 > Pinus radiata < 400 > 74 aaagaattcg gcacgagggc aatccgagcc tagccaacca acttggcagc aaggagcaca 60 gggagttggc gagagaagct gttaggaaat ctttggtatt gttgaaaaat gggaagtcag 120 ccaacaagcc tttgctccct ttggagaaga atgcttccaa ggttcttgtt gcaggaaccc 180 atcctgataa tctgggttat cagtgtggtg gatggacgat ggaatggcaa ggattaagtg 240 gaaacataac cgtaggaact acaattctgg aagctatcaa actagctgtc agcccctcta 300 ctgaagtggt ttatgagcaa aatccagatg ctaactatgt caaaggacaa gggttttcat 360 atgccattgt ggttgtgggt gaggcaccat acgcagaaac gtttggagac aatcttaatt 420 tgaccattcc cctaggcgga ggggacacga ttaagacggt ctgtggctcc ttgaaatgcc 480 ttgtaatctt gatatctgga aggccacttg ttattgaacc ttatcttcca ttggtggatc 540 gtttt 545 < 210 > 75 < 211 > 463 < 212 > DNA < 213 > Pinus radiata < 400 > 75 gcaggtcgac actagtggat ccaaagaatt cggcacgaga aaaaacaaat gttagctagc 60 gctttacgta ctagtgatga tacctggcct tttatacatg gatctgagtt tttatgcagg 120 tgtagagcct tttgttactc tgtatcactg ggacttgcca caagctctgg aggacgaata 180 cggtggattt cgtagcaaaa aagttgtgga tgactttggc atattctcag aagaatgctt 240 tcgtgctttt ggagaccgtg tgaagtactg ggtaactgtt aacgaaccgt tgatcttctc 300 atatttttct tacgatgtgg ggcttcacgc accgggccgc tgttcgcctg gatttggaaa 360 ctgcactgcg ggaaattcag cgacagagcc ttatattgta gcccataaca tgcttcttgc 420 acatagtacc gctgttaaaa atatatagca taaataccca ggg 463 24 < 210 > 76 < 211 > 435 < 212 > DNA < 213 > Pinus radiata < 400 > 76 atccaaagaa acactagtgg ttcggcacga ggctaccatc ttccctcata atattgggct 60 tggagctacc agggatcctg atctggctag aagaataggg gctgctacgg ctttggaagt 120 tcgagctact ggcattcaat acacatttgc tccatgtgtt gctgtttgca gagatcctcg 180 atggggccgc tgctatgaga gctacagtga ggatccaaaa ccatgactga attgtcaagg 240 gattatcgtt ggcctgcaag ggaatcctcc tgctaattct acaaaagggg ggccttttat 300 agctggacag tcaaatgttg cagcttgtgc taagcatttt gtgggttatg gtggaacaac 360 gatgagaata caaaggtatc caactatcaa atactgttat gggttatttc aacattccaa 420 attaccccca atttt 435 < 210 > 77 < 211 > 451 < 212 > DNA < 213 > Pinus radiata < 400 > 77 cgagcctaga gaattcggca attctatggt gaaaattgtt gggacaaggc tgcccaagtt 60 tacaaaggaa cagtcccaaa tggttaaagg ttcaatagac tatctaggcg ttaaccaata 120 cactgcttat tacatgtatg atcctaaaca acctaaacaa aatgtaacag attaccagac 180 tggactggaa tacaggcttt gcatatgctc gcaatggagt gcctattgga ccaagggcga 240 actccaattg gctttacatt gtgccttggg gtctatacaa ggccgtcaca tacgtaaaag 300 aacactatgg aaatccaact atgattctct ctgaaaatgg aatggacgac ctggaaacgt 360 gacacttcca gcaggactgc atgataccat caggggtaac tactataaaa gctatttgca 420 aaatttgatt aatgcacgtg aatgaccggg g 451 < 210 > 78 < 211 > 374 < 212 > DNA < 213 > Pinus radiata < 400 > 78 agcagtacta ctgctctgca tgcacagcaa ggcctgctta actgaaaaca gagcgctgag 60 cgctcaagca cttgaggaaa ttgctgaggc caccgtttat ctaaatagcg caacataggg 120 cttcagaaaa atggcaatgg cacaagcatt cagaggccgt gtcttgcaag ctgcccgttt 180 gctccgccgc aacattctgc cggaggataa aagctttgga tccgctgctt ctcctagacg 240 agctcttagc ctgctctcat caaaagcctt catctctttc tctgttgaac ggcatcggct 300 aattcaacaa agctgctaca ttgtgttgca atctcgaaac ttttctgcaa aaggtaaaaa 360 374 gacaggacaa GTCT < 210 > 79 < 211 > 457 < 212 > DNA < 213 > Pinus radiata < 400 > 79 gaagaatgga agagattaat ggtgataacg cagtaaggag gagctgcttt cctccaggtt 60 tcatgtttgg gatagcaact tctgcttatc agtgtgaagg agctgccaac gaaggtggaa 120 aaggcccaag catctgggac tcattttcac gaacaccagg caaaattctt gatggaagca 180 acggtgatgt agcagtggat cagtatcatc gttataaggc agatgtaaaa ctgatgaaag 240 atatgggcgt ggctacctac agattctcga tttcatggcc tcgtatattt ccaaagggaa 300 aaggagagat caatgaggaa ggagtagcct attacaataa cctcatcaat gaactcctcc 360 agaatggaat ccaagcgtct gtcaactttg tttcactggg atactcccca gtctctggag 420 gatgaatatg gcggatttct gaggccaacc attgtga 457 < 210 > 80 < 211 > 346 < 212 > DNA < 213 > Pinus radiata < 400 > 80 ggtgtgatgg caggaattcc agtcctaagg ccattttgca tctgtttgct ttcagtctac 60 atgctgcaca ttgtagctgc agtagcttca ccaaggctag gtagaagcag cttcccaagg 120 ggtttcaaat ttggtgcagg gtcatctgct tatcaggcgg aaggagctgc tcatgagggt 180 ggcaaaggcc caagcatttg ggatacattc tcccacactc caggtaaaat cgctgatggg 240 tgttgcagta aatattggga gatcaatacc accgttataa ggaagatgtg cagcttctca 300 aatacatggg aatggacgtc tatcgtttct ctatctcctg gtcacg 346 < 210 > 81 < 211 > 957 < 212 > DNA < 213 > Pinus radiata < 400 > 81 gaattcggca cgagaaagcc ctagaatttt ttcagcatgc tatcacagcc ccagcgacaa 60 ctttaactgc aataactgtg gaagcgtaca aaaagtttgt cctagtttct ctcattcaga 120 ctggtcaggt tccagcattt ccaaaataca cacctgctgt tgtccaaaga aatttgaaat 180 cttgcactca gccctacatt gatttagcaa acaactacag tagtgggaaa atttctgtat 240 tggaagcttg tgtcaacacg aacacagaga agttcaagaa tgatagtaat ttggggttag 300 tcaagcaagt tttgtcatct ctttataaac gagattgaca ggaatattca cagacatatc 360 tgaccctctc tcttcaagac atagcaagta cggtacagtt ggagactgct aagcaggctg 420 aactccatgt tctgcagatg attcaagatg gtgagatttt tgcaaccata aatcagaaag 480 atgggatggt gagcttcaat gaggatcctg aacagtacaa aacatgtcag atgactgaat 540 atatagatac tgcaattcgg agaatcatgg cactatcaaa gaagctcacc acagtagatg 600 agcagatttc gtgtgatcat tcctacctga gtaaggtggg gagagagcgt tcaagatttg 660 ttttgatact acatagatga gttccccaga agttcacaaa atgatgtaaa tatgtaacaa 720 gactcgctta tcatcttcaa tattcattac tttctatgtg aattgatagt ctgttaacaa 780 gctgagtcca tagtactgtg ctcggtatta gaaaggatct tcacttgaca tgccatcaaa 840 aaaatctcaa atttctc gat gtctagtctt gattttgatt atgaatgcga cttttagttg 900 tgacatttga gcacctcgag tgaactacaa agttgcatgt taaaaaaaaa aaaaaaa 957 < 210 > 82 < 211 > 489 < 212 > DNA < 213 > Pinus radiata < 400 > 82 gcaggtcgac actagtggat ccaaagaatt cggcacgaga taagactaat tttccagaca 60 atcctccatt cccattcaat tacactggta ctccacccaa taatacacag gctgtgaatg 120 ggactagagt aaaagtcctt ccctttaaca attgattctt caactgttca caagacacca 180 gcatcttcag cacagacagc caccctgtcc atctccatgg tttcaatttc tttgtggtgg 240 gccaaggtgt tggaaactac aatgaatcaa cagatgcacc aaattttaac ctcattgacc 300 ctgtcgagag aaacactgtg ggagttccca aaggaggttg ggctgctata agatttcgtg 360 cagacaatcc aggggtttgg ttcatgcact gtcatttgga ggttcacaca tcgtggggac 420 tgaaaatggc gtgggtagta aagaacggaa aagggcccat cgattttcca cccgggtggg 480 taccagtaa 489 < 210 > 83 < 211 > 471 26 < 212 > DNA < 213 > Pinus radiata < 400 > 83 gaattcggca cgagaaaacc ttttcagacg aatgttctga tgctcggccc cggccagaca 60 acagacatac ttctcactgc caatcaggct acaggtagat actacatggc tgctcgagca 120 tattccaacg ggcaaggagt tcccttcgat aacaccacta ccactgccat tttagaatac 180 gagggaagct ctaagacttc aactccagtc atgcctaatc ttccattcta taacgacacc 240 aacagtgcta ctagcttcgc taatggtctt agaagcttgg gctcacacga ccacccagtc 300 ttcgttcctc agagtgtgga ggagaatctg ttctacacca tcggtttggg gttgatcaaa 360 tgtccggggc agtcttgtgg aggtccaacg gatcaagatt tgcagcaagt atgaatacat 420 atcatttgtc ccgcaaccac ttcttccaat ccttcaagct cagcattttg g 471 < 210 > 84 < 211 > 338 < 212 > DNA < 213 > Pinus radiata < 400 > 84 gagagatcca gttcggcact tgttgagaca tttctttcaa gtgagtagta ttagtttgat 60 atctctttca ggaatatatc gtgcttgcag gatctttagt ttctgcaaca atgtcgttgc 120 aatcagtgcg tctatcttct gctctccttg ttttgctact agcatttgtt gcttacttag 180 ttgctgtaac aaacgcagat gtccacaatt ataccttcat tattagaaag agacagttac 240 aataagcgta caggctatgc taatcgccac cgtcaatggc agctaccagg cccaactatt 300 catgtacgtg atggagacgt tgttaattat caaagctt 338 < 210 > 85 < 211 > 1229 < 212 > DNA < 213 > pinus radiata < 400 > 85 agagaaataa ttatatttgt aaatttaagt ctacgtttat taaaaaacta caaccctaaa 60 aaaacaagca tgcaggagaa tgctgtctac tgaagcttac aaatcaaatc cctgcgatat 120 gtcttttctc gtgccgaatt cggcacgaga agatcttggt tcgagtctct cagctctctc 180 caaaggaatt ttgtgggtca tttgcaggtg aagacaccat ggtgaaggct tatcccaccg 240 taagcgagga gtacaaggct gccattgaca aatgcaagag gaagctccga gctctcattg 300 cagagaagaa ctgtgcgccg atcatggttc gaatcgcatg gcacagcgct gggacttacg 360 atgtcaagac caagaccgga gggcccttcg ggacgatgag atatggggcc gagcttgccc 420 acggtgctaa cagtggtctg gacatcgcag ttaggctcct ggagccaatc aaggaacagt 480 tccccataat cacctatgct gacctttatc agttggctgg tgtggtggct gttgaagtga 540 ccgggggacc tgacattccg ttccatcctg gaagagaaga caagcctgag cctccagaag 600 aaggccgcct tcctgatgct acaaaaggac ctgatcatct gagggatgtt tttggtcaca 660 tggggttgaa tgataaggaa attgtggcct tgtctggtgc ccacaccttg gggasatgcc 720 acaaggagag atctggtttt gaaggaccat ggacctctaa cccccttatc tttgacaact 780 cttacttcac agagcttgtg actggagaga aggaaggcct gcttcagttg ccatctgata 840 aggcactgct tgctgatcct agttttgcag gaagtatgca tttatgttca caggacgaag 900 acgctttctt tgctgactat gcggaagctc acctgaagct ttctgaactt gggtttgctg 960 atgcgtagat tcataccttc tgcagagaca attccttgct agatagcttc GTTT gtatt 1020 tcatctaatc ttttcgatta tatagtcaca tagaagttgg tgttatgcgc catastgata 1080 cttgaaccta cat gtttttg aaaagtatcg atgttcttta aaatgaacat tgaa ACAAC 1140 attttggaat ctggttgtgt tctatcaagc gcatatttta atcgaatgct TGCTs cctgt 1200 aataaaataa taaaaaaaaa aaaaaaaaa 1229 < 210 > 86 < 211 > 1410 < 212 > DNA 27 < 213 > Pinus radiata < 400 > 86 gaagatgggg ctgtgggtgg tgctggcttt ggcgctcagt gcgcactatt gcagtctcag 60 gcttacaatg tggtaagttc aagcáatgct actgggagtt acagtgagaa tggattggtg 120 atgaattact atggggactc ttgccctcag gctgaagaga tcattgctga acaagtacgc 180 ctgttgtaca aaagacacaa gaacactgca ttctcatggc ttagaaatat tttccatgac 240 tgtgctgtgg agtcatgtga tgcatcgctt ctgttggact cagcatatca caacaaggaa 300 gaaaaggaca ctgacaggag cttcggcctc cgcaacttta ggtatttgga taccatcaag 360 gaagccgtgg agagggagtg ccccggggtc gtttcctgtg cagatatact cgttctctct 420 gccagagatg gcgttgtatc gttgggagga ccatacattc ccctgaagac gggaagaaga 480 gatggacgga agagcagagc agatgtggtg gagaattacc tgcccgatca caatgagagc 540 atctccactg ttctgtctcg cttcaaagcc atgggaatcg acacccgtgg ggttgttgca 600 ctgctggggg ctcacagcgt ggggaggact agctggtgca cactgcgtga caggctgtac 660 ccggaagtag atccgacact ggaccctggg cacgtggagc acatgaagca caagtgcccg 720 gacgcgatcc ccaacccgaa ggcagtgcag tatgtgcgga acgaccgggg aacgcctatg 780 acaactacta aagctggaca atgaacaaca cgtgaacctg aggggctcct aatagtggac 840 cagcaactgt atgcag attc gaggaccagg ccgtatgtga agaagatggc aaaaagccag 900 gaatacttct tcaaatactt ctcccgggcg ctcaccatcc tctctgagaa caatcctctc 960 accggcgctc gaggagaaat ccgt.cggcag tgctcgctca aaaacaaatt gcacacaaaa 1020 agcaagcgtt gagcgatagc tcaatgccgc agtggtggga gtgatagcgt gatgccacag 1080 tggtgggcat ttcatatata aattgcagtt tgcgttttta ttagataatc ataatggtgt 1140 tgccctgcga ggtgtgacta atcacatcga tgaaccacaa ccgaaccgtg gaacagtagg 1200 tatgtaagca cttattccct ttataagcaa gaacctttta aaaagacaat cctgtctgtt 1260 attctagtat aattttgtca tcagttaaag ttgctcatct gataataact ggaaacggta 1320 aaatatgaca actacgtatc ttctttggtc atctgataat aaccggaaac gataaaatat 1380 gacaactaca tatattcttt aaaaaaaaaa 1410 < 210 > 87 < 211 > 687 < 212 > DNA < 213 > Pinus radiata < 400 > 87 gtagtttcgt tttacaacaa tctcaggttt tgaatctcag aatagttgcg aaaggaagcg 60 atgacgaagt acgtgatcgt tagctccatt gtgtgtttct ttgtatttgt ttctgcgtgc 120 ataatttctg tcaatggatt agttgtccat gaagatgatc tgtcaaagcc tgtgcatggg 180 ctttcgtgga cattttataa ggacagttgc cccgacttgg aggccatagt gaaatcggta 240 cttgagccgg cgttggacga agatatcact caggccgcag gcttgctgag acttcatttc 300 catgactgtt ttgtgcaggg ttgcgatggg tccgtgttgc tgacaggaac taaaagaaac 360 aacaggctca cccagtgagc gccaaactta acactaagag cccgggcctt gcagctgatc 420 gacgaaatta aaaccgctgt agaagctagc tgcagtgggg ttgtaacttg tgcagacatt 480 ctggctttgg ctgctcgtga ctccgtccgc tcaggaggcc caaaatttcc agtaccactt 540 ggccgcagag atagcctaaa gtttgccagt caatccgtag ttctcgccaa tataccaact 600 atttgacaca ccaactttaa gctgatgaac atttttggct ccaaaggatt cagtttggcc 660 687 gaaatggttg ctcttcaggt ggcacac < 210 > 88 < 211 > 688 < 212 > DNA < 213 > Pinus radiata < 400 > 88 gtagtttcgt tttacaacaa tctacaggtt ttgaatctca gaatagttgc gaaaggaagc 60 gatgacgaag tacgtgatcg ttagctccat tgtatgtttc tttgtatttg tttctgcgtg 120 cataatttct gtcaatggat tagttgtcca tgaagatgat ctgtcaaagc ctgtgcatgg 180 gctttcgt'gg acattttata aggacagttg ccccgacttg gaggccatag tgaaatcggt 240 28 acttgagccg gcgttggacg aagatatcac tcaggccgca ggttgctgag acttcatttc 300 catgactgtt ttgtgcaggg ttgcgatggg tccgtgttgc tgacaggaac taaaagaaac 360 ccccgagtga gcaacaggct cagccaaact taacactaag agcccgggcc ttgcagctga 420 tcgacgaaat taaaaccgct gtagaagcta gctgcagtgg ggttgtaact tgtgcagaca 480 ttctggcttt ggctgctcgt gactccgtcg ctcaggaggc ccaaaatttc cagtaccact 540 gatagcctaa tggccgcaga agtttgccag tcaatccgta gttctcgcca atataccaac 600 tccaacttta aatttgacac agctgatgaa catttttggc tccaaaggat tcagtttggc 660 cgaaatggtt gctcttcagg tggcacac 688 < 210 > 89 < 211 > 278 < 212 > DNA < 213 > Pinus radiata < 400 > 89 tcttcgaatt ctctttcacg actgcttcgt taatggctgc gatggctcga tattgttaga 60 tgataactca acgttcaccg gagaaaagac tgcaggccca aatgttaatt ctgcgagagg 120 atagacacca attcgacgta tcaaaactca agttgaggca gcctgcagtg gtgtcgtgtc 180 atgtgccgac attctcgcca ttgctgcacg cgattcagtc gtccaactgg ggggcccaac 240 cttctgggag atggacggta tccgatca aaaagacgga 278 < 210 > 90 < 211 >; 1960 < 212 > DNA < 213 > Pinus radiata < 400 > 90 gttttccgcc atttttcgcc tgtttctgcg gagaatttga tcaggttcgg attgggattg 60 aatcaattga aaggttttta ttttcagtat ttcgatcgcc atggccaacg gaatcaagaa 120 ggtcgagcat ctgtacagat cgaagcttcc cgatatcgag atctccgacc atctgcctct 180 tcattcgtat tgctttgaga gagtagcgga attcgcagac agaccctgtc tgatcgatgg 240 ggcgacagac agaacttatt gcttttcaga ggtggaactg atttctcgca aggtcgctgc 300 cggtctggcg aagctcgggt tgcagcaggg gcaggttgtc atgcttctcc ttccgaattg 360 catcgaattt gcgtttgtgt tcatgggggc ctctgtccgg ggcgccattg tgaccacggc 420 caatcctttc tacaagccgg gcgagatcgc caaacaggcc aaggccgcgg gcgcgcgcat 480 catagttacc ctggcagctt atgtggagaa actggccgat ctgcagagcc acgatgtgct 540 atcgatgatg cgtcatcaca ctcccaagga aggttgccaa ttctgaccga catatttccg 600 agccgacgaa acccaatgcc cggccgtgac aatccacccg gacgatgtcg tggcgttgcc 660 ctattcttcc ggaaccacgg ggctccccaa gggcgtgatg ttaacgcaca aaggcctggt 720 gtccagcgtt gcccagcagg tcgatggtga aaatcccaat ctgtatttcc attccgatga 780 cgtgatactc tgtgtcttgc ctcttttcca catctattct ctcaattcgg ttctcctctg 840 cgcgctcaga gccgggg ctg cgaccctgat tatgcagaaa ttcaacctca cgacctgtct 900 cagaaataca ggagctgatt aggttaccgt tgccccaatt gtgcctccaa ttgtcctgga 960 catcacaaag agccccatcg tttcccagta cgatgtctcg gccgtccgga taatcatgtc 1020 cctctcggga cggcgctgcg aggaactcga agatgccctc agagagcgtt ttcccaaggc 1080 cattttcggg cagggctacg gcatgacaga agcaggcccg gtgctggcaa tgaacctagc 1140 cttcgcaaag aatcctttcc ccgtcaaatc tggctcctgc ggaacagtcg tccggaacgc 1200 tcaaataaag atcctcgata cagaaactgg cgagtctctc ccgcacaatc aagccggcga 1260 aatctgcatc cgcggacccg aaataatgaa aggatatatt aacgacccgg aatccacggc 1320 cgctacaatc gatgaagaag gctggctcca gtcgggtaca cacaggcgac ttgacgatga 1380 cgaagaaatc ttcatagtcg acagagtaaa ggagattatc aaatataagg gcttccaggt 1440 ggctcctgct gagctggaag ctttacttgt tgctcatccg tcaatcgctg acgcagcagt 1500 cgttcctcaa aagcacgagg aggcgggcga ggttccggtg gcgttcgtgg tgaagtcgtc 1560 ggaaatcagc gagcaggaaa tcaaggaatt cgtggcaaag caggtgattt tctacaagaa 1620 aatacacaga gtttactttg tggatgcgat tcctaagtcg ccgtccggca agattctgag 1680 aaaggatttg agaagcagac tggc agcaaa atgaaaatga atttccatat gattctaaga 1740 ttcctttgcc gataattata ggattccttt ctgttcactt ctatttatat aataaagtgg 1800 29 tgcagagtaa gcgccctata aggagagaga gagcttatca attgtatcat atggattgtc 1860 aacgccctac actcttgcga tcgctttcaa tatgcatatt actataaacg atatatgttt 1920 tttttataaa tttactgcac ttctcgttca aaaaaaaaaa 1960 < 210 > 91 < 211 > 701 < 212 > DNA < 213 > Pinus radiata < 400 > 91 gtagtttcgt tttacaacaa tctcaggttt tgaatctcag aatagttgcg aaaggaagcg 60 atgacgaagt acgtgatcgt tagctccatt gtatgtttct ttgtatttgt ttctgcgtgc 120 ataatttctg tcaatggatt agttgtccat gaagatgatc tgtcaaagcc tgtgcatggg 180 ctttcgtgga cattttataa ggacagttgc cccgacttgg aggccatagt gaaatcggta 240 cttgagccgg cgttggacga agatatcact caggccgcag gttgctgaga cttcatttcc 300 atgactgttt tgtgcagggt tgcgatgggt ccgtgttgct gacaggaact aaaagaaacc 360 aacaggctca ccgagtgagc gccaaactta acactaagag cccgggcctt gcagctgatc 420 gacgaaatta aaaccgctgt agaagctagc tgcagtgggg ttgtaacttg tgcagacatt 480 ctggctttgg ctgctcgtga ctccgtcgct caggaggccc aaaatttcca gtaccacttg 540 gccgcagaga tagcctaaag tttgccagtc aatccgtagt tctcgccaat ataccaactc 600 caactttaaa tttgacacag ctgatgaaca tttttggctc caaaggattc agtttggccg 660 aaatggttgc tctttcaggt ggacacacaa tcggcattgg t 701 < 210 > 92 < 211 > 626 < 212 > DNA < 213 > Pinus radiata < 400 > 92 gttgcaggtc ggggatgatt tgaatcacag aaacctcagc gattttgcca agaaatatgg 60 caaaatcttt ctgctcaaga tgggccagag gaatcttgtg gtagtttcat ctcccgatct 120 cgccaaggag gtcctgcaca cccagggcgt cgagtttggg tctcgaaccc ggaacgtggt 180 gttcgatatc ttcacgggca aggggcagga catggtgttc accgtctatg gagatcactg 240 gagaaagatg cgcaggatca tgactgtgcc tttctttacg aataaagttg tccagcacta 300 cagattcgcg tgggaagacg agatcagccg cgtggtcgcg gatgtgaaat cccgcgccga 360 gtcttccacc tcgggcattg tcatccgtag cgcctccagc tcatgatgta taatattatg 420 tataggatga tgttcgacag gagattcgaa tccgaggacg acccgctttt cctcaagctc 480 aaggccctca acggagagcg aagtcgattg gcccagagct ttgagtacaa ttatggggat 540 ttcattccca gtcttaggcc cttcctcaga ggttatcaca gaatctgcaa tgagattaaa 600 gagaaacggc tctctctttt caagga 626 < 210 > 93 < 211 > 660 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (1) ... (660) < 223 > n in all cases indicates insecure < 400 > 93 acccagtgac cttcaggcct gagagatttc ttgaggaaga tgttgatatt aagggccatg 60 attacaggct actgccattg gtgcagggcg caggatctgc cctggtgcac aattgggtat 120 taatttagtt cagtctatgt tgggacacct gcttcatcat ttcgtatggg cacctcctga 180 gggaatgaag gcagaagaca tagatctcac agagaatcca gggcttgtta ctttcatggc 240 caagcctgtg caggccattg ctattcctcg attgcctgat catctctaca agcgacagcc 300 actcaattga tcaattgatc tgatagtaag tttgaatttt gttttgatac aaaacgaaat 360 aacgtgcagt ttctcctttt ccatagtcaa catgcagctt tctttctctg aagcgcatgc 420 agctttcttt ctctgaagcc caacttctag caagcaataa ctgtatattt tagaacaaat 480 acctattcct caaattgagw atttctctgt aggggnngnt tttgcaagna aattgtgcaa 540 atagtaaagt ttantttagg gnattttaat agtcctangt aanangnggn aatgntagng 600 ggcattnaga aanccctaat agntgttggn ggnngnta.gg ntttttnacc aaaaaaaaaa 660 < 210 > 94 < 211 > 1012 < 212 > DNA < 213 > Pinus radiata < 400 > 94 ctttgaggca acctacattc attgaatccc aggatttctt cttgtccaaa caggtttaag 60 gaaatggcag gcacaagtgt tgctgcagca gaggtgaagg ctcagacaac ccaagcagag 120 gagccggtta aggttgtccg ccatcaagaa gtgggacaca aaagtctttt gcagagcgat 180 gccctctatc agtatatatt ggaaacgagc gtgtaccctc gtgagcccga gccaatgaag 240 gagctccgcg aagtgactgc caagcatccc tggaacctca tgactacttc tgccgatgag 300 ggtcaatttc tgggcctcct gctgaagctc attaacgcca agaacaccat ggagattggg 360 gtgtacactg gttactcgct tctcagcaca gcccttgcat tgcccgatga tggaaagatt 420 ctagccatgg acatcaacag agagaactat gatatcggat tgcctattat tgagaaagca 480 ggagttgccc acaagattga cttcagagag ggccctgctc tgccagttct ggacgaactg 540 cttaagaatg aggacatgca tggatcgttc gattttgtgt tcgtggatgc ggacaaagac 600 actaccacaa aactatctaa gatctggtga gcgtctgatc tctgattgca aggttggagg 660 ccctgtggaa tatgacaaca cggatctgtg gtggctccac ccgatgctcc cctgaggaaa 720 tatgtgagat attacagaga tttcgtgatg gagctaaaca aggcccttgc tgtcgatccc 780 cgcattgaga tcagccaaat cccagtcggt gacggcgtca ccctttgcag gcgtgtctat 840 tgaaaacaat ccttgtt tct gctcgtctat tgcaagcata aaggctctct gattataagg 900 agaacgctat aatatatggg gttgaagcca tttgttttgt ttagtgtatt gataataaag 960 tagtacagca tatgcaaagt ttgtatcaaa aaaaaaaaaa aaaaaaaaaa aa 1012 < 210 > 95 < 21i > 1460 < 212 > DNA < 213 > Pinus radiata < 400 > 95 aaaacgtcca tagcttcctt gccaactgca agcaatacag tacaagagcc agacgatcga 60 gtggttctga atcctgtgaa agtgatggga agcttggaat ctgaaaaaac tgttacagga 120 tatgcagctc gggactccag tggccacttg tccccttaca cttacaatct cagaaagaaa 180 ggacctgagg atgtaattgt aaaggtcatt tactgcggaa tctgccactc tgatttagtt 240 atgaaatgga caaatgcgta catgtctcat tacccaatgg tccctgggca tgaagtggtg 300 gggattgtaa cagagattgg cagcgaggtg aagaaattca aagtgggaga gcatgtaggg 360 gttggttgca ttgttgggtc ctgtcgcagt tgcggtaatt gcaatcagag catggaacaa 420 tactgcagca agaggatttg gacctacaat gatgtgaacc atgacggcac acctactcag 480 ggcggatttg caagcagtat ggtggttgat cagatgtttg tggttcgaat cccggagaat 540 cttcctctgg aacaagcggc ccctctgtta tgtgcagggg ttacagtttt cagcccaatg 600 aagcatttcg ccatgacaga gcccgggaag aaatgtggga ttttgggttt aggaggcgtg 660 gggcacatgg gtgtcaagat tgccaaagcc tttggactcc acgtgacggt tatcagttcg 720 tctgataaaa agaaagaaga agccatggaa gtcctcggcg ccgatgctta tcttgttagc 780 aaggatactg aaaagatgat ggaagcagca gagagcctag attacataat ggacaccatt 840 ccagttgctc atcctc TGGA accatatctt gcccttctga agacaaatgg aaagctagtg 900 atgctgggcg ttgttccaga gccgttgcac ttcgtgactc ctctcttaat acttgggaga 960 aggagcatag ctggaagttt cattggcagc atggaggaaa cacaggaaac tctagatttc 1020 atcgatgatt tgtgcagaga agaaggtatc gaggttgtgg gcctggacta catcaacacg 1080 ggttggagaa gccatggaaa cgttacagat gaacgatgtc tgttgctaga ttgtggtgga 1140 agcaagttgg ataattagtc tgcaatcaat caatcagatc aatgcctgca tgcaagatga 1200 31 atagatctgg actagtagct taacatgaaa gggaaattaa atttttattt aggaactcga 1260 tactggtttt tgttacttta gtttagcttt tgtgaggttg aaacaattca gatgtttttt 1320 taacttgtat atgtaaagat caatttctcg tgacagtaaa taataatcca atgtcttctg 1380 ccaaattaat atatgtattc gtatttttat atgaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1440 1460 < 210 > 96 < 211 > 788 < 212 > DNA < 213 > Pinus radiata < 400 > 96 ataagactct cgagaaggtc tatgtccccg aggagggggt tctcaactta atcgcagaga 60 caccatttcc agctaatatt ggcatagcaa ttggtcattc tatctttgtc aaaggagatc 120 aaacaaattt tgaaattgga cctaatggtg tggaggctag tcagctatac ccagatgtga 180 aatataccac tgtcgatgag tacctcagca aatttgtgtg aagtatgcga gattctcttc 240 cacatgcttc agagatacat aacagtttca atcaatgttt gtcctaggca tttgccaaat 300 tgtgggttat aatccttcgt aggtgtttgg cagaacagaa cctcctgttt agtatagtat 360 gacgagctag gcactgcaga tccttcacac ttttctcttc cataagaaac aaatactcac 420 ctgtggtttg ttttctttct ttctggaact ttggtatggc aataatgtct ttggaaaccg 480 cttagtgtgg aatgctaagt actagtgtcc agagttctaa gggagttcca aaatcatggc 540 tgatgtgaac tggttgttcc agagggtgtt tacaaccaac agttgttcag tgaataattt 600 tgttagagtg tttagatcca tctttacaag gctattgagt aaggttggtg ttagtgaacg 660 gaatgatgtc aaatcttgat gggctgactg actctcttgt gatgtcaaat cttgatggat aaaaaaaaaa aaaaaaaaaa 720 aaaaaaaaaa tcaatggtaa tgtgtctttt aaaaaaaaaa aaaaaaaa 780 788 < 210 > 97 < 211 > 577 < 212 > DNA < 213 > Pinus radiata < 400 > 97 gcccgacggc cacttgttgg acgccatgga agctctccgg aaagccggga ttctggaacc 60 gtttaaactg cagcccaagg aaggactggc tctcgtcaac ggcacagcgg tgggatccgc 120 cgtggccgcg tccgtctgtt ttgacgccaa cgtgctgggc gtgctggctg agattctgtc 180 tgcgctcttc tgcgaggtga tgcaagggaa accggagttc gtagatccgt taacccacca 240 gttgaagcac cacccagggc agatcgaagc cgcggccgtc atggagttcc tcctcgacgg 300 tagcgactac gtgaaagaag cagcgcggct gacccgttga tcacgagaaa gcaaaccgaa 360 acaagaccgc tacgctctgc gaacatcgcc acagtggttg gggcctccga tcgaagtcat 420 ccgcgctgct actcactcca tcgagcggga gatcaattcc gtcaacgaca atccgttaat 480 cgatgtctcc agggacatgg ctctccacgg cggcaacttc cagggaacac ccatcggagt 540 ttccatggac aacatgcgaa tctctttggc agccgtc 577 < 210 > 98 < 211 > 492 < 212 > DNA < 213 > Pinus radiata < 400 > 98 tacctggcca accccgtcac gactcacgtc cagagcgccg aacaacacaa ccaggatgtc 60 aattccctcg gcttgatctc cgccagaaag actgccgagg ccgttgagat tttaaagctg 120 atgttcgcta catatctggt ggccttatgc caggcgatcg atctccggca cctggaagaa 180 aacatgcgat ccgttgtgaa gcacgtagtc ttgcaggccg caagaaagac actgtgcact 240 gaagcctcca gcagaagacg cgacaccgga ttttgcgaga aggagctcct gcaagtcatc 300 catcatcagc ccgttttctc gtacatcgac gatcccacaa atccatcata cgcgcttatg 360 ctccaactca gagaagtgct cgtagatgag gctctcaaat catcttgccc agacgggaat 420 32 gacgaatccg atcacaattt gcagcccgct gagagcgctg gagctgctgg aatattaccc 480 aattgggtgt tt 492 < 210 > 99 < 211 > 391 < 212 > DNA < 213 > Pinus radiata < 400 > 99 cgttttccca aaggccattt tcgggcaggg ctacggcgca tgacagaagc aggcccggtg 60 ctggcaatga acctagcctt cgcaaagaat cctttccccg ccaaatctgg ctcctgcgga 120 ggaacgctca acagtcgtcc aataaagatc ctcgattaca ggaactggcg agtctctccc 180 gcacaatcaa gccggcgaaa tctgcatccg cggacccgaa ataatgaaag gatatattaa 240 cgacccggaa tccacggccg ctacaatcga tgaagaaggc tggctccaca caggcgacgt 300 cgggtacatt gacgatgacg aagaaatctt catagtcgac agagtaaagg agattatcaa 360 tataaaggct tccaggtgga tcctgctaat c 391 < 210 > 100 < 211 > 567 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 100 cctaactaga ctgaattttc aataaagaga ttatatacat acacgagcaa agcgctctcc 60 tccagttgtc ttccttcgtt cgctcatctc tcctcgtaca ttattagcat acgacctctt 120 gtatcggacc cggatccgct atcgttaacg tacacacgtt ctagtgctga atggagatgg 180 agagcaccac cggcaccggc aacggccttc acagcctctg cgccgccggg agccaccatg 240 ccgacccact gaactggggg gcggcggcag cagccctcac agggagccac ctcgacgagg 300 tgaagcggat ggtcgaggag taccggaggc cggcggtgcg cctcggcggg gagtccctca 360 cgatagccca ggtggcggcg gtggcgagtc aggagggggt aggggtcgag ctctcggagg 420 cggcccgtcc cagggtcaag gccagcagcg actgggtcat ggagagcatg aacaagggaa 480 ctgacagcta cggggtcaca ccgggttcgg cggcaacttc tcaaccggag gccgaagcaa 540 ggcggtcctt ttcagaagga acttata 567 < 210 > 101 < 211 > 612 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 101 aaagcaacac attgaactct ctctctctct ctctctctct ctctctctct cccccacccc 60 cccttcccaa ccccacccac atacagacaa gtagatacgc gcacacagaa gaagaaaaga 120 aatgcagtca tgggggtttc atcgcactag cgacggttct ggccgtccta acgacatggg 180 cgtggagggc ggtgaactgg gtgtggctga ggccgaagag gctcgagagg cttctgagac 240 agcaaggtct ctccggcaag tcctacacct tcctggtcgg cgacctcaag gagaacttgc 300 ggatgctcaa ggaagccaag tccaagccca tcgccgtctc cgatgacatc aagcctcgtc 360 tcttgccttt cttgcatcaa tccttccaaa cctatggcaa agactcgttc acatggatgg 420 gcccaacacc aagagtgaac attacgaacc cggaacaaat aaaggaggta ttctctaaga 480 tatatgacta tcccaagcca gcctccaatc ccctggtgaa gttgctcgct gatggactcg 540 cgaaccatga gggcgagaaa tgggctcggc accgaaagat tatcaatcca gcattccaca 600 tggagaagtt ga 612 < 210 > 102 < 211 > 455 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 102 tgtctctctc tctctctctc tctgtaaacc accatgctct tcctcactca tctcctagca 60 gttctagggg ttgtgttgct cctgctaatt ctatggaggg caagatcttc tccgaacaaa 120 cccaaaggta ctgccttacc cccggagctg ccgggcgcat ggccgatcat aggccacatc 180 cacttgctgg gcggcgagac cccgctggcc aggaccctgg ccgccatggc ggacaagcag 240 ggcccgatgt ttcggatccg tctcggagtc cacccggcga ccatcataag cagccgtgag 300 gcggtccggg agtgcttcac cacccacgac aaggacctcg cttctcgccc caaatccaag 360 gcgggaatcc acttgggcta cgggtatgcc ggttttggct tcgtagaata cggggacttt 420 tggcgcgaga tgaggaagat caccatgctc gagct 455 < 210 > 103 < 211 > 1866 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 103 cgggctcgtg gctcggctcc ggcgcaagcc gcccttccca ccgggcccga ggggcctccc 60 ggtcatcggg aacatgctca tgatgggcga gctcacccac cgcggcctcg cgagtctggc 120 gaagaagtat ggcgggatct tccacctccg catgggcttc ctgcacatgg ttgccgtgtc 180 gtcccccgac gtggcccgcc aggtcctcca ggtccacgac gggatcttct cgaaccggcc 240 tgccaccatc gcgatcagct acctcacgta tgaccgggcc gacatggcct tcgcgcacta 300 cggcccgttc tggcggcaga tgcggaagct gtgcgtgatg aagctcttca gccggaagcg 360 ggctgagtcg tgggagtcgg tccgcgatga ggtggacacg atggtgcgca ccgtcgcggg 420 cagcgagggg accgccgtga acatcggcga gctcgtgttc gagctcacgc gggacatcat 480 ctaccgcgcg gccttcgcac gagctcgacc gagggccagg acgagttcat cagcatactg 540 caggagttct cgaaattatt tggcgccttc aacatagccg attttatccc gtacctgagc 600 tggatcgatc cgcaagggct caccgccagg cttgtcaagg cgcgccagtc gctggacggg 660 ttcatcgacc acattataga tgatcacatg gacaagaaga gaaacaagac gagttccggt 720 ggaggcgatc aagatgtcga taccgacatg gtcgacgatc tgctggcctt ctacagcgac 780 gaagcgaagg tgaacgagtc cgacgatttg cagaactcga tcaggctaac gagagacaac 840 atcaaggcca tcatca tgga cgtgatgttc ggcgggacgg agactgtggc gtcggctatc 900 gagtgggcca tggcggagct catgcgaagc cccgaggacc tgaagaaggt ccagcaagaa 960 ctcgcggatg tcgtgggcct gtcgaggaga agaccggaga gcgacttcga gaagctgacc 1020 tatctcaagt gctgcctcaa agagaccctc cgcctccacc cgccgatccc gctgctcctc 1080 cacgagacgg cagaggacgc cgtgatctcc ggctaccgca tccccgcacg gtcccgggtc 1140 atgatcaatg catgggccat cgggcgtgac cccggctcgt ggaccgaacc tgacaagttc 1200 aaaccgtccc ggttcctgga gtcaggcatg cccgactaca aggggagcaa cttcgagttc 1260 atccctttcg ggtcgggccg gaggtcgtgc ccagggatgc agctcgggct ctacgcgctc 1320 gacatggccg tggcccacct cctgcactgc ttcacgtggg aactgcccga cgggatgaag 1380 ccgagcgaga tggacatggg cgacgtcttc gggctcaccg cgccgaggtc cacccggctc 1440 gtggcggtgc cgactccgag gttggtgggg gctctatatt gagcaagcaa atggagggtc 1500 gggttggggg gtgcgaggag gggaacgtat ttttcagctc ctggagggct gcaagatttg 1560 gagtgcataa acccatccat acaagggcaa aagagggtgg tgccaaaatg atttgcatgg 1620 atttttcgat ttttgttttg tattataaaa aaggtcaaat aaccgaagag gacaagaaag 1680 acaagaaaaa gaattgagac ggaacttgaa tcaatgttgt tctgttctct ctttctattt 1740 ctt tgtggat attacaagac ttatctcatt tggtgggctt ttcttttctt gtgatttctt 1800 tgatcttgtc atacacaaat aaatatggaa tgaagaaacc tttccatcaa aaaaaaaaaa 1860 aaaaaa 1866 < 210 > 104 < 211 > 519 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 104 cacgagctcg tgagccttcc cggagacaag gccatcttac ttcgcaacaa attgcgtccg 60 cactcctttc tcaagaaacc tagtcatcca agaagcagag cattgcaact gcaaacagcc 120 34 ctcgtacaga aaagcccaaa aggagagaga gagagagaat agaagcatga gtgcatgcac 180 atcacgacgg gaaccaagca tgaagagttc ccagtgaaga tggaaatgaa ttgttcgcca 240 tgctctgata gcactcccct tggtcttgaa ggccaccatc gaactgggga tcctcgaaat 300 actggccgag tgcgggccta tggctccact ttcgcctgct cagattgcct cccgtctctc 360 cgcaaagaac ccggaagccc ccgtaaccct tgaccggatc ctccggtttc tcgccagcta 420 ctccatcctc tcttgcactc tcgcccaaga cacagaag.gc aaccccctga ggctttacgg 480 tttgggaccc aaaagcaaac acttcgtcag agcccatgg 519 < 210 > 105 < 211 > 594 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 105 ccaaccctgg accaggtact tttggcaggc ggtccattgc ccttcaaacc ggtccaaacc 60 ggaccatcac tgtccttata tacgttgcat catgcctgct catagaactt aggtcaactg 120 caacatttct tgatcacaac atattacaat attcctaagc agagagagag agagagagag 180 agagagagag agagagagag tttgaatcaa tggccaccgc cggagaggag agccagaccc 240 aagccgggag gcaccaggag gttggccaca agtctctcct tcagagtgat gctctttacc 300 aatatatttt ggagaccagc gtgtacccaa gagagcctga gcccatgaag gagctcaggg 360 aaaacatcca aaataacagc tggaacataa tgacaacatc agcagacgaa gggcagttct 420 tgaacatgct tctcaagctc atcaacgcca agaacaccat ggagattggt gtcttcactg 480 gctactctct cctcgccacc gctcttgctc ttcctgatga cggaaagatt ttggctatgg 540 acattaacag agagagctat gaacttggcc tgccggtcat ccaaaaagcc ggtg 594 < 210 > 106 < 211 > 407 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 106 ccgttttatt tcctctgatt tcctttgctc gagtctcgcg gaagagagag aagagaggag 60 aggagagaat gggttogacc ggatccgaga cccagatgac cccgacccaa gtctcggacg 120 aggaggcgaa cctcttcgcc atgcagctgg cgagcgcctc cgtgctcccc atggtcctca 180 aggccgccat cgagctcgac ctcctcgaga tcatggccaa ggccgggccg ggcgcgttcc 240 tctccccggg ggaagtcgcg gcccagctcc cgacccagaa ccccgaggca cccgtaatgc 300 tcgaccggat cttccggctg ctggccagct actccgtgct cacgtgcacc ctccgcgacc 360 tccccgatgg caaggtcgag cggctctacg gcttagcgcc ggtgtgc 407 < 210 > 107 < 211 > 1630 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 107 ccgttttatt tcctctgctt tcctttgctc gagtctcgcg gaagagagag aagagaggag 60 aggagagaat gggttcgacc ggatccgaga cccagatgac cccgacccaa gtctcggacg 120 aggaggcgaa cctcttcgcc atgcagctgg cgagcgcctc cgtgctcccc atggtcctca 180 aggccgccat cgagctcgac ctcctcgaga tcatggccaa ggccgggccg ggcgcgttcc 240 tctccccggg ggaagtcgcg gcccagctcc cgacccagaa ccccgaggca cccgtcatgc 300 tcgaccggat cttccggctg ctggccagct actccgtgct cacgtgcacc ctccgcgacc 360 tccccgatgg caaggtcgag cggctctacg gcttagcgcc ggtgtgcaag ttcttggtca 420 agaacgagga cggggtctcc atcgccgcac tcaacttgat gaaccaggac aaaatcctca 480 tggaaagctg gtattacctg aaagatgcgg tccttgaagg cggaatccca ttcaacaagg 540 cgtacgggat gaccgcgttc gagtatcatg gcaccgaccc gcgattcaac aagatcttta 600 accggggaat gtctgatcac tccaccatta ctatgaagaa gatactggaa acatacaagg 660 gcttcgaggg cctcgagacc gtggtcgatg tcggaggcgg cactggggcc gtgctcagca 720 tgatcgttgc caaataccca tcgatgaaag ggatcaactt cgacctgcct cacgtgattg 780 aagacgctcc accccttcct ggtgtcaagc acgtcggagg cgacatgttc gtcagcgttc 840 caaagggaga tgccattttc atgaagtgga tatgccatga ctggagtgac gaccattgcg 900 cgaagttcct caagaactgc tacgatgcgc ttcccaacaa tggaaaggtg atcgttgcag 960 agtgcgtact ccctgtgtac ccagacacga gcctagcgac caagaatgtg atccacatcg 1020 actgcatcat gttggcccac aacccaggcg ggaaagagag gacacagaag gagttcgagg 1080 aggggccgga cattggccaa tttcagggct tccaagtcat gtgctgcgct ttcggcactc 1140 acgtcatgga gttcctgaag accgcttgat ctgctcctct gtggtgatgt tcatggttct 1200 aggtcgtgaa tggatttgaa ggagcccttt tctcacagtt ggcttcggca taccaagttc 1260 ttctcataaa aggaaacaat aagaagcgac tgtatgatgg cgcaagtgga agttacaaga 1320 tttgttgttt tatgtctata aagttttgag tcttctgcat actgatttca cagaatgtgt 1380 aacgaaacgg cgtatatgga tgtgcctgaa tgatggaaat tgtgatattc tgtcttcttt 1440 ttcagtaaat cacttcgaac aaaagttgtg ttgctcgtgg caaccaggaa aaaatctgtg 1500 ggtgactttg agttaaagcc tgtcattcac aaaccccatg gcattgcctt tggtcagggg 1560 tcagcca agc cggaagcgtc aacgtgaaaa gatcctcaag ggtccattaa aatccccaca 1620 aacccagagc 1630 < 210 > 108 < 211 > 1248 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 108 atcactaacc atctgccttt cttcatcttc tttcttctgc ttctcctccg tttcctcgtt 60 tcgatatcgt gaaaggagtc cgtcgacgac aatggccgag aagagcaagg tcctgatcat 120 cggagggacg ggctacatcg gcaagttcat cgtggaagcg agtgcaaaag cagggcatcc 180 cacgttcgcg ctggttaggc agagcacggt ctccgacccc gtcaagggcc agctcgtcga 240 gagcttcaag aacttgggcg tcactctgct catcggtgat ctgtacgatc atgagagctt 300 atcaagcaag ggtgaaggca ccgacgtggt gatatcgaca gtggggcaca tgcaaatggc 360 ggatcagacc aagatcgtcg acgccattaa ggaagctggc aacgttaaga gattctttcc 420 ttccgaattc ggcaatgatg tggacagggt gcatgctgtg gagccagcga agtctgcttt 480 tgaattgaag gcccagatcc gccgtgccgt ggaggcggca ggcatccctt acacctacgt 540 cccatgtggc tgcttcgccg gctacttcct cccaacactg gcgcagcagg aggtcactgc 600 tcctccgaag gacaaagtca ccgtcatggg tgacggaaat gcaaaggcaa ttttcaacaa 660 ggaagatgac attgcggcct tcaccatcaa ggctgtggat gatccgagat cgctgaacaa 720 gatcctttac atcaggcctc ctaagaacgt ttactcattc aatgagcttg ttgccttgtg 780 attggcaaga ggagaagaaa ccctcgagaa gatttacctt cctgaagagc aaatcctgaa 840 gcaaatccag gagtcc ccaa tgtcatatta ttcccatcaa gcagtgaacc attcaatctt 900 gacggtgcca tgttaagggc attttgagat cgaggagtct tttggtgtcg aggcttctga 960 gctgtaccca gatgtgaagt acactacagt ggaagaatac ctcgaaaatt ttgtctaaat 1020 taaggccatg cgtctcctgt tcttcaagga gtgagttacc gtgactctgg tggacagtcg 1080 aaaggctgta atatgtatta cacctaaaga atatcaaagg tcacggtctt atttagaatt 1140 gtctctgatg tcatattctt cttggtcttc ttggacatgt atttgctttc ctttgccgtg 1200 gtatccatga atttcccagg ttgttgaaat taaaaaaaaa aaaaaaaa 1248 < 210 > 109 < 211 > 481 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 109 gttaatggca gtgcagcctc aacaccaccc accttcctcc atctctctcc tcccttcttc 60 ttcaatggca tttctctgac gccgactcca tgcttgcgtt cagtataaga ggaaggtggg 120 gcagcctaaa ggggcactgc gggtcactgc atcaagcaat aagaagatcc tcatcatggg 180 aggcacccgt ttcatcggtg tgtttttgtc gagactactt gtcaaagaag gtcatcaggt 240 cactttgttt accagaggaa aagcacccat cactcaacaa ttgcctggtg agtcggacaa 300 ggacttcgct gatttttcat ccaagatcct ggagacagaa gcatttgaaa aggattttga 360 36 ttttgttaaa tctagtcttg ctgcagaagg ctttgacgtt gtttatgaca ttaacggcga 420 gaggcggatg aagtcgcacc aattttggat gcctgccaaa ccttgaacca gtcaactact 480 g 481 < 210 > 110 < 211 > 458 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 110 cataagctct cccgtaatcc tcacatcaca tggcgaagag caaggtcctc gtcgttggcg 60 gcactggcta cctcgggcgg aggttcgtga gggcgagcct ggaccagggc caccccacgt 120 acgtcctcca gcgtccggag accggcctcg acattgagaa gctccagacg ctactgcgct 180 tcaagaggcg tggcgcccaa ctcgtcgagg cctcgttctc agacctgagg agcctcgtcg 240 acgctgtgag gcgggtcgat gtcgtcgtct gtgccatgtc gggggtccac ttccggagcc 300 acaacatcct gatgcagctc aagctcgtgg aggctatcaa agaagctgga aatgtcaagc 360 ggtttttgcc gtcagagttc ggaatggacc cggccctcat gggtcatgca attgagccgg 420 gaagggtcac gttcgatgag aaatggaggt gagaaaag 458 < 210 > 111 < 211 > 448 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 111 aggaggcacc tcctcgaaac gaagaagaag aaggacgaag gacgaaggag acgaaggcga 60 gaatgagcgc ggcgggcggt gccgggaagg tcgtgtgcgt gaccggggcg tccggttaca 120 tcgcctcgtg gctcgtcaag ctcctcctcc agcgcggcta caccgtcaag gccaccgtcc 180 gcgatccgaa tgatccaaaa aagactgaac atttgcttgg gcgaaagata acttgatgga 240 gttcaaagca gacttcaact aacctgctgg aagagggttc atttgatcct attgttgagg 300 gttgtgcagg cgtttttcac actgcctctc ccttttatca tgatgtcaag gatccgcagg 360 cagaattact tgatccggct gtgaagggaa cactcaatgt cctgaagtca tgttccaaag 420 accttctctg cagcgtgtgg cttgacat 448 < 210 > 112 < 211 > 578 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 112 gttgaacctc ccgtcctcgg ctctgctcgg ctcgtcaccc tcttcgcgct cccgcatact 60 ccaccaccgc gtacagaaga tgagctcgga gggtgggaag gaggattgcc tcggttgggc 120 tgcccgggac ccttctgggt tcctctcccc ctacaaattc acccgcaggg ccgtgggaag 180 cgaagacgtc tcgattaaga tcacgcactg tggagtgtgc tacgcagatg tggcttggac 240 taggaatgtg cagggacact ccaagtatcc tctggtgcca gggcacgaga tagttggaat 300 tgtgaaacag gttggctcca gtgtccaacg cttcaaagtt ggcgatcatg tgggggtggg 360 aattcatgca aacttatgtc gagagtgcga gtattgcaat gacaggctag aagtccaatg 420 tgaaaagtcg gttatgactt ttgatggaat tgatgcagat ggtacagtga caaagggagg 480 atattctagt cacattgtcg tccatgaaag gtattgcgtc aggattccag aaaactaccc 540 gatggatcta gcagcgcatt tgctctgtgc tggatcac 578 < 210 > 113 < 211 > 454 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 113 aactcatctt gaaatgtcat tggagtcatc atcctctagt gagaagaaac aaatgggttc 60 gaatcggcca cgccggattc caaagccgca cgccgtttgc attccctacc ctgcacaaag 120 gccatgctca ccacattggc agctagcaaa gctcctccat cacaagggct tccacatctc 180 cttcgtcaac accgagttca accaccggcg gctcgccagg gctcgaggcc ccgagttcac 240 aaatggaatg ctgagcgact ttcagttcct gacaatcccc gatggtcttc ctccttcgga 300 atccaagaca cttggatgcg tcaagatgct ctgcgaat? G tccaggaact atatggtcag 360 ccccatcaac gatcttgtat cgagcctggg ctcgaacccg agcgtccctc cggtgacttg 420 catcaatctc ggatggtttc atgacactcg tgac 454 < 210 > 114 < 211 > 479 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 114 catgattgag ggaatcaagg actcttcagg actcatcctg aacacatttg aagatctcga 60 gcagcccgct ctttctttac tccgccaaga agatccaatc gcagttttcg caattggccc 120 attacacaaa tgcggtccat cttcatcggg aagtctcttg gcagaagacc ggagttgcat 180 ttcctggctg gacaagcaag cccctaactc agtggtctat gtgagttttg ggagcatcgc 240 ctctgtgaac gagtcggaat tttccgaaat agctttaggt ttagccgata gccagcagcc 300 attcttgtgg gtggttcgac ccgggtcagt gagcggctcg gaactcttag agaatttgcc 360 cggttgcttt ctggaggcat tacaggagag ggggaagatt gtgaaatggg cgcctcaaca 420 tgaagtgctg gctcatcggg gtg.tcggagc gttttggact cacaatggat ggaactcca 479 < 210 > 115 •. < 211 > 420 • < 212 > DNA; < 213 > Eucalyptus grandis < 400 > • 115 tttagagaga caacattgtg ggagagagaa ggcaaacacg cccgttttcg ttttactaag 60 agaagatggt gagcgttgtg gctggtagag tcgagagctt gtcgagcagt ggcattcagt 120 cgatcccgca ggagtatgtg aggccgaagg aggagctcac aagcattggc gacatcttcg 180 aggaggagaa gaagcatgag ggccctcagg tcccgaccat cgacctcgag gacatagcgt '240 ctaaagaccc cgtggtgagg gagaggtgcc acgaggagct caggaaggct gccaccgact 300 ggggcgtcat gcacctcgtc aaccatggga tccccaacga cgtgtcaaga cctgattgag 360 ggtgttcttc aggctggcga aacctcccga tcgaggagaa ggagaagcat gccaacgacc 420 < 210 > • 116 < 211 > > 679 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 116 ctaagagagg agaggagagg agcaagatgg cactagcagg agctgcactg tcaggaaccg 60 tggtgagctc cccctttgtg aggatgcagc ctgtgaacag actcagggca ttccccaatg 120 tgggtcaggc cctgtttggt gtcaactctg gccgtggcag agtgactgcc atggccgctt 180 acaaggtcac cctgctcacc cctgaaggca aagtcgaact cgacgtcccc gacgatgttt 240 acatcttgga ctacgccgag gagcaaggca tcgacttgcc ctactcctgc cgtgccggct 300 cttgctcctc ctgcgcgggc aaggtcgtgg cggggagcgt cgaccagagc gacggcagct 360 tcctggatga tgatcagatt gaggaaggtt gggtcctcac ttgtgtcgcc taccctaagt 420 ctgaggtcac cattgagacc cacaaggaag aggagctcac tgcttgaagc tctcctatat 480 ttgcttttgc ataaatcagt ctcactctac gcaactttct ccactctctc cccccttcac 540 tacatgtttg ttagttcctt tagtctcttc cttttttact gtacgaggga tgatttgatg 600 ttattctgag tctaatgtaa tggcttttct ttttcctatt tctgtatgag gaaataaaac tcatgctcta aaaaaaaaa 660 679 < 210 > 117 < 211 > 763 < 212 > DNA < 213 > Eucalyptus grandis < 400 > • 117 ... catacaacta cactgcgacg ccgccgcaga acgcgagcgt gccgaccatg aacggcacca 60 aggtctaccg gttgccgtat aacgctacgg tccagctcgt tttacaggac accgggataa 120 tcgcgccgga gacccacccc atccatctgc acggattcaa cttcttcggt gtgggcaaag 180 gagtggggaa ttatgaccca aagaaggatc ccaagaagtt caatctggtt gacccagtgg 240 agaggaacac cattggaatc ccatctggtg gatggatagc catcagattc acagcagaca 300 atccaggagt ttggttcctg cactgccatc tggaagtgca ggactgaaga cacaacttgg 360 tggcattctt ggtggacaat gggaaggggc ctaaagagac cctgcttcca cctccaagtg 420 atgttgatca atcttccaaa aggacgacaa tttgatcatg atgacaccaa gcgattacta 480 gttagtggaa tcttctcttt gaaaaagaag aagaagagca agaagaataa gaaagatgag 540 tgaccaagaa gagagaagcc atagaagatt gagagagggc aataaaccaa agagaccctt 600 catcccgcaa gagatcacga ttgtttctag agtaatagaa ggatttactc cgacactgct 660 aaggaagaca acaataaatt aggaatttgg tttttttcat tggaggagtg taatttgttt 720 aaaaaaaaaa aaa tttggcaagc tcatcacatg aatcacatgg 763 < 210 > 118 < 211 > 538 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 118 atcaagagtt tgagtctaaa ccttgtctaa tcctctctcg catagtcatt tggagacgaa 60 gtgctgatcg gccgcagctg cattctcttc gtaaaacatg acggctgtcg gcaaaacctc 120 tttcctcttg ggagctctcc tcctcttctc tgtggcggtg acattggcag atgcaaaagt 180 ttactaccat gattttgtcg ttcaagcgac caaggtgaag aggctgtgca cgacccacaa 240 caccatcacg gtgaacgggc AATTCCCGGG tccgactttg gaagttaacg acggcgacac 300 aatgtcgtca cctcgttgtc acaaagctcg ctacaacgtc accattcact ggcacggcgt 360 ccggcaggtg agatctggtt gggccgatgg gccggaattt gtgactcaat gcccgattag 420 acccggcgga agttacacgt accgtttcac catccaagga caggtaggaa cgctgtggtg 480 gcatgcacat agctcttggc taagagcgac tgtgtatggt gctctggcat tcgtccaa 538 < 210 > 119 < 211 > 515 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 119 ctctctctct ctctctctct gtgtgttcat tctcgttgag ctcgtggtcg cctcccgcca 60 tggatccgca caagtaccgt ccatccagtg ctttcaacac ttctttctgg actacgaact 120 ctggtgctcc tgtctggaac aataactctt cgttgactgt tggaagcaga ggtccaattc 180 ttcttgagga ttatcacctc gtggagaaac ttgccaactt tgatagggag aggattccag 240 agcgtgtggt gcatgccaga ggagccagtg caaagggatt ctttgaggtc actcatgaca 300 tttcccagct tacctgtgct gatttccttc gggcaccagg agttcaaaca cccgtgattg 360 tccgtttctc cactgtcatc cacgaaaggg gcagccctga aaccctgagg gaccctcgag 420 gttttgctgt gaagttctac acaagagagg gtaactttga tctggtggga aacaatttcc 480 ctgtcttctt tgtccgtaat gggataaatt ccccg 515 < 210 > 120 < 211 > 458 < 212 > DNA < 213 > Eucalyptus grandis 39 < 400 > 120 gctccctctc gtactgccat actcctgggc cgggattcgg atagggtttt gcggcgatcc 60 atttctcgat tcaaggggaa gaatcatggg gaagtcctac gcgaggagta ccgaccgtga 120 caagaaggct gtcgagaaat gcaagaagaa gttgagaggc ctcatcgctg agaagagctg 180 cgctccgctc atgctccgca tcgcgtggca ctccgccggt accttcgatg tgaagacgaa 240 ccgttcggga gaccggaggc ccatgaagca cgccgcgga.g ctcagccacg gggccaacag 300 cgggctcgac gttgccgatc aggtcttgca gccgatcaag gatcagttcc ccgtcatcac 360 ttatgctgat ttctaccagc tggctggcgt cgttgctgtg gaagttactg gtggacctga 420 agttgctttt cacccaggaa gagaggcaaa ccacaacc 458 < 210 > • 121 < 211 > • 1243 < 212 > • DNA < 213 > • Eucalyptus grandis < 400 > • 121 tgtctcgcca ctcccacttc ccattactag cttcaaagcc cagatctcag tttcgtgctc 60 tcttcgtcat ctctgcctct tgccatggat ccgtacaagt atcgcccgtc cagcgcttac 120 gattccagct tttggacaac caactacggt gctcccgtct ggaacaatga ctcatcgctg 180 actgttggaa ctagaggtcc gattctcctg gaggactacc atctgattga gaaacttgcc 240 aacttcgaga gagagaggat tcctgagcgg gtggtccatg cacggggagc cagcgcgaaa 300 gggttcttcg aggtcaccca cgacatctct cacttgacct gtgctgattt cctccgggct 360 cctggagtcc agacgcccgt catcgtccgt ttctccaccg tcatccacga gcgcggcagc 420 cccgaaaccc tcagggaccc tcgtggtttt gcagtgaagt tctacaccag agagggaaac 480 tttgatctgg tggggaacaa tttcccagtc ttcttcgttc gcgatgcaat gaaattcccg 540 gacgcgatcc atgcgttcaa gccgaacccg aagtctaaca tccaggagat gtggagaatc 600 atcgatttct tctcccacca gcccgagagt ctgtccacgt tcgcgtggtt cttcgatgat 660 gtgggcattc ctcaggacta caggcacatg gagggattcg gtgtgcacgc tttcaccttc 720 atcaacaaga ccggaaagac gaattacgtt aaattccact ggaagccaac ttgcggggtg 780 aagtgcttgc tggaggagga ggcgatcctc attggaggat cgaaccacag ccatgcgacc 840 aaggatcttt at gactcgat cgctgctggc aactacccgg agtggaagct ctacatccaa 900 gtgatggatc cwgctcttga agacagcttc gacttcgatc cgctggatat gacgaaggaa 960 tggcctgagg acatcttgcc tctgcaacca gtaggccgct tggtgctgaa caaaaacgtc 1020 gataacttct tcgctgagaa tgagcagcta gcgtttaacc cagcatttgt ggtccctggc 1080 atctattact ccaatgataa gcttctccaa gctaggattt tcgcctattc tgatactcac 1140 ttggaccaaa cgatatcgcc ctccccgtta ctaccttcaa tgcgtcatca atgtcccaag 1200 caacaaccac catgatggtt tcatgaatat catgcacagg gat 1243 < 210 > 122 < 211 > 404 < 212 > DNA < 213 > Pinus radiata < 400 > 122 gacaaggtca taggccctct cttcaaatgc ttggatgggt ggaaaggaac tcctggccca 60 ttctgaaata aataatcttc caagatcgcc tttatacaac gactgctatg atttgagtcc 120 tcggatcttt ttgttgatgc agttgtttac cgatctggaa tttgattggt cataaagctt 180 gattttgttt ttctttcttt tgttttatac tgctggattt gcatcccatt ggatttgcca 240 gaaatatgta agggtggcag atcatttggg tgatctgaaa catgtaaaag tggcggatca 300 atgcagatca tttgggtagc gttgggtgat cgtgtactgc tttcactatt acttacatat 360 ggaataaaaa ttaaagatcg catgatttta attgaaaaaa aaaa 404 < 210 > 123 < 211 > 415 < 212 > DNA < 213 > Pinus radiata 40 < 400 > 123 caaggaagaa aatatggttg cagcagcaga aattacgcag gccaatgaag ttcaagttaa 60 aagcactggg ctgtgcacgg acttcggctc gtctggcagc gatccactga actgggttcg 120 agcagccaag gccatggaag gaagtcactt tgaagaagtg aaagcgatgg tggattcgta 180 tttgggagcc aaggagattt ccattgaagg gaaatctctg acaatctcag acgttgctgc 240 cgttgctcga agatcgcaag tgaaagtgaa attggatgpt gcggctgcca aatctagggt 300 cgaggagagt tcaaactggg ttctcaccca gatgaccaag gggacggata cctatggtgt 360 ttcggagcca cactactggt cttctcacag gagaacgaac cagggagccg agctt 415 < 210 > 124 < 211 > 1659 < 212 > DNA < 213 > Pinus radiata < 400 > 124 gttgcaggtc ggggatgatt tgaatcacag aaacctcagc gattttgcca agaaatatgg 60 caaaatcttt ctgctcaaga tgggccagag gaatcttgtg gtagtttcat ctcccgatct 120 cgccaaggag gtcctgcaca cccagggcgt cgagtttggg tctcgaaccc ggaacgtggt 180 gttcgatatc ttcacgggca aggggcagga catggtgttc accgtctatg gagatcactg 240 gagaaagatg cgcaggatca tgactgtgcc tttctttacg aataaagttg tccagcacta 300 cagattcgcg tgggaagacg agatcagccg cgtggtcgcg gatgtgaaat cccgcgccga 360 gtcttccacc tcgggcattg tcatccgtag gcgcctccag ctcatgatgt ataatattat 420 gtataggatg atgttcgaca ggagattcga atccgaggac gacccgcttt tcctcaagct 480 caaggccctc aacggagagc gaagtcgatt ggcccagagc tttgagtaca attatgggga 540 tttcattccc attcttaggc ccttcctcag aggttatctc atgagattaa agaatctgca 600 agagaaacgg ctctctcttt tcaaggacta cttcgtggaa gagcgcaaga agctcaacag 660 agtaccaaca taccaagact ccggggagct caagtgtgca atggaccata ttttagatgc 720 tcaggacaag ggagagatca atgaggataa atcgttgaga tgttttgtac acatcaacgt 780 tgcagcaatt gagacaacgc tgtggtcgat ggaatgggga atagcggagc tggtgaacca 840 ccaggacatt cagagc AAGG tgcgcgcaga gctggacgct gttcttggac caggcgtgca 900 ccagacacga gataacggaa caaggttgcc ctaccttcag gcggttgtga aggaaaccct 960 tcgtctccgc atggcgatcc cgttgctcgt cccccacatg aatctccacg acgccaagct 1020 cgggggctac gatattccgg cagagagcaa gatcctggtg aacgcctggt ggttggccaa 1080 aactggaaga caaccccgcc accccgagga gttccgcccc gagcggttct tcgaggagga 1140 gaagcacacc gaagccaatg gcaacgactt caaattcctg ccttgcggtg tggggaggag 1200 gagctgcccg ggaatcattc tggcgctgcc tctcctcgca ctctccatcg gaagacttgt 1260 tcagaacttc caccttctgc cgccgcccgg gcagagcaaa gtggatgtca ctgagaaggg 1320 agccttcaca cgggcagttc ttctcaacca ttctctcatc gtcgccaagc ccatagcttc 1380 caacttgtca tgcttaatcc gtgactggta tataaatgcg cgcacctgaa caaaaaacac 1440 tccatctatc atgactgtgt gtgcgtgtcc actgtcgagt ctactaagag ctcatagcac 1500 ttcaaaagtt tgctaggatt tcaataacag acaccgtcaa ttatgtcatg tttcaataaa 1560 aattaaatga agtttgcata tatttcaata tactattttg actctccacc aattggggaa 1620 aaaaaaaaaa ttttactgct aaaaaaaaaa aaaaaaaaa 1659 < 210 > 125 < 211 > 461 < 212 > DNA < 213 > Pinus radiata < 400 > 125 atttccatgg cgattccgtt tggcttcaat tcgtttcctc tggctgtcct cgtcctcgtt 60 ttccttgttc ttcctccgac tttttctctg gaagatatgg cgtaatagga acctgccgcc 120 aggacccccg gcatggccga tcgtagggaa cgtccttcag attggatttt ccagcggcgc 180 gttcgagacc tcagtgaaga aattccatga gagatacggt ccaatattca ctgtgtggct 240 cctctgctga cggttcccgc tgatcaccga ccgcgagctt gcccacgagg cgctcgtaca 300 gaagggctcc gtcttcgctt gaccgcccgc ccgccctcgg atcttcagta gatgcagaaa 360 gcaaccagca caacatcact tcggctgaat acggcccgct gtggcggagc ttcgcaggaa 420 41 tctggttaaa gaagccctga gacttcggcg atgaaggctt t 461 < 210 > 126 < 211 > 569 < 212 > DNA < 213 > Pinus radiata • - < 400 > 126 acccagtgac cttcaggcct gagagatttc ttgaggaaga tgttgatatt aagggccatg 60 attacaggct actgccattc ggtgcagggc gcaggatctg ccctggtgca caattgggta 120 ttaatttagt tcagtctatg ttgggacacc tgcttcatca tttcgtatgg gcacctcctg 180 agggaatgaa ggcagaagac atagatctca cagagaatcc agggcttgtt actttcatgg 240 ccaagcctgt gcaggccatt gctattcctc gattgcctga tcatctctac aagcgacagc 300 cactcaattg atcaattgat ctgatagtaa gtttgaattt tgttttgata caaaacgaaa 360 taacgtgcag tttctccttt tccatagtca acatgcagct ttctttctct gaagcgcatg 420 cagctttctt tctctgaagc ccaacttcta gcaagcaata actgtatatt ttagaacaaa 480 tacctattcc tcaaattgag tatttctctg taggcgatgt tcacttgtgc aatttgcaag 540 atatagtaaa gtttactcta aaaaaaaaa 569 < 210 > 127 < 211 > 661 < 212 > DNA < 213 > Pinus radiata < 400 > 127 gttttatctg aaggacgctg tgcttgaagg ctcccagcca ttcaccaaag cccatggaat 60 gaatgcgttc gagtacccgg ccatcgatca gagattcaac aagattttca acagggctat 120 gtctgagaat tctaccatgt tgatgaacaa gattttggat acttacgagg gttttaagga 180 ggttcaggag ttggtggatg tgggaggagg tattgggtcg actctcaatc tcatagtgtc 240 taggtatccc cacatttcag gaatcaactt cgacttgtcc catgtgctgg ccgatgctcc 300 tcactaccca gctgtgaaac atgtgggtgg agacatgttt gatagtgtac caagtggcca 360 atgaagtgga agctattttt ttctgcatga ttggagcgat gatcattgca ggaagctttt 420 gaagaattgt cacaaggcgt tgccagagaa ggggaaggtg attgcggtgg acaccattct 480 cccagtggct gcagagacat ctccttatgc tcgtcaggga tttcatacag atttactgat 540 gttggcatac aacccagggg gcaaggaacg cacagagcaa gaatttcaag atttagctaa 600 ggagacggga tttgcaggtg gtgttgaacc tgtatgttgt gtcaatggaa tgtgggtaat 660 g 661 < 210 > 128 < 211 > 427 < 212 > DNA < 213 > Pinus rad: Can < 40C > 128 aatttttctg tggtaagcat atctatggct caaaccagag tgtcagcata agaaggacga 60 acaaactcca aaggattggt atgcgtgaca ggagcggctg gttacttggc atcttggctt 120 atcaagcgtc tcctccagtg tggttaccaa gtgagaggaa ctgtgcggga tcctggcaat 180 tggctcattt gagaaaaaga atggaagtta gatggggcga aagagagact gcaactaatg 240 taatggacga aaagctgatt gggcagcttc gatgaggtca tcagaggctg ccatggtgtt 300 tttcacacag cgtctccagt cgtgggtgtc aaatcagatc ccaagatatg gtatgctctg 360 gccaagactt tagcagaaaa agcagcatgg gattttgccc aagaaaacca tctggacatg 420 gttgcag 427 < 21C > 129 < 211 > 1412 < 212 > DNA < twenty-one? > Pinus rad: iata 42 < 400 > 129 gaaaacatca tccaggcatt ttggaaattt agctcgccgg ttgattcagg atcctgcaat 60 ggcttttggc gaagagcaga ctgccttgcc acaagaaacg cctttgaatc ctccggtcca 120 gtgtgcgtta tcgaggaaca caggagctgc tgggttcata gggtcatggc tcatcatgcg 180 cgaggatata attgcttgag aactgtgcga gtgttagagc atcctgtaaa gacactggta 240 gacaaagcat ctgttggatc tgccgggggc aaatgagaga ttgactctct ggaaagcaga 300 tttggatgat gaaggaagct ttgatgctgc cattgatggg tgtgagggtg ttttccatgt 360 tgccactccc atggatttcg agtccgagga tcccgagaat gagataatta agccaacaat 420 caacggggtc ttgaatgtta tgagatcgtg tgcaaaagcc aagtccgtga agcgagttgt 480 tctgctggga tttcacgtca ctgtgaattt tacagatgat ttccaaacac caggcaaagt 540 tcatgctgga ttttgacgaa tctttgcaga ccaacgtgga aaagttaaaa tgacaggatg 600 gtatcgaaga gatgtacttt cattagcaga gaaagctgct tgggattttg cagaggagaa 660 caagatcgat ctcattactg ttatccccac attggtcgtt ggaccattca ttatgcagac 720 catgccaccg agcatgatca cagccttggc actgttaacg cggaatgaac cccactacat 780 gatactgaga caggtacagc tggttcactt ggatgatctc tgtatgtcac atatctttgt 840 atatgaacat cctgaa GCAA agggcagata catctcttcc acatgtgatg ctaccattgt 900 ccaagtggcc aagatgctgg ctcagaaata cccagagtac aatgtaccaa ccacgttcaa 960 ggatgcggat gagtccctgc cggccgtgcc attttcgtca aagaagctcc ttgatttggg 1020 aactacacca cttcaagttc tggaagagat gtttgatggg gccattaagt gctgcagaga 1080 gaaaggattg ctgcctgaga aagcatcttt ctgataagta tctactgatg cagcatacac 1140 acaccgttgg catgtgtggt ttgtgtaaga catggtggca gtggagaaat aatggatcaa 1200 atttggttta tagaaaacag caggaattac tacttgcaag agtgacttat gtgacatgat 1260 atagaaataa gaagaatacc ggctgatcgc tgttgtttat taatgcgaat tttattgatg 1320 ttgacaaggt cataccaggg ctcctggaat gctacatatg tacggctgat tctagctcca 1380 gtaatataat ttttcaaatt ctaaaaaaaa aa 1412 < 210 > 130 < 211 > 666 < 212 > DNA < 213 > Pinus radiata < 400 > 130 atcaattttt gcatattatt aaaaagtaag tgtattcgtt ctctatattg atcagtcaca 60 gagtcatggc cagttgtggt tccgagaaag taagagggtt gaatggagat gaagcatgcg 120 aagagaacaa gagagtggtt tgtgtaactg gggcaaatgg gtacatcggc tcttggctgg 180 tcatgagatt actggaacat ggctattatg ttcatggaac tgttagggac ccagaagaca 240 cagggaaggt tgggcatttg ctgcggctcc caggggcaag aagctgttca tgagaagcta 300 aggcagagct taacgacgaa atggcctttg atgatgctgt gagcggttgt caaggggttt 360 tccacgttgc caagcctgtt aatctggact caaacgctct tcagggggag gttgttggtc 420 ctgcggtgag gggaacagta aatctgcttc gagcctgcga acgatcgggc actgtgaaac 480 gagtgataca tacctcgtcc gtttcagcag tgagattcac tgggaaacct gacccccctg 540 atactgtgct ggatgaatct cattggactt cggtcgagta ttgcagaaag acaaagatgg 600 tcggatggat gtactacatc gccaacactt atgcagaaga gggagcccat aagttcggat cagaga 660 666 < 210 > 131 < 211 > 478 < 212 > DNA < 213 > Pinus radiata < 400 > 131 gctggttcaa gtgtcagccc aatggcctcc cctacagaga atccccagat ttcagaagag 60 ctgctaaatc atgagatcca tcaaggaagt acagtatgtg tgacaggagc tgctggcttc 120 ataggatcat ggctcgtcat gcgtttgctt gagcgaggat atactgttag aggaactgtg 180 cgagacactg gtaatccggt gaagacgaag catctattgg atctgcctgg ggcgaatgag 240 aggttaactc tctggaaagc agatttggat gatgaaggaa gctttgacgc cgccattgat 300 43 ggttgtgagg gagttttcca tgttgccact cccatggatt ttgaatccga ggaccccgag 360 aacgagataa ttaaacccgc tgtcaatggg atgttgaatg ttttgagatc gtgtgggaaa 420 accaagtcta tgaagcgagt tgttttcacg tcgtctgctg ggactctgct ttttacgg 478 < 210 > 132 < 211 > 510 < 212 > DNA < 213 > Pinus radiata < 400 > 132 cttgttcaaa gtcacatatc ttattttctt tgtgatatct gcaatttcca agcttttcgt 60 ctacctccct gaaaagatga gcgaggtatg cgtgacagga ggcacaggct tcatagctgc 120 ttatctcatt cgtagtcttc tccagaaagg ttacagagtt cgcactacag ttcgcaaccc 180 agataatgtg gagaagttta gttatctgtg ggatctgcct ggtgcaaacg aaagactcaa 240 catcgtgaga gcagatttgc tagaggaagg cagttttgat gcagcagtag atggtgtaga 300 tggagtattc catactgcat cacctgtctt agtcccatat aacgagcgct tgaaggaaac 360 cctaatagat ccttgtgtga agggcactat caatgtcctc aggtcctgtt caagatcacc 420 ttcagtaaag cgggtggtgc ttacatcctc ctgctcatca ataccgatac gactataata 480 gcttagagcg ttccctgctg gactgagtca 510 < 210 > 133 < 211 > 890 < 212 > DNA < 213 > Pinus radiata < 400 > 133 tcctaattgt tcgatcctcc cttttaaagc ccttccctgg ccttcattcc aggtcacaga 60 gttgttcatg cagtgctagc aggaggagca gcgttgcaat tggggaaaat tccaaaatca 120 gacagaagta ataacgagag agtttgtgga aatagcaacc atgccggtgt ttccttctgg 180 tctggacccc tctgaggaca atggcaagct cgtttgtgtc atggatgcgt ccagttatgt 240 aggtttgtgg attgttcagg gccttcttca acgaggctat tcagtgcatg ccacggtgca 300 gagagacgct ggcgaggttg agtctctcag aaaattgcat ggggatcgat tgcagatctt 360 ctatgcagat gtcttggatt atcacagcat tactgatgcg ctcaagggct gttctggtct 420 gtctatacct ttgagcaccc tcagagtgct gcaggctatg atgaagtgat ggcagaaatt 480 gaagtacaag cagcccacaa tgcactggaa gcgtgtgctc agactgagac cattgagaaa 540 gttgtgttca cttcttctgt ggctgcagca atttggagag aagatggaga ctacaaggtt 600 aatgcccttg acgagaggca ttggagtgat gcaaatcttt gcaggaaatt gaagttgtgg 660 tacgcattag ccaagacact gtcagagaag gctgcatggg cgctggcaat ggacagaggg 720 ttgaatatgg tgacaatcaa cgcatctctg attgtaggac ctggcatcac atacaaaagc 780 ccattgcata tcaggatcta gctgcacaaa tcttaaaggg gggcacttta tgtatgagaa 840 gctagtgtgg acataa ggtt tctagcggat gcacatatat gcgcttatga 890 < 210 > 134 < 211 > 955 < 212 > DNA < 213 > Pinus radiata < 400 > 134 aatcactgac cttcacatat ttattccaat tctaatatct ctactcgctg tctacctgat 60 ttttcagtgg cgaaccaact tgacagggtt ggacatggcc aacagcagca agattctgat 120 acaggctaca tattggagga tataaccaaa ttsgtcgtca gccagccttg ctcttggtca 180 tcccacattc cttcttgtca gagagacctc cgcttctaat cctgagaagg ctaagcttct 240 ggaatccttc aaggcctcag gtgctattat actccatgga tctttggagg accatgcaag 300 tcttgtggag gcaatcaaga aagttgatgt agttatctcg gctgtcaagg gaccacagct 360 cagaatatta gacggatcaa tcaaggctat taaggaggtt ggaaccatca agaggttttt 420 gccatctgag ttcgggaatg acgttgatag aacccatgca gtggagcctg caaagaccat 480 gtttgctacc aaagcgaaaa ttcgcagggc cattgaggca gaaggcatcc cttacacatt 540 44 tgtctctagc aactgttttg ctgggttgtt cttgccaagt ttggggcagc caggccttac 600 cgccccgcca agggataaag ttgtgatatc tggagatgga aatgccaaag ttgtttttgt 660 gatataggga gaaggaggag cattcaccat caaggcagtg gaactctaaa gatgacccta 720 caagatcctg tatttgaggc ttcctgccaa cacatattct cttaacgagc ttgtagctgt 780 aagattggca gtgggagaag agtctctgga gaagacctat ataccagagg aagaggtcct 840 gaaaaaaatt gcagagtcgc cattcccact caatgctata atgtcaaccg gccactctat 900 ggggatcaaa ttttgtgaaa caaattttga aatcggacct gatggtgtgg aggct 955 < 210 > 135 < 211 > 1024 < 212 > DNA < 213 > Pinus radiata < 400 > 135 agagggttat atatcttgat tctgacctga ttgtcgtcga cgacattgcc aagctctggg 60 ccacggattt ggaatctcgt gtcctcgggg caccagagta ctgcaaggcg aatttcacaa 120 agtatttcac cgataatttc tggtgggatc ccgcattatc caagaccttt gagggaaaaa 180 aaccctgcta cttcaacaca ggcgtaatgg tgatcgatct tgaaaaatgg cgggcagggg 240 aattcacaag aaagatcgaa atctggatgg acatacagaa ggaacgccgt atctatgagc 300 tcggatcatt accgccattt ttactggtat ttgctggttt ggttaagcaa gtcgatcatc 360 gcacggttta gttggaatca ggcggagata atttgcaagg cctttgccga gatcttcacc 420 ctggacctgt cagtttgttg cattggagtg gtaagggcaa accttggcta cgcctggaat 480 gccaagcgga cttgccctct ggatacttta tgggctcctt atgatcttta tcgatcaacg 540 atgggtgaga tattacctaa gagcctctct cctcggggtg ctttttatcg aattaaacct 600 gatttgataa aatgccaaat agaactttac gcctatgcat ctttcagttt tgaatttcaa 660 ttctggtaac gaatagaaga aaacaatagc acagccacag gcaggacaaa tccatcatga 720 gggaccaatc gtttgaattt agtattaata aggttgttcc atataacgcc tgtgaagaat 780 gatattgtgg actgatctat ttatatttgt actgccatgc catcctcagc cagcagagag 840 gcaagcaatg ccgctg caag tcatgtaggg aaggcgttgt gaactcaatt ttcggcgact 900 gtacaggatg taaatttttg gaacattaat atcattatga taagttcctg aaccaacaac 960 tgtataatac cttataaatg tatctgcaac tccatttttg cataaaaaaa aaaaaaaaaa 1020 aaaa 1024 < 210 > 136 < 211 > 497 < 212 > DNA < 213 > Pinus radiata < 400 > 136 tccgaacaat agaacataaa gaacttgcaa atttcctgca ttgccatcgc cagcccaaga 60 cgcaaagcaa aacttttggc tctgtacact ttctctctca caagcatgga ttccttgcta 120 tataggttct aggggtcttg ggggctcctg atgcccaatt gttgctgtgc ttggcatgac 180 ccaaacatgc aagagatctg tagtcagtag tcttgttgga tctatagctt ttagaaaaga 240 tttagggtaa gtcacgtcct accatatcca catcattcca gttccaccac cggctacacc 300 ggaggagcaa ttcaacggga gatattcagc attgctttgg gcaccagatg gataggcatt 360 attttccatc ggaattcagc cgagctcgcc ccctcagtcc aatcgtcgtg aaaatccctc 420 aaaattgggc aattctggct cgaaatcgcc aaattatggg ctacaacagg attaaaattg 480 cacagaaatc tgccagt 497 < 210 > 137 < 211 > 528 < 212 > DNA < 213 > Pinus radiata < 400 > 137 ggcaatccga gcctagccaa ccaacttggc agcaaggagc acagggagtt ggcgagagaa 60 gctgttagga aatctttggt attgttgaaa aatgggaagt cagccaacaa gcctttgctc 120 45 cctttggaga agaatgcttc caaggttctt gttgcaggaa cccatcctga taatctgggt 180 tatcagtgtg gtggatggac gatggaatgg caaggattaa gtggaaacat aaccgtagga 240 actacaattc tggaagctat caaactagct gtcagcccct ctactgaagt ggtttatgag 300 caaaatccag atgctaacta tgtcaaagga caagggtttt catatgccat tgtggttgtg 360 catacgcaga ggtgaggcac aacgtttgga gacaatctta atttgaccat tcccctaggc 420 ggaggggaca cgattaagac ggtctgtggc tccttgaa.at gccttgtaat cttgatatct 480 ggaaggccac ttgttattga accttatctt ccattggtgg atcgtttt 528 < 210 > 138 < 211 > 424 < 212 > DNA < 213 > Pinus radiata < 400 > 138 aaaaaacaaa tgttagctag cctagtgatg agctttacgt atacctggcc ttttatacat 60 ggatctgagt ttttatgcag gtgtagagcc ttttgttact ctgtatcact gggacttgcc 120 acaagctctg gaggacgaat acggtggatt tcgtagcaaa aaagttgtgg atgactttgg 180 catattctca gaagaatgct ttcgtgcttt tggagaccgt gtgaagtact gggtaactgt 240 taacgaaccg ttgatcttct catatttttc ttacgatgtg gggcttcacg caccgggccg 300 ctgttcgcct ggatttggaa actgcactgc gggaaattca gcgacagagc cttatattgt 360 agcccataac atgcttcttg cacatagtac cgctgttaaa aatatatagc ataaataccc 420 aggg 424 < 210 > 139 < 211 > 404 < 212 > DNA < 213 > Pinus radiata < 400 > 139 gctaccatct tccctcataa tattgggctt gggatcctga ggagctacca tctggctaga 60 agaatagggg ctgctacggc tttggaagtt cgagctactg gcattcaata cacatttgct 120 ccatgtgttg ctgtttgcag agatcctcga tggggccgct gctatgagag ctacagtgag 180 gatccaaaaa ttgtcaaggc catgactgag attatcgttg gcctgcaagg gaatcctcct 240 gctaattcta caaaaggggg gccttttata gctggacagt caaatgttgc agcttgtgct 300 aagcattttg tgggttatgg tggaacaacc aaaggtatcg atgagaataa tactgttatc 360 ggttatttca aactatcaag acattccaaa ttacccccaa tttt 404 < 210 > 140 < 211 > 437 < 212 > DNA < 213 > Pinus radiata < 400 > 140 tatggtgaaa cctagaattc attgttggga caaggctgcc caagtttaca aaggaacagt 60 taaaggttca cccaaatggt atagactatc taggcgttaa gcttattaca ccaatacact 120 tgtatgatcc taaacaacct aaacaaaatg taacagatta ctggaataca ccagactgga 180 ggctttgcat atgctcgcaa tggagtgcct attggaccaa gggcgaactc caattggctt 240 tacattgtgc cttggggtct atacaaggcc gtcacatacg taaaagaaca ctatggaaat 300 ttctctctga ccaactatga aaatggaatg gacgacctgg aaacgtgaca cttccagcag 360 gactgcatga taccatcagg ggtaactact ataaaagcta tttgcaaaat ttgattaatg 420 cacgtgaatg accgggg 437 < 210 > 141 < 211 > 470 < 212 > DNA < 213 > Pinus radiata 46 < 400 > 141 gatacatcca agctgagaat ggaagagatt aatggtgata acgcagtaag gaggagctgc 60 tttcctccag gtttcatgtt tgggatagca acttctgctt atcagtgtga aggagctgcc 120 aacgaaggtg gaaaaggccc aagcatctgg gactcatttt cacgaacacc aggcaaaatt 180 cttgatggaa gcaacggtga tgtagcagtg gatcagtatc atcgttataa ggcagatgta 240 aaactgatga aagatatggg cgtggctacc tacagattct cgatttcatg gcctcgtata 300 tttccaaagg gaaaaggaga gatcaatgag gaaggagtag cctattacaa taacctcatc 360 aatgaactcc tccagaatgg aatccaagcg tctgtcaact ttgtttcact gggatactcc 420 ccagtctctg gaggatgaat atggcggatt tctgaggcca accattgtga 470 < 210 > 142 < 211 > 413 < 212 > DNA < 213 > Pinus radiata < 400 > 142 ataagactaa ttttccagac aatcctccat tcccattcaa ttacactggt actccaccca 60 ataatacaca ggctgtgaat gggactagag taaaagtcct tccctttaac acaactgttc 120 aattgattct tcaagacacc agcatcttca gcacagacag ccaccctgtc catctccatg 180 gtttcaattt ctttgtggtg ggccaaggtg caatgaatca ttggaaacta acagatgcac 240 cctcattgac caaattttaa cctgtcgaga gaaacactgt gggagttccc aaaggaggtt 300 gggctgctat aagatttcgt gcagacaatc caggggtttg gttcatgcac tgtcatttgg 360 aggttcacac atcgtgggga ctgaaaatgg cgtgggtagt aaagaacgga aaa 413 < 210 > 143 < 211 > 457 < 212 > DNA < 213 > Pinus radiata < 400 > 143 aaaacctttt cagacgaatg ttctgatgct cggccccggc cagacaacag acatacttct 60 cactgccaat caggctacag gtagatacta catggctgct cgagcatatt ccaacgggca 120 ttcgataaca aggagttccc tgccatttta ccactaccac gaagctctaa gaatacgagg 180 gacttcaact ccagtcatgc ctaatcttcc attctataac gacaccaaca gtgctactag 240 cttcgctaat ggtcttagaa gcttgggctc acacgaccac ccagtcttcg ttcctcagag 300 tgtggaggag aatctgttct acaccatcgg tttggggttg atcaaatgtc cggggcagtc 360 ttgtggaggt ccaacggatc aagatttgca atacatatca gcaagtatga tttgtcccgc 420 aaccacttct tccaatcctt caagctcagc attttgg 457 < 210 > 144 < 211 > 598 < 212 > DNA < 213 > Pinus radiata < 400 > 144 gagagatcca gttcggcact tgttgagaca tttctttcaa gtgagtagta ttagtttgat 60 atctctttca ggaatatatc gtgcttgcag gatctttagt ttctgcaaca atgtcgttgc 120 aatcagtgcg tctatcttct gttctccttg ttttgctact agcatttgtt gcttacttag 180 ttgctgtaac aaacgcagat gtccacaatt ataccttcat tattagaaag aagacagtta 240 ccaggctatg caataagcgt ataatcgcca ccgtcaatgg ggcccaacta acagctacca 300 ttcatgtacg tgatggagac gttgttaata tcaaagctta taacaaagct gggtacaatg 360 ctggcatgga ccactcttca gtcgagcagt tgcgtacagg atgggccgat ggacctgcat 420 atgttacaca gtgccccatt ccaccaggtg gtcgttatac atacagattc accatttctg 480 aacaggaagg caccgtgtgg tggcacgctc atgtgtcatg gctccgagct acggtgcatg 540 gagctttcgt aatccttcct aagagaggca aaccatatcc ctttcctaaa ccccgtgc 598 < 210 > 145 47 < 211 > 1080 < 212 > DNA < 213 > Pinus radiata < 400 > 145 aagatcttgg ttcgagtctc tcagctctct ccaaaggaat tttgtgggtc atttgcaggt 60 gaagacacca tggtgaaggc ttatcccacc gtaagcgagg agtacaaggc tgccattgac 120 aaatgcaaga ggaagctccg agctctcatt gcagagaaga actgtgcgcc gatcatggtt 180 cgaatcgcat ggcacagcgc tgggacttac gatgtcaaga ccaagaccgg agggcccttc 240 gatatggggc gggacgatga cacggtgcta cgagcttgcc ggacatcgca acagtggtct 300 gttaggctcc tggagccaat caaggaacag ttccccataa tcacctatgc tgacctttat 360 cagttggctg gtgtggtggc tgttgaagtg accgggggac ctgacattcc gttccatcct 420 ggaagagaag acaagcctga gcctccagaa gaaggccgcc ttcctgatgc tacaaaagga 480 cctgatcatc tgagggatgt ttttggtcac atggggttga atgataagga aattgtggcc 540 ttgtctggtg cccacacctt ggggagatgc gatctggttt cacaaggaga tgaaggacca 600 tggacctcta acccccttat ctttgacaac tcttacttca cagagcttgt gactggagag 660 aaggaaggcc tgcttcagtt gccatctgat aaggcactgc ttgctgatcc tagttttgca 720 gtttatgttc agaagtatgc acaggacgaa gacgctttct ttgctgacta tgcggaagct 780 cacctgaagc tttctgaact tgggtttgct gatgcgtaga ttcatacctt ctgcagagac 840 aattccttgc tagata gctt cgttttgtat ttcatctaat cttttcgatt atatagtcac 900 atagaagttg gtgttatgcg ccatagtgat acttgaacct acatgttttt gaaaagtatc 960 gatgttcttt aaaatgaaca ttgaatacaa cattttggaa tctggttgtg ttctatcaag 1020 cgcatatttt aatcgaatgc ttcgttcctg ttaaaaaaaa aaataaaata aaaaaaaaaa 1080 < 210 > 146 < 211 > 701 < 212 > DNA < 213 > Pinus radiata < 400 > 146 gtagtttcgt tttacaacaa tctcaggttt tgaatctcag aatagttgcg aaaggaagcg 60 atgacgaagt acgtgatcgt tagctccatt gtatgtttct ttgtatttgt ttctgcgtgc 120 ataatttctg tcaatggatt agttgtccat gaagatgatc tgtcaaagcc tgtgcatggg 180 ctttcgtgga cattttataa ggacagttgc cccgacttgg aggccatagt gaaatcggta 240 cttgagccgg cgttggacga agatatcact caggccgcag gttgctgaga cttcatttcc 300 atgactgttt tgtgcagggt tgcgatgggt ccgtgttgct gacaggaact aaaagaaacc 360 aacaggctca ccgagtgagc gccaaactta acactaagag cccgggcctt gcagctgatc 420 gacgaaatta aaaccgctgt agaagctagc tgcagtgggg ttgtaacttg tgcagacatt 480 ctggctttgg ctgctcgtga ctccgtcgct caggaggccc aaaatttcca gtaccacttg 540 gccgcagaga tagcctaaag tttgccagtc aatccgtagt tctcgccaat ataccaactc 600 caactttaaa tttgacacag ctgatgaaca tttttggctc caaaggattc agtttggccg 660 aaatggttgc tctttcaggt ggacacacaa tcggcattgg t 701 < 210 > 147 < 211 > 338 < 212 > DNA < 213 > Pinus radiata < 400 > 147 ctcaattctg tgctgctctg ctcgctcagg gccgggtctg ctattctgct catgcacaag 60 tttgagatcg ggagcctgct ggatctggtg cagaggttca aggtcacggt agcgcctgtc 120 gtgcctccca ttgttctcgc ctttgccaag aacgcgctcg tggaaagcta tgatctgtcg 180 tccattaggg ttgtgctgtc cggtgccgcg aggagctgga cctctcggaa ggatgcatta 240 aggctacgac ttcccaaagc cacttttggt cagggatacg gtatgacaga ggcaggaccg 300 gtgctatcaa tgtgtctggc cttcgctaag gagccctt 338 < 210 > 148 48 < 211 > 357 < 212 > DNA < 213 > Pinus radiata < 400 > 148 ctcaattctg tgctgctctg ctcgctcagg gccgggtctg ctattctgct catgcacaag 60 tttgagatcg ggagcctgct ggatctggtg cagaggttca aggtcacggt agcgcctgtc 120 gtgcctccca ttgttctcgc ctttgccaag aacgcgctcg tggaaagcta tgatctgtcg 180 tccattaggg ttgtgctgtc cggtgccgcg aggagctgga cctctcggaa ggatgcatta 240 aggctacgac ttcccaaagc cacttttggt cagggatacg gtatgacaga ggcaggaccg 300 gtgctatcaa tgtgtctggc cttcgctaag gagccctttc cgatgaagtc cgggtcg 357 < 210 > 149 < 211 > 470 < 212 > DNA < 213 > Eucalyptus grandis < 220 > < 221 > unsafe < 222 > (437) ... (437) < 400 > 149 gagaaattca caagcttcac agcacgagag ttaaagagcg agacacggtt tgatccagtg 60 aagggccggc ccccggagat ggcgaagacg ctcaccgcgc tggctggggg agaagaccct 120 ccagtccaaa gttcgtccgc gataaggatg agcgccccac ggtggcctac aaccagttca 180 gcaacgtgat ccccgtgata tccctggcgg ggattgacga ggccggcggc cggaagggcc 240 gagatctgca agaagatcgt ggaggcgtgc gaggactggg gcgtcttcca ggtggttgac 300 cacggggttg atacggggct catcactgac atgacccggc tcgcgcgtaa gtncttcgct 360 ctgccctcgg aggaaaagct ccggttcgac atgactggcg gaaaaagggg gggttatcgt 420 ctccagcatc tcaaggngaa caagttcagg actggtgcaa aagtacgaac 470 < 210 > 150 < 211 > 380 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 150 ggaggtcggt gacagagcag tacagcgaga agctcatggc cctcgcttgc aagctcttgg 60 aggtcctctc ggaggcaatg ggactggaga aggaggcact tgcgtggaca gaccaaggca 120 tggaccagaa ggtggtggtc aactactacc ccaaatgccc gcagcccgac ctcacgctcg 180 ggctgaagcg ccacactgac ccgggaacca tcactcttct gctccaggac caggtggggg 240 gcctccaggc caccagagat ggcggcaaga gctggatcac cgtccagcct gtggaagggg 300 cttttgtggt caacctaggc gatcatggtc atttcctgag caacgggagg ttcaagaacg 360 380 cggaccacca ggcggtggtg < 210 > 151 < 211 > 349 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (212) ... (212) < 400 > 151 ttggactcca tacctctcgt ggacctccaa ggtcttttac gcgattctgc tagagcccac 60 gttattcaac aaattggccg ggcctgcgct gaatatggct tcttccagat aatcaatcat 120 49 ggcatcccag atgcagttat caacaggatg ctggaagtag cgaaggagtt tttcagaatg 180 cctgtggagg accgaatgga atactattcc gncgatccgt ccagaaaaac acgtttgtcg 240 acgagcttca acatccataa agaacaagtc ttcaactggg gggctatctc agacatcatt 300 gttatccgtt agaagatcat gttcacactt ggccttcaaa acctgcggg 349 < 210 > 152 < 211 > 427 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (234) ... (234) < 221 > unsafe < 222 > (240) ... (240) < 400 > 152 atggtctggg cagcatacgg aggacgatgg aagatggaac gcaaggtgtg caacatgcac 60 atgttgggag ggaaggcgtt ggaagattgg gggacgccga cagccggtga aatgggcttc 120 atgctccgga atattctcag tcactcgcag cgcggcgaga cggtgaatgt gccggacctc 180 ctgaacatct gcgccgccaa catgatcggg cagatcattc taagcaagcg ggtnttcgan 240 acagaagggg acgaggccaa cgagttcaag gacatggtgg tggaactcat gacctgcgct 300 ggatacttca atatcggaga cttcattcca tcgctagcgt ggatggactt gcagggcatt 360 cagcggggta tgaagaagct ccacaagaaa tgggacgcac tcatacagag gattattgat 420 taacacc 427 < 210 > 153 < 211 > 298"<212> DNA <213> Eucalyptus grandis <220> <221> Unsure <222> (214) ... (214) <400> 153 gttaccaaag ggcagcaacg tattcttaaa catgggttct atccacaggg atcccaagat 60 ttgggacaaa ccgttggagt ttagacccga gaggttcttg gcaagtatga gaaggtccta 120 tttctcaggt aacaacttcg catacatgcc attcggttct ggtcgaaggg tgtgtgcagg 180 gcttgcgctg gcagagagga tgctaccata tgtnttggcc tctcttttgc actcattcaa 240 ccaccagggt gtgggaaata tttacctgga ctgagctgga caagttcggc cttgtggt 298 < 210 > 154 < 211 > 251 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 154 gacttcaaag ggcaggattt tgagctgata cccttcggtg caggtagaag gagctgcccg 60 gctattgcat ttggaaatgc cagtgttgag cttgctttag ctcaacttct tcacagtttc 120 gattgggagc ttcctgatgg gatccagcct agggacttgg atatgaccga agtttttggc 180 atcacaatgc acagaattgc caacctcatg gttgtagcca aaccccgctt ctcctagacg atactcgtgc c 251 240 < 210 > 155 < 211 > 411 50 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (198) ... (198) < 400 > 155 acggggctcc ggtgacgaga tactggcagg tcgttgaagc tggttggagg ttcgaatatc 60 cgagagggat cctgtttctt gtccccttac cttggttttc ctcatccttc cgaatgcagt 120 gaccgtggaa ctaattcgaa gagcggcgcc cggggcctgg gtaagagctt gctggagata 180 tctcggcttg actatgtntt ggctcttttc gtgaatggca agggggatct aggggcgatg 240 atggggtcgg ctgtcgtttt gagggaaaat tcgcaactgt tgatggtctt gactacatct 300 ctggccgtct tgattggttg cgttttgttc tttgtttggc ggagaggggg atcggctccc 360 tcgaagcagc cggagaagcc aactcccctg gtgaaagaag aggaagagga g 411 < 210 > 156 < 211 > 404 < 212 > DNA < 213 > Pinus radiata < 400 > 156 ataaaactaa gctgaagtta gtacattgag gttgacatgg aggcagaatt ttcaaatcta 60 gctttggaca ttattggatt gtgtgtattt aactatgatt ttggatccgt tactcgagaa 120 tcaccagtaa tcaaggcagt ctatggtaca ttgtttgaag ctgagcatag atcaaccttt 180 tacataccat actggaaatt tccgctggca agatggttag ttcctcgcca acgaaagttc 240 catgaagacc taaaggtcat taatgaatgt cttgataatc tgatagcagg ggccaaggaa 300 acaagacagg aagacgatat cgaggctctt caaggaagag attactctaa agtgaaatat 360 gcaagtttgc tcagatttct agttgatatg agggagaaga tgtt 404 < 210 > 157 < 211 > 259 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (116) ... (116) < 221 > unsafe < 222 > (246) ... (246) < 400 > 157 gcaatttcca ccaatcatcg ccaagtgaga cttcctcttc accgtgctct caaaaatctt 60 gctgagaaat atggtcccat tttgtttctg cgctttggct ctgtacccac tgtggntgtt 120 tcttcatctg agatggccaa acactttctt aaaactcatg atttgatatt tgccagccga 180 cctccaacat cggtaggaaa atatttcttc tataacttca aagatattgc cttcagtcct 240 259 actggagga tatggngatc < 210 > 158 < 211 > 338 < 212 > DNA < 213 > Pinus radiata < 400 > 158 aatggcagtt gggggtcaag gaaatgtggt ctcagcttgc aggcagccat ggaagctaca 60 atcgtctggt gggtgttttg gtagtaatag tttctctggc agttttttat ttgaagagta 120 51 gaggttcgaa gaagcgtctg cctccagggc cgaagggtgg cctctggttg gaaatttgtt 180 tcaggttgca ttctccggga agcccttcat gtatgtggtg cgagatctga gggagcagtt 240 tggctcgatt ttcacgctcc aaatggggca aaaaacgccc caaattacca cctccccgaa 300 atttccaaca cggggcctct taaaaaagag ggggcccc 338 < 210 > 159 < 211 > 539 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (1) ... (539) < 223 > n in all cases indicates insecure < 400 > 159 aatgtggccg aggagttcct gnaagactca tggatctggc tttcgccagc agacctccaa 60 ccatcggtaa cgaatatttt ggtataattc ctccgacgtc gcattttccc cctatggtcc 120 ttactggagg cagatgcgta aaatctgtgt gttaaagttg ctgagctcaa gacgcataga 180 ttccttccgc cacataagag aagaggaagt ctcttctatg gttcgctcta ttgctaattc 240 ggatctgcat cctgtgaaca ttagcagggc cgtgtcagcc cttgggattg atataatctg 300 caggatggcc ttcggtaaaa agtactgtga attggtggca ccaagaccta ttgggatnaa 360 gtcaatgata aaggaaacgt ttgtgtnagc agggtcnttg aacatgggag attttatacc ' 420 atacttggca tggattgatc ttcaaggtct caaccgtcga ttgaagaaca tacacaagat 480 ccaagacgac ttgttagggg aagatactag aggcacacgc ttcgccaacc gcagaataa 539 < 210 > 160 < 211 > 310 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (16) ... (16) < 400 > 160 cgaatgggtg gtcggnaaag accgcacagt aaaggagtct gatttggtaa gtctgaaata 60 ccttcagtgt gtggtgaaag agacgctacg attatacccg ggaggacctc tagcacttcc 120 ccatgagtct gtggaggctg tgacagtaga agggtactat atacctaaga agacgatgct 180 gttggtgaat gtgtgggcta taggaaggga ccccaaagtg tgggggattg atgcttcaga 240 gagagattta attcaagcca tggaggaatt aggtgggcat atgtcatgga ctgcatgata 300 tttagcaggc 310 < 210 > 161 < 211 > 412 < 212 > DNA < 213 > Eucalyptus grandis < 4 00 > 161 cgccacctce ctcctcctct tccccctcct cctgctcctc ctggtcgccc cgcaaaagcc 60 ctccgcctct gtccgcagtc accgccagcc atggatctcc tcctcctgga gaagaccctc 120 ctgggcctct tcgccgccgc catcgtggcc atcgcggtct ccaagctccg gggcaagcgg 180 ttccgcct CC ccccgggccc cctccccgtg cccatcttcg gcaactggct ccaggtcggc 240 accaccgcaa gacgacctca cctcaccgac ctcgccaaga ggttcggcga catcctcctc 300 ctccgcatgg ggcagcgcaa cctcgtggtc gtctcgtccc cggacctctc caaggaggtg 360 ctccacac: gc agggcgtcga gttcgggtcc cgcacccgga acgtcgtctt ct 412 52 < 210 > 162 < 211 > 329 < 212 > DNA < 213 > Pinus radiata < 400 > 162 acttttacaa tgagtgatca caaacaattt tttccaaaat tcataacaaa attttggata 60 cagtgcatat tcgggcaaac aatctgacgg acttcaaaac tactgacaac aaaacaaacc 120 atctggggat gaattacaat ggaaatccac acttcatttg gctgcaactg tatatataaa 180 gtgtttattg cttccagctc ctccagactt tggaagaaat tctatatttt tttttcagga 240 tctgagcttc aggctattgg tttggccaca acaacggagt ggttgagaat gtgcaggctg 300 aattgccctc ctttctctgt cacatccac 329 < 210 > 163 < 211 > 475 < 212 > DNA < 213 > Pinus radiata < 400 > 163 atttgcgtca gtctctacct ttgcctgcaa cattcacagt cgctgatgga gggcctcccg 60 cagcaactgt cctgtgctta ctctgggctt tcttcatgat atggtttttg ggcaagagaa 120 cacgctgcca gaactagtgc ccaggaccct atgcatggcc catcatagga aacctctacc 180 aattaatact gcccgctcac cgttctctta gaggccttgc tgacaaatat ggtcccatta 240 tgtttctgcg cttaggctct gtccctaccg tcgtcgtttc ttcttctgag acggccaaag 300 agtttctcaa aactcatgac ttgatttttg ccagccgacc cccaacagcc gctgggagat 360 tgatgttttc caactctaaa gacgtggtgt tcgctccgta tggagatcac tggaggcaaa 420 tgagaaaaat atgcgtgtta gaactactga ctgccaaaag aatcgagctc gtgcc 475 < 210 > 164 < 211 > 372 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (22) ... (22) < 400 > 164 tggaaataca gttcgactct gngatttcat aaaatatgat gaggaaagga gaatcaggtg 60 gatttgaggt taagggatgg gctgccatgg atgactccgg cgtcctctcg cctttcaact 120 ttactcgcag gaaaacggga tcccacgatg tactttcaag gtagcatact gtggaatctg 180 tcactccgat ctgcatcaaa ttcggaatga atggaaaaat tccctatacc caaatgggtt 240 ccaggccacg aaatcgtagg aactgttgct tgaagttcgg tcagaagtga agaattttgg 300 ctggctggag aatcggcggt gggtgtaagg gttgcatggg tttggaggtg ccagccaatt 360 372 tg ggtgaattct < 210 > 165 < 211 > 307 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 165 tctctctctc tctccctctt gagagtgttg aagtgttagg atgaggattc gagtgccgtc 60 gatgctgttg ttgtggtcac tgttgggcct cgtggcgagg tcgacaatgg ccgaagagac 120 ggtgatcccc gagacaacgc gtttcgacac cggtgggctg agcagatcgg ccttcccgaa 180 gggcttcgtc tgggggacgg cgacctcggc ttatcaagtc gaaggcatgg ccgacaaaga 240 gggacgcggg cctagcatct gggacgtctt cgtcaagatt ccaggaattg tggccggtaa 300 53 tgcaact 307 < 210 > 166 < 211 > 454 < 212 > DNA < 213 > Eucalyptus; grandis - < 400 > 166 gaagaaatta ggtttcttgt tgcggctttt ggtagtgggt ctggtgatag cagagacggt 60 ccatggtgct tatgagttca gcagatacga ctttcctcct ggctttgtgt ttggtgctgg 120 cacttcagct tatcaggtcg aaggagcagc aaatgaggat gggaagactc caagtataat 180 ggacacctgg gcccactctg actcagggat tacaagcgga gcaaatggag atattgcctg 240 tgatcaatat cacaaataca aggtagatgt ccaactcatg gcagaaatgg gattagacgc 300 ataccggttt tccatctcat ggtcaaggct catcccaaat gggagaggct ctgtgaatcc 360 cagtactaca gaagggattg acaacctcat caatgaactg atcagccatg ggattgaacc 420 cgcacgtgac cctgcaccat tttgatctgc poo 454 < 210 > 167 < 211 > 433 < 212 > DNA < 213 > Pinus radiata < 400 > 167 gagaagcaat aggaaaatat ggccctggag aatggtgaaa gaagcagagt actgatcatt 60 ggaggaaccg gttattttgg cagaaggtta gtgaaggcca gccttgcctt cggacatgag 120 acttatgtcc agtatcgtgc ccaggcagcc tctgatatca gacgcttatt acaaagtgga 180 tccttcaaat ctcaaggagc acacctggtg ttgacaatca gatgcttcca cacaagcctc 240 gtaaatgccg tgaaacgagt ggaagttgta tgggtgccga atatcggcga gggtctgaga 300 gaggggcagc tgaaagtgat cgaggccatt aaagaggcag gaaccgtcaa gcgctttctt 360 ccttctgagt tcgggatggc ccagacagaa tggtgcacgc catctatccg ggcaacgagg 420 ttttctctga taa 433 < 210 > 168 < 211 > 330 < 212 > DNA '< 213 > Pinus rad: Can < 400 > 168 cggggagctt gacttgggac tggaaagcag cgggcatcgt ttcctgtggg ttctccgcgg 60 tcatccttcc aatccaaact tatctgcgct gctgcccccg ggtttcgaac agcggaccaa 120 agatcgtggt ctcgtggtta cctcatgggc tccgcaggtt tctatccttg cacacccgtc 180 aacaggaggt tttgtgagtc actgcggttg gaactcgatg ctggagagca tttggtttgg 240 agttcccatt atcgcttggc ccctccaagc tgaccaaagg ccgatcgggt tactttctgg 300 tgaatgatag tagaatagac ggtaggcttg 330 < 210 > 169 < 211 > 398 < 212 > DNA < 213 > Eucalyptus > grandis < 400 > 169 ggaaaatttg gtatcggtag agagatcctg tgagatcgac gcgtgggtcg accttcaaaa 60 tttgacccgt gaggtgatct ctcgaacagc gtttggcagt agcttcgaag aaggcaaaag 120 cttcaggggg gatctccgaa aacaagccca gctcacgata atagcccttc aatcggtcta 180 catccctggt tggaggtttg tgccaactaa gatgaacagg gcatagataa aggatgaaga 240 ggaagtgcgg gctctgctca tggacatcat ccgcagaaga gagaaagcaa taagggaagg 300 ggaagctgct ggcgatgatc tgctggggct gttgctggag tcaaacatga aggagaatgt 360 54 cgggatgagc cttcacgatg tgatggacgg agttgcag 398 < 210 > 170 < 211 > 432 < 212 > DNA < 213 > Eucalyptus grandis < 220 > < 221 > unsafe < 222 > (214) ... (214) < 400 > 170 gttaccaaag ggcagcaacg tattcttaaa catgggttct atccacaggg atcccaagat 60 ttgggacaaa ccgttggagt ttagacccga gaggttcttg gcaagtatga gaaggtccta 120 tttctcaggt aacaacttcg catacatgcc attcggttct ggtcgaaggg tgtgtgcagg 180 gcttgcgctg gcagagagga tgcaaccata tgtnttggcc tctcttttgc actcattcaa 240 ccaccagggt gtgggaaata ctgagctgga tttactggac aagttcggcc ttgtggtcaa 300 gaaaatgaag ccccttgtcg ccattccaag accaagattg tccactctgg agctctacat 360 gtcgagatag atatttcatt agagtcccaa agctcttcat ttcaattcta agaaataaac 420 gtatcctgcc ag 432 < 210 > 171 < 211 > 303 < 212 > DNA < 213 > Eucalyptus grandis < 220 > < 221 > unsafe < 222 > (105) ... (105) < 400 > 171 ccatcgcggc cctggcccgg acctacgggc cgctcatgca cctgcggctc gggttcgtac 60 gacgtggtgg tggccgcgtc ggcctccgtg gccgccgagt tcctnaagac ccacgacgcc 120 aacttctcga gccggccgcc caactccggg gcgaacacat cgcgtacaac taccaggacc 180 tgatgttcgc gccctacggc ccgcggtggc ggatgctaag gaagataagc tccgtccacc 240 tcttctccgg caaggctctt aagcattaca gacacgttcg ccagaaaaag gtcgcaatcc tea 300 303 < 210 > 172 < 211 > 518 < 212 > DNA < 213 > Pinus radiata < 400 > 172 cattagatat atatatatag acaegeattt aegatatcat tgcaacaatg tcattggtag 60 gctgggttgt ttttctaatc gctttgattt cgtatttggc tgccatcaca aatgcagcaa 120 tcgtcaatta taccttcatc attgaagcga agacagttac caggctatgc aaggagaata 180 caataatcac cgtcaatggg cagctaccag gtccgaccat ctatgtccat gacggagaca 240 ctgttattgt tgaaacttat aacaaggccg agtacaatgc cactcttcac tggcatggag 300 tggagcagtt gcgtacacca tgggctgatg gacetgeata tgttactcaa tgtcccattc 360 tcgttataca caccaggtgg tacagattea acatctctgg acaagaagga accgtgtggt 420 ggcatgccca ttactcatgg ctccgagcta cggtccatgg agcttttgta atccttccta 480 aggaaggaag ctcatatccc ttttctaaac ccaatgcc 518 < 210 > 173 < 211 > 309 < 212 > DNA 55 < 213 > Eucalyptus grandis < 220 > < 221 > unsafe < 222 > (284) ... (284) < 221 > unsafe < 222 > (294) ... (294) < 400 > 173 gccgctgatc ctaggattga gatctgcatg ctccccgtgg gtgatggcat cactctctgc 60 cgtcggatca gctgagcatc taatctcaag tccttatgat cagggttcat tcttaatgta 120 gaacccacga aaaagagagg gatttatgta tatcttgttg ctgtttcttt tccatgaacc 180 tagaaacggg attcgcaatt aaatgccaaa ttatgttgct gtttctcttt agtgctctcg 240 atttcttttt attttttaat ttttttgatc agtttcttcg agtncttcca aatnatctca 300 aaaaaaaaa 309 < 210 > 174 < 211 > 381 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 174 taagacgaag aaatggaaac aacggccaag ccatcgcgaa acgcctttcc gcatatggaa 60 tgcactatat ttgatcttcc gcatgtggtg gccaatttag aagttagcga gaacgtgaga 120 tgtgttcctg gggacatgtt tgagtccata ccaccagcag atgcaataat attgaagtgg 180 atactccatg attggagcga tgaagacgct gtgaagatac tgaagcgatg caaggaggcc 240 ttaggcaagg gcaagggcaa gaaacagaag gtaattataa ttgacatggt gatggacaac 300 acgaagagcg ccaaagagac ggtcgaaacc cagctcttct atgacatgtt gattgatgaa ccctcgccgt cgggaaaggg g 381 360 < 210 > 175 < 211 > 236 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (37) ... (37) < 400 > 175 tgaattacca catgcggctg atagatctgg tgaaggncgg aggattgatt gcgtatgaca 60 atactctgtg gcaaggatcc gttgcgcttc ccccagaagt cgccatgagc gaaggcatga 120 gttatgggga agacagagag catatgttgg aactaaacag ggcccttgct gcagaccctc 180 gcatcgagat tgctcagatc ccaattgccg atggagtgac gctgtgcagg cgcctt 236 < 210 > 176 < 211 > 404 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (1) ... (404) < 223 > n in all cases indicates insecure < 400 > 176 56 ccacttacca gtcgggaatt gaccattaat tcacgattca tcccacctca gcctggaaat 60 ttggtctgaa tctggagccc aatactgtac aagtagcctt ggtctcttcg ggaatccgtg 120 tntggaaaga agaaattgag atccggccaa agatggttgc agggtcagac ctgggcgctg 180 tgcaggccaa tggaaatcaa gatttcatca aatggaaatg tgtgcattct gttgatctct 240 gcattcagaa tggnccagac cctctgaact gggggcaggc tgccaaggcc ctgcagggct 300 cccactttga agaagtgaag ctcatggtgg ngtcctattt cggatccgng gaagtttcca 360 atcngtcaca ttgaaggcaa atcgcggatg tgaccgcagt CCGT 404 < 210 > 177 < 211 > 415 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (20) ... (20) < 400 > 177 cccaacgcta tgcgtctgan caggcaactt tcttcagtgc atttgtggcg gccatggata 60 aattgggcag tgtgggtgta aaaactggca cacaggggga ggtcaggagg agatgtgatg 120 cgttcaattg agaagagtaa agttcaaatt ctctccatta ttaaggtggg attgtatgca 180 tggttgagat taatgaacgg aacaaagaaa atttaatgtt ttgtaactag tgagattgat 240 gaattgaata aagaattttt cctgtcctct gattcaacct gttttgcact ctgtgaagca 300 ctttacagtc tggactctgg aaggaatcca tcaaatcgtg actaagaaaa gggtaatgat 360 tttaaagaga ttccgttgcg ctcattccat tgggggattc ctgaaaatat ctgcc 415 < 210 > 178 < 211 > 409 < 212 > DNA < 213 > Pinus radiata < 400 > 178 gatgggcgcg caattctttt cagccggctg gtgtagttgc tgttgaggtt acgggaggtc 60 ccacaattga gtttgtccct ggtcgtaagg attcactggc atcaccacga gaagggcggc 120 ttcctgatgc gaagaaaggt tcacaacacc taagggatat cttttatagg atgggcctat 180 ctgacaagga tatagttgct ctttctggag cgcacaccat tgggaaaagc acatccagaa 240 aggtcaggct ttgatggagc atggaccgag cagcctctga agtttgataa ttcatatttt 300 gtagagcttc tcaaaggcga gtctgaagga ttactccaat tgcctacgga caaatgcttg 360 gtagaggatc ccagtttccg cccttatgtg gatctttatg ccaaggatg 409 < 210 > 179 < 211 > 411 < 212 > DNA < 213 > Eucalyptus grandis < 220 > < 221 > unsafe < 222 > (393) ... (393) < 400 > 179 agagcttctc ccagagaggc ctctctatgg aagatctcgt cgctctttcg ggaggccaca 60 cactaggatt ttcccactgc tcctccttcg caggcaggat ccgcaacttc aacaccacgc 120 acgacatcga cccatcgatg cacccatccc tggcagcgag cctaagaggc gtgtgcccga 180 gcaagaacag gccaaaaaac gcagggacca ccatggaccc ttcctcgacc accttcgaca 240 acacgtacta cgggctgatc ctccagggga agggcctgtt ctcttcggac caggccctcc 300 tggcagtgcc caagacgaag gatctggtcg agaagttcgc aggctcgcac aaggaattca 360 cggatgcatt cgtcaagtcc atgatcaaga ttnagcagca tcacaggcgg 411 57 < 210 > 180 < 211 > 334 < 212 > DNA < 213 > Pinus radiata < 400 > 180 gcatcatggg aagtacaact gacagcctaa gggaagaaga aacagcagca cagcaagcaa 60 aataacaaca ttccagcccc cacatcaaat gttgcaacac ttaactccaa gtttcagaat 120 ctgaacaaga gtaggcctca catggtcaca ctctcaggag cccatacaat aggaaaggcg 180 cgttgtgcaa cattcaactc taggctcacg ggacaaccgg atcccactct tcagaaagag 240 tttttgacat cgctccaaca aatctgcttt caagggctag ccagtaataa caacaccgta 300 acttcactgg atgtggagac tcccgtcatt 334 TTTG < 210 > 181 < 211 > 343 < 212 > DNA < 213 > Pinus radiata < 400 > 181 atttcgctga actggatctg gatcgaagaa ggtattgcat atcaaagaaa gaggcaaata 60 tgactccggc cactgttttg ctttctatat ttgtgattgt atatggtagt gctgtgaacg 120 ctctgccaac tcccgtggcg ggtctttcgt ggacgttcta caacacaagt tgcccgtcat 180 tggagtcgat agtgcggaag cgcatggaag cctatttgag tgcagacatc acacaagctg 240 caggattgct gaggctccac ttccacgact gttttgtcca gggatgcgac gggtctgtgt 300 tgctgaactc aacatcgggg gagcaaacag ttgcgcccaa ctt 343 < 210 > 182 < 211 > 443 < 212 > DNA < 213 > Pinus radiata < 220 > < 221 > unsafe < 222 > (164). . . (164) < 400 > 182 atttcgctga actggatctg gatcgaagaa ggtattgcat atcaaagaaa gacgcaaata 60 tgactccggc cactgttttg ctttctatat ttgtgattgt atatggtagt gctgtgaacg 120 ctctgccaat tcccgtggcg ggtctttcgt ggaccgtttt acancacaag ttgcccgtca 180 ttggagtcga tagtgcggaa gcctatttga gcgcatggaa gtgcagacat cacacaagct 240 tgaggctcca gcaggattgc cttccacgac tgttttgtcc agggatgcga cgggtctgtg 300 ttgctgaact caacatcggg ggagcaaaca gttgcgccca acttatcact cagagcggag 360 tcatcaatga gctctgaaaa catcaaagag aacgtagaag cggcgtgcag cggaactgtg 420 tcgtgtgcag acattcttgc ctt 443 < 210 > 183 < 211 > 243 < 212 > DNA < 213 > Pinus radiata < 400 > 183 acattgatga ttgtgctacg cgtatttttt tcaatctcta gcacttggga aggtctggag 60 gaggcggctc caaggttgcc tgagggccgt gaccgttctt cactataaac accatattca 120 gtccccatac taaatggtcg tctaaatggc agtggagaaa ccacactcct ggattgtcag 180 ctttgaatct tatcgcaacc caaccgctca caggagctat tactgtgttg cgtagtgggg 240 58 ate 243 < 210 > 184 < 211 > 473 < 212 > DNA < 213 > Pinus radiata <; 400 > 184 agaagaaaca ggtggcccct cactcagaga gtttgatcta taagaggaga gattcactcc 60 gggagattca aaaatgcaca ctccaccatc aaattttaat cattggcctt tttcctctca 120 acggccgatg gcgtaaacac gcgtaagcaa acaccaagat cctgaaacag tcgactgatc 180 gattcagaat aatttgaaag gaaactggac tactcaatca atttgttgac atttatcaag 240 ttcagtacag aaatggatga gaggtatcca aggaaggcaa tcaatgggca ggattcattg 300 tgtaatccga agggtgagaa agaggaaggg agattettet acagcatgat aaccgggagg 360 cacataactg ggagtcacat aaacataagt ggtggccaca tttggaagaa aaaatcccgc 420 acattgecaa agcaggattt acatetatat ggctgccgcc tgcttttgat teg 473 < 210 > 185 < 211 > 641 < 212 > DNA < 213 > Pinus radiata < 400 > 185 ggcaccgagc tgggataccc ctgctgcgac ttgatccctt ttgaacagga attatttaat 60 tttectaatt attttagttt gcaaggaaac ttgactactc catcaatttg tttacagttt 120 tcgaaaaatg ggctatccag ttcaggaggt atccaaggaa caegatcaat gggcaggatt 180 tgttgaaggt gaaagtgtgc ttcaaagagg aagggagatt cttctccagg gttttaactg 240 ggagtcacat aaatacaagt ggtggccaaa tttggaagaa aagatcccgc acattgctaa 300 agcaggattt acatctgtat ggctgccacc tgcttttgat tctgctgcac cccaaggtta 360 cttgccccga aacatttatt ctctgaactc tgcatatggt tcagaatatc agctgaaaag 420 cttacttatg acaatgcgaa agaaaaatgt gagagecatg gctgacatag ttatcaatca 480 tcgcatggga agetetcagg ggtttggagg cttgtataat cgctattatg gttgcctgcc 540 ttgggatgaa cgtgctgtta cacgttgttc tggtggactt ggaaactgga gcacagggga 600 taattttcat ggagtaccaa acgttgatca cacccaagat t 641 < 210 > 186 < 211 > 655 < 212 > DNA < 213 > Pinus radiata < 400 > 186 agaatggcca agtttcgatc tctgtcttta ttgttatggt tctcctgcat catagtcaat 60 gcagcctctc ctgcacaagc agaagetaca acgcctcctc tgaataccct cttacttcag 120 ggcttcaatt gggattcagc ccagagttct actccttggt ataatgtatt gaagggaatt 180 gtagacgatg cagcggacgc cggcattacg tacgtctggt ttccgccgcc ctcacaatcc 240 ggcgcccctc aaggttattt gccagcgaag etetatgatt tagactcgtc ctacgggagc 300 gageaacaac taaaggatgc cgtgaatgcg ttccaccaaa agggaattgc gattatgggc 360 gacatcgtga taaaccatcg gaacgggacg aagcaggacg ataaaggata ttggtgcgtg 420 tttgagggcg ggaaggggga cggtactctg gactggggac cctgggcggt caccgtgaag 480 gaccaaccat atccgttgtg cggctccggc caggcggaca ccggagggga cttcaagtac 540 gccccggacg tggaccacac caatcccaag atacagcaag atttgtcgga gtggatgaat 600 tggctcaagt ccatgtcgga tttgatggct ggaggttcga ctacgtcaag gctac 655 < 210 > 187 < 211 > 438 59 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 187 ctggggtggg gaggctggtc gacgtgggcg ggagcgcggg ggactgcctc cggatgatca 60 cacgcacgtc tggggaagca tcaacttc.ga cgggaaggga gtcgtggcca cttgcccgag 120 aagcgcctcc cattcctggg gtgacccatg ttggtggcga catgttcaag tccatccctg 180 ctggtgatgc cattttcatg aggtggatac tgacgacatg gacggacgac gagtgcaagc 240 agatactgga aaactgcttc aaggcactcc ctgcgggagg gaagctgatt gcctgcgagc 300 cggtgctacc gcagcactca gatgatagcc acaggactcg agcacttctt gagggcgaca 360 tcttcgtgat gaccatctac agggccaagg gcaagcatag gactgagcag gaattccagc 420 agctcgggct ctctaccg 438 < 210 > 188 < 211 > 597 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 188 acccaacaat ggccgacaac caagaacgcg aagggcgcga tcaagaagag gaagtcggga 60 agctggcggt ccagctggcc agcgcggtgg tgctcccgat gaccctcaag tcggccctcg 120 agctcggcat catcgacgcc ctcgtctccg ccggtgggtt cctctcggct gccgagatag 180 cgagccgggt tggcgccaag aacccggggg ccccagtcct ggtggaccgg atgatgcgcc 240 tcctggcgag ccacggcgtg atcgagtggc ggttgaggag gggcgacggc aacggagatg 300 gaggggagag agagtacggt ccaggaccca tgtgcaggtt ctttgccaag gaccaagaag 360 gtggagatgt tggtcctctg tttctgctaa ttcacgacaa ggtcttcatg gagagttggt 420 accacttgaa cgatgtcatc atggaaggag gggttccgtt cgagagggca tacgggatga 480 cggcgttcga gtatcctgcc gttgacgata ggttcaatca agttttcaac cgggccatgg 540 cgagtcatac ttccctcatc atgaagaaaa tactcgatgt ctacagaggg tttgaag 597 < 210 > 189 < 211 > 470 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 189 cccgaccccg ctttacatga acaagatcct cgagtcgtac cgtgggtttg agggcgcaaa 60 gacgattgcc gacctaggtg gcggcgtcgg ccagaacctt cggctcatat tggacaagtt 120 cccaaatctc aggggcatac tctatgatct gcctcatgtg atcaaagatg cacctgccca 180 tcctcgtatg gagcgtgtcg gaggagacct gttaaagtct gttccgaaag cagatatact 240 cttcatgaag tggcttttcc atggtctacg agacgatttc tgcaaaatgc tactccagaa 300 ctgttacgag gcgctgccac caaatggcaa ggtggtcatc tccttcccga gtggacccga 360 ataccccgag acagacatag tgtcgaggaa ctcgttcacc tccgacatga tcatgctata 420 cacgagccct ggagaagacc ggacgaggaa agagctggag gtgctcgcac 470 < 210 > 190 < 211 > 499 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 190 gtccagtttt cagccgtgct atgaagaagc caacagttta gaccgttgga ttcagcctcc 60 gtcggatctg cttcataata tgtccgataa agaactattt tggagagcga cccttgttcc 120 taaaatcaag aagtatccat tcagaagagt tccaaaaatt gctttcatgt tcttgaccaa 180 gggtccattg ccgctggctc ctctttggga gaggttcttc aagggccatg aggggcttta 240 ttcgatctat attcattccc atccatcatt ccatgcccac tttcatcctt ggtcggtatt 300 caaatcccaa taacaggaga gtcaggtgtc tgagtggggc aggatgagca tgtgtgatgc 360 60 agagaaaaga ctcctagcca acgcattgct agacatatcc aatgagcggt tcattcttct 420 ttctgaatca tgcattccgc tgtataactt cagcctcatc tatcactaca ttatgaagtc 480 cggatatagc ttcatgggt 499 < 210 > 191 < 211 > 1036 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 191 ggcaagtggt ggctggaatt cacacccatt gcgctctctc tctctctcta gatcctatct 60 cgaaagccaa aagaaaagac agtcggaaga aaaaatataa aaaaaaacat gagttcgaag 120 gaagccccag tcattacaac ttcccatgaa gatgaagaaa ttttgaatgc ctttgaggtc 180 ccctcaatgg cttttgttcc catggtcttg aaaggcgtcc atgagctggg gattcttgaa 240 agggtgacca ttgctggcca gctctctccg ttggacatcg tggcccgcct ctctatcgac 300 aacccggccg caccggacac gatcgaccgg atgctgcggc tccttgcgag ttactccatc 360 ttatcgtgca ctctcgtgga ggataaagaa ggccgccccc agaggctcta cggcctcggg 420 cctcggagca agttcttttt ggaccagaat ggagcttcta ctttaccaac tcatatgcta 480 ctccaagaaa agactctcct ggaatgctgg aactgcctta aagatgcagt taaggaagga 540 ggggcagatc ctttcacccg caggcacggc atgaacgtgt tcgactacat gggccaggac 600 acgacctgta ccgagattca caacaagtcg atgaggaccg ggtcggcgat ttacatgccc 660 aagatcgctc agcattatcg tgggttttca cggtcgtcaa aaggcgaaga tgtgggcggt 720 ggcatcggcg agaccctgaa aaccatactc tccaagaatc cccacatccg cgccatcaac 780 tacgacttgc ctcatgtgat cgcaactgct cctcccattc ctggtattac gcatgttgga 840 ggagacattc taaagt ccgt ccctaaagcg gatgtccatt tcctgaagtc ggttctccat 900 cgcggggatg atgagttctg cgtgaaggtg ctcaagaatt gctgggaggc attgccgccg 960 acggggaaag tggtgatcgt ggaggaagtg accccggagt atcctgggac cgacgatgtc 1020 tcacagacca cgctct 1036 < 210 > 192 < 211 > 682 < 212 > DNA < 213 > Pinus radiata < 400 > • 192 agacgttgga ggaggtatag gctctgcctt gtccatcatt gtgaaggaac atccacacat 60 tcgtggcatt aatctcgatc tgcctcatgt cattgccact gcgcctctca taactggggt 120 gagggaaata ggagcacatg tgttcgagca cataccttct gccgatgcag tcatgatgaa 180 gtggatcctc catgactggg gtgtgtgaaa cggacgagga gaagctacga ttgctgagaa 240 gcgaagggaa cgcaacgcca aggtgttaat tgtggaagca gagacaaaga gttgttgagg 300 aggtgaaagc atgtcgaggc gattgggatt gttatatgat atatcgatga tggcttacac 360 aaggagagaa aactggtggg cagaggaaga attcaaaggg ttgttccagc gcgcagggtt 420 accatcatca caagagccac agttgccttt ccttcagtcg ctcatagtgc tgtccaaagc 480 ctaataagct attgcgcttc cgattatcgt tacaataacg ttggttttgc tggggttgtt 540 atcatgcagt atatgaccta tgttttatgt tatctggcag tataagattt ctgaagacat 600 ggttgaaatt attgtgagat tttaaagata tttatccatc ataaaaataa tggaatatga acaaaaaaaa taatattttt 660 aa 682 < 210 > 193 < 211 > 399 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 193 agcgtctaat ggttcctatt tagaagttca gaaagtctct gtctttccta ccttgcgggg 60 tagtctcttc ggacgtactc aaacatggag caaggctggg acaagggcga gatcctggca 120 agcaaagctc tctcgaagta catattggag accaatgcat atccgagaga gcacgagcag 180 61 ctgaaagaac tcagggaggc cacggtccag aagtaccaaa tccggagtat aatgaacgtg 240 ccggttgatg aggggcagct gatctccatg atgttgaagc tcatgaatgc gaagaagaca 300 atcgagatcg gagtcttcac cggctactct cttctgacca ccgcacttgc acttccggcc 360 gacggcaaga taatagcgat agaccaggat aaggaggcc 399 < 210 > 194 < 211 > 399 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 194 cggacgtact cagacatgga gcgaggcggg gacaagggcg agatcctggc aagcaaagct 60 ctctcgaagt acatattgga gacgaatgca tatccgagag agcacgagca gctaaaagaa 120 ccacggtcca ctcagggagg aaagtaccaa atgcggagta taatgagcgt gccggctgat 180 gaggggcagc taatctccat gatgttgaag ctcatgaatg cgaagaaaac aatcgagatc 240 ggagtcttca cgggctattc tcttctcacc accgcacttg cacttccggc cgacggcaag 300 tagacccgga ataatagcaa taaggaggcc tatgaaattg gcctgccata tatcaaaaaa 360 gccggagtcg atcataagat caacttcatc cagtcggat 399 < 210 > 195 < 211 > 296 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 195 ttgcagtaca tattggagac gaatgcatat ccgagagagc acgagcagct gaaagaactc 60 cagtccagaa agggaggcca gtaccaaatc cggagtataa tgaacgtgcc ggctgacgag 120 gggcagctaa tctccatgat gttgaagctc atgaatgcga agaagacgat cgagatcgga 180 gtcttcaccg gctgttctct tctcaccacc gcacttgcac tggcaagata ttccggccga 240 atagcgatag acccggataa ggaggcctat gaaattggcc taccatatat ccgaaa 296 < 210 > 196 < 211 > 474 <; 212 > DNA < 213 > Eucalyptus grandis < 400 > 196 caaacgctca gcgccaccac ccttctcatc atcagccctc tgtctctgtc tctgtctctc 60 gattctccgc cccgccacga caatggaggc gaagccgtcg gagcagcccc gcgagttcat 120 cttccggtcg aagctccccg acatctacat tcccgacaac ctctccctcc acgcctactg 180 cttcgagaac atctccgagt tcgccgaccg cccctgcgtc atcaacgggg ccaccggccg 240 gacctacacc tatgccgagg tcgagctgat ctcccgccgg gtctcagccg gcctcaacgg 300 gctcggcgtc ggacagggcg acgtgatcat gctgctcctc cagaactgcc ctgagttcgt 360 gttcgcgttc ctcggcgcgt cctaccgggg cgccatcagc acccgttcta acgaccgcga 420 caccccgggc gagatcgcca agcaggcctc agctgcccgg gccaagatcg tgat 474 < 210 > 197 < 211 > 543 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 197 gttcgccgac aaggtgaggc cgttcgcgga ggagaacggg gtgaaggtcg tgtgcatcga 60 taccgcgccg gagggctgcc tgcacttctc ggaattgatg caggcggacg agaacgccgc 120 ccccgcggcg gacgtcaagc cggacgacgt cttggcgctc ccctattcgt cgggcacgac 180 aagggagtga ggggcttccc caggggtcaa tgcttacgca tggcgcagca gtgaccagcg 240 gacaacccca ggtcgacgga acttgtactt ccacaaggag gacgtgatcc tgtgcacgct 300 62 cccgttgttc cacatatact ccctcaactc ggtgatgttc tgcgcgctcc gtgtcggcgc 360 cgccatcctg atcatgcaga agttcgagat cgtggcgctg atggagctcg tgcagcggta 420 atcctgccca ccgggtgacg ttgtcccgcc gatcgtgctg gagatcgcaa agagcgccga 480 ggtggaccgg tacgacctgt cgtcgatccg gaccatcatg tcgggtgcgg cccgatgggg 540 543 aag < 210 > 198 < 211 > 564 < 212 > DNA < 213 > Eucalyptus; grandis < 400 > 198 ctggacaact agttgcagga gttgaagctc aagttatcag cgtggataca ctaaaatctc 60 ttccccctaa tcagttaggg gaaatatggg ttcgtggacc taacatgatg AAAGGATATT 120 ataacaatcc acaagcaact aaattgacaa ttgataacaa gggttgggtg cacactggag 180 accttggata ttttgatgag gaagggcaac tatatgttgt tgatcgaatc aaagagctca 240 tcaagtacaa aggttttcag attgctccag ctgagcttga aggactcctt ctttcacatc 300 ctgaaatttt agatgctgtt gtcattccat ttcctgatgc tgaagctggt gaagttccta 360 cgttcgctca ttgcatatgt cctaccagct ctctaactga cagaaattca agaggaagtc 420 ttgccaatca ggttgcacca ttcaaaagac taaggagggt gacattcgtc aacagcgtcc 480 caaagtctgc ttccggcaaa attttgagac gtgagctgat tgcaaaagta cgagcaaaga 540 tataactgtg catgctcgat gcgt 564 < 210 > 199 < 211 > 455 < 212 > DNA < 213 > Pinus radiata < 400 > 199 ggctactttg atgaggaagg aggattattt attgtggatc gtattaaaga actaatcaaa 60 tacaaaggtt tccaggttgc ccctgctgag ttggagggca tattgttgac acatccccaa 120 attgcagatg ctggagttat tccccttcct gatctaaaag ctggagaggt tccaatagca 180 tatgttgtac gtacccctgg aagctctttg acggaaaagg atgccatgga ttatgttgcc 240 aagcaggtcg caccatttaa aaggttgcat agagtcaatt ttgtagactc tatacccaag 300 tctgcctcag ggaagattct tcgacgagag cttattgcta aggccaaatc aaaattgtaa 360 gcaaagaaat atatcatttt ttctggtatc atgatacaaa cttatttgta gttgcacaaa 420 agtgtcaccc cagatgaaca aggaatttgt tccgc 455 < 210 > 200 < 211 > 569 < 212 > DNA < 213 > Pinus radiata < 400 > 200 gtcgtctgta aattactctg tgagtgttta gtgttttctt ctcttattga tttcagggga 60 caagtaggtg ggggtggggg agcttaagtc aaatctagtg ctttctctgt aagattttcc 120 cttttttttc ttgctaagag tagccatgat tgaggtacag tcagctcccc ccatggcacg 180 gtccactgag aacgagaata accagcatga tgccgaagaa ggggcggtat tgaatgaggg 240 cggcatggat tttctgtatc ggtcaaagct tccagacata gatattccat accatcttcc 300 attgcactcg tattgcttcg agaaactgga gagaagccat cgagctcaga gtctgataca 360 ggggtcgaac gggaagattt acagctatgg cgaagtggaa ttgatatctc gcaaggtggc 420 ctcgggtttg gccaaattgg gattcaaaaa gggggacgtg gtcatgctgc tgctgcccaa 480 ttgccccgaa tttgtctttg ttttcctagg ggcgtccatg gctggtgcca ttgccaccac 540 ggcgaaccct ttttacactc cctccgata 569 < 210 > 201 < 211 > 993 63 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 201 tgaccatcct ccggcaatgg ctcttcacat cctcttcaca tggcttgctc tttcccttcc 60 tctcctcctc ctcctcctcc aaacttca tctcagtgaa, at aacaaaaaga agaacctccc 120 tccagggcct ccatcacttc ccatcatagg caacttccac cagctcggcc ccctgcctca 180 tcagtctctg tggaaactct ccagacgata tggccccgtc atgctcatcc gcctcggtgg 240 cacccctacc atcgtaatct cctcccctga tgctgccagg gaggtcctca agacccacga 300 ccttgatagt tgcagtcgcc cgcagatggt cggcccggga cgcctctcct atgactccct 360 cgacatggcc ttcgtggagt acggcgatta ctggagggag ttaaggacgc tgtgtgtgct 420 cgagctgttt agcatgaagc gagtccagtc cttccgatac atcagggaag aggaggtggg 480 atctatgatc gaatcgatcg caaaatcagc actccggtta agagagcgga atatgagcga 540 gaagttcatg gctctgacgg ctaacttcac ttgcagggtc gcatttggga agecatttea 600 ggggacggag ttggaagacg aagggttcat ggatatggtt cacgagggaa tggcgatgtt 660 gggaagcttc tcggcatctg attatttccc tcgactcggc tggattgtgg acaggttcac 720 ggggctccat tcgaggttgg agaagagctt tcgcaatttg gacgatctct atcagaaggt 780 gatcgaagag catcggaatg cgaataagag caacgaggga aaggaggaca ttgtcgatgt 840 gctgctgaag atgga gaaag atcagactga gctcgcgggg gtccggctca aggaagataa 900 catcaaggcc atcttgatga atatatttct cggaggagtg gacaccggtg cagtgtcatg 960 gactggacaa tggctgagct cgctaggaac ceg 993 < 210 > 202 < 211 > 349 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 202 ggacggagtt ggaagacgaa gggttcatgg atatggttca cgagggaatg gcgatgttgg 60 gaagettetc ggcatctgat tatttccctc gactcggctg gattgtggac aggttcacgg 120 ggctccattc gaggttggag aagagctttc gcaatttgga egatetetat cagaaggtga 180 tegaagagea tcggaatgcg aataagagea acgagggaaa ggaggacatt gtcgatgtgc 240 tgctgaagat ggagaaagat cagactgagc tcgcgggtgt ccggctcaag gaagataaca 300 tcaaggccat cttgatggta tatcatacaa tctctacgta ttacttaat 349 < 210 > 203 < 211 > 432 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 203 cttggtcgta gcagctttgc tgattgttct cttgaggagc aagtctagga aaagaaagag 60 caacctccca ccgagccctc ctaagttgcc gatcatcggc aatcttcacc agcttggcaa 120 atcgccacac atatctctcc atcgccttgc gagaaactac tgtccttgca gggccaatca 180 gtcccaacca gctcggcgaa tagtcgtttc ctcagccgca atggccaagg aggtgatgaa 240 aacccatgac ctagtgctcg caaaccgccc teagatette tctgccaagc acttgtttta 300 tgactgcaca gacatggcct tctctcccta tggcgcttat tggaggcaca taaggaaaat 360 ctgcatactt gaagtgctta gcgcaaaacg ggttcagtca tttagtcatg tcagggagga 420 agaagttgct cg 432 < 210 > 204 < 211 > 407 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 204 ctcaccttca aatgcctccg cttcctcttc tcctctgccg ccgctactaa ccttcacctt 60 64 ccgccatcac cgccgaagct ccctatcatc gggaacctcc accagctcag tgatcaccct 120 caccgctcgc tccaagccct gtcgagacgc tatggcccct tgatgatgct ccacttcgga 180 agcgtgcccg tcctcgtcgt atcttccgcc gactgtgcac gggacatctt gaagacccac 240 gacctcattt tctccgaccg acccaggtca accctgtcgg agaggctttt gtaccaccgc 300 aaggacgtgg ctctggcgcc gtttggcgag tactggaggg aaatgaggag catctgtgtc 360 tgagcaacaa ctccagctgc gagggtccac tcgtttcgga cggtcca 407 < 210 > 205 < 211 > 384 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 205 gggaaattac cccacaggtc gctggatcga ctctccaaaa catatggccc cctcatgtat 60 atgagactcg gatccatgcc atgcgtggtc ggctcatccg ctgagatggc ccgagagttt 120 ctcaagaccc acgatctcac attctcgtcc cgaccccgtg tggcggccgg gaaatacact 180 gtttacaact actccgacat cacctggtct ccctacggag agcactggcg tctcgccaga 240 aaaatctgcc tcatggagct cttcagtgcc aaacgcctcg aatctttcga gtacatcaga 300 gtagaagagg tcgcccggat gctgagttcc gtcttcgaaa ccagccggca gggccttcct 360 gtagaaatca gggaagagac STAP 384 < 210 > 206 < 211 > 543 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 206 ataaataaga atggtgaacg agttagggtc ggaaaagccc tttctggtat gcctagagtt 60 ttatatgaaa ctcgctattg ctctagttgc gttggtggtg gcatggagct tcttcgtcaa 120 gggaagaaat aggaagctgc ccccgggacc gttctctttg cccatcatcg gaaatctcca 180 tttgctggga cagcttccac accgagcact gaccgctctt tctctcaaat tcgggcctct 240 tatgtcgctt cgcctcggct ctgctcttac attagtagtc tcttcacctg atatggccaa 300 ggagtttctg aagacacatg atctgctttt tgctagcaga cctccatccg cggctactaa 360 ttatttttgg tataattgca ctgacatcgg ttttgctccg tatggcgctt actggaggca 420 agtgcgtaag gtgtgcgttt tacagttgct gagctccaga cgcttggatt atttccgctt 480 tataagagaa gaggaggtct ctgctatgat tcattctatt gctcattccg atcatcctgt 540 aaa 543 < 210 > 207 < 211 > 1320 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 207 catttggcca tcatcacttg gctacctctt gcacatcata atagctgtaa tcttcaccaa 60 tgagcttcca attggagaga gaaccagctc ttcatcttct gcacgttgct actagggttt 120 ctgaagttgg cagaaggcaa aacgaggcac tacaccttcc atatcgattc ccataacatg 180 acgaggctgt gccacacgag gagtgtgctg agtgtaaaca agcagtatcc agggccgccg 240 gggaaggcga cttgtggcga caacatcctc gtcaaggtgg tgaatcatgt tgccgccaac 300 gtcacgattc actggcatgg ggttcggcaa ctgaggacgg gatgggcgga tggaccggct 360 tacgtaaccc agtgtcccat acagaccaac cagagctaca cctacaactt caccctcacc 420 ggccagagag gaacgctgct gtggcacgcg cacgtctcgt ggctaagatc gagcatccac 480 ggccccatca tcatcctccc caagcggaac gagtcctacc cgttcgagaa accctccaag 540 gaagtcccca taatatttgg agagtggttt aatgtagacc ccgaagcggt catcgcccaa 600 gctcttcaga gtggaggagg tcccaatgtc tccgatgcct ataccatcaa tggccttcca 660 ggacccttgt acaattgctc ctctaaagac accttcaagt tgaaggtgaa acctgggaag 720 acatacctcc tccggctgat caacgctgca ctcaacgacg agctcttctt cagcatagcc 780 65 aaccacgcag tcaccgtcgt cgaggttgat gccgtgtaca ctaagccctt ttctgcgggc 840 tgcctccacc taaccccggg ccaaaccatg aatgtcctcc tcaagacaaa aaccgacttt 900 cccaactcca ccttcctcat ggcagcgtgg ccctatttca ccggcatggg cactttcgac 960 aattccaccg tcgccggaat ccttgagtac gaacatccaa agagctcaaa ttacccgccg 1020 ctcaagaagc tcccccaata taaaccaact ctccctccca tgaacagcac cggttttgtc 1080 gccaaattta cagggcaatt gcgtagtttg gccagcgcta agtttcctgc caacgtgcca 1140 caaaaggttg acagaaaatt cttcttcacc gtcggccttg ggaccagtcc gtgccccaaa 1200 aacaccacgt gtcaaggacc aaatggcacg aaattcgccg catcagtcaa caacatatcg 1260 tttgtgctgc cgtccgtcgc tctcctgcag gctcacttct tcggccagtc caacggagtg 1320 < 210 > 208 < 211 > 980 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 208 ctccggccgt ggttgagggc agagtccgta actacacatt atgaagaata caatgtggta 60 ccacgagact gtgttcgagc aagcccatcg tgaccgtgaa cgggatgttc ccgggaccca 120 ctctctatgc tagggaagat gacaccgtgc tcgtgagggt ctctaaccgt gtcaaataca 180 atgtcaccat ccattggcat ggtatccggc agttgaggac ggggtgggcc gacgggccag 240 catacattac ccaatgcccg atccagccgg gccaaagcta tgtgtacaat ttcaccatca 300 cgggccaacg gggcaccctc ctgtggcatg cacacatact ctggctcagg gcaaccctgc 360 acggagccat tgtcatcttg cccaagcgtg gtgttccata ccctttccct aaaccccaca 420 aggaagttgt tgtcgtattg ggcgaatggt ggaaatctga tacagaaggt gtgatcagtc 480 gtccggatta aagccatcaa gcaccgaatg tctccgatgc tcacacgatc aatggccatc 540 cagggccaag ttccaattgc ccttcccagg gtggatttac gttgcctgtt gagagtggca 600 agaagtacat gctgcgaatc atcaacgctg cgctcaatga ggagctcttc ttcaagattg 660 ccgggcacca gctgaccatc gtggaggtcg acgccaccta cgtcaagcct ttcaagaccg 720 acacgatcgt gattgcacct ggccaaacca ccaatgccct catctccacc gaccagagct 780 ctggcaagta catggtcgcc gcctcccctt ttatggactc cccgatcgcc gtcgacaaca 840 tgaccgcgac cgccac atta cactactctg gcacgcttgc tgcgacctcc acgaccctca 900 ccaagactcc cccacaaaac gcgaccgctg tggccaacaa tttcgttaac tcgctccgga 960 gcctcaactc gaagaggtac 980 < 210 > 209 < 211 > 305 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 209 gaggctgtgt tcgagcaagc ccatcgtgac cgtgaatggg atgttcccgg gacccactct 60 ctacgctagg gaagacgaca ccgtgctcgt gagggtctcc aaccgtgtca aatacaatgt 120 caccatccat tggcatggta ttcggcagct gaggtcgggg tgggccgacg ggccggcata 180 catcacccaa tgcccaattc agccaggcca aagctatgtg tacaatttca ccatcacggg 240 ccaacggggc accctccttt ggcatgcgca catactctgg ctcagggcaa ccctgcacgg agcca 300 305 < 210 > 210 < 211 > 411 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 210 ttaccgtcga tcacagcctc cttttcacag ttggactagg aatcaaccct tgcccttcct 60 gcaaagctgg caacggaagc agagtcgtgg caacgtgaca caagcatgaa ttcgtgatgc 120 cgacgacagc cattctccaa gcacatttct tcaacaaaag cggcgtcttc acgagcgatt 180 tccccggtaa cccgccaacc attttcaact acacggggtc accgccatca aatttgcgga 240 66 ccacaagcgg gacaaaggtg taccggttgc gttataactc gacggtccag ctggtgtttc 300 aagacaccgg gattatcgcc ccagagaacc acccaattca tcttcacggg ttcaatttct 360 tcgccattgg gaagggatta ggaaattata atccgaaagt ggatcagaag a 411 < 210 > 211 < 211 > 311 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 211 cacaaggaag ttgttgtcgt attgggcgaa tggtggaagt ctgatacaga agctgtgatc 60 aatcaagcca tcaagtccgg attggcaccg aatgtctcgg atgctcacac gatcaatggc 120 catccagggc caagttccaa ttgcccttcc cagggtggat ttacattgcc tgttgagagt 180 ggcaagaagt acatgctccg aatcatcaat gctgcgctca atgaggagct cttcttcaag 240 attgctgggc accagctgac catcgtggag gtcgacgcca cctacgtcaa gcctttcaag accaacacgg g 311 300 < 210 > 212 < 211 > 334 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 212 agcgtggcgt tccatatcct ttccctaaac cccacaagga agttgttgtc gtattgggcg 60 gtctgataca aatggtggaa gaagctgtga tcaatcaagc catcaagtcc ggattggcac 120 cgaatgtctc ggatgctcac acgatcaatg gccatccagg gccaagttcc aattgccctt 180 cccagggtgg atttacattg gtggcaagaa cctgttgaga cgaatcatca gtacatgctc 240 atgctgcgct caatgaggag ctcttcttca agattgctgg gcaccagctg accatcgtgg 300 aggtcgacgc cacctacgtc aagcctttca agac 334 < 210 > • 213 < 211 > • 1374 < 212 > - DNA < 213 > • Eucalyptus > grandis < 400; > 213 accgaacgtg tccgacgctt ataccatcaa cggtcaacct ggagatctct acaactgctc 60 aagcaaagac accgtcatag ttccgatcga ttccggggag acccacctcc tccgagtcat 120 caacgctgcg ctcaatcagg aactcttctt caccgtagcg aaccataggt tcactgtggt 180 cggtgccgac gcctcctacc tgaaaccctt caccacctcg gtgatcatgc ttgggccagg 240 gatgtattga ccaaacgacg tctctggaga ccagcccccg gctcggtact acatggcggc 300 cgaaccctac cagagtgctc agggagcgcc ttttgacaac accacgacca cggccatact 360 ggagtacaag tccgccccgt gccccgccaa gggcatatcg agcaagccag tcatgccaac 420 cctaccggct ttcaacgaca cggctaccgt cacagccttc attcagagct tcaggagccc 480 aaataaggtt gacgtcccga ccgacatcga cgaaaacctc tttatcacgg tcggcctagg 540 actcttcaac tgcccaaaga atttcggtag cagtaggtgc caggggccga atgggacccg 600 tttcacggcc agcatgaaca acgtgtcctt cgtgctgccg tctaatgtct cgatcctgca 660 agcctacaag cagggcgtgc ctggagtttt taccaccgat ttccctgcta acccccctgt 720 ccagttcgat tacacgggga acgtgagccg ctcgctgtgg cagcccgttc cggggaccaa 780 ggtgtacaag ttgaagtacg ggtctagagt acagattgtc ccaacataca ttgcaaggaa 840 aaccacccga aacggccgag tccacattca cgggtacgat ttctacatcc tcgccacagg 900 cttcgggaac ttcaaccccc agaaagatac agcgaagttc aaccttgtcg acccgccaat 960 gaggaacaca gttggcgtct ctgtgaacgg gtgggctgtc attagatttg tcgccgacaa 1020 tccaggtgct tggttgatgc actgtcactt ggatgttcac atcacctggg gattggccgt 1080 ggttttcctt gtcgagaatg gagttggcga attgcaatct ctacagcctc ctcctgcaga 1140 tgttaaaaga tttgcctcca tctgcggctg acagatagtc ctccacgaga aattcataac 1200 gcccacaaca cgggcctatt ctaattttct tcttcttctt tcacctttcc gttttcgttt 1260 67 cgcggagttt cagttcagtg attgtttccc ctgaattcag ggagccacca gttgtttgct 1320 tgtctcatac ttttttttat agataaaatt gtcttgcata aaaaaaaaaa aaaa 1374 < 210 > 214 < 211 > 418 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 214 atcctgtctc agtctccatc atcacttgcg ccaagtaaca tctgatttcg aggaagacga 60 ggagcgcaaa atgggctccg ctactgctgc tggtgcctcg gtttcgtcgc gaatgattct 120 gccttcttca gatgagagcc cactgtgcgc tctcgtgttc ttgccggctc ttgctcaggc 180 gaagcacgga ggtgtcacca ggcattacaa gtttgatatc aagatgcaga atgtgacgag 240 gttgtgccag acgaagagca ttgtcacggt caatggccag ctcccggggc ctcgaatcat 300 cgctagagaa ggcgaccggc tcctaatcaa agtcgttaac aatgtccagt acaatgtcac 360 aatccactgg catggagtcc gacaactcag aagcgggtgg gctgacggac cggcatac 418 < 210 > 215 < 211 > 466 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 215 ccggatcgag tgattagtac aagttcaatt ttgtatcagg gagagagagg gacgatggga 60 acatttctag ggttcgcagt cactgcgacc ctgctcttct gcgtggctca aggcgaagtc 120 ctcttttatg attttgtggt aaatgagaca tgctatgtga cctattgaga gacaaatcgg 180 agcgtactaa ctgtgaacgg tctatttcct gggccggaga tccatgctca caagggtgac 240 actatttacg ttaatgtcac caacttagga tcactattca ccttatggag ctggcatgga 300 gtgagacaaa tacggtatcc ttggtctgat ggcccagaat atgtcacgca atgccccatc 360 cctacaaact cgagctttct tcaaaaaatc aaactcaccg aggaagaggg cacggtgtgg 420 tggcacgccc acagcgactg gtcacgtgcc acaatacatg gcctat 466 < 210 > 216 < 211 > 757 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 216 tcgggttctt tgtacaactt aatcggttgt atgtggatac agtgcagaaa ctgcccacga 60 attcagaatc aaatattatg agatgctcca cagttccccg gtttaagtac cttcccatca 120 attgtcttca gtgtacctgc aggaggacat ctaaagcaac tactgtaaga ctttggaccg 180 gcacgagcac aagtctcctt ctttgttctg gatcaagtga ttgttacaag ttcatttttc 240 tcttgttgag agagagagag agatgggaac atttctaggg tttgtggtca ccatgaccct 300 gctcttttgc atggctcaag gcgaagtcat ctactatgat ttcgtggtga aggagacacc 360 tattcagatg ttatgtggga cgaatcagac cgtattgact gtgaatggtc tgtttcctgg 420 gccagagatt catgctcaca aaggcgacac catctacgtt aatgtcacca acacaggacc 480 ttatggagtc actattcatt ggcatggagt gagacaaata agatatccct ggtccgacgg 540 cccggagtac atcacacaat gcccaatccc tacaaactca agtttccttc aaaaaatcat 600 gaagagggca actcactgaa cactatggtg gcacgctcat agtgactgga cacgtgccac 660 tatacacggc cctataatca ttttgcctgt caacggcacc aactaccctt acaagtttga 720 acaatcgtga cgaacaacac gtatgca tatctgaatg 757 < 210 > 217 < 211 > 251 < 212 > DNA < 213 > Eucalyptus grandis 68 < 400 > 217 acacaagtct ccttctttgt tctggatcaa gtgattgtta caagttcatt tttctcttgt 60 tgagagagag agatgggaac atttctaggg tttgtggtca ccatgaccct gctcttttgc 120 atggctcaag gcgaagtcct ctactatgat ttcgtggtga aggagacacc tattcagatg 180 ttatgtggga cgaatcagac cgtattgact gtgaatggtc tgtttcctgg gccagagatt catgctcaca to 240,. 251 < 210 > 218 < 211 > 762 < 212 > DNA < 213 > Pinus radiata < 400 > 218 gcctggcagt aatgtctaat gaacaactcc tggaatttgc ttggggattg gcttccagta 60 accaatcctt cttgtgggtt gtgaggtcag atatcgtgca tggtgaatct gccatattac 120 ccaaagagtt cattgaggaa accaaggata gaggtatgct ggtgggttgg gcgcctcaga 180 taaaggtact gtcgcaccca tctgtgggag gatttctaac tcacagcggt tggaactcta 240 cattggaaag cattagtgcg ggtgtgccaa tgatgtgctg gcccttcttt gccgagcaag 300 aaacaaatgc taaatttgtg tgtgaagagt ggggaatagg aatgcaggtg aagaaaatgg 360 tgaagagaga agagttggcg atactggtga ggaattcgat caaaggtgaa gaaggagatg 420 aaatgaggaa aagaattgga aaactgaagg aaactgccaa gcgagcagtt agtgaaggag 480 gaacaactta gctcttctaa gacaagttac tccatcatat attcctcaag ggaatgcatc 540 aaatgatagt ccagaatgtt gaagcaaaca attagttaga agagaacgtg taggacgaac 600 cagtacccca gaaaacatcc agcgttcata tttctgcatt tcgcattaaa tttactttgt 660 attgttccgc acatatgtat tttcaggttg tcaggtttcc ccagagttga acctcatttt 720 caattagatt gtttcacgtc tttacggcgc agggggttgt ga 762 < 210 > 219 < 211 > 1144 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 219 aaatagctca aaggttagtg tcgcgaccta aattggtgtc aacagctagc caatggagtc 60 ctgctctatt tcgctatttt ggctgggcct cctcctcccg gcacttctag ttttccttct 120 caaccgtcgg aagcgcacca agcttccccc tcagccccca gcatggcccg tgatcggcaa 180 cattttcgac ctcgggacca tgccgcacca gaacctccac aacctccgag ccaagcatgg 240 gcctgtcttg tggttgaagc tcggttccgt gaacaccatg gtgatccaat cagctcgagc 300 ggccatggag ttattcaagg gccatgactt cgtgttcgca gaccgcaagt gttcccaagc 360 gtttactgct ctcggctatg accaaggctc gctcgctctt ggtcgtcatg gtgactactg 420 gcgcgctctc cggcgtctct gctccgcgga gctcctcgtg aacaagcgcg tcaacgatac 480 ggcccacctc aggcaaaagt gtgtcgacag catgatcatg tatatagaag aagaaatggc 540 agtcaaacaa gcaacaaaag ggcaaggaat cgacttatct cacttcctct ttctcctggc 600 gtgggcaaca atttaatgtg tggtgctctc acgggatcta ttggacccaa aatcgaagga 660 tgggcccgag ttctacgacg ccatgaaccg gttcatggag tgggctggca agcccaacgt 720 agccgacttc atgccatggt tgaaatggtt ggatccgcag gggatcaagg caggcatggc 780 ggtcgagcca gaaggacatg tgaggattgc cgaaggcttt ggttggagga gtgaaagaga 840 aggggagaga gcgaaagcta tgagaacaac gaatgatttc ttggacgcag tattggatta 900 tgagggcgat ggaaaagaag gccctcacaa tatctcttcc cagaacataa atataatcat 960 tctggaaatg tttttcgccg gatcggaga tacaagtagc accatcgagt gggcgatggc 1020 ggagctactc cgccaacccg agtcaatgaa aaaggccaaa gatgagattg accaggttgt 1080 ggggttgaac agaaagctcg aggaaaatga cacggaaaag atgccatttt tgcaagccgt 1140 ggtg 1144 < 210 > 220 < 211 > 563 < 212 > DNA 69 < 213 > Eucalyptus grandis < 400 > 220 agctcaaagc ttagccaatg gagtcctgct ctatttcgct attttggctg ggcctcctcc 60 tcccggcact tctagttttc cttctcaacc gtcggaagcg caccaagctt ccccctcagc 120 ccccagcatg gcccgtgatc ggcaacattt tcgacctcjgg gaccatgccg caccagaacc 180 tccacaacct ccgagccaag catgggcctg tcttgtggtt gaagctcggt tccgtgaaca 240 ccatggtgat ccaatcagct caagcggcca tggagttatt caagggccat gacttcgtgt 300 tcgcggaccg caagtgttcc caagcgttta ctgctcttgg ctatgaccaa ggctcgctcg 360 ctcttggtcg tcatggtgac tactggcgcg ctctccggcg tctctgctcc gcggagctcc 420 tcgtgaacaa gcgcgtcaac gagacggccc acctcaggca aaagtgtgtc gacagcatga 480 tcatgtacat agaggaagaa atggcagtca aacaagcaac aaaagggcaa ggaatcgact 540 tatctcactt cctctttctc ctg 563 < 210 > 221 < 211 > 447 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 221 taatgaaggc ccaagatgag attgattcta tgattggcca tgatagtttg ttagaagaat 60 cggatgtttc aaaactacct taccttcagt gcattatctt ggagaccctt cgactaaaca 120 cgacggcacc acttctcctc ccacacgcgt catcggctga ttgcactata ggaggatact 180 tcgtcccacg cgacactatt gtgatggtga atgcatgggc cattcacaaa gaccctcagt 240 tgtgggagga tccattgagc ttcaagcctg aaaggttcga gggcaatggc agcgaaaagc 300 aacaaaagct actattgcct tttggactgg gacggagggc atgccctggt gcccccttgg 360 ctcatcgggt catggggtgg acgttgggct tgttgattca gtgttttgat tggaaaagag 420 taagcgaaga agagattgac atgacgg 447 < 210 > 222 < 211 > 494 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 222 ttaccttggc gatttcctgc ccatactaaa gttggtcgat tacaatggag tcaagaagag 60 ggtggttgag ctgaaagaga aattcgatgc gttcattcag ggcttgatca acgagcaccg 120 gaggaagaag ggcgacccag agctcgcaga cagcatgatc agtcatcttc tgcatctaca 180 agaatctcag ccggaagact actcggactc catgatcaaa gggcttgtcc ttgttttgtt 240 agttgcggga acagacacgt catcgcttac attagaatgg ataatgacaa acttactaaa 300 caatcctgaa aagttagaga aggcccgaaa tgagattgat tctgttattg gccacgatcg 360 tctggtagaa gaatcggatg tttcgaatct accttacctt cagtgcatca tcttagagac 420 ccttcgacta aacaccacgg tgccacttct cgtcccgcac gcatcatcag ctgattgcac 480 cattggtgga tact 494 < 210 > 223 < 211 > 492 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 223 gttgtcagat gcgatcccgg ctcttggctg gttggactca ggtggctata gacgatcgat 60 ggacgagaca 'gcgaaagagt tggatgtttt ggctcagggg tggctagagg agcatagaag 120 gaagagattg tcctgcccca aagacgacag agagcaagat ttcatggatt ggatgatcaa 180 cgccctcgaa ggtcggaatt ttccagattt tgacgcggat acagttatta aggcgacttg 240 tttgaacatg ataatagcgg ggactgatac ttcgacggtg gcgatcacct gggcgctatc 300 gctgctaatg aacaaccgtc gtgcattgaa gaaggcgcaa caagagctgg acacccatgt 360 70 tggcaggagt aggcccgtgg aagagtccga tgtgaaaaac ttgacctacc tccaagccat 420 cgtcaaggaa gcactgcgtt tatatcctcc agtaccggtg aacggcctta gaagctccat 480 ggaagagtgc ac 492 < 210 > 224 < 211 > 391 < 212 > DNA < 213 > Pinus radiata < 400 > 224 gcaggcttcc tccgggacct ccagggtggc cgattgtggg aaacctgttc cagttgggta 60 acaaacccca cgaagctctc ttccacctcg ctcagaagta cggccctctc atgtgtgtct 120 gaaaactaca ctctcggaat gtggtagtct cctctccggc catggcaaag caagttctca 180 agacccatga ccatgttttt cggtcataca gcgggccgaa gtcagttcag tgcctttctt 240 acgacaagtc ctcagtaatt tgggcccaat atggatccca ctcagacgca ctggcgtttg 300 tatccaatac aaagctcttc agcgtcaaga ggttagaagc cctggaacat ttgagaagag 360 391 t atgaagtatt ccgaacaatc aagcagattc < 210 > 225 < 211 > 536 < 212 > DNA < 213 > Pinus radiata < 400 > 225 ctcgtttatt tacaagctgc ggtgaaagaa actcttcgac tccatccatc cgggccttta 60 ttggtgcgcc atttatttgg taccgcgtcc tgcaatgtat tggggtatga aatcccgcag 120 aatactctcg ttctcgtgaa tgtttgggcg attgggagga accctaagtc atgggaggac 180 gccgaagttt tcaagccaga gagattcatg gaaaaagttg ggtctgaagt agatgcaaat 240 ggagatcaaa actttgggtg ccttctcttc ggagcagggc ggagaagatg cccaggacag 300 caattgggaa cgcttcttgt agagtttggg ttggcacagc tgttgcactg cttcaactgg 360 aggcttccct tggatgacat aaatggcgaa aatcaagaag tggatatgaa tgaaatgttt 420 aatggagtca cgctgcgcaa agctcgtgag ctctcggcta ttccgacacc acgccttgaa 480 tgcattgctc acctgaaata ggtcatcagg tttcgagtga aacctgtgga gataga 536 < 210 > 226 < 211 > 463 < 212 > DNA < 213 > Pinus radiata < 400 > 226 gaaaggtacc gtcccgcttg aaaaatatct acagctttta gattggacgc aattataaac 60 attttattcc agtttgtatg tgttatctct gatcgtgttg gagatgtgtg gctgagccta 120 atcatgcatg gagcaacttg tccaggaaaa gaaaaggcag actgcccccg gggcctttct 180 cgttgcccat tatcggcaat cttcacatgc taggaaagat tcctcaccga tcactggcag 240 agctgtctat gaaatacggg cctctcctgt ctctccgcct cggctctact cccgccttag 300 tcgtctcttc tccagaaata gccagtgaat ttctcaaaac ccatgatcag ctttttgcca 360 gcagaattcc ctctgctgct attaaggtat tgacctacaa tttgtccggc ctcatatttt 420 ccccgtatgg cccttgctgg aggcaagtgc gtaaactttg cgt 463 < 210 > 227 < 211 > 463 < 212 > DNA < 213 > Pinus radiata < 400 > 227 ggctgagcct aatcatggtt attacatatc ttgaaccttt gtagtagatg ttgtttgtgg 60 atatagctaa tatcaaattg tttgagatag atgtttgctg gtagatatag ctagattagt 120 71 atctaaaaaa acagtgaacc agtttgtaga ctggcgatgg acactcgtca gttttgtata 180 ctgctcttct ttttgttgta ttggtagcag catggagcaa cttgttcagg aaaagaaaag 240 gcagactgcc cccggggcct ttctcgttgc ccattatcgg caatcttcac atgctaggaa 300 agattcctca ccgatcactg gcagagctgt ctatgaaata cgggcctctc ctgtctctcc 360 gcctcggctc tactcccgcc ttagtcgtct cttctccaga aatagccagt gaatttctca aaacccatga tcagcttttt 420 463 tgc gccagcagaa ttccctctgc < 210 > 228 < 211 > 463 < 212 > DNA < 213 > Pinus radiata < 400 > 228 gaattgcttt ctgcgtgtcc agttcatgaa tgcccatact tttattttaa tctcgctact 60 gttattcttc tgggcgtggt gacgggatgg ggtttcttat tccggggaag aaaacagaag 120 cttcctccgg ggccttttca gtggccgatt gttggaaacc ttcacatgat gggagagctt 180 ccacaccaag caattacagc tctctctatg aaatatgggc ctctcatgtc tctccgcctc 240 ggctcctatc tcactttggt cgtttcttct ccagatgtgg ccgaggagtt cctgaagact 300 catgatctgg ctttcgccag cagacctcca accatcggta cgaagtactt ttggtataat 3-60 tcctccgacg tcgcattttc cccctatggt ccttactgga ggcagatgcg taaaatctgt 420 gtgttacagt tgctgagctc aagacgcata gattccttcc gcc 463 < 210 > 229 < 211 > 463 < 212 > DNA < 213 > Pinus radiata < 400 > 229 actgtgacca agacctaatt ggtggcattg ggatcaagtc aatgataaag gaaacgtttg 60 tgttagcagg gtctttgaac atgggagatt ttataccata cttggcatgg attgatcttc 120 aaggtctcaa ccgtcgattg aagaacatac acaagatcca agacgacttg ttagggaaga 180 acacgcttcg tactagagga ataaccccaa ccaccgcaga ctacatgcca gatctcgtgg 240 atgttttgct cgcggcctct gcggatgaag atctggagtt cgaaattact cgagacaata 300 taaaatctgt catctatgta tatattgtcc atgcaattat tagatttcaa tgacttaaat 360 acggtgatta aaaacatgac tatcttgaca tttgttttgg atttgttttg ttggtaggat 420 atcttgtccg ctggttcgga ctcgtcgtct gcaagcatag agt 463 < 210 > 230 < 211 > 543 < 212 > DNA < 213 > Pinus radiata < 400 > 230 ggcaccagac gagctggaac gtgtcgttgg attgggtcgt atggtaaggg aatctgatct 60 gcctcgtctc gtttatttac aagctgtggt gaaagaaact ctgaggctat acccacaggg 120 gccgatttta ttccgccact tgtcttcgga gccctgcaat gtcctgggct atgaaatctc 180 tcaaaacact caagttctgg ttaatatttg ggcgattgga aggaactctg agtcatggga 240 agatgccgga agcttcaaac ctgagagatt catggaaaga gttgggtctg aggtagatac 300 aaatggagat caaaattctg cgtggcttcc cttcggagca gggaggagaa gatgcccagg 360 acagcaattg ggaacgcttg ttgcagaaat tgggctggca actgtttcaa cagctcttgc 420 atggaggctt cccgaagctg atatggatgg cccaaatcaa gaacttgaca tgatggaaag 480 gtttaatgga atcacatcgc cgagggctaa ggaactgttt gcgattccga caccccgcct 540 tga 543 < 210 > 231 < 211 > 381 < 212 > DNA 72 < 213 > Pinus radiata < 400 > 231 ggaatcctct ttgatatgtt gctcggtggg tcagacacag cgcctacaat aatagagtgg 60 gcaatatcgg aggcgctgat aaaccctcca aacttcagga gtgatgaaga cgagctggaa 120 cgcgtcgttg gattggatcg catggcatgc gaatctga.tc tgcctcagct cgtttattta 180 caagctatgg taaaagaaac gcttcgactt cacccagcgg ggcctctttt gaaccgtcgc 240 ttatccgctg agtcctgcaa tgtgttgggg tacgaattcc ctaaaaacac tcgtgttctc 300 gttaatgctt gggcgattgg gaggaaccca aagttatggg aggacgctga aactttcaag 360 381 ccagaaagat tcacgggaag < 210 > 232 < 211 > 384 < 212 > DNA < 213 > Pinus radiata < 400 > 232 ccacttcggc aacagttgaa tgggcaatgg ctgagcttat cagaaaacca acgctactga 60 aaaaggccca ggcagagctg gatgaggttg ttggtcgaga gaagagaatg gaggaatcag 120 acatagcaaa attgccctat ctacaagcag tagtgaagga ggtactcaga ttgcacccag 180 cagctccact gataattcct cgaagagcag acaactctgc cgagattggt ggatatgttg 240 tcccagagaa cacgcaggtg tttgtgaata tctggggcat cggaagagat cccaacgttt 300 ggaaggaacc tctgaaattc aaaccggaaa ggtttttaga ctgtaatact gactacagag 360 gccaggattt tgaactgata ccat 384 < 210 > 233 < 211 > 405 < 212 > DNA < 213 > Pinus radiata < 400 > 233 gagaagatga agtttccgct atgattcgct ctattgttaa ttcagatgcc cacaaggact 60 ctcgtcctgt caacatcaag caacttgcgt catcccttgt gacagctata gtcttgagga 120 tgaccttcgg taaaaagtat tcggaccggg attcaggagc attcagttca atgatcaaag 180 aaagtttact gttactcggc tcctttaata ttggagaata cataccttac ttgaactgga 240 tggatttgca aggtctcaac cgccggctga agaagctacg tacaacacaa gaccagttgc 300 tagagaaagt aatagaggaa catgctgccc agaatcggag caacatgacg catgatcttg 360 tggatgcctt acttgcagcc tctgcggata aagatagaga gctcc 405 < 210 > 234 < 211 > 348 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 234 catatacgat caagagagtt tgctgaatgc aattaagcag gttgatgtgg taatctctgc 60 tgtggggcaa gcacaaacgg aggaccaaga ccggattgtt gctgccatca aagcagccgg 120 gaatatcaag agattcttgc cttcagagtt tggaaatgat gtggatcgtg tccatgctgt 180 ggagccagta aaaactggat ttgctctcaa ggccaagatc cgccgccttg ttgaggccga 240 gggaatccct tatacctatg tgtcttctaa ctcttttgca ggttactacc ttcaaacatt 300 gtcacagccc ggggctacag ctccccctag agataacgtt gttatctt 348 < 210 > 235 < 211 > 640 < 212 > DNA < 213 > Eucalyptus grandis 73 < 400 > 235 agctagtagt ctgtgtgtta cagtcaagca ttgaaggcat gaacacctta aagacatgaa 60 cagatgaaga tttggagtct caattatact gtgtgttaag ctagtagtca gtcaagcatt 120 gaaggcatga acaccttaaa gacatgaaca gatgaagatt tggagtctca atggtattat 180 tgcctacctt atctccagtc acagcagagt cgcttctaga aaccgatcga gttcgccgga 240 aaacaccgcg cctccgccgt gaaaaccact cagagatggc tgcgaagagc aaggtcctgg 300 tgatcggagg cactggatac atcggaaagt tcatcgtgga agccagtgct aagtccggtc 360 gccctacctt cgctctcgcg agggagtcca ctctctccaa ccccgccaag gccaagatcg 420 tcgaaggttt caagagcctc ggcgtcactt tagttcacgg agacatatac gatcaagaga 480 gtctattgaa tgcgatcaag caggtcgatg tggtaatctc tgctgtgggg cgagcacaaa 540 tagaggacca agacaggatt gttgctgcca tcaaagcagc cgggaatatc aagagatttg 600 tgccttcaga gtttggaaac aacgtggatc gtgtccatgc 640 < 210 > 236 < 211 > 464 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 236 gtctcgagtt ttttcttatt taattaattt tctttttaga gattcttgcc ttcagagttt 60 ggaaatgatg tggatcgtgt ccatgctgtg gagccagtaa aaactggatt tgctctcaag 120 gccaagatcc gccgcctcgt tgaggccgag ggaatccctt atacctatgt gtcttctaac 180 tcttttgcag gttactacct tcaaacattg tcacagcccg gggctacagc tccccctaga 240 gataacgttg ttatcttagg ggatggaaat gccaaagtgg tgtttaacaa ggaggatgac 300 atcggcacct ataccatcaa agctgtggat gatccaagga ccttgaacaa aattctgtac 360 atcaggcctc ctgccaacac ctactcaatg aatgagctcg tgtctttgtg ggagagaaag 420 atcggcaagg ctctggagag ggtgtatgtt ccagaggagc aaat 464 < 210 > 237 < 211 > 315 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 237 cttctagaaa ccgatcgagt tcgccggaaa acaccgcgcc tccgccgtga aaaccacttc 60 agagatggcc gcgaagagca aggtcctggt gatcggaggc actggttaca tcggaaagtt 120 gccagtgcta catcgtggaa agtccggtcg ccctaccttc gttctcgcga gggagtccac 180 tctctccaac cccgccaagg ccaagatcgt ccaaggtttc aagagcctcg gcgtcacttt 240 agttcacgga gacatatacg atcaagagag tctgttgaat gcgatcaagc aggtcgatgt 300 gctga ggtaatctct 315 < 210 > 238 < 211 > 376 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 238 caaagtcacg tcagagaccg atcaagttcg ccggaaaaca ccacgcgcgc tatgaaaaga 60 ccctccaaga tggcagagat gagcagagtc ttggtgattg gaggcgccgg atacatcgga 120 aagttcattg tgaaagcgtg tgctaagtcc ggtcacccta cctttgttct cgagacggag 180 tccactctct ccaaccccgc caacgccgaa atcatcaaag gtttcaagag cttaggcgtg 240 aacctagtcc atggagacat atacgatcaa aaaagtctgt tgagtgcgat taagcaagtt 300 gatgtggtaa tatctactgt ggggcaagca cagctagaag accaagacag gattgttgca 360 376 gccatcaaag cagccg < 210 > 239 < 211 > 297 74 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 239 ccggaaaaca atcaagttcg tgtgaaaaga ccacgcccgc ccctccaaga tggcagagat 60 gagcagagtc ttggtgatcg gaggcgccgg atacatcgga aagttcatcg tgaaagcgtg 120 tgctaagtcc ggtcacccta cctttgttct cgagacggag tccactctct ccaaccccgc 180 caacgccgaa atcatcaaag gtttcaagag cttaggcgtg aacctagtcc atggagacat 240 atacgatcaa aagagtctgt tgagtgcgat taagcaagtt gatgtggtaa tctctac 297 < 210 > 240 < 211 > 951 < 212 > DNA < 213 > Pinus radiata < 400 > 240 tctcgcacag ttgacgacgt tttcttgtat ttgtagcgtt cggcacgatc ggggaaaaac 60 gatggcatgc gctactgatg ttgcacgtca gtttctgcca tgcgtccaac ccgtgccgtc 120 cagcatggga ggagagaccg cccggtcgat caacctcacc tgcaatggcc tctccccgcc 180 tcaaccgcag tacaacgccg agaacaacca tgatcaggac accacagttg ccacaagggt 240 tctcattatt ggcgccaccg ggttcatcgg tcggtttgtt gcagaggcca gtgtgaaatc 300 cgggcgccca acttatgccc ttgtgcggcc gacaacatta agttcgaagc ccaaggtcat 360 tcagtctctg gtggattcgg gtattcaagt tgtttatgga tgtctacatg atcacaattc 420 tttggtgaaa gccatcaggc aggttgacgt tgttatttct actgttggtg gagccctaat 480 tcttgatcag ctcaagattg tggatgccat caaggaagtt ggcactgtca agagatttct 540 tccttcagag tttggacacg atgtagaccg agcagatccc gtagagcctg ctcttagttt 600 ttacatagaa aagagaaaag tccggcgtgc agtggaggaa gcaaagattc cttacacata 660 catctgctgc aactccatag ctggctggcc atactattat cacacacatc caactgagct 720 ccccccacca aaggaacagt tggggatgga ttgagatcta agcgttaaag cctttttcgt 780 tactggggac gatattggcg cgtataccat gaaagctgtg gatgaccctc gtactctgaa 840 caagtctatt catttc agac caccaaagaa ttttctcaac ttaaacgaac tcgcagacat 900 atgggagaat aagattaaca gaactctgcc aagagtatct gtctcagcag a 951 < 210 > 241 < 211 > 371 < 212 > DNA < 213 > Pinus radiata < 400 > 241 tttagctgac attttattaa ttcaaagtgg caagatgaca ggtctcaagg actctgctaa 60 tagggttttg ataataggag gcacgggata cattgggaaa tacatggcaa aagccagcgt 120 ttcacagggc tatccaacct acgttcttgt ccgtcctgct acagcagctg cccctgattc 180 cttcaaagca aagctacttc agcaattcaa agatattggc attcatattc ttgaaggatc 240 attagatgat cacaacagcc ttgtggatgc aatcaagcaa gtagacatag taatatccgc 300 agttgccatt cctcagcatt tggatcagtt taatatcata aacgccatta aggatgttgg aatggaaata 360 t 371 < 210 > 242 < 211 > 687 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 242 taatggcgag ctccacccgt ctcactactg tgagagggac ctgctcaaag tggtcgaccg 60 cgagcatgtg ttcacctacg ctgatgacgc ctgcagcgcc acctacccgc tgatgcagaa 120 gctgaggcaa gtcctggtcg accaggcact ggtgaatggc gagagcgagc tgaacccgag 180 cacttcgatc ttccaaaaga tcgtggcctt cgaggaggag ctcaaggccc agttgccgaa 240 75 ggacgtcgag ggcgttcgag tccagtacga gacaggcaac ctcgccatcc ccaaccagat 300 caaggaatgc aggtcctatc cattgtacaa gctggtgagg gaggagctgg ggactgccct 360 gctcacgggc gagggcgtga tatcccctgg cgaggacttc gacaaggtct tcactgcgat 420 ctgtgctgga aaactgattg atccgctgct ggagtgccta agcggttgga acggtgctcc 480 tcttcccatc tcttaggaat tgtcctatat tctttctcct tctttttccc tttccgttac 540 ttgccaagta aatctcatgt atccaatctt ttctatcaag agacaattgt atttcttgtt 600 ttctgtttgg tcctttttgt ctcctcccaa gtgaagaaat tggagaatat aagtaattga 660 gtaaattttt acatggaaaa aaaaaaa 687 < 210 > 243 < 211 > 344 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 243 tcctggtcga ccaggcactg gtgaatggcg agagcgagct gaacccgagc acttcgatct 60 tccaaaagat cgtggccttc gaggaggagc tcaaggccca gttgccgaag gacgtcgagg 120 gcgttcgagt ccagtacgag acaggaaacc tcgccatccc caaccagatc aaggaatgca 180 ggtcctatcc attgtacaag ctggtgaggg aggagctggg gactgccctg ctcacgggcg 240 agggcgtgat atcccctggc gaggacttcg acaaggtctt cactgcgatc tgtgctggaa 300 aactgattga tccgctgctg gagtgcctaa gcggttggaa CGGT 344 < 210 > 244 < 211 > 681 '< 212 > DNA < 213 > Eucalyptus grandis < 400 > 244 cccaagcctg gattacggct tcaagggagc tgagatcgcc atggcctcat actgctcgga 60 gctgcagttc cttgccaacc ctgtgaccaa ccatgtccag agcgcggagc aacacaacca 120 ggacgtgaac tccttgggcc tgatctcgtc gaggaagact gccgaggcca tcgatgtgct 180 gaagctcatg tcctccacct tcctggtcgc cctgtgccag gccatcgacc tgaggcacct 240 ggaagagaac ctcaagagcg tggtcaagaa cacggtgaac caagtggcca agaaggtcct 300 ctacgtcggg tccaacggcg agctccaccc gtcgcggttc agcgagaaag acctgatcaa 360 ggtggtcgac cgggagtacg tcttcgccta catcgatgac ccctgcagcg ccacgtaccc 420 cctgatgcag aaactgaggc aggtcctcgt ggacgatgcg ctggacgacg tcgaccggga 480 agcacctcca gaagaacccc tcttccagaa gattggggct ttcgaggagg agctcaaggc 540 actcctcccg aaggaggtcg agaacgcgag agctcagttc gagagcggga actcggcgat 600 cgctaacaag atcagggggt gcaggtcgta cccattgtac aggttcgtga gggaagagct cgggaccggt ttgctcacgg 660 g 681 < 210 > 245 < 211 > 1455 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 245 tttgcaatcc tctgaatttt ccctaactag aaataaagag attatataca tacacgagca 60 aagcgctctc ctccagttgt cttccttcgt tcgctcatct ctcctcgtac attattagca 120 tacgacctct tgtatcggac ccggatccgc tatcgttaac gtacacacgt tctagtgctg 180 aatggagatg gagagcacca ccggcaccgg caacggcctt cacagcctct gcgccgccgg 240 gagccaccat gccgacccac tgaactgggg gcagccctca ggcggcggca cagggagcca 300 cctcgacgag gtgaagcgga tggtcgagga gtaccggagg ccggcggtgc gcctcggcgg 360 ggagtccctc acgatagccc aggtggcggc ggtggcgagt caggaggggg taggggtcga 420 gctctcggag gcggcccgtc ccagggtcaa ggccagcagc gactgggtca tggagagcat 480 gaacaaggga actgacagct acggggtcac caccgggttc ggcgccactt ctcaccggag 540 gacgaagcaa ggcggtgctt tgcagaagga acttataagg ttcttgaatg ccgggatctt 600 76 cggcaacggc acggagtcgt gccacaccct gcctcaatcc tccacccgag ccgccatgct 660 cgtccgggtc aacaccctcc tccagggcta ctccggcatc cgttttgaga tcctcgaggc 720 catcaccaag ttcctcaacc acaacatcac cccgtgcctg cccctcaggg gcaccatcac 780 tgcctcaggc gacttggtcc ccctctccta cattgccggg ctcctgacgg gccggcccaa 840 ctccaaggcc gtcgggcctg atgggaagtc cctggacgct gtcgaggcct tccggctcgc 900 cgggattgac acgggcttct tcgagctgca gccaaaggaa gggttggcgc tcgtgaacgg 960 cacggcagtc gggtctggcc tggcttccat cgtcctcttc gaggccaaca tactcgcggt 1020 cctgtccgag gtcctgtcag cgatcttcgc agaggtgatg caggggaagc cggagttcac 1080 agaccacttg acgcataaat tgaagcacca tcccgggcag attgagtctg cggctataat 1140 ggagcacatt ttggatggaa gcgcttacgt gaaggctgct aaaaagttgc acgagatgga 1200 tccgctccag aagccaaagc aggacaggta cgctctcagg acttctcccc agtggctagg 1260 gccccagatt gaggtgatcc gagcggcaac caagatgatt gagagggaaa tcaattcggt 1320 caatgacaac ccgctgatcg atgtcgcgag gaacaaggcc ctgcacggtg ggaacttcca 1380 ggggaccccg attggtgtct ccatggacaa cactcgcctg gcggttgcgt ccatagggaa 1440 gctcatgtt c gcgca 1455 < 210 > • 246 < 211 > • 294 < 212 > • DNA < 213 > • Eucalyptus »grandis < 400 > • 246 caacagtggc atcacgccgt gcttgccgct ccgcggctcg atctccgcct ctggtgactt 60 ggtacccttt tcctacatcg cgggtctttt gacgggacgt cccaattcca aagcggtcgg 120 gagaccctca acccgctggg cggccaaaca agcctttgag ctcgctggga tcagtggtgg 180 attcttcgag ttgcagccga aggaaggact tgcccttgtg aatgggacgg gagttgggtc 240 tgccttagct gccatagtgc tttttgaagc taatatgctc actgtcctct 294 shits < 210 > 247 < 211 > 1520 < 212 > DNA < 213 > Pinus radiata < 400 > 247 gtgatctggt tcccctgtct tatattgctg ggctcttgac cgggaggcct aattccagag 60 tcagatccag agatggaatt gaaatgagcg gagccgaagc gctcaagaaa gtgggcctgg 120 aaaagccctt tgaattgcag cctaaagaag gtctggccat tgtcaatggc acttcagtgg 180 gagcagcact ggcttccatt gtgtgtttcg atgccaatgt tcttgctctg ctctctgaag 240 taatctctgc catgttctgc gaggttatga atgggaagcc tgagtttaca gatccattaa 300 ctcacaagct gaagcaccat cctggccaaa tggaagctgc agcgatcatg gagtatgtct 360 tggacgggag tcttatatga aacacgctgc taagctccat gagatgaatc ctctgcagaa 420 gccaaagcag gatcgctatg cgcttcgcac ttcgcctcag tggctcggcc ctcaggtgga 480 gattatcaga tctgcaactc acatgattga gcgggaaatc aattctgtga atgacaatcc 540 agtaattgat gttgccagag acaaagctct acatggaggg aatttccagg gcacacctat 600 tggtgtttcc atggataatc ttcgtctgtc aatttcagca attgggaaat tgatgttcgc 660 gagcttgtga tcaattctca atgattacta ttgccttcga caatggaggc atctgagtgg 720 tgggcctaat cccagcctgg attatggact gaaaggggcc gagatcgcta tggcttctta 780 cacttctgag cttctttacc tggcaaatcc tgtcaccagc gcgccgaaca catgtacaga 840 gcataaccag gatgt CAATT ctctgggtct cgtttcagct agaaaatctg ccgaggccat 900 cgatattctg aagctgatgc tctccacata cctgacagct ctgtgccagg ctgtggattt 960 aaggcatctg gaggaaaaca tgctggccac tgtgaagcag attgtttctc aggtagccaa 1020 gaaaaccctg agcacagggc gcttttgcca tcaacgggga gcgaaaagga ggccgtttct 1080 tttgctccag gtagtggata acgaacatgt tttctcttac attgacgatc cgtgcaatgc 1140 ttgactcaga cagctaccca aactgagaaa catcctggtg gaacatgcct tcaagaacgc 1200 agaaggtgag aaggatccca acacttccat tttcaataag attcctgtgt ttgaagccga 1260 gctgaaggca cagcttgaac cgcaagttag tctggccaga gaaagttatg acaaagggac 1320 cagccctctg cccaacagga tccaggaatg caggtcttat cctctctatg aatttgtgag 1380 77 aaaccagctc ggtacccttc aggcatggtt attccatata aatattgtaa tgagatgttt 1440 aattatttac tgctctcttt tttttccgga gcttgcgacc gccttcgatt ccgtgcacta 1500 cgcgaggacg aagcctctgt 1520 < 210 > 248 < 211 > 449 < 212 > DNA < 213 > Pinus radiata < 400 > 248 ctctcattct gaggttcatc tggctgaagt ttgaactgtg ctcgaattct gaggttcatc 60 gtgcagaagt ttgattcgtg aattatttgt ttgtttaatt tggcgcctca atagtgcaca 120 ggcgaagtga ggaattcaca aattctgtgc gggaaatggc ggtacggcgt ctttgaacga 180 tccgctgaat tgggcagccg cagcggagtc catgaaggga tctcacttcg aggaagttaa 240 acgaatgtgg gaggagtttc gttctccagt tgtgaggctc cagggatccg gtctcacgat 300 tgcccaggtg gcagccgtgg ccaggagaac gggatccgtg agagtcgaac ttgagaccgg 360 cgcgaaggcg cgggtagatg agagcagtaa ttgggtgatg gacagtatgg cgaacgggac 420 ggatagctat ggcgttacga cggggttcg 449 < 210 > 249 < 211 > 512 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 249 gaacttggtg aagttaggaa gtatactagg catggccatc ggtgttgcac tcttcagctc 60 gcttcttgta ctttcatttg tctctccaat ctcttcacta agttccaatt actacgacaa 120 gacctgtccc aatgctgagt tgatcgtcgc aaatgctgtc aagaatgcgg caatgaagga 180 caaaaccgtt ccggctgctc ttctgcggat gcattttcac gactgtttca ttaggggttg 240 cgatgcgtcg gtgcttttaa actccaaagg aagcaacaaa gcggagaagg atggacctcc 300 taatgtctct ctgcactcat tttttgtaat cgacaatgcc aaaaaggagt tggaagcttc 360 ttgccccggc gtggtttcat gtgcggacat cttggcacta gctgctagag attccgtcgt 420 actgtccgga ggtccgactt gggatgtgcc caagggaagg aaggatggaa gaacatcaaa 480 agccagcgag acgactcaac tcccagcacc ac 512 < 210 > 250 < 211 > 354 < 212 > DNA < 213 > Eucalyptus grandis < 4 00 > 250 ctggtaatca ccatagttgt cttctttggg cacataggag acteagaagg aggggacttg 60 aggaagaatt tctacaagag cgcatgtcct cttgctgagg aaatagtgaa gaatgtcacg 120 tggaagcatg ccgccagtaa ctcagctttg cccgccaagt tcctgaggat gcatttccac 180 gattgcttcg ttaggggttg cgatggctca gttttgctag actcgacggc gaacaacaag 240 gcggagaagg tggcggttcc gaaccagtcg ctaaccgggt tcgacgtaat agaegagate 300 aaggagaage tggaggaaac atgccctggg gtcgtctctt gtgccgacat ectg 354 < 210 > 251 < 211 > 195 < 212 > DNA < 213 > Pinus radiata < 400 > 251 aacgctgacc ctatcgcggt tatagaegaa gcactcagca ctggtggtgc gcccaatttg 60 tcggatgcat atacectaaa tggacagcca ggagacctgt ataactgetc tagggcagga 120 acattccggt ttctggtcaa acaaggagaa acttaccttc tacggatggt caatgctgca 180 78 ctcaatagtg cccac 195 < 210 > 252 < 211 > 377 < 212 > DNA < 213 > Pinus radiata < 400 > 252 ccaaacccca tggagaaact ccgctcataa taggagaatg gtggaacgct gaccctattg 60 cggttataga tgaagcactc cgcactggtg gtgcgcccaa tttgtcggat gcatataccc 120 taaatggaca gccaggagac ctgtataact gctctagggc aggaacattt cggtttcctg 180 taaaacaagg agaaacttac cttctccgga tggtcaatgc tgcactcaat agtgcccact 240 ttttcaagat cgcaggccac aaatttacag tagtagctgt ggatgcttcc tacaccaagc 300 catacaaaca gatgtaatcg ccattgctcc cggtcagact actgatgttc tcgtcacggc 360 377 gtgggca cgaccaacct < 210 > 253 < 211 > 387 < 212 > DNA < 213 > Pinus radiata < 400 > 253 gatgcccaca ccattaatgg aaagccaggg ccactcttca aatgccctac caaagatact 60 tttgtggttc cagtggaaca tgggaagact taccttcttc gaatcatcaa cgcagctctc 120 tcttttttga aatgacgagc catcatctga tgttgcaaac gattgacgca aagtggtgga 180 gtatacacaa agccactaat aacgaactca atagtaattg ctccaggcca gaccacaaat 240 gccttgatcc acaccaacaa aaggagtggc aggtatttca tggctgctcg ctcattcatg 300 gacgcgcccg tctccgtcga caataaaacc gccacagcca cgtcaattca ttttgcagta 360 387 atacaaattc tgttataatg cccagca < 210 > 254 < 211 > 534 < 212 > DNA < 213 > Pinus radiata < 400 > 254 aacatgatgg cgcccatggc cggagcagag tacggaataa agctgattat tcagttgctt 60 gttgtactac acttgttgca ttgctgttca ccagacatta gggaaaacga ctcattccat 120 gtgaggttga agaacgttac tcgtctctgc cacacaaagc cattgattac agtcaatggg 180 aaatctcctg gacctaaagt agtcgtccgt gagggagata gagtcatcat caaagttcat 240 aatcatgtta gcaataatgt ctcaattcac tggcatggag ttcgacaatt gaggtctggt 300 tgggcagatg gccctgctta cataacccaa tgcccaattc aaacgggaca gacttatgtt 360 tataacttca ctgtcacagg acagagggga actctctggt ggcacgctca catctcttgg 420 ctaagagcga gcgtatatgg cgctttcatc atctatccta aacgccatgt tccttatcca 480 tttccaaagc catacaaaga agtccctctg attctcgggg aatggtggaa tgca 534 < 210 > 255 < 211 > 1076 < 212 > DNA < 213 > Pinus radiata < 400 > 255 gcccaattcc accaggtggt cgttacacat atagattcaa catctctggt caagaaggaa 60 cggtttggtg gcatgcccat tactcatggc tccgagctac tgtgcatgga gcttttgtaa 120 tccttcctaa gaaaggaagc tcatatccct tttctaaacc gcatgctgaa attcctatta 180 taataggtga atggtggaac gctaacccca tcgccgttat agacgaagcg gttcgcacag 240 gtggtgcgcc taatttatcc gatgccttca ccataaatgg gatctgttta acagccagga 300 79 ctcgggaaca actgctctac tttcgcctcc ctgtagaaag cggagaaacg taccttctgc 360 ggattgtgaa tgctgcactc aatagcgggc actttttcaa gatagcaggc cacgaattta 420 tgtggatgct cagtggtagc agccatacaa tgttacacca aacagatgta ctcgtcatat 480 gacgacagat ctgccggcca gttcttatca cggccaacca gtctgtgggc agatactata 540 tggccgcccg agcgtatcaa aatcaggcgg caggcgattt cactaacacc acaacaactg 600 gtacattgga ccattctaga agtgaaaatt ctactcgc? C aattttgcct agccttccag 660 cctacaacga cactgccact gtcactagat ttagcagagc actgcgaagt ctggcatccc 720 aggagcaccc tgtgaatgtt ccgcacacaa tagatgaaag cctcatctca actgttggac 780 tggggctact tccgtgtggc gctgggaata cctgtgaagg tcccaacgga acgaggctga 840 gtgcaagtat caacaacata tcgtatgtag agcccacgat ctcgttgctt caagcatatt 900 attacactgc caatggtatc tttacggggg attttccatc aaaacctgaa gttagattca 960 actacacggg ggacgatata ccccgaaaat tttgggctcc ggaccccgca acaaaagtga 1020 aggtgctcga atacaactcc acagtgcagc tcgtttttca gtcaacaaac atcttc 1076 < 210 > 256 < 211 > 483 < 212 > DNA < 213 > Pinus radiata < 400 > 256 atttcgcagg gaaactgtaa tacageatat ttcaagaage tttctttcga aaatggtgat 60 ctcaaaatat gcagcagcga tgtcgtgctt gctcatcgca gtagttgcat tagaggttgg 120 ggcagaaacg agacattaca aatttgacat aaaattcaag aacgttactc gtttatgcca 180 cacaaagccg atagttacag cgaatggcaa gttcccaggc ccaacaatat atgeaegaga 240 gtcactgtga aggagacaca aagtaaccaa tcacgtgaca tacaacgtgt ccatacactg 300 gcacgggata aggcagttgc ggactgggtg ggctgatggg ectgettata ttacgcagtg 360 acaggccaaa ccccattcaa taactttaca cttatgtata atcacagggc agcgaggcac 420 acttttctgg cacgctcaca ttctctggtt acgtgcaaca ttgaatgggc ccatcgtcat 480 tet 483 < 210 > 257 < 211 > 470 < 212 > DNA < 213 > Pinus radiata < 400 > 257 ggttgttgtt taagtacaag gatgaacatg tegagatcaa aggcgttgct ctgcccttcc 60 ccagctcatg tgaagtacgt gctaattgtc atcctgttga ttattatgat tcagtgcccg 120 caggaaagca gatatagtag accaggcatt tgcgcagaca cgtgaggcta acaagttcaa 180 cacgtctttg agcaatgtga ccgcacgaaa cctttgatta cagtgaatgg aaagtatcca 240 ggacctacag ttgttgctcg cgagggagat cgggtaatta taaaacttgt aaaccacgtg 300 aaggacaacg teactattea ctggcatggc gttegacage tgagatcggg atgggcggat 360 atatcaetca ggtcctggtt atgtccactt caaaccggaa tgagttacgt ttataatttc 420 accatcgtag ggcagagagg aactctatgg tggcacgcac acatttcttg 470 < 210 > 258 < 211 > 472 < 212 > DNA < 213 > Pinus radiata < 400 > 258 agttatccag caggctcttc aaacaggagg tggtccaaat gtatctgatg ectatactat 60 aaatggactt cctggaccac tttacaactg ttccaatgag acatttgttt tgaaagtgca 120 acatatette tcctggacaa ttcgtatcat caatgctgca ctcaatgatg aactcttcct 180 tgccattgca aatcacagtt taacagttgt ggaggtggat gcagtgtatg tcaagccttt 240 ccagacagat actettetta taaccccagg gcagactacc aatgttttac ttactgctaa 300 tgctactagt ggtaaaaata aacaatttgt catagetget agtccttttg ttaccggttc 360 80 agggacattt gataattcca ctgttgcagg aattgtgagt tataattctc ataagtttaa 420 aaattcttcc accattattc tgccaaaact cccatccttc aatgatacaa at 472 < 210 > 259 < 211 > 405 < 212 > DNA < 213 > Pinus radi .ata < 400 > 259 caggacaaac cacgaatgtt ttgctcgagg ctaacaaaag atctggaagt tatttcgtgg 60 ctgctcggcc attcatggat gcacctgtga cagtgaacaa caagaccgca actgccattt 120 tgcactacat cggcaggaat tctgaatcag atattcccgc cgttaatcct ctcatgccac 180 gacttcctct cctcaacgac actgcgtttg caacgagttt cacctccaag ctcagaagct 240 tgaattctgt tcagtttccc gcaaaagtcc cgcagacaat agatcgcaat ctcttcttcg 300 cagtggggct tgcgacggag tcttgtcaga cctgtaacgg tggcctccgt gcttccgcat 360 caatcaacaa cataagcttc gtcatgccca gcatttctct tctgg 405 < 210 > • 260 < 211 > • 1352 < 212 > • DNA < 213 > • Pinus radiata < 400 > • 260 acaccactta tccctttacc tttaccaggc cgcatcgcca gattcccatt cttctaggag 60 aatggtggaa taggaatccc atggacgttg tgaatcaagc aacccaaaca ggagctgccc 120 ccaacgtttc agatgcattt actataaatg gacaaccagg cgacctatac aaatgttcta 180 cttcagatac ctttagcgtg tcgatgaaag gtggggaaac cgtgttatca taatcttcta 240 acgc'tgcact caatactgac ctattcttct ccattgctag ccacacaatg acagttgtcg 300 cttgtataca ctgtggatgc aaaccttttc agacgaatgt tctgatgctc ggccccggcc 360 agacaacaga catacttctc actgccaatc aggctacagg tagatactac atggctgctc 420 gagcatattc cagcgggcaa ggagttccct tcgataacac cactaccact gccattttag 480 aatacgaggg aagctctaag acttcaactc cagtcatgcc taatcttcca ttctataacg 540 acaccaacag tgctactagc ttcgctaatg gtcttagaag cttgggctca cacgaccacc 600 tcctcagagt cagtcttcgt atctgttcta gtggaggaga caccatcggt ttggggttga 660 tcaaatgtcc ggggcagtct tgtggaggtc ccaacggatc aagatttgca gcaagtatga 720 ataacatatc atttgtcccg ccaaccactt cttccatcct tcaagctcag cattttggca 780 tgaaaggagt attctccgcg gacttccccg ataacccttc cgtgggattt gattataccg 840 cacagaacat cagcagagac ctctggtccc ctgtgaaagc cacaagagtg aaagttctta 900 aatataactc gacggtgcaa gtaattcttc aaggaaccaa tatatttgcg ggtgaaagcc 960 atcctatcca tctccatggt tatgacttct acatcgtggg agcaggcttt ggcaattata 1020 acgcacaaac cgatcctcac aagttcaacc tggtggatcc tcctatgcgc aacactgtga 1080 acgttccagt caatggctgg gctgcaataa gattcgtggc tgacaatcct ggagcttggg 1140 tgatgcactg ccacttggac gtgcacataa catggggatt ggccatggtg tttgtggtta 1200 acaatggacc tgacgctctt ttgagtctcc agtcacctcc cagag atctt ccgctatgct 1260 gaggaaaact gtgatgcata gcgatcctct attggtccca cttcattctt tttccttctc 1320 gtcactttgc tccttccatc gtttatgtct at 1352 < 210 > 261 < 211 > 337 < 212 > DNA < 213 > Pinus rad: iata < 400 > 261 taacgcgaca ttcttaacta gttcaagtaa ttctccaggg aacaaatata tttgctggtg 60 aaagccatcc tatccatctc catggttatg acttttacat gggtttggta cgtgggagca 120 attataatgc acaaacagat cctcagaagt tcaacctggt ggatcctcct atgcgcaaca 180 ctgtgaacgt tccagtcaat ggctgggctg ccataagatt cgttgctgac aatcctggag 240 81 cttgggtgat gcactgccac ttagacgtgc acataacatg ggggttggcg atggtttttg 300 tggttaacaa tggacctgat cctcttttga gtctcca 337 < 210 > 262 < 211 > 279 < 212 > DNA < 213 > Pinus radiata < 400 > 262 aagttcttaa acaagagtga ttataacaca acggtgcaag taattcttca aggaacaaat 60 atatttgcgg gtgaaagcca tcctattcat ctccatggtt atgacttcta catagtggga 120 gcaggatttg gcaattataa tccacaaacc gatcctcaaa agttcaacct ggcggatcct 180 cctatgcgca acactgtaaa cgttccagtt aatggctggg ctgcaataag attcgtggcc 240 gacaatcctg gcgcttgggt gatgcactgc cacttggac 279 < 210 > 263 < 211 > 279 < 212 > DNA < 213 > Pinus radiata < 400 > 263 aaaacctttt cagacgaatg ttctgatgct cggccccggc cagacaacag acatagcggc 60 cgcgtcgacc aacttgcaga tacctttagc gtgtcgatga aaggtgggga aactaatctt 120 ctacgtgtta tcaacgctgc actcaatact gacctattct tctccattgc tagccacaca 180 atgacagttg tcgctgtgga tgccttgtat acaaaacctt ttcagacgaa tgttctgatg 240 ctcggccccg gccagacaac agacatagcg gccgcgaat 279 < 210 > 264 < 211 > 474 < 212 > DNA < 213 > Pinus radiata < 400 > 264 ccctgactct acaatcaata cgtcgttcct gcaacagtta caagggcagt gtcctcgggc 60 tggtggagac gagttgcctt cgtctcttga ctacgtaacg ccagcccgtt ttgataacac 120 ttactttgcc aacttgaagc agcagaaggg tgttctgcac tctgatcgca cgctatacga 180 tcccgcagcc tcagggtctg taactagcag tacagttgat catttctctt ctgatcagac 240 gaaagcttca tgctttcttc aaggagccat gatcaaaatg gggaacctca gcccttcggc 300 cggaacgcaa ggagaaatcc ggcgggactg cagaaaagta aattagagag ctcctagcct 360 tcatccagag gcatcaacca tgaggataag ttggataaat tatcttgtct taatatcagg 420 ttggatttag tggtataata tcgggttgga tttagtggta aaaaaaaaaa aaaa 474 < 210 > 265 < 211 > 1790 < 212 > DNA < 213 > Pinus radiata < 400 > 265 ggcacgaggc aaacttggtc gtttgtttag gttttgctgc aggtgaacac taatatggaa 60 ggccagattg cagcattaag caaagaagat gagttcattt ttcacagccc ttttcctgca 120 gtacctgttc cagagaatat aagtcttttc cagtttgttc tggaaggtgc tgagaaatac 180 cgtgataagg tggccctcgt ggaggcctcc acagggaagg agtacaacta tggtcaggtg 240 atttcgctca caaggaatgt tgcagctggg aaggcattca ctcgtggaca aaagggcgat 300 gttgtatttg ttctgcttcc gaatacccca aaatatggca ttattgtgct gggaataatg 360 ttggccggcg cagtgttttc tggggcaaat ccttctgcac acatcaatga agttgaaaaa 420 catatccagg attctggagc aaagattgtt gtgacagttg ggtctgctta tgagaaggtg 480 aggcaagtga aactgcctgt tattattgca gataacgagc atgtcatgaa cacaattcca 540 82 ttgcaggaaa tttttgagag aaactatgag gccgcagggc cttttgtaca aatttgtcag 600 gatgatctgt gtgcactccc ttattcctct ggcaccacag gggcctctaa aggtgtcatg 660 ctcactcaca gaaatctgat tgcaaatctg tgctctagct tgtttgatgt ccatgaatct 720 cttgtaggaa atttcaccac gttggggctg atgccattct ttcacatata tggcatcacg 780 ggcatctgtt gcgccactct tcgcaacgga ggcaaggtcg tggtcatgtc cagattcgat 840 ctccgacact ttatcagttc tttgattact tatgaggt? To acttcgcgcc tattgtcccg 900 cctataatgc tctccctcgt taaaaatcct atcgttaacg agttcgatct cagccgcttg 960 aaactcaaag ctgtcatgac tgcggctgct ccactggcgc cggatctact gcgagcgttc 1020 gaggaaaaat tccctggggt tgaggttcaa gaggcctatg gtcttacgga acacagttgc 1080 atcacattga ctcattgcgc tcccggaaac atacgtggga gagccaagaa gagttcggtt 1140 ggttttatta ttcccaatct ggaggtgaag tttattgatc ccgaaactgg aaagtcattg 1200 cccaggaatt ccatcgggga ggtgtgcgtc agaagccaat gtgtcatgcg agggtattac 1260 cagaaaccga aagaaaccga gaaaacagtg gacagcgacg gctggctgca tactggggat 1320 tagatgatga gtcggtttca cgacgacgta ttcatcgtcg acagaattaa agagctgatc 1380 aaatacaaag gttttcaggt tgctcctgca gaactggaag ccattctact ttctcatcca 1440 tcagtggaag acgcagcagt ggttccttta cctgatgagg aagcagggga gattccagcg 1500 gcgtgcgtgg tgatggcagc cagtgctacg gagacggagg acgacatttc gaagtttgtg 1560 gcgtcgcagg tggctacata caagagggtg agactggtga agtttgtgtc caccattcct 1620 aaatcttctt ccggaaagat cctgcgcaga cttctgagag ataatctccg tgaaacgctc 1680 aaaaaccagc accaaccatt gtccacttag gctttgcagc gttatatata aataaataat 1740 caaacatcta gggatgggat tatagcccca taacatacat tttgaaattc 1790 < 210 > 266 < 211 > 2043 < 212 > DNA < 213 > Pinus radiata < 400 > 266 caaacgctca gcgccaccac ccttctcatc atcagccctc tgtctctgtc tctgtctctc 60 gattctccgc cccgccacga caatggaggc gaagccgtcg gagcagcccc gcgagttcat 120 cttccggtcg aagctccccg acatctacat tcccgacaac ctctccctcc acgcctactg 180 cttcgagaac atctccgagt tcgccgaccg cccctgcgtc atcaacgggg ccaccggccg 240 gacctacacc tatgccgagg tcgagctgat ctcccgccgg gtctcagccg gcctcaacgg 300 gctcggcgtc ggacagggcg acgtgatcat gctgctcctc cagaactgcc ctgagttcgt 360 gttcgcgttc ctcggcgcgt cctaccgggg cgccatcagc acccgttcta acgaccgcga 420 caccccgggc gagatcgcca agcaggcctc agctgcccgg gccaagatcg tgatcacgca 480 ggccgcgttc gccgacaagg tgaggccgtt cgcggaggag aacggggtga aggtcgtgtg 540 catcgatacc gcgccggagg gctgcctgca cttctcggaa ttgatgcagg cggacgagaa 600 cgccgccccc gcggcggacg tcaagccgga cgacgtcttg gcgctcccct attcgtcggg 660 cacgacgggg cttcccaagg gagtgatgct tacgcacagg ggtcaagtga ccagcgtggc 720 gacggagaca gcagcaggtc accccaactt gtacttccac aaggaggacg tgatcctgtg 780 ttgttccaca cacgctcccg tatactccct caactcggtg atgttctgcg cgctccgtgt 840 cggcgccgcc atcctg atca tgcagaagtt cgagatcgtg gcgctgatgg agctcgtgca 900 gcggtaccgg gtgacgatcc tgcccattgt cccgccgatc gtgctggaga tcgccaagag 960 cgccgaggtg gaccggtacg acctgtcgtc gatccggacc atcatgtcgg gtgcggcccc 1020 gatggggaag gagctcgagg acaccgtgcg agccaagctg agctcggaca cccaatgcca 1080 gggctatggg atgacggagg cgggcccggt gctggcaatg tgcccggcat ttgcaaagga 1140 gccgttcgag atcaagtcag gcgcatgcgg gaccgtcgtg aggaacgcgg agatgaagat 1200 cgtcgacccg gagacagggg cctcgctccc gcggaaccag gccggcgaga tctgcatccg 1260 gggtcaccag atcatgaaag gttatctgaa gcgaccgcaa cgacgccgag ataccataga 1320 tggctgcaca caaagaaggg ccggcgacat cggctacata gacgatgacg acgagctctt 1380 cattgtcgat cggttgaagg aactcatcaa gtacaagggc ttccaggttg ctccggccga 1440 gctagaggca atgctgattg cacacccaag tatctcggat gccgctgttg tgccgatgaa 1500 ggatgaggtt gccggtgagg ttcctgttgc attcgtggtg aaatccaatg gttccgtaat 1560 caccgaggac gaaatcaagc aatacatctc gaagcaggtc gtgttttaca agaggatcaa 1620 gcgggttttc ttcacggacg caattccgaa agccccctcc ggaaaaatct tgaggaagga 1680 cctaagagca aagttggcct ctg gtgttta caattaattt ctcataccct tttctttttc 1740 83 aaccctgccc ctgtacttgc ttaaagaccc atgtagttga aatgaatgta acctcttcgg 1800 aggggccaaa tatggaaggg ggaaagaaag acatatggcg atgatttgat ttcacatgct 1860 attgtaatgt atttattgtt tcaattccga attagacaaa gtgcttaaag ctctcttttc 1920 ggattttttt tttcattaat gtataataat tgcggacatt acaatatact gtacaacgtg 1980 gatgaattac atttgagctt aagattggaa gaacttcgaa gacaaaaaaa aaaaaaaaaa 2040 aaa,. 2043 < 210 > 267 < 211 > 92 < 212 > PRT < 213 > Pinus radiata < 400 > 267 Lys Glu Thr Gly Leu Leu Asn Gln Phe Val Asp He Tyr Gln Glu Met 1 5 10 15 Asp Asp Ser Val Gln Glu Val Ser Lys Glu Gly Asn Gln Trp Wing Gly 20 25 30 Phe He Glu Gly Glu Asn Val He Arg Arg Gly Arg Glu He Leu Leu 35 40 45 Gln His Asp Asn Arg Glu Wing His Asn Trp Glu Ser His Lys His Lys 50 55 60 Trp Trp Pro His Leu Glu Glu Lys He Pro His He Wing Lys Wing Gly 65 70 75 80 Phe Thr Ser He Trp Leu Pro Pro Wing Phe Asp Ser 85 90 < 210 > 268 < 211 > 182 < 212 > PRT < 213 > Pinus radiata < 400 > 268 Leu Leu His Gln Phe Val Tyr Ser Phe Arg Lys Met Gly Tyr Pro Val 1 5 10 15 Gln Glu Val Ser Lys Glu His Asp Gln Trp Wing Gly Phe Val Glu Gly 20 25 30 Glu Ser Val Leu Gln Arg Gly Arg Glu He Leu Leu Gln Gly Phe Asn 35 40 45 Trp Glu Ser His Lys Tyr Lys Trp Trp Pro Asn Leu Glu Glu Lys He 50 55 60 Pro His He Wing Lys Wing Gly Phe Thr Ser Val Trp Leu Pro Pro Wing 65 70 75 80 Phe Asp Be Wing Wing Pro Gln Gly Tyr Leu Pro Arg Asn He Tyr Ser 85 90 95 Leu Asn Be Wing Tyr Gly Ser Glu Tyr Gln Leu Lys Ser Leu Leu Met 100 105 110 Thr Met Arg Lys Lys Asn Val Arg Wing Met Wing Asp He Val He Asn 115 120 125 His Arg Met Gly Be Ser Gln Gly Phe Gly Gly Leu Tyr Asn Arg Tyr 130 135 140 Tyr Gly Cys Leu Pro Trp Asp Glu Arg Wing Val Thr Arg Cys Ser Gly 145 150 155 160 Gly Leu Gly Asn Trp Ser Thr Gly Asp Asn Phe His Gly Val Pro Asn 165 170 175 Val Asp His Thr Gln Asp 180 84 < 210 > 269 < 211 > 218 < 212 > PRT < 213 > Pinus radiata < 400 > 269 Arg Met Wing Lys Phe Arg Ser Leu Ser Leu Leu Leu Trp Phe Ser Cys 1 5 10 15 He He Val Asn Ala Ala Ser Pro Ala Gln Ala Glu Ala Thr Thr Pro 25 30 Pro Leu Asn Thr Leu Leu Leu Gln Gly Phe Asn Trp Asp Ser Ala Gln 40 45 Ser Ser Thr Pro Trp Tyr Asn Val Leu Lys Gly He Val Asp Asp Ala 50 55 60 Wing Asp Wing Gly He Thr Tyr Val Trp Phe Pro Pro Pro Ser Gln Ser 65 70 75 80 Gly Ala Pro Gln Gly Tyr Leu Pro Ala Lys Leu Tyr Asp Leu Asp Ser 85 90 95 Ser Tyr Gly Ser Glu Gln Gln Leu Lys Asp Ala Val Asn Ala Phe His 100 105 110 Gln Lys Gly He Wing He Met Gly Asp He Val He Asn His Arg Asn 115 120 125 Gly Thr Lys Gln Asp Asp Lys Gly Tyr Trp Cys Val Phe Glu Gly Gly 130 135 140 Lys Gly Asp Gly Thr Leu Asp Trp Gly Pro Trp Wing Val Thr Val Lys 145 150 155 160 Asp Gln Pro Tyr Pro Leu Cys Gly Ser Gly Gln Wing Asp Thr Gly Gly 165 170 175 Asp Phe Lys Tyr Ala Pro Asp Val Asp His Thr Asn Pro Lys He Gln 180 185 190 Gln Asp Leu Ser Glu Trp Met Asn Trp Leu Lys Ser Met Ser Asp Leu 195 200 205 Met Wing Gly Gly Ser Thr Thr Ser Arg Leu 210 215 < 210 > 270 < 211 > 145 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 270 Gly Val Gly Arg Leu Val Asp Val Gly Gly Ser Ala Gly Asp Cys Leu 1 5 10 15 Arg Met He Met Gly Lys His Thr His Val Arg Glu Gly He Asn Phe 25 30 Asp Leu Pro Glu Val Val Ala Lys Ala Pro Pro He Pro Gly Val Thr 40 45 His Val Gly Gly Asp Met Phe Lys Ser He Pro Wing Gly Asp Wing He 50 55 60 Phe Met Arg Trp He Leu Thr Thr Trp Thr Asp Asp Glu Cys Lys Gln 65 70 75 80 He Leu Glu Asn Cys Phe Lys Ala Leu Pro Wing Gly Gly Lys Leu He 85 90 95 Ala Cys Glu Pro Val Leu Pro Gln His Ser Asp Asp Ser His Arg Thr 100 105 110 Arg Ala Leu Leu Glu Gly Asp He Phe Val Met Thr He Tyr Arg Ala 115 120 125 85 Lys Gly Lys His Arg Thr Glu Gln Glu Phe Gln Gln Leu Gly Leu Ser 130 135 140 Thr 145 < 210 > 271 < 211 > 198 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 271 Pro Thr Met Wing Asp Asn Gln Glu Arg Glu Gly Arg Asp Gln Glu Glu 1 5 10 15 Glu Val Gly Lys Leu Wing Val Gln Leu Wing Ser Val Wing Val Leu Pro 25 30 Met Thr Leu Lys Ser Ala Leu Glu Leu Gly He He Asp Ala Leu Val 40 '45 Ser Ala Gly Gly Phe Leu Ser Ala Ala Glu He Ala Ser Arg Val Gly 50 55 60 Wing Lys Asn Pro Gly Wing Pro Val Leu Val Asp Arg Met Met Arg Leu 65 70 75 80 Leu Ala Ser His Gly Val He Glu Trp Arg Leu Arg Arg Gly Asp Gly 85 90 95 Asn Gly Asp Gly Gly Glu Arg Glu Tyr Gly Pro Gly Pro Met Cys Arg 100 105 110 Phe Phe Ala Lys Asp Gln Glu Gly Gly Asp Val Gly Pro Leu Phe Leu 115 120 125 Leu He His Asp Lys Val Phe Met Glu Ser Trp Tyr His Leu Asn Asp 130 135 140 Val He Met Glu Gly Gly Val Pro Phe Glu Arg Ala Tyr Gly Met Thr 145 150 155 160 Wing Phe Glu Tyr Pro Wing Val Asp Asp Arg Phe Asn Gln Val Phe Asn 165 170 175 Arg Ala Met Ala Ser His Thr Ser Leu He Met Lys Lys He Leu Asp 180 185 190 Val Tyr Arg Gly Phe Glu 195 < 210 > 272 < 211 > 156 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 272 Pro Thr Pro Leu Tyr Met Asn Lys He Leu Glu Ser Tyr Arg Gly Phe 1 5 10 15 Glu Gly Wing Lys Thr He Wing Asp Leu Gly Gly Gly Val Gly Gln Asn 25 30 Leu Arg Leu He Leu Asp Lys Phe Pro Asn Leu Arg Gly He Leu Tyr 40 45 Asp Leu Pro His Val He Lys Asp Wing Pro Wing His Pro Arg Met Glu 50 55 60 Arg Val Gly Gly Asp Leu Leu Lys Ser Val Pro Lys Wing Asp He Leu 65 70 75 80 Phe Met Lys Trp Leu Phe His Gly Leu Arg Asp Asp Phe Cys Lys Met 35 90 95 Leu Leu Gln Asn Cys Tyr Glu Ala Leu Pro Pro Asn Gly Lys Val Val 86 100 105 110 He Val Asp Pro He Leu Pro Glu Tyr Pro Glu Thr Asp He Val Ser 115 120 125 Arg Asn Ser Phe Thr Ser Asp Met He Met Leu Tyr Thr Ser Pro Gly 130 135 140 Glu Asp Arg Thr Arg Lys Glu Leu Glu Val Leu Wing 145 150 155 < 210 > 273 < 211 > 166 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 273 Ser Ser Phe Gln Pro Cys Tyr Glu Glu Wing Asn Ser Leu Asp Arg Trp 1 5 10 15 He Gln Pro Pro Being Asp Leu Leu His Asn Met Being Asp Lys Glu Leu 25 30 Phe Trp Arg Ala Thr Leu Val Pro Lys He Lys Lys Tyr Pro Phe Arg 40 45 Arg Val Pro Lys He Wing Phe Met Phe Leu Thr Lys Gly Pro Leu Pro 50 55 60 Leu Ala Pro Leu Trp Glu Arg Phe Phe Lys Gly His Glu Gly Leu Tyr 65 70 75 80 Ser He Tyr He His Ser His Pro Ser Phe His Wing His Phe His Pro 85 90 95 Trp Ser Val Phe Asn Arg Arg Gln Pro Pro Ser Gln Val Ser Glu Trp 100 105 110 Gly Arg Met Ser Met Cys Asp Ala Glu Lys Arg Leu Leu Ala Asn Ala 115 120 125 Leu Leu Asp He Ser Asn Glu Arg Phe He Leu Leu Ser Glu Ser Cys 130 135 140 He Pro Leu Tyr Asn Phe Ser Leu He Tyr His Tyr He Met Lys Ser 145 150 155 160 Gly Tyr Ser Phe Met Gly 165 < 210 > 274 < 211 > 328 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 274 He Leu Ser Arg Lys Pro Lys Glu Lys Thr Val Gly Arg Lys Asn He 1 5 10 15 Lys Lys Asn Met Ser Ser Lys Glu Ala Pro Val He Thr Thr Ser His 25 30 Glu Asp Glu Glu He Leu Asn Wing Phe Glu Val Pro Ser Met Wing Phe 40 45 Val Pro Met Val Leu Lys Gly Val His Glu Leu Gly He Leu Glu Leu 50 55 60 Leu Ala Lys Gly Asp Gln Leu Ser Pro Leu Asp He Val Ala Arg Leu 65 70 75 80 Ser He Asp Asn Pro Ala Ala Pro Asp Thr He Asp Arg Met Leu Arg 85 90 95 Leu Leu Wing Ser Tyr Ser He Leu Ser Cys Thr Leu Val Glu Asp Lys 100 105 110 87 Glu Gly Arg Pro Gln Arg Leu Tyr Gly Leu Gly Pro Arg Ser Lys Phe 115 120 125 Phe Leu Asp Gln Asn Gly Ala Be Thr Leu Pro Thr His Met Leu Leu 130 135 140 Gln Glu Lys Thr Leu Leu Glu Cys Trp Asn Cys Leu Lys Asp Wing Val 145 150 1.55 160 Lys Glu Gly Gly Wing Asp Pro Phe Thr Arg Arg His Gly Met Asn Val 165 170 175 Phe Asp Tyr Met Gly Gln Asp Pro Arg Phe Asn Asp Leu Tyr Asn Lys 180 185 190 Ser Met Arg Thr Gly Ser Wing He Tyr Met Pro Lys He Wing Gln His 195 200 205 Tyr Arg Gly Phe Ser Lys Wing Lys Thr Val Val Asn Val Gly Gly Gly 210 215 220 He Gly Glu Thr Leu Lys Thr He Leu Ser Lys Asn Pro His He Arg 225 230 235 240 Ala He Asn Tyr Asp Leu Pro His Val He Ala Wing Thr Ala Pro Pro He 245 250 255 Pro Gly He Thr His Val Gly Gly Asp He Leu Lys Ser Val Pro Lys 260 265 270 Wing Asp Val His Phe Leu Lys Ser Val Leu His Arg Gly Asp Asp Glu 275 280 285 Phe Cys Val Lys Val Leu Lys Asn Cys Trp Glu Ala Leu Pro Pro Thr 290 295 300 Gly Lys Val Val He Val Glu Glu Val Thr Pro Glu Tyr Pro Gly Thr 305 310 315 320 Asp Asp Val Ser Gln Thr Thr Leu 325 < 210 > 275 < 211 > 160 < 212 > PRT < 213 > Pinus radiata < 400 > 275 Asp Val Gly Gly Gly He Gly Ser Ala Leu Ser He He Val Lys Glu 1 5 10 15 His Pro His He Arg Gly He Asn Leu Asp Leu Pro His Val He Ala 25 30 Thr Ala Pro Leu He Thr Gly Val Glu His Met Glu Gly Asn Met Phe 40 45 Glu His He Pro Be Wing Asp Wing Val Met Met Lys Trp He Leu His 50 55 60 Asp Trp Wing Asp Glu Glu Cys Val Lys Leu Leu Arg Arg Ser Tyr Asp 65 70 75 80 Wing Thr Pro Wing Lys Gly Lys Val Leu He Val Val Wing Val Val Glu Wing 85 90 95 Gly Asp Lys Glu Gly Glu Being Met Being Arg Arg Leu Gly Leu Leu Tyr 100 105 110 Asp He Met Met Met Wing Tyr Thr Thr Gly Gly Lys Glu Arg Thr Glu 115 120 125 Glu Glu Phe Lys Gly Leu Phe Gln Arg Wing Gly Phe Lys Ser His Thr 130 135 140 He He Lys Leu Pro Phe Leu Gln Ser Leu He Val Leu Ser Lys Wing 145 150 155 160 < 210 > 276 88 < 211 > 112 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 276 Ser Leu Arg Thr Tyr Ser Asn Met Glu Gln Gly Trp Asp Lys Gly Glu 1 5 10 15 He Leu Ala Ser Lys Ala Leu Ser Lys Tyr He Leu Glu Thr Asn Ala 25 30 Tyr Pro Arg Glu His Glu Gln Leu Lys Glu Leu Arg Glu Wing Thr Val 40 45 Gln Lys Tyr Gln He Arg Ser He Met Asn Val Pro Val Asp Glu Gly 50 55 60 Gln Leu He Met Met Met Leu Lys Leu Met Asn Ala Lys Lys Thr He 65 70 75 80 Glu He Gly Val Phe Thr Gly Tyr Ser Leu Leu Thr Thr Ala Leu Ala 85 90 95 Leu Pro Wing Asp Gly Lys He He Wing He Asp Gln Asp Lys Glu Wing 100 105 110 < 210 > 277 < 211 > 133 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 277 Arg Thr Tyr Being Asp Met Glu Arg Gly Gly Asp Lys Gly Glu He Leu 1 5 10 15 Ala Ser Lys Ala Leu Ser Lys Tyr He Leu Glu Thr Asn Ala Tyr Pro 25 30 Arg Glu His Glu Gln Leu Lys Glu Leu Arg Glu Wing Thr Val Gln Lys 40 45 Tyr Gln Met Arg Ser He Met Ser Val Pro Ala Asp Glu Gly Gln Leu 50 55 60 He Met Met Met Leu Lys Leu Met Asn Ala Lys Lys Thr He Glu He 65 70 75 80 Gly Val Phe Thr Gly Tyr Ser Leu Leu Thr Thr Ala Leu Ala Leu Pro 85 90 95 Wing Asp Gly Lys He He Wing He Asp Pro Asp Lys Glu Wing Tyr Glu 100 105 110 He Gly Leu Pro Tyr He Lys Lys Wing Gly Val Asp His Lys He Asn 115 120 125 Phe He Gln Ser Asp 130 < 210 > 278 < 211 > 98 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 278 Leu Gln Tyr He Leu Glu Thr Asn Wing Tyr Pro Arg Glu His Glu Gln 1 5 10 15 Leu Lys Glu Leu Arg Glu Wing Thr Val Gln Lys Tyr Gln He Arg Ser 25 30 He Met Asn Val Pro Wing Asp Glu Gly Gln Leu He Ser Met Met Leu 35 40 45 89 Lys Leu Met Asn Wing Lys Lys Thr He Glu He Gly Val Phe Thr Gly 50 55 60 Cys Ser Leu Leu Thr Thr Ala Leu Ala Leu Pro Wing Asp Gly Lys He 65 70 75 80 He Wing He Asp Pro Asp Lys Glu Wing Tyr Glu He Gly Leu Pro Tyr 85 90,. 95 He Arg < 210 > 279 < 211 > 157 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 279 Arg His His Gln Thr Leu Thr Phe Ser Ser Be Ala Leu Cys Leu Cys 1 5 10 15 Leu Cys Leu Be He Leu Arg Pro Wing Thr Thr Met Glu Ala Lys Pro 25 30 Ser Glu Gln Pro Arg Glu Phe He Phe Arg Ser Lys Leu Pro Asp He 40 45 Tyr He Pro Asp Asn Leu Ser Leu His Wing Tyr Cys Phe Glu Asn He 50 55 60 Ser Glu Phe Wing Asp Arg Pro Cys Val He Asn Gly Wing Thr Gly Arg 65 70 75 80 Thr Tyr Thr Tyr Wing Glu Val Glu Leu He Ser Arg Arg Val Ser Wing 85 90 95 Gly Leu Asn Gly Leu Gly Val Gly Gln Gly Val Val Met Met Leu Leu 100 105 110 Leu Gln Asn Cys Pro Glu Phe Val Phe Ala Phe Leu Gly Ala Ser Tyr 115 120 125 Arg Gly Ala He Ser Thr Thr Ala Asn Pro Phe Tyr Thr Pro Gly Glu 130 135 140 He Ala Lys Gln Ala Ser Ala Ala Arg Ala Lys He Val 145 150 155 < 210 > 280 < 211 > 180 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 280 Phe Wing Asp Lys Val Arg Pro Phe Wing Glu Glu Asn Gly Val Lys Val 1 5 10 15 Val Cys He Asp Thr Ala Pro Glu Gly Cys Leu His Phe Ser Glu Leu 25 30 Met Gln Wing Asp Glu Asn Wing Wing Pro Wing Wing Asp Val Lys Pro Asp 40 45 Asp Val Leu Ala Leu Pro Tyr Be Ser Gly Thr Thr Gly Leu Pro Lys 50 55 60 Gly Val Met Leu Thr His Arg Gly Gln Val Thr Ser Val Ala Gln Gln 65 70 75 80 Val Asp Gly Asp Asn Pro Asn Leu Tyr Phe His Lys Glu Asp Val He 85 90 95 Leu Cys Thr Leu Pro Leu Phe His He Tyr Ser Leu Asn Ser Val M t 100 105 110 Phe Cys Ala Leu Arg Val Gly Ala Ala He Leu He Met Gln Lys Phe 90 115 120 125 Glu He Val Ala Leu Met Glu Leu Val Gln Arg Tyr Arg Val Thr He 130 135 140 Leu Pro He Val Pro Pro He Val Leu Glu He Ala Lys Ser Ala Glu 145 150 155 160 Val Asp Arg Tyr Asp Leu Be Ser He Arg Thr He Met Ser Gly Wing 165 170 175 Ala Arg Trp Gly 180 < 210 > 281 < 211 > 180 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 281 Gly Gln Leu Val Wing Gly Val Glu Wing Gln Val He Ser Val Asp Thr 1 5 10 15 Leu Lys Ser Leu Pro Pro Asn Gln Leu Gly Glu He Trp Val Arg Gly 25 30 Pro Asn Met Met Lys Gly Tyr Tyr Asn Asn Pro Gln Ala Thr Lys Leu 40 45 Thr He Asp Asn Lys Gly Trp Val His Thr Gly Asp Leu Gly Tyr Phe 50 55 60 Asp Glu Glu Gly Gln Leu Tyr Val Val Asp Arg He Lys Glu Leu He 65 70 75 80 Lys Tyr Lys Gly Phe Gln He Wing Pro Wing Glu Leu Glu Gly Leu Leu 85 90 95 Leu Ser His Pro Glu He Leu Asp Ala Val Val He Pro Phe Pro Asp 100 105 110 Ala Glu Wing Gly Glu Val Pro He Wing Tyr Val Val Arg Ser Pro Thr 115 120 125 Being Ser Leu Thr Glu Glu Glu Val Gln Lys Phe He Wing Asn Gln Val 130 135 140 Wing Pro Phe Lys Arg Leu Arg Arg Val Thr Phe Val Asn Ser Val Pro 145 150 155 160 Lys Ser Wing Ser Gly Lys He Leu Arg Arg Glu Leu He Wing Lys Val 165 170 175 Arg Ala Lys He 180 < 210 > 282 < 211 > 119 < 212 > PRT < 213 > Pinus radiata < 400 > 282 Gly Tyr Phe Asp Glu Glu Gly Gly Leu Phe He Val Asp Arg He Lys 1 5 10 15 Glu Leu He Lys Tyr Lys Gly Phe Gln Val Wing Pro Wing Glu Leu Glu 25 30 Gly He Leu Leu Thr His Pro Gln He Wing Asp Wing Gly Val He Pro 40 45 Leu Pro Asp Leu Lys Wing Gly Glu Val Pro He Wing Tyr Val Val Arg 50 55 60 Thr Pro Gly Ser Ser Leu Thr Glu Lys Asp Wing Met Asp Tyr Val Wing 65 70 75 80 91 Lys Gln Val Wing Pro Phe Lys Arg Leu His Arg Val Asn Phe Val Asp 85 90 95 Ser He Pro Lys Ser Wing Ser Gly Lys He Leu Arg Arg Glu Leu He 100 105 110 Ala Lys Ala Lys Ser Lys Leu 115 < 210 > 283 < 211 > 152 < 212 > PRT < 213 > Pinus radiata < 400 > 283 Asp Phe Pro Phe Phe Phe Leu Leu Arg Val Wing Met He Glu Val Gln 1 5 10 15 Be Wing Pro Pro Met Wing Arg Ser Thr Glu Asn Glu Asn Asn Gln His 25 30 Asp Wing Glu Glu Gly Wing Val Leu Asn Glu Gly Gly Met Asp Phe Leu 40 45 Tyr Arg Ser Lys Leu Pro Asp He Asp He Pro Tyr His Leu Pro Leu 50 55 60 His Ser Tyr Cys Phe Glu Lys Leu Asp Glu Leu Arg Glu Lys Pro Cys 65 70 75 80 Leu He Gln Gly Ser Asn Gly Lys He Tyr Ser Tyr Gly Glu Val Glu 85 90 95 Leu He Ser Arg Lys Val Wing Ser Gly Leu Wing Lys Leu Gly Phe Lys 100 105 110 Lys Gly Asp Val Val Met Leu Leu Leu Pro Asn Cys Pro Glu Phe Val 115 120 125 Phe Val Phe Leu Gly Ala Ser Met Ala Ala Gly Ala He Ala Thr Thr Ala 130 135 140 Asn Pro Phe Tyr Thr Pro Ser Asp 145 150 < 210 > 284 < 211 > 330 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 284 Asp His Pro Pro Wing Met Wing Leu His He Leu Phe Thr Trp Leu Wing 1 5 10 15 Leu Ser Leu Pro Leu Leu Leu Leu Leu Leu Leu Ser Val Lys Asn Fhe 25 30 Asn Asn Lys Lys Lys Asn Leu Pro Pro Gly Pro Pro Ser Leu Pro He 40 45 He Gly Asn Phe His Gln Leu Gly Pro Leu Pro His Gln Ser Leu Trp 50 55 60 Lys Leu Ser Arg Arg Tyr Gly Pro Val Met Leu He Arg Leu Gly Gly 65 70 75 £ 0 Thr Pro Thr He Val He Ser Ser Pro Asp Ala Wing Arg Glu Val Leu 85 90 95 Lys Thr His Asp Leu Asp Ser Cys Ser Arg Pro Gln Met Val Gly Fro 100 105 110 Gly Arg Leu Ser Tyr Asp Ser Leu Asp Met Wing Phe Val Glu Tyr Gly 115 120 125 Asp Tyr Trp Arg Glu Leu Arg Thr Leu Cys Val Leu Glu Leu Phe Ser 92 130 135 140 Met Lys Arg Val Gln Ser Phe Arg Tyr He Arg Glu Glu Glu Val Gly 145 150 155 160 Being Met He Glu Being He Wing Lys Being Wing Glu Being Gly Thr Pro Val 165 170 175 Asn Met Ser Glu Lys Phe Met Wing Ala Leu Thr Wing Asn Phe Thr Cys Arg 180 185 190 Val Wing Phe Gly Lys Pro Phe Gln Gly Thr Glu Leu Glu Asp Glu Gly 195 200 205 Phe Met Asp Met Val His Glu Gly Met Met Wing Met Leu Gly Ser Phe Ser 210 215 220 Wing Ser Asp Tyr Phe Pro Arg Leu Gly Trp He Val Asp Arg Phe Thr 225 230 235 240 Gly Leu His Ser Arg Leu Glu Lys Ser Phe Arg Asn Leu Asp Asp Leu 245 250 255 Tyr Gln Lys Val He Glu Glu His Arg Asn Wing Asn Lys Ser Asn Glu 260 265 270 Gly Lys Glu Asp He Val Asp Val Leu Leu Lys Met Glu Lys Asp Gln 275 280 285 Thr Glu Leu Wing Gly Val Arg Leu Lys Glu Asp Asn He Lys Ala He 290 295 300 Leu Met Asn He Phe Leu Gly Gly Val Asp Thr Gly Ala Val Ser Trp 305 310 315 320 Thr Gly Gln Trp Leu Ser Ser Leu Gly Thr 325 330 < 210 > 285 < 211 > 115 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 285 Thr Glu Leu Glu Asp Glu Gly Phe Met Asp Met Val His Glu Gly Met 1 5 10 15 Wing Met Leu Gly Being Phe Being Wing Being Asp Tyr Phe Pro Arg Leu Gly 25 30 Trp He Val Asp Arg Phe Thr Gly Leu His Ser Arg Leu Glu Lys Ser 40 45 Phe Arg Asn Leu Asp Asp Leu Tyr Gln Lys Val He Glu Glu His Arg 50 55 60 Asn Wing Asn Lys Ser Asn Glu Gly Lys Glu Asp He Val Asp Val Leu 65 70 75 80 Leu Lys Met Glu Lys Asp Gln Thr Glu Leu Wing Gly Val Arg Leu Lys 85 90 95 Glu Asp Asn He Lys Wing He Leu Met Val Tyr His Thr He Ser Thr 100 105 110 Tyr Tyr Leu 115 < 210 > 286 < 211 > 143 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 286 Leu Val Val Ala Ala Leu Leu He Val Leu Leu Arg Ser Lys Ser Arg 1 5 10 15 93 Lys Arg Lys Ser Asn Leu Pro Pro Ser Pro Pro Lys Leu Pro He He 25 30 Gly Asn Leu His Gln Leu Gly Lys Ser Pro His He Ser Leu His Arg 40 45 Leu Wing Arg Asn Tyr Gly Pro He Met Being Leu Gln Leu Gly Glu Val 50 55,. 60 Pro Thr He Val Val Ser Ser Wing Wing Met Wing Lys Glu Val Met Lys 65 70 75 80 Thr His Asp Leu Val Leu Wing Asn Arg Pro Gln He Phe Ser Wing Lys 85 90 95 His Leu Phe Tyr Asp Cys Thr Asp Met Wing Phe Ser Pro Tyr Gly Wing 100 105 110 Tyr Trp Arg His He Arg Lys He Cys He Leu Glu Val Leu Ser Wing 115 120 125 Lys Arg Val Gln Ser Phe Ser His Val Arg Glu Glu Glu Val Ala 130 135 140 < 210 > 287 < 211 > 135 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 287 Leu Thr Phe Lys Cys Leu Arg Phe Leu Phe Ser Ser Ala Ala Ala Thr 1 5 10 15 Asn Leu His Leu Pro Pro Pro Pro Pro Lys Leu Pro He He Gly Asn 25 30 Leu His Gln Leu Ser Asp His Pro His Arg Ser Leu Gln Ala Leu Ser 40 45 Arg Arg Tyr Gly Pro Leu Met Met Leu His Phe Gly Ser Val Pro Val 50 55 60 Leu Val Val Ser Ser Wing Asp Cys Wing Arg Asp He Leu Lys Thr His 65 70 75 80 Asp Leu He Phe Be Asp Arg Pro Arg Ser Thr Leu Ser Glu Arg Leu 85 90 95 Leu Tyr His Arg Lys Asp Val Wing Ala Leu Wing Pro Phe Gly Glu Tyr Trp 100 105 110 Arg Glu Met Arg Ser He Cys Val Leu Gln Leu Leu Ser Asn Lys Arg 115 120 125 Val His Ser Phe Arg Thr Val 130 135 < 210 > 288 < 211 > 128 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 288 Gly Lys Leu Pro His Arg Ser Leu Asp Arg Leu Ser Lys Thr Tyr Gly 1 5 10 15 Pro Leu Met Tyr Met Arg Leu Gly Ser Met Pro Cys Val Val Gly Ser 25 30 Ser Ala Glu Met Ala Arg Glu Phe Leu Lys Thr His Asp Leu Thr Phe 40 45 Ser Ser Arg Pro Arg Val Wing Wing Gly Lys Tyr Thr Val Tyr Asn Tyr 50 55 60 Ser Asp He Thr Trp Ser Pro Tyr Gly Glu His Trp Arg Leu Ala Arg 94 65 70 75 80 Lys He Cys Leu Met Glu Leu Phe Be Wing Lys Arg Leu Glu Ser Phe 85 90 95 Glu Tyr He Arg Val Glu Glu Val Ala Arg Met Leu Ser Ser Val Phe 100 105 110 Glu Thr Ser Arg Gln Gly Leu Pro Val Glu He Arg Glu Glu Thr Thr 115 120 125 < 210 > 289 < 211 > 179 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 289 He Arg Met Val Asn Glu Leu Gly Ser Glu Lys Pro Phe Leu Val Cys 1 5 10 15 Leu Glu Phe Tyr Met Lys Leu Wing He Wing Leu Val Wing Leu Val Val 25 30 Wing Trp Ser Phe Phe Val Lys Gly Arg Asn Arg Lys Leu Pro Pro Gly 40 45 Pro Phe Ser Leu Pro He He Gly Asn Leu His Leu Leu Gly Gln Leu 50 55 60 Pro His Arg Ala Leu Thr Ala Leu Ser Leu Lys Phe Gly Pro Leu Met 65 70 75 80 Be Leu Arg Leu Gly Be Ala Leu Thr Leu Val Val Ser Ser Pro Asp 85 90 95 Met Ala Lys Glu Phe Leu Lys Thr His Asp Leu Leu Phe Ala Ser Arg 100 105 110 Pro Pro Be Wing Wing Thr Asn Tyr Phe Trp Tyr Asn Cys Thr Asp He 115 120 125 Gly Phe Wing Pro Tyr Gly Wing Tyr Trp Arg Gln Val Arg Lys Val Cys 130 135 140 Val Leu Gln Leu Leu Ser Ser Arg Arg Leu Asp Tyr Phe Arg Phe He 145 150 155 160 Arg Glu Glu Glu Val Ser Ala Met He He His Ser Wing His Ser Asp 165 170 175 His Pro Val < 210 > 290 < 211 > 440 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 290 Ser Ser Leu Wing Phe Gly Gln His He Wing Wing Thr Ser Tyr Ser Cys 1 5 10 15 Asn Leu His Gln He Gly Glu Met Be Phe Gln Asn Gln Leu Phe He 25 30 Phe Cys Thr Leu Leu Leu Gly Phe Leu Lys Leu Wing Glu Gly Lys Thr 40 45 Arg His Tyr Thr Phe His He Asp Ser His Asn Met Thr Arg Leu Cys 50 55 60 His Thr Arg Ser Val Leu Ser Val Asn Lys Gln Tyr Pro Gly Pro Pro 65 70 75 80 Leu Val Ala Arg Glu Gly Asp Asn He Leu Val Lys Val Val Asn His 85 90 95 95 Val Ala Ala Asn Val Thr He His Trp His Gly Val Arg Gln Leu Arg 100 105 110 Thr Gly Trp Wing Asp Gly Pro Wing Tyr Val Thr Gln Cys Pro He Gln 115 120 125 Thr Asn Gln Ser Tyr Thr Tyr Asn Phe Thr Leu Thr Gly Gln Arg Gly 130 135,. 140 Thr Leu Leu Trp His Wing His Val Ser Trp Leu Arg Ser Ser He His 145 150 155 160 Gly Pro He He He Leu Pro Lys Arg Asn Glu Ser Tyr Pro Phe Glu 165 170 175 Lys Pro Ser Lys Glu Val Pro He He Phe Gly Glu Trp Phe Asn Val 180 185 190 Asp Pro Glu Wing Val He Wing Gln Wing Leu Gln Ser Gly Gly Gly Pro 195 200 205 Asn Val Ser Asp Ala Tyr Thr He Asn Gly Leu Pro Gly Pro Leu Tyr 210 215 220 Asn Cys Ser Ser Lys Asp Thr Phe Lys Leu Lys Val Lys Pro Gly Lys 225 230 235 240 Thr Tyr Leu Leu Arg Leu He Asn Ala Ala Leu Asn Asp Glu Leu Phe 245 250 255 Phe Ser He Wing Asn His Wing Val Thr Val Val Glu Val Asp Wing Val 260 265 270 Tyr Thr Lys Pro Phe Ser Wing Gly Cys Leu His Leu Thr Pro Gly Gln 275 280 285 Thr Met Asn Val Leu Leu Lys Thr Lys Thr Asp Phe Pro Asn Ser Thr 290 295 300 Phe Leu Met Wing Wing Trp Pro Tyr Phe Thr Gly Met Gly Thr Phe Asp 305 310 315 320 Asn Ser Thr Val Wing Gly He Leu Glu Tyr Glu His Pro Lys Ser Ser 325 330 335 Asn Tyr Pro Pro Leu Lys Lys Leu Pro Gln Tyr Lys Pro Thr Leu Pro 340 345 350 Pro Met Asn Ser Thr Gly Phe Val Wing Lys Phe Thr Gly Gln Leu Arg 355 360 365 Ser Leu Ala Be Wing Lys Phe Pro Wing Asn Val Pro Gln Lys Val Asp 370 375 380 Arg Lys Phe Phe Phe Thr Val Gly Leu Gly Thr Ser Pro Cys Pro Lys 385 390 395 400 Asn Thr Thr Cys Gln Gly Pro Asn Gly Thr Lys Phe Ala Wing Ser Val 405 410 415 Asn Asn He Ser Phe Val Leu Pro Ser Val Ala Leu Leu Gln Ala His 420 425 430 Phe Phe Gly Gln Ser Asn Gly Val 435 440 < 210 > 291 < 211 > 326 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 291 Pro Ala Val Val Glu Gly Arg Val Arg Asn Tyr Thr Phe Asn Val Val 1 5 10 15 Met Lys Asn Thr Thr Arg Leu Cys Ser Ser Lys Pro He Val Thr Val 25 30 Asn Gly Met Phe Pro Gly Pro Thr Leu Tyr Wing Arg Glu Asp Asp Thr 35 40 45 96 Val Leu Val Arg Val Ser Asn Arg Val Lys Tyr Asn Val Thr He His 50 55 60 Trp His Gly He Arg Gln Leu Arg Thr Gly Trp Wing Asp Gly Pro Wing 65 70 75 80 Tyr He Thr Gln Cys Pro He Gln Pro Gly Gln Ser Tyr Val Tyr Asn 85 90 95 Phe Thr He Thr Gly Gln Arg Gly Thr Leu Leu Trp His Wing His He 100 105 110 Leu Trp Leu Arg Wing Thr Leu His Gly Wing He Val He Leu Pro Lys 115 120 125 Arg Gly Val Pro Tyr Pro Phe Pro Lys Pro His Lys Glu Val Val Val 130 135 140 Val Leu Gly Glu Trp Trp Lys Ser Asp Thr Glu Gly Val He Ser Gln 145 150 155 160 Ala He Lys Ser Gly Leu Ala Pro Asn Val Ser Asp Ala His Thr He 165 170 175 Asn Gly His Pro Gly Pro Be Ser Asn Cys Pro Ser Gln Gly Gly Phe 180 185 190 Thr Leu Pro Val Glu Ser Gly Lys Lys Tyr Met Leu Arg He He Asn 195 200 205 Ala Ala Leu Asn Glu Glu Leu Phe Phe Lys He Ala Gly His Gln Leu 210 215 220 Thr He Val Glu Val Asp Ala Thr Tyr Val Lys Pro Phe Lys Thr Asp 225 230 235 240 Thr He Val He Wing Pro Gly Gln Thr Thr Asn Wing Leu He Ser Thr 245 250 255 Asp Gln Be Ser Gly Lys Tyr Met Val Wing Wing Pro Pro Phe Met Asp 260 265 270 Ser Pro He Wing Val Asp Asn Met Thr Wing Thr Wing Thr Leu His Tyr 275 280 285 Ser Gly Thr Leu Wing Wing Thr Ser Thr Thr Leu Thr Lys Thr Pro Pro 290 295 300 Gln Asn Wing Thr Wing Val Wing Asn Asn Phe Val Asn Ser Leu Arg Ser 305 310 315 320 Leu Asn Ser Lys Arg Tyr 325 < 210 > 292 < 211 > 101 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 292 Arg Leu Cys Ser Ser Lys Pro He Val Thr Val Asn Gly Met Phe Pro 1 5 10 15 Gly Pro Thr Leu Tyr Wing Arg Glu Asp Asp Thr Val Leu Val Arg Val 25 30 Ser Asn Arg Val Lys Tyr Asn Val Thr He His Trp His Gly He Arg 40 45 Gln Leu Arg Ser Gly Trp Wing Asp Gly Pro Wing Tyr He Thr Gln Cys 50 55 60 Pro He Gln Pro Gly Gln Ser Tyr Val Tyr Asn Phe Thr He Thr Gly 65 70 75 80 Gln Arg Gly Thr Leu Leu Trp His Wing His He Leu Trp Leu Arg Wing 85 90 95 Thr Leu His Gly Ala 100 97 < 210 > 293 < 211 > 136 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 293 Thr Val Asp His Ser Leu Leu Phe Thr Val Gly Leu Gly He Asn Pro 1 5 10 15 Cys Pro Ser Cys Lys Wing Gly Asn Gly Ser Arg Val Val Wing Being Met 25 30 Asn Asn Val Thr Phe Val Met Pro Thr Thr Ala He Leu Gln Ala His 40 45 Phe Phe Asn Lys Ser Gly Val Phe Thr Ser Asp Phe Pro Gly Asn Pro 50 55 60 Pro Thr He Phe Asn Tyr Thr Gly Ser Pro Pro Ser Asn Leu Arg Thr 65 70 75 80 Thr Ser Gly Thr Lys Val Tyr Arg Leu Arg Tyr Asn Ser Thr Val Gln 85 90 95 Leu Val Phe Gln Asp Thr Gly He He Wing Pro Glu Asn His Pro He 100 105 110 His Leu His Gly Phe Asn Phe Phe Wing He Gly Lys Gly Leu Gly Asn 115 120 125 Tyr Asn Pro Lys Val Asp Gln Lys 130 135 < 210 > 294 < 211 > 104 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 294 His Lys Glu Val Val Val Leu Gly Glu Trp Trp Lys Ser Asp Thr 1 5 10 15 Glu Ala Val He Asn Gln Ala He Lys Ser Gly Leu Ala Pro Asn Val 25 30 Ser Asp Ala His Thr He Asn Gly His Pro Gly Pro Ser Ser Asn Cys 40 45 Pro Ser Gln Gly Gly Phe Thr Leu Pro Val Glu Ser Gly Lys Lys Tyr 50 55 60 Met Leu Arg He He Asn Ala Ala Leu Asn Glu Glu Leu Phe Phe Lys 65 70 75 80 He Wing Gly His Gln Leu Thr He Val Glu Val Asp Wing Thr Tyr Val 85 90 95 Lys Pro Phe Lys Thr Asn Thr Gly 100 < 210 > 295 < 211 > 110 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 295 Arg Gly Val Pro Tyr Pro Phe Pro Lys Pro His Lys Glu Val Val Val 1 5 10 15 Val Leu Gly Glu Trp Trp Lys Ser Asp Thr Glu Wing Val He Asn Gln 20 25 30 98 Wing He Lys Ser Gly Leu Wing Pro Asn Val Ser Asp Wing His Thr He 40 45 Asn Gly His Pro Gly Pro Ser Ser Asn Cys Pro Ser Gln Gly Gly Phe 50 55 60 Thr Leu Pro Val Glu Ser Gly Lys Lys Tyr Met Leu Arg He He Asn 65 70 7.5 80 Wing Ala Leu Asn Glu Glu Leu Phe Phe Lys He Wing Gly His Gln Leu 85 90 95 Thr He Val Glu Val Asp Ala Thr Tyr Val Lys Pro Phe Lys 100 105 110 < 210 > 296 < 211 > 384 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 296 Pro Asn Val Ser Asp Ala Tyr Thr He Asn Gly Gln Pro Gly Asp Leu 1 5 10 15 Tyr Asn Cys Ser Ser Lys Asp Thr Val He Val Pro He Asp Ser Gly 25 30 Glu Thr His Leu Leu Arg Val He Asn Ala Ala Leu Asn Gln Glu Leu 40 45 Phe Phe Thr Val Wing Asn His Arg Phe Thr Val Val Gly Wing Asp Ala 50 55 60 Ser Tyr Leu Lys Pro Phe Thr Thr Ser Val He Met Leu Gly Pro Gly 65 70 75 80 Gln Thr Thr Asp Val Leu He Ser Gly Asp Gln Pro Pro Wing Arg Tyr 85 90 95 Tyr Met Ala Ala Glu Pro Tyr Gln Ser Ala Gln Gly Ala Pro Phe Asp 100 105 110 Asn Thr Thr Thr Thr Ala He Leu Glu Tyr Lys Ser Wing Pro Cys Pro 115 120 125 Wing Lys Gly He Ser Ser Lys Pro Val Met Pro Thr Leu Pro Wing Phe 130 135 140 Asn Asp Thr Wing Thr Val Thr Wing Phe He Gln Ser Phe Arg Ser Pro 145 150 155 160 Asn Lys Val Asp Val Pro Thr Asp He Asp Glu Asn Leu Phe He Thr 165 170 175 Val Gly Leu Gly Leu Phe Asn Cys Pro Lys Asn Phe Gly Ser Ser Arg 180 185 190 Cys Gln Gly Pro Asn Gly Thr Arg Phe Thr Ala Ser Met Asn Asn Val 195 200 205 Ser Phe Val Leu Pro Ser Asn Val Ser He Leu Gln Ala Tyr Lys Gln 210 215 220 Gly Val Pro Gly Val Phe Thr Thr Asp Phe Pro Wing Asn Pro Pro Val 225 230 235 240 Gln Phe Asp Tyr Thr Gly Asn Val Ser Arg Ser Leu Trp Gln Pro Val 245 250 255 Pro Gly Thr Lys Val Tyr Lys Leu Lys Tyr Gly Ser Arg Val Gln He 260 265 270 Val Leu Gln Gly Thr Asn He Gln Thr Ala Glu Asn His Pro He His 275 280 285 He His Gly Tyr Asp Phe Tyr He Leu Wing Thr Gly Phe Gly Asn Phe 290 295 300 Asn Pro Gln Lys Asp Thr Ala Lys Phe Asn Leu Val Asp Pro Pro Met 305 310 315 320 99 Arg Asn Thr Val Gly Val Ser Val Asn Gly Trp Ala Val He Arg Phe 325 330 335 Val Ala Asp Asn Pro Gly Ala Trp Leu Met His Cys His Leu Asp Val 340 345 350 His He Thr Trp Gly Leu Wing Val Val Phe Leu Val Glu Asn Gly Val 355 360,. 365 Gly Glu Leu Gln Ser Leu Gln Pro Pro Pro Wing Asp Leu Pro Pro Cys 370 375 380 < 210 > 297 < 211 > 139 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 297 Ser Cys Leu Ser Leu His His His Leu Arg Gln Val Thr Ser Asp Phe 1 5 10 15 Glu Glu Asp Glu Glu Arg Lys Met Gly Ser Ala Thr Ala Ala Gly Ala 25 30 Ser Val Ser Ser Arg Met He Leu Met Arg Ala Ala Phe Phe Thr Leu 40 45 Cys Ala Leu Val Phe Leu Pro Ala Leu Ala Gln Ala Lys His Gly Gly 50 55 60 Val Thr Arg His Tyr Lys Phe Asp He Lys Met Gln Asn Val Thr Arg 65 70 75 80 Leu Cys Gln Thr Lys Ser He Val Thr Val Asn Gly Gln Leu Pro Gly 85 90 95 Pro Arg He He Wing Arg Glu Gly Asp Arg Leu Leu He Lys Val Val 100 105 110 Asn Asn Val Gln Tyr Asn Val Thr He His Trp His Gly Val Arg Gln 115 120 125 Leu Arg Ser Gly Trp Wing Asp Gly Pro Wing Tyr 130 135 < 210 > 298 < 211 > 155 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 298 Pro Asp Arg Val He Ser Thr Ser Ser He Leu Tyr Gln Gly Glu Arg 1 5 10 15 Gly Thr Met Gly Thr Phe Leu Gly Phe Wing Val Thr Wing Thr Leu Leu 20 25 30 Phe Cys Val Wing Gln Gly Glu Val Leu Phe Tyr Asp Phe Val Val Asn 40 45 Glu Thr Pro He Glu Met Leu Cys Glu Thr Asn Arg Ser Val Leu Thr 50 55 60 Val Asn Gly Leu Phe Pro Gly Pro Glu He His Wing His Lys Gly Asp 65 70 75 80 Thr He Tyr Val Asn Val Thr Asn Leu Gly Pro Tyr Gly Val Thr He 85 90 95 His Trp His Gly Val Arg Gln He Arg Tyr Pro Trp Ser Asp Gly Pro 100 105 110 Glu Tyr Val Thr Gln Cys Pro He Pro Thr Asn Ser Be Phe Leu Gln 115 120 125 Lys He Lys Leu Thr Glu Glu Glu Gly Thr Val Trp Trp His Ala His 100 130 135 140 Ser Asp Trp Ser Arg Ala Thr He His Gly Leu 145 150 155 < 210 > 299 < 211 > 179 < 212 > PRT < 213 > Eucalypt: us grandis < 400 > 299 Leu Leu Gln Val His Phe Ser Leu Val Glu Arg Glu Arg Glu Met Gly 1 5 10 15 Thr Phe Leu Gly Phe Val Val Thr Met Thr Leu Leu Phe Cys Met Wing 20 25 30 Gln Gly Glu Val He Tyr Tyr Asp Phe Val Val Lys Glu Thr Pro He 35 40 45 Gln Met Leu Cys Gly Thr Asn Gln Thr Val Leu Thr Val Asn Gly Leu 50 55 60 Phe Pro Gly Pro Glu He His Wing His Lys Gly Asp Thr He Tyr Val 65 70 75 80 Asn Val Thr Asn Thr Gly Pro Tyr Gly Val Thr He His Trp His Gly 85 90 95 Val Arg Gln He Arg Tyr Pro Trp Ser Asp Gly Pro Glu Tyr He Thr 100 105 110 Gln Cys Pro He Pro Thr Asn Ser Being Phe Leu Gln Lys He He Leu 115 120 125 Thr Glu Glu Glu Gly Thr Leu Trp Trp His Wing His Ser Asp Trp Thr 130 135 140 Arg Wing Thr He His Gly Pro He He He Leu Pro Val Asn Gly Thr 145 150 155 160 Asn Tyr Pro Tyr Lys Phe Asp Glu Gln His Thr He Val He Ser Glu 165 170 175 Trp Tyr Ala < 210 > 300 < 211 > 62 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 300 Glu Arg Glu Met Gly Thr Phe Leu Gly Phe Val Val Thr Met Thr Leu 1 5 10 15 Leu Phe Cys Met Wing Gln Gly Glu Val Leu Tyr Tyr Asp Phe Val Val 25 30 Lys Glu Thr Pro He Gln Met Leu Cys Gly Thr Asn Gln Thr Val Leu 40 45 Thr Val Asn Gly Leu Phe Pro Gly Pro Glu He His Wing His 50 55 60 < 210 > 301 < 211 > 190 < 212 > PRT < 213 > Pinus radiata < 400 > 301 Leu Ala Val Met Being Asn Glu Gln Leu Leu Glu Phe Wing Trp Gly Leu 101 1 5 10 15 Wing Being Being Asn Gln Being Phe Leu Trp Val Val Arg Being Asp He Val 25 30 His Gly Glu Be Wing He Leu Pro Lys Glu Phe He Glu Glu Thr Lys 40 45 Asp Arg Gly Met Leu Val Gly Trp Ala Pro Gln He Lys Val Leu Ser 50 55 60 His Pro Ser Val Gly Gly Phe Leu Thr His Ser Gly Trp Asn Ser Thr 65 70 75 80 Leu Glu Be He Be Wing Gly Val Pro Met Met Cys Trp Pro Phe Phe 85 90 95 Wing Glu Gln Glu Thr Asn Wing Lys Phe Val Cys Glu Glu Trp Gly He 100 105 110 Gly Met Gln Val Lys Lys Met Val Lys Arg Glu Glu Leu Ala He Leu 115 120 125 Val Arg Asn Ser He Lys Gly Glu Glu Gly Asp Glu Met Arg Lys Arg 130 '135 140 He Gly Lys Leu Lys Glu Thr Wing Lys Arg Wing Val Ser Glu Gly Gly 145 150 155 160 Ser Ser Lys Asn Asn Leu Asp Lys Leu Leu His His He Phe Leu Lys 165 170 175 Gly Met His Gln Met He Val Gln Asn Val Glu Ala Asn Asn 180 185 190 < 210 > 302 < 211 > 365 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 302 Pro Met Glu Ser Cys Ser Be Ser Leu Phe Trp Leu Gly Leu Leu Leu 1 5 10 15 Pro Ala Leu Leu Val Phe Leu Leu Asn Arg Arg Lys Arg Thr Lys Leu 25 30 Pro Pro Gln Pro Pro Wing Trp Pro Val He Gly Asn He Phe Asp Leu 40 45 Gly Thr Met Pro His Gln Asn Leu His Asn Leu Arg Ala Lys His Gly 50 55 60 Pro Val Leu Trp Leu Lys Leu Gly Ser Val Asn Thr Met Val He Gln 65 70 75 80 Be Ala Arg Ala Ala Met Glu Leu Phe Lys Gly His Asp Phe Val Phe 85 90 95 Wing Asp Arg Lys Cys Ser Gln Wing Phe Thr Wing Leu Gly Tyr Asp Gln 100 105 110 Gly Ser Leu Ala Leu Gly Arg His Gly Asp Tyr Trp Arg Ala Leu Arg 115 120 125 Arg Leu Cys Ser Wing Glu Leu Leu Val Asn Lys Arg Val Asn Asp Thr 130 135 140 Ala His Leu Arg Gln Lys Cys Val Asp Ser Met Met Met Tyr He Glu 145 150 155 160 Glu Glu Met Wing Val Lys Gln Wing Thr Lys Gly Gln Gly He Asp Leu 165 170 175 Ser His Phe Leu Phe Leu Leu Ala Phe Asn Val Val Gly Asn Met Val 180 185 190 Leu Ser Arg Asp Leu Leu Asp Pro Lys Ser Lys Asp Gly Pro Glu Phe 195 200 205 Tyr Asp Wing Met Asn Arg Phe Met Glu Trp Wing Gly Lys Pro Asn Val 102 210 215 220 Wing Asp Phe Met Pro Trp Leu Lys Trp Leu Asp Pro Gln Gly He Lys 225 230 235 240 Ala Gly Met Ala Lys Asp Met Gly Arg Ala Met Arg He Ala Glu Gly 245 250 255 Phe Val Lys Glu Arg Leu Glu Glu Arg Lys Leu Arg Gly Glu Met Arg 260 265 270 Thr Thr Asn Asp Phe Leu Asp Ala Val Leu Asp Tyr Glu Gly Asp Gly 275 280 285 Lys Glu Gly Pro His Asn He Be Ser Gln Asn He Asn He He He 290 295 300 Leu Glu Met Phe Phe Wing Gly Ser Glu Ser Thr Ser Ser Thr He Glu 305 310 315 320 Trp Wing Met Wing Glu Leu Leu Arg Gln Pro Glu Ser Met Lys Lys Wing 325 330 335 Lys Asp Glu He Asp Gln Val Val Gly Leu Asn Arg Lys Leu Glu Glu 340 345 350 Asn Asp Thr Glu Lys Met Pro Phe Leu Gln Ala Val Val 355 360 365 < 210 > 303 < 211 > 183 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 303 Pro Met Glu Ser Cys Ser Be Ser Leu Phe Trp Leu Gly Leu Leu Leu 1 5 10 15 Pro Ala Leu Leu Val Phe Leu Leu Asn Arg Arg Lys Arg Thr Lys Leu 25 30 Pro Pro Gln Pro Pro Wing Trp Pro Val He Gly Asn He Phe Asp Leu 40 45 Gly Thr Met Pro His Gln Asn Leu His A.sn Leu Arg Ala Lys His Gly 50 55 60 Pro Val Leu Trp Leu Lys Leu Gly Ser Val Asn Thr Met Val He Gln 65 70 75 80 Be Wing Gln Wing Wing Met Glu Leu Phe Lys Gly His Asp Phe Val Phe 85 90 95 Wing Asp Arg Lys Cys Ser Gln Wing Phe Thr Wing Leu Gly Tyr Asp Gln 100 105 110 Gly Ser Leu Ala Leu Gly Arg His Gly Asp Tyr Trp Arg Ala Leu Arg 115 120 125 Arg Leu Cys Ser Wing Glu Leu Leu Val Asn Lys Arg Val Asn Glu Thr 130 135 140 Ala His Leu Arg Gln Lys Cys Val Asp Ser Met Met Met Tyr He Glu 145 150 155 160 Glu Glu Met Wing Val Lys Gln Wing Thr Lys Gly Gln Gly He Asp Leu 165 170 175 Ser His Phe Leu Phe Leu Leu 180 < 210 > 304 < 211 > 148 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 304 103 Met Lys Ala Gln Asp Glu He Asp Ser Met He Gly His Asp Ser Leu 1 5 10 15 Leu Glu Glu Be Asp Val Ser Lys Leu Pro Tyr Leu Gln Cys He He 25 30 Leu Glu Thr Leu Arg Leu Asn Thr Thr Ala Pro Leu Leu Pro His 40 - 45 Wing Being Wing Asp Cys Thr He Gly Gly Tyr Phe Val Pro Arg Asp 50 55 60 Thr He Val Met Val Asn Wing Trp Wing He His Lys Asp Pro Gln Leu 65 70 75 80 Trp Glu Asp Pro Leu Ser Phe Lys Pro Glu Arg Phe Glu Gly Asn Gly 85 90 95 Ser Glu Lys Gln Gln Lys Leu Leu Leu Pro Phe Gly Leu Gly Arg Arg 100 105 110 Wing Cys Pro Gly Wing Pro Leu Wing His Arg Val Met Gly Trp Thr Leu 115 120 125 Gly Leu Leu He Gln Cys Phe Asp Trp Lys Arg Val Ser Glu Glu Glu 130 135 140 He Asp Met Thr 145 < 210 > 305 < 211 > 164 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 305 Tyr Leu Gly Asp Phe Leu Pro He Leu Lys Leu Val Asp Tyr Asn Gly 1 5 10 15 Val Lys Lys Arg Val Val Glu Leu Lys Glu Lys Phe Asp Wing Phe He 25 30 Gln Gly Leu He Asn Glu His Arg Arg Lys Lys Gly Asp Pro Glu Leu 40 45 Wing Asp Ser Met He Ser His Leu Leu His Leu Gln Glu Ser Gln Pro 50 55 60 Glu Asp Tyr Ser Asp Ser Met He Lys Gly Leu Val Leu Val Leu Leu 65 70 75 80 Val Ala Gly Thr Asp Thr Ser Ser Leu Thr Leu Glu Trp He Met Thr 85 90 95 Asn Leu Leu Asn Asn Pro Glu Lys Leu Glu Lys Wing Arg Asn Glu He 100 105 110 Asp Ser Val He Gly His Asp Arg Leu Val Glu Glu Ser Asp Val Ser 115 120 125 Asn Leu Pro Tyr Leu Gln Cys He He Leu Glu Thr Leu Arg Leu Asn 130 135 140 Thr Thr Val Pro Leu Leu Val Pro His Wing Being Ser Wing Asp Cys Thr 145 150 155 160 He Gly Gly Tyr < 210 > 306 < 211 > 163 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 306 Leu Ser Asp Ala He Pro Ala Leu Gly Trp Leu Asp Ser Gly Gly Tyr 104 1 5 10 15 Arg Arg Ser Met Asp Glu Thr Wing Lys Glu Leu Asp Val Leu Wing Gln 20 25 30 Gly Trp Leu Glu Glu His Arg Arg Lys Arg Leu Ser Cys Pro Lys Asp 35 40 45 Asp Arg Glu Gln Asp Phe Met Asp Trp Met He Asn Wing Leu Glu Gly 50 55 60 Arg Asn Phe Pro Asp Phe Asp Wing Asp Thr Val He Lys Wing Thr Cys 65 70 75 80 Leu Asn Met He He Wing Gly Thr Asp Thr Ser Thr Val Wing He Thr 85 90 95 Trp Ala Leu Ser Leu Leu Met Asn Asn Arg Arg Ala Leu Lys Lys Ala 100 105 110 Gln Gln Glu Leu Asp Thr His Val Gly Arg Ser Arg Pro Val Glu Glu 115 120 125 Ser Asp Val Lys Asn Leu Thr Tyr Leu Gln Ala He Val Lys Glu Wing 130 135 140 Leu Arg Leu Tyr Pro Pro Val Pro Val Asn Gly Leu Arg Ser Ser Met 145 150 155 160 Glu Glu Cys < 210 > 307 < 211 > 129 < 212 > PRT < 213 > Pinus radiata < 400 > 307 Arg Leu Pro Pro Gly Pro Pro Gly Trp Pro He Val Gly Asn Leu Phe 1 5 10 15 Gln Leu Gly Asn Lys Pro His Glu Ala Leu Phe His Leu Ala Gln Lys 25 30 Tyr Gly Pro Leu Met Cys Val Ser Leu Gly Met Lys Thr Thr Val Val 40 '45 Val Ser Ser Pro Ala Ala Ala Ala Lys Gln Val Leu Lys Thr His Asp His 50 55 60 Val Phe Wing Gly Arg Thr Val He Gln Ser Val Gln Cys Leu Ser Tyr 65 70 75 80 Asp Lys Ser Ser Val He Trp Wing Gln Tyr Gly Ser His Trp Arg Leu 85 90 95 Leu Arg Arg He Ser Asn Thr Lys Leu Phe Ser Val Lys Arg Leu Glu 100 105 110 Ala Leu Glu His Leu Arg Arg Asp Glu Val Phe Arg Thr He Lys Gln 115 120 125 He < 210 > 308 < 211 > 166 < 212 > PRT < 213 > Pinus radiata < 400 > 308 Leu Val Tyr Leu Gln Wing Wing Val Lys Glu Thr Leu Arg Leu His Pro 1 5 10 15 Ser Gly Pro Leu Leu Val Arg His Leu Phe Gly Thr Ala Ser Cys Asn 20 25 30 105 Val Leu Gly Tyr Glu He Pro Gln Asn Thr Leu Val Leu Val Asn Val 40 45 Trp Wing He Gly Arg Asn Pro Lys Ser Trp Glu Asp Wing Glu Val Phe 50 55 60 Lys Pro Glu Arg Phe Met Glu Lys Val Gly Ser Glu Val Asp Ala Asn 65 70 75 80 Gly Asp Gln Asn Phe Gly Cys Leu Leu Phe Gly Wing Gly Arg Arg Arg 85 90 95 Cys Pro Gly Gln Gln Leu Gly Thr Leu Leu Val Glu Phe Gly Leu Ala 100 105 110 Gln Leu Leu His Cys Phe Asn Trp Arg Leu Pro Leu Asp Asp He Asn 115 120 125 Gly Glu Asn Gln Glu Val Asp Met Asn Glu Met Phe Asn Gly Val Thr 130 135 140 Leu Arg Lys Ala Arg Glu Leu Ser Ala He Pro Thr Pro Arg Leu Glu 145 150 155 160 Cys He Ala His Leu Lys 165 < 210 > 309 < 211 > 123 < 212 > PRT < 213 > Pinus radiata < 400 > 309 Ser Cys Trp Arg Cys Val Wing Glu Pro Asn His Wing Trp Ser Asn Leu 1 5 10 15 Be Arg Lys Arg Lys Gly Arg Leu Pro Pro Gly Pro Phe Ser Leu Pro 25 30 He He Gly Asn Leu His Met Leu Gly Lys He Pro His Arg Ser Leu 40 45 Ala Glu Leu Ser Met Lys Tyr Gly Pro Leu Leu Ser Leu Arg Leu Gly 50 55 60 Ser Thr Pro Ala Leu Val Val Ser Ser Pro Glu He Ala Ser Glu Phe 65 70 75 80 Leu Lys Thr His Asp Gln Leu Phe Wing Ser Arg He Pro Ser Wing Wing 85 90 95 He Lys Val Leu Thr Tyr Asn Leu Ser Gly Leu He Phe Ser Pro Tyr 100 105 110 Gly Pro Cys Trp Arg Gln Val Arg Lys Leu Cys 115 120 < 210 > 310 < 211 > 114 < 212 > PRT < 213 > Pinus radiata < 400 > 310 Tyr Ser Glu Pro Ser Lys Lys Leu Wing Met Glu Phe Val Glu Phe Cys 1 5 10 15 He Thr Leu Val Thr Ala Leu Leu Phe Val Val Leu Val Ala Ala Trp 25 30 Being Asn Leu Phe Arg Lys Arg Lys Gly Arg Leu Pro Pro Gly Pro Phe 40 45 Ser Leu Pro He He Gly Asn Leu His Met Leu Gly Lys He Pro His 50 55 60 Arg Ser Leu Ala Glu Leu Ser Met Lys Tyr Gly Pro Leu Leu Ser Leu 106 65 70 75 80 Arg Leu Gly Ser Thr Pro Ala Leu Val Val Ser Ser Pro Glu He Ala 85 90 95 Ser Glu Phe Leu Lys Thr His Asp Gln Leu Phe Wing Ser Arg He Pro 100 105 110 Ser Ala < 210 > 311 < 211 > 154 < 212 > PRT < 213 > Pinus radiata < 400 > 311 Glu Leu Leu Be Ala Cys Pro Val His Glu Cys Pro Tyr Phe Tyr Phe 1 5 10 15 Asn Leu Ala Thr Val He Leu Leu Gly Val Val Thr Gly Trp Gly Phe 25 30 Leu Phe Arg Gly Arg Lys Gln Lys Leu Pro Pro Gly Pro Phe Gln Trp 40 45 Pro He Val Gly Asn Leu His Met Met Gly Glu Leu Pro His Gln Ala 50 55 60 He Thr Ala Leu Ser Met Lys Tyr Gly Pro Leu Met Ser Leu Arg Leu 65 70 75 80 Gly Ser Tyr Leu Thr Leu Val Val Ser Ser Pro Asp Val Ala Glu Glu 85 90 95 Phe Leu Lys Thr His Asp Leu Wing Phe Wing Being Arg Pro Pro Thr He 100 105 110 Gly Thr Lys Tyr Phe Trp Tyr Asn Ser Ser Asp Val Wing Phe Ser Pro 115 120 125 Tyr Gly Pro Tyr Trp Arg Gln Met Arg Lys He Cys Val Leu Gln Leu 130 135 140 Leu Ser Ser Arg Arg He Asp Ser Phe Arg 145 150 < 210 > 312 < 211 > 116 < 212 > PRT < 213 > Pinus radiata < 400 > 312 Cys Asp Gln Asp Leu He Gly Gly He Gly He Lys Ser Met He Lys 1 5 10 15 Glu Thr Phe Val Leu Wing Gly Ser Leu Asn Met Gly Asp Phe He Pro 25 30 Tyr Leu Wing Trp He Asp Leu Gln Gly Leu Asn Arg Arg Leu Lys Asn 40 45 He His Lys He Gln Asp Asp Leu Leu Gly Lys He Leu Glu Glu His 50 55 60 Wing Ser Pro Pro Gln Asn Asn Pro Asn Tyr Met Pro Asp Leu Val Asp 65 70 75 80 Val Leu Leu Wing Wing Wing Asp Glu Asp Leu Glu Phe Glu He Thr 85 90 95 Arg Asp Asn He Lys Ser Val He Tyr Val Tyr He Val His Wing He 100 105 110 He Arg Phe Gln 115 107 < 210 > 313 < 211 > 180 < 212 > PRT < 213 > Pinus radiata < 400 > 313 Wing Pro Asp Glu Leu Glu Arg Val Val Gly Leu Gly Arg Met Val Arg 1 5 10 15 Glu Ser Asp Leu Pro Arg Leu Val Tyr Leu Gln Ala Val Val Lys Glu 25 30 Thr Leu Arg Leu Tyr Pro Gln Gly Pro He Leu Phe Arg His Leu Ser 40 45 Ser Glu Pro Cys Asn Val Leu Gly Tyr Glu He Ser Gln Asn Thr Gln 50 55 60 Val Leu Val Asn He Trp Wing He Gly Arg Asn Ser Glu Ser Trp Glu 65 70 75 80 Asp Ala Gly Ser Phe Lys Pro Glu Arg Phe Met Glu Arg Val Gly Ser 85 90 95 Glu Val Asp Thr Asn Gly Asp Gln Asn Ser Wing Trp Leu Pro Phe Gly 100 105 110 Wing Gly Arg Arg Arg Cys Pro Gly Gln Gln Leu Gly Thr Leu Val Wing 115 120 125 Glu He Gly Leu Wing Gln Leu Leu His Cys Phe Lys Trp Arg Leu Pro 130 135 140 Glu Wing Asp Met Asp Gly Pro Asn Gln Glu Leu Asp Met Met Glu Arg 145 150 155 160 Phe Asn Gly He Thr Ser Pro Arg Wing Lys Glu Leu Phe Wing He Pro 165 170 175 Thr Pro Arg Leu 180 < 210 > 314 < 211 > 127 < 212 > PRT < 213 > Pinus radiata < 400 > 314 Gly He Leu Phe Asp Met Leu Leu Gly Gly Be Asp Thr Ala Pro Thr 1 5 10 15 He He Glu Trp Wing He Ser Glu Ala Leu He Asn Pro Pro Val Met 25 30 Lys Lys Leu Gln Asp Glu Leu Glu Arg Val Val Gly Leu Asp Arg Met 40 45 Ala Cys Glu Ser Asp Leu Pro Gln Leu Val Tyr Leu Gln Ala Met Val 50 55 60 Lys Glu Thr Leu Arg Leu His Pro Wing Gly Pro Leu Leu Asn Arg Arg 65 70 75 80 Leu Ser Ala Glu Ser Cys Asn Val Leu Gly Tyr Glu Phe Pro Lys Asn 85 90 95 Thr Arg Val Leu Val Asn Wing Trp Wing He Gly Arg Asn Pro Lys Leu 100 105 110 Trp Glu Asp Ala Glu Thr Phe Lys Pro Glu Arg Phe Thr Gly Arg 115 120 125 < 210 > 315 < 211 > 127 108 < 212 > PRT < 213 > Pinus radiata < 400 > 315 Thr Ser Ala Thr Val Glu Trp Ala Met Ala Glu Leu He Arg Lys Pro 1 5 10 15 Thr Leu Leu Lys Lys Wing Gln Wing Glu Leu Asp Glu Val Val Gly Arg 25 30 Glu Lys Arg Met Glu Glu Ser Asp He Wing Lys Leu Pro Tyr Leu Gln 40 45 Ala Val Val Lys Glu Val Leu Arg Leu His Pro Ala Ala Pro Leu He 50 55 60 He Pro Arg Arg Wing Asp Asn Ser Wing Glu He Gly Gly Tyr Val Val 65 70 75 80 Pro Glu Asn Thr Gln Val Phe Val Asn He Trp Gly He Gly Arg Asp 85 90 95 Pro Asn Val Trp Lys Glu Pro Leu Lys Phe Lys Pro Glu Arg Phe Leu 100 105 110 Asp Cys Asn Thr Asp Tyr Arg Gly Gln Asp Phe Glu Leu He Pro 115 120 125 < 210 > 316 < 211 > 134 < 212 > PRT < 213 > Pinus radiata < 400 > 316 Glu Asp Glu Val Ser Wing Met He Arg Ser He Val Asn Ser Asp Ala 1 5 10 15 His Lys Asp Ser Arg Pro Val Asn He Lys Gln Leu Wing Ser Ser Leu 25 30 Val Thr Ala He Val Leu Arg Met Thr Phe Gly Lys Lys Tyr Ser Asp 40 45 Arg Asp Ser Gly Wing Phe Ser Ser Met He Lys Glu Ser Leu Leu Leu 50 55 60 Leu Gly Ser Phe Asn He Gly Glu Tyr He Pro Tyr Leu Asn Trp Met 65 70 75 80 Asp Leu Gln Gly Leu Asn Arg Arg Leu Lys Lys Leu Arg Thr Thr Gln 85 90 95 Asp Gln Leu Leu Glu Lys Val He Glu Glu His Ala Wing Gln Asn Arg 100 105 110 Ser Asn Met Thr His Asp Leu Val Asp Wing Leu Leu Wing Wing Being Wing 115 120 125 Asp Lys Asp Arg Glu Leu 130 < 210 > 317 < 211 > 115 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 317 He Tyr Asp Gln Glu Ser Leu Leu Asn Ala He Lys Gln Val Asp Val 1 5 10 15 Val He Ser Wing Val Gly Gln Wing Gln Thr Glu Asp Gln Asp Arg He 25 30 Val Ala Ala He Lys Ala Ala Gly Asn He Lys Arg Phe Leu Pro Ser 109 35 40 45 Glu Phe Gly Asn Asp Val Asp Arg Val His Wing Val Glu Pro Val Lys 50 55 60 Thr Gly Phe Ala Leu Lys Ala Lys He Arg Arg Leu Val Glu Ala Glu 65 70 75 80 Gly He Pro Tyr Thr Tyr Val Being Ser Asn S, er Phe Wing Gly Tyr Tyr 85 90 95 Leu Gln Thr Leu Ser Gln Pro Gly Wing Thr Wing Pro Pro Arg Asp Asn 100 105 110 Val Val He 115 < 210 > 318 < 211 > 161 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 318 Arg Phe Gly Val Ser Met Val Leu Leu Pro Thr Leu Ser Pro Val Thr 1 5 10 15 Wing Glu Being Leu Leu Glu Thr Asp Arg Val Arg Arg Lys Thr Pro Arg 25 30 Leu Arg Arg Glu Asn His Ser Glu Met Ala Ala Lys Ser Lys Val Leu 40 45 Val He Gly Gly Thr Gly Tyr He Gly Lys Phe He Val Glu Wing 50 55 60 Wing Lys Ser Gly Arg Pro Thr Phe Wing Leu Wing Arg Glu Ser Thr Leu 65 70 75 80 Being Asn Pro Ala Lys Ala Lys He Val Glu Gly Phe Lys Ser Leu Gly 85 90 95 Val Thr Leu Val His Gly Asp He Tyr Asp Gln Glu Ser Leu Leu Asn 100 105 110 Wing He Lys Gln Val Asp Vai Val He Ser Wing Val Giy Arg Ala Gin 115 120 125 He Glu Asp Gln Asp Arg He Val Wing Wing He Lys Wing Wing Gly Asn 130 135 140 He Lys Arg Phe Val Pro Ser Glu Phe Gly Asn Asn Val Asp Arg Val 145 150 155 160 His < 210 > 319 < 211 > 141 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 319 Arg Phe Leu Pro Ser Glu Phe Gly Asn Asp Val Asp Arg Val His Wing 1 5 10 15 Val Glu Pro Val Lys Thr Gly Phe Ala Leu Lys Ala Lys He Arg Arg 25 30 Leu Val Glu Ala Glu Gly He Pro Tyr Thr Tyr Val Ser Ser Asn Ser 40 45 Phe Ala Gly Tyr Tyr Leu Gln Thr Leu Ser Gln Pro Gly Ala Thr Ala 50 55 60 Pro Pro Arg Asp Asn Val Val He Leu Gly Asp Gly Asn Ala Lys Val 65 70 75 80 Val Phe Asn Lys Glu Asp Asp He Gly Thr Tyr Thr He Lys Wing Val 85 90 95 Asp Asp Pro Arg Thr Leu Asn Lys He Leu Tyr He Arg Pro Pro Wing 100 105 110 Asn Thr Tyr Ser Met Asn Glu Leu Val Ser Leu Trp Glu Arg Lys He 115 120,. 125 Gly Lys Ala Leu Glu Arg Val Tyr Val Pro Glu Glu Gln 130 135 140 < 210 > 320 < 211 > 102 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 320 Lys Pro He Glu Phe Wing Gly Lys His Arg Wing Ser Wing Val Lys Thr 1 5 10 15 Thr Ser Glu Met Wing Wing Lys Ser Lys Val Leu Val He Gly Gly Thr 25 30 Gly Tyr He Gly Lys Phe He Val Glu Wing Ser Ala Lys Ser Gly Arg 40 45 Pro Thr Phe Val Leu Wing Arg Glu Ser Thr Leu Ser Asn Pro Wing Lys 50 55 60 Wing Lys He Val Gln Gly Phe Lys Ser Leu Gly Val Thr Leu Val His 65 '70 75 80 Gly Asp He Tyr Asp Gln Glu Ser Leu Leu Asn Ala He Lys Gln Val 85 90 95 Asp Val Val He Be 100 Wing < 210 > 321 < 211 > 125 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 321 Gln Ser His Val Arg Asp Arg Ser Ser Pro Glu Asn Thr Thr Arg 1 5 10 15 Wing Met Lys Arg Pro Ser Lys Met Wing Glu Met Ser Arg Val Leu Val 25 30 He Gly Gly Wing Gly Tyr He Gly Lys Phe He Val Lys Wing Cys Wing 40 45 Lys Ser Gly His Pro Thr Phe Val Leu Glu Thr Glu Ser Thr Leu Ser 50 55 60 Asn Pro Wing Asn Wing Glu He He Lys Gly Phe Lys Ser Leu Gly Val 65 70 75 80 Asn Leu Val His Gly Asp He Tyr Asp Gln Lys Ser Leu Leu Ser Wing 85 90 95 He Lys Gln Val Asp Val Val He Ser Thr Val Gly Gln Ala Gln Leu 100 105 110 Glu Asp Gln Asp Arg He Val Wing Wing He Lys Wing Wing 115 120 125 < 210 > 322 < 211 > 98 < 212 > PRT < 213 > Eucalyptus grandis eleven! < 400 > 322 Being Ser Pro Glu Asn Thr Thr Pro Wing Val Lys Arg Pro Ser Lys 1 5 10 15 Met Ala Glu Met Ser Arg Val Leu Val He Gly Gly Ala Gly Tyr He 25,. 30 Gly Lys Phe He Val Lys Ala Cys Ala Lys Ser Gly His Pro Thr Phe 40 45 Val Leu Glu Thr Glu Be Thr Leu Ser Asn Pro Wing Asn Wing Glu He 50 55 60 He Lys Gly Phe Lys Ser Leu Gly Val Asn Leu Val His Gly Asp He 65 70 75 80 Tyr Asp Gln Lys Ser Leu Leu Ser Wing He Lys Gln Val Asp Val Val 85 90 95 I have to be < 210 > 323 < 211 > 319 < 212 > PRT < 213 > Pinus radiat; a < 400 > 323 Lys Asp Pro Leu Wing Gln Leu Thr Thr Phe Ser Cys He Cys Ser Val 1 5 10 15 Arg His Asp Arg Gly Lys Thr Met Wing Cys Wing Thr Asp Val Wing Arg 20 25 30 Gln Phe Leu Pro Cys Val Gln Pro Pro Val Ser Ser Met Gly Gly Glu 40 45 Thr Ala Arg Ser He Asn Leu Thr Cys Asn Gly Leu Ser Pro Pro Gln 50 55 60 Pro Gln Tyr Asn Wing Glu Asn Asn His Asp Gln Asp Thr Thr Val Wing 65 70 75 80 Thr Arg Val Leu He He Gly Wing Thr Gly Phe He Gly Arg Phe Val 85 90 95 Ala Glu Ala Ser Val Lys Ser Gly Arg Pro Thr Tyr Ala Leu Val Arg 100 105 110 Pro Thr Thr Leu Ser Ser Lys Pro Lys Val He Gln Ser Leu Val Asp 115 120 125 Ser Gly He Gln Val Val Tyr Gly Cys Leu His Asp His Asn Ser Leu 130 135 140 Val Lys Ala He Arg Gln Val Asp Val Val He Ser Thr Val Gly Gly 145 150 155 160 Ala Leu He Leu Asp Gln Leu Lys He Val Asp Ala He Lys Glu Val 165 170 175 Gly Thr Val Lys Arg Phe Leu Pro Ser Glu Phe Gly His Asp Val Asp 180 185 190 Arg Ala Asp Pro Val Glu Pro Ala Leu Ser Phe Tyr He Glu Lys Arg 195 200 205 Lys Val Arg Arg Ala Val Glu Glu Ala Lys He Pro Tyr Thr Tyr He 210 215 220 Cys Cys Asn Ser He Wing Gly Trp Pro Tyr Tyr Tyr His Thr His Pro 225 230 235 240 Thr Glu Leu Pro Pro Pro Lys Glu Gln Phe Glu He Tyr Gly Asp Gly 245 250 255 Ser Val Lys Wing Phe Phe Val Thr Gly Asp Asp He Gly Wing Tyr Thr 260 265 270 112 Met Lys Ala Val Asp Asp Pro Arg Thr Leu Asn Lys Ser He His Phe 275 280 285 Arg Pro Pro Lys Asn Phe Leu Asn Leu Asn Glu Leu Wing Asp He Trp 290 295 300 Glu Asn Lys He Asn Arg Thr Leu Pro Arg Val Ser Val Ser Wing 305 310 315 < 210 > 324 < 211 > 126 < 212 > PRT < 213 > Pinus radiata < 400 > 324 Leu Asn Ser Leu Ala Asp He Leu Leu He Gln Ser Gly Lys Met Thr 1 5 10 15 Gly Leu Lys Asp Being Wing Asn Arg Val Leu He He Gly Gly Thr Gly 25 30 Tyr He Gly Lys Tyr Met Wing Lys Wing Ser Val Val Gln Gly Tyr Pro 40 45 Thr Tyr Val Leu Val Arg Pro Ala Thr Ala Ala Ala Pro Asp Ser Phe 50 55 60 Lys Ala Lys Leu Leu Gln Gln Phe Lys Asp He Gly He His He Leu 65 70 75 80 Glu Gly Ser Leu Asp Asp His Asn Ser Leu Val Asp Ala He Lys Gln 85 90 95 Val Asp He Val He Ser Wing Val Wing He Pro Gln His Leu Asp Gln 100 105 110 Phe Asn He He Asn Wing He Lys Asp Val Gly Met Glu He 115 120 125 < 210 > 325 < 211 > 164 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 325 Asn Gly Glu Leu His Pro Ser His Tyr Cys Glu Arg Asp Leu Leu Lys 1 5 10 15 Val Val Asp Arg Glu His Val Phe Thr Tyr Wing Asp Asp Wing Cys Ser 25 30 Wing Thr Tyr Pro Leu Met Gln Lys Leu Arg Gln Val Leu Val Asp Gln 40 45 Ala Leu Val Asn Gly Glu Ser Glu Leu Asn Pro Ser Thr Ser He Phe 50 55 60 Gln Lys He Val Wing Phe Glu Glu Glu Leu Lys Wing Gln Leu Pro Lys 65 70 75 80 Asp Val Glu Gly Val Arg Val Gln Tyr Glu Thr Gly Asn Leu Ala He 85 90 95 Pro Asn Gln He Lys Glu Cys Arg Ser Tyr Pro Leu Tyr Lys Leu Val 100 105 110 Arg Glu Glu Leu Gly Thr Ala Leu Leu Thr Gly Glu Gly Val He Ser 115 120 125 Pro Gly Glu Asp Phe Asp Lys Val Phe Thr Ala He Cys Ala Gly Lys 130 135 140 Leu He Asp Pro Leu Leu Glu Cys Leu Ser Gly Trp Asn Gly Pro Wing 145 150 155 160 Leu Pro Be Ser 13 < 210 > 326 < 211 > 114 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 326 Leu Val Asp Gln Ala Leu Val Asn Gly Glu Ser Glu Leu Asn Pro Ser 1 5 10 15 Thr Ser He Phe Gln Lys He Val Wing Phe Glu Glu Glu Leu Lys Wing 25 30 Gln Leu Pro Lys Asp Val Glu Gly Val Arg Val Gln Tyr Glu Thr Gly 40 45 Asn Leu Ala He Pro Asn Gln He Lys Glu Cys Arg Ser Tyr Pro Leu 50 55 60 Tyr Lys Leu Val Arg Glu Glu Leu Gly Thr Ala Leu Leu Thr Gly Glu 65 70 75 80 Gly Val He Ser Pro Gly Glu Asp Phe Asp Lys Val Phe Thr Ala He 85 90 95 Cys Ala Gly Lys Leu He Asp Pro Leu Leu Glu Cys Leu Ser Gly Trp 100 105 110 Asn Gly < 210 > 327 < 211 > 226 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 327 Pro Ser Leu Asp Tyr Gly Phe Lys Gly Wing Glu He Wing Met Wing Being 1 5 10 15 Tyr Cys Ser Glu Leu Gln Phe Leu Wing Asn Pro Val Thr Asn His Val 25 30 Gln Ser Ala Glu Gln His Asn Gln Asp Val Asn Ser Leu Gly Leu He 40 45 Ser Ser Arg Lys Thr Ala Glu Ala He Asp Val Leu Lys Leu Met Ser 50 55 60 Ser Thr Phe Leu Val Wing Leu Cys Gln Wing He Asp Leu Arg His Leu 65 70 75 80 Glu Glu Asn Leu Lys Ser Val Val Lys Asn Thr Val Asn Gln Val Wing 85 90 95 Lys Lys Val Leu Tyr Val Gly Ser Asn Gly Glu Leu His Pro Ser Arg 100 105 110 Phe Ser Glu Lys Asp Leu He Lys Val Val Asp Arg Glu Tyr Val Phe 115 120 125 Wing Tyr He Asp Asp Pro Cys Ser Wing Thr Tyr Pro Leu Met Gln Lys 130 135 140 Leu Arg Gln Val Leu Val Asp Asp Ala Leu Asp Asp Val Asp Arg Glu 145 150 155 160 Lys Asn Pro Ser Thr Ser He Phe Gln Lys He Gly Wing Phe Glu Glu 165 170 175 Glu Leu Lys Ala Leu Leu Pro Lys Glu Val Glu Asn Ala Arg Ala Gln 180 185 190 Phe Glu Ser Gly Asn Ser Wing He Wing Asn Lys He Arg Gly Cys Arg 195 200 205 114 Ser Tyr Pro Leu Tyr Arg Phe Val Arg Glu Glu Leu Gly Thr Gly Leu 210 215 220 Leu Thr 225 < 210 > 328 < 211 > 424 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 328 Met Glu Met Glu Ser Thr Thr Gly Thr Gly Asn Gly Leu His Ser Leu 1 5 10 15 Cys Ala Ala Gly Ser His His Ala Asp Pro Leu Asn Trp Gly Ala Ala 25 30 Ala Ala Ala Leu Thr Gly Ser His Leu Asp Glu Val Lys Arg Met Val 40 45 Glu Glu Tyr Arg Arg Pro Wing Val Arg Leu Gly Gly Glu Ser Leu Thr 50 55 60 He Wing Gln Val Wing Wing Val Wing Being Gln Glu Gly Val Gly Val Glu 65 70 75 80 Leu Ser Glu Ala Ala Arg Pro Arg Val Lys Ala Ser Ser Asp Trp Val 85 90 95 Met Glu Ser Met Asn Lys Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly 100 105 110 Phe Gly Ala Thr Ser His Arg Arg Thr Lys Gln Gly Gly Ala Leu Gln 115 120 125 Lys Glu Leu He Arg Phe Leu Asn Wing Gly He Phe Gly Asn Gly Thr 130 135 140 Glu Ser Cys His Thr Leu Pro Gln Ser Ser Thr Arg Wing Ala Met Leu 145 150 155 160 Val Arg Val Asn Thr Leu Leu Gln Gly Tyr Ser Gly He Arg Phe Glu 165 170 175 He Leu Glu Ala He Thr Lys Phe Leu Asn His Asn He Thr Pro Cys 180 185 190 Leu Pro Leu Arg Gly Thr He Thr Wing Ser Gly Asp Leu Val Pro Leu 195 200 205 Ser Tyr He Wing Gly Leu Leu Thr Gly Arg Pro Asn Ser Lys Wing Val 210 215 220 Gly Pro Asp Gly Lys Ser Leu Asp Wing Val Glu Wing Phe Arg Leu Wing 225 230 235 240 Gly He Asp Thr Gly Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Wing 245 250 255 Leu Val Asn Gly Thr Wing Val Gly Ser Gly Leu Wing Ser He Val Leu 260 265 270 Phe Glu Wing Asn He Leu Wing Val Leu Ser Glu Val Leu Ser Wing He 275 280 285 Phe Ala Glu Val Met Gln Gly Lys Pro Glu Phe Thr Asp His Leu Thr 290 295 300 His Lys Leu Lys His His Pro Gly Gln He Glu Ser Ala Ala He Met 305 310 315 320 Glu His He Leu Asp Gly Ser Ala Tyr Val Lys Ala Ala Lys Lys Leu 325 330 335 His Glu Met Asp Pro Leu Gln Lys Pro Lys Gln Asp Arg Tyr Ala Leu 340 345 350 Arg Thr Ser Pro Gln Trp Leu Gly Pro Gln He Glu Val He Arg Ala 355 360 365 115 Wing Thr Lys Met He Glu Arg Glu He Asn Ser Val Asn Asp Asn Pro 370 375 380 Leu He Asp Val Ala Arg Asn Lys Ala Leu His Gly Gly Asn Phe Gln 385 390 395 400 Gly Thr Pro He Gly Val Ser Met Asp Asn Thr Arg Leu Ala Val Wing 405 410 .. 415 Be He Gly Lys Leu Met Phe Wing 420 < 210 > 329 < 211 > 97 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 329 Asn Be Gly He Thr Pro Cys Leu Pro Leu Arg Gly Be He Be Wing 1 5 10 15 Ser Gly Asp Leu Val Pro Phe Ser Tyr He Wing Gly Leu Leu Thr Gly 25 30 Arg Pro Asn Ser Lys Wing Val Gly Pro Wing Gly Glu Thr Leu Thr Wing 40 45 Lys Gln Wing Phe Glu Leu Wing Gly He Ser Gly Gly Phe Phe Glu Leu 50 55 60 Gln Pro Lys Glu Gly Leu Ala Leu Val Asn Gly Thr Gly Val Gly Ser 65 70 75 80 Ala Leu Ala Ala He Val Leu Phe Glu Ala Asn Met Leu Thr Val Leu 85 90 95 Be < 210 > 330 < 211 > 412 < 212 > PRT < 213 > Pinus radiata < 400 > 330 Val Tyr Arg Ser He Asn Ser Gln Ala Glu Ala Pro Ser Trp Pro Asn 1 5 10 15 Gly Ser Cys Ser Asp His Gly Val Cys Leu Gly Arg Glu Ser Tyr Met 25 30 Lys His Ala Ala Lys Leu His Glu Met Asn Pro Leu Gln Lys Pro Lys 40 45 Gln Asp Arg Tyr Ala Leu Arg Thr Ser Pro Gln Trp Leu Gly Pro Gln 50 55 60 Val Glu He He Arg Ser Ala Thr His Met He Glu Arg Glu He Asn 65 70 75 80 Ser Val Asn Asp Asn Pro Val He Asp Val Ala Arg Asp Lys Ala Leu 85 90 95 His Gly Gly Asn Phe Gln Gly Thr Pro He Gly Val Ser Met Asp Asn 100 105 110 Leu Arg Leu Be He Be Wing He Gly Lys Leu Met Phe Wing Gln Phe 115 120 125 Ser Glu Leu Val Asn Asp Tyr Tyr Asn Gly Gly Leu Pro Ser Asn Leu 130 135 140 Ser Gly Gly Pro Asn Pro Ser Leu Asp Tyr Gly Leu Lys Gly Ala Glu 145 150 155 160 He Ala Ala Met Ser Tyr Thr Ser Glu Leu Leu Tyr Leu Ala Asn Pro 16 165 170 175 Val Thr Ser His Val Gln Ser Ala Glu Gln His Asn Gln Asp Val Asn 180 185 190 Ser Leu Gly Leu Val Ser Ala Arg Lys Ser Ala Glu Ala He Asp He 195 200 205 Leu Lys Leu Met Leu Ser Thr Tyr Leu Thr Ala Leu Cys Gln Ala Val 210 215 220 Asp Leu Arg His Leu Glu Glu Asn Met Leu Ala Thr Val Lys Gln He 225 230 235 240 Val Ser Gln Val Ala Lys Lys Thr Leu Ser Thr Gly Leu Asn Gly Glu 245 250 255 Leu Leu Pro Gly Arg Phe Cys Glu Lys Asp Leu Leu Gln Val Val Asp 260 265 270 Asn Glu His Val Phe Ser Tyr He Asp Asp Pro Cys Asn Wing Ser Tyr 275 280 285 Pro Leu Thr Gln Lys Leu Arg Asn He Leu Val Glu His Wing Phe Lys 290 295 300 Asn Wing Glu Gly Glu Lys Asp Pro Asn Thr Ser He Phe Asn Lys He 305 310 315 320 Pro Val Phe Glu Ala Glu Leu Lys Ala Gln Leu Glu Pro Gln Val Ser 325 330 335 Leu Ala Arg Glu Ser Tyr Asp Lys Gly Thr Ser Pro Leu Pro Asn Arg 340 345 350 He Gln Glu Cys Arg Ser Tyr Pro Leu Tyr Glu Phe Val Arg Asn Gln 355 360 365 Leu Gly Thr Leu Gln Wing Trp Leu Phe His He Asn He Val Met Arg 370 375 380 Cys Leu He He Tyr Cys Ser Leu Phe Phe Pro Glu Leu Wing Thr Wing 385 390 395 400 Phe Asp Ser Val His Tyr Ala Arg Thr Lys Pro Leu 405 410 < 210 > 331 < 211 > 132 < 212 > PRT < 213 > Pinus radiata < 400 > 331 Gly Being Ser Cys Arg Being Leu He Arg Glu Leu Phe Val Cys Leu He 1 5 10 15 He Val His Met Ala Pro Gln Glu Phe Thr Gly Glu Val Lys Phe Cys 25 30 Wing Gly Asn Gly Gly Thr Wing Ser Leu Asn Asp Pro Leu Asn Trp Wing 40 45 Ala Ala Ala Glu Ser Met Lys Gly Ser His Phe Glu Glu Val Lys Arg 50 55 60 Met Trp Glu Glu Phe Arg Ser Pro Val Val Arg Leu Gln Gly Ser Gly 65 70 75 80 Leu Thr He Wing Gln Val Wing Wing Val Wing Arg Arg Thr Gly Ser Val 85 90 95 Arg Val Glu Leu Glu Thr Gly Ala Lys Ala Arg Val Asp Glu Be Ser • 100 105 110 Asn Trp Val Met Asp Ser Met Wing Asn Gly Thr Asp Ser Tyr Gly Val 115 120 125 Thr Thr Gly Phe 130 17 < 210 > 332 < 211 > 170 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 332 Asn Leu Val Lys Leu Gly Ser He Leu Gly Met Wing He Gly Val Wing 1 5 10 15 Leu Phe Be Ser Leu Leu Val Leu Ser Phe Val Ser Pro Be Ser 25 30 Leu Ser Ser Asn Tyr Tyr Asp Lys Thr Cys Pro Asn Ala Glu Leu He 40 45 Val Ala Asn Ala Val Lys Asn Ala Ala Met Lys Asp Lys Thr Val Pro 50 55 60 Ala Ala Leu Leu Arg Met His Phe His Asp Cys Phe He Arg Gly Cys 65 70 75 80 Asp Ala Ser Val Leu Leu Asn Ser Lys Gly Ser Asn Lys Ala Glu Lys 85 90 95 Asp Gly Pro Pro Asn Val Ser Leu His Ser Phe Phe Val He Asp Asn 100 105 110 Ala Lys Lys Glu Leu Glu Ala Ser Cys Pro Gly Val Val Ser Cys Ala 115 120 125 Asp He Leu Ala Leu Ala Ala Arg Asp Ser Val Val Leu Ser Gly Gly 130 135 140 Pro Thr Trp Asp Val Pro Lys Gly Arg Lys Asp Gly Arg Thr Ser Lys 145 150 155 160 Wing Ser Glu Thr Thr Gln Leu Pro Wing Pro 165 170 < 210 > 333 < 211 > 118 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 333 Leu Val He Thr He Val Val Phe Phe Gly His He Gly Asp Ser Glu 1 5 10 15 Gly Gly Asp Leu Arg Lys Asn Phe Tyr Lys Ser Wing Cys Pro Leu Wing 25 30 Glu Glu He Val Lys Asn Val Thr Trp Lys His Wing Wing Ser Asn Ser 40 45 Ala Leu Pro Ala Lys Phe Leu Arg Met His Phe His Asp Cys Phe Val 50 55 60 Arg Gly Cys Asp Gly Ser Val Leu Leu Asp Ser Thr Wing Asn Asn Lys 65 70 75 80 Wing Glu Lys Val Wing Val Pro Asn Gln Ser Leu Thr Gly Phe Asp Val 85 90 95 He Asp Glu He Lys Glu Lys Leu Glu Glu Thr Cys Pro Gly Val Val 100 105 110 Ser Cys Ala Asp He Leu 115 < 210 > 334 < 211 > 65 < 212 > PRT < 213 > Pinus radiata 118 < 400 > 334 Asn Ala Asp Pro He Ala Val He Asp Glu Ala Leu Ser Thr Gly Gly 1 5 10 15 Pro Wing Asn Leu Ser Asp Wing Tyr Thr Leu Asn Gly Gln Pro Gly Asp 25 30 Leu Tyr Asn Cys Ser Arg Wing Gly Thr Phe Arg Phe Leu Val Lys Gln35 40 45 Gly Glu Thr Tyr Leu Leu Arg Met Val Asn Ala Ala Leu Asn Ser Ala 50 55 60 His 65 < 210 > 335 < 211 > 104 < 212 > PRT < 213 > Pinus radiata < 400 > 335 Lys Pro His Gly Glu Thr Pro Leu He He Gly Glu Trp Trp Asn Ala 1 5 10 15 Asp Pro He Wing Val He Asp Glu Wing Leu Arg Thr Gly Wing Ala Pro 25 30 Asn Leu Ser Asp Ala Tyr Thr Leu Asn Gly Gln Pro Gly Asp Leu Tyr 40 45 Asn Cys Ser Arg Wing Gly Thr Phe Arg Phe Pro Val Lys Gln Gly Glu 50 55 60 Thr Tyr Leu Leu Arg Met Val Asn Ala Ala Leu Asn Ser Ala His Phe 65 70 75 80 Phe Lys He Wing Gly His Lys Phe Thr Val Val Wing Val Asp Wing Ser 85 90 95 Tyr Thr Lys Pro Tyr Lys Gln Met 100 < 210 > 336 < 211 > 125 < 212 > PRT < 213 > Pinus radiata < 400 > 336 Asp Ala His Thr He Asn Gly Lys Pro Gly Pro Leu Phe Lys Cys Pro 1 5 10 15 Thr Lys Asp Thr Phe Val Val Pro Val Glu His Gly Lys Thr Tyr Leu 25 30 Leu Arg He He Asn Ala Ala Leu Asn Asp Glu Leu Phe Phe Asp Val 40 45 Ala Asn His His Leu Lys Val Val Glu He Asp Ala Val Tyr Thr Lys 50 55 60 Pro Leu He Thr Asn Ser He Val He Wing Pro Gly Gln Thr Thr Asn 65 70 75 80 Ala Leu He His Thr Asn Lys Arg Ser Gly Arg Tyr Phe Met Ala Ala 85 90 95 Arg Ser Phe Met Asp Ala Pro Val Ser Val Asp Asn Lys Thr Ala Thr 100 105 110 Wing He Leu Gln Tyr Val Asn Ser He Gln He Leu Leu 115 120 125 < 210 > 337 119 < 211 > 178 < 212 > PRT < 213 > Pinus radiata < 400 > 337 Asn Met Met Ala Pro Met Ala Ala Gly Ala Glu Tyr Gly He Lys Leu He 1 5 10 15 He Gln Leu Leu Val Val Leu Leu Val Val Gln Leu Val Ala Gly Lys 25 30 Thr Thr Arg His Tyr Ser Phe His Val Arg Leu Lys Asn Val Thr Arg 40 45 Leu Cys His Thr Lys Pro Leu He Thr Val Asn Gly Lys Ser Pro Gly 50 55 60 Pro Lys Val Val Val Arg Glu Gly Asp Arg Val He He Lys Val His 65 70 75 80 Asn His Val Ser Asn Asn Val Ser He His Trp His Gly Val Arg Gln 85 90 95 Leu Arg Ser Gly Trp Wing Asp Gly Pro Wing Tyr He Thr Gln Cys Pro 100 105 110 He Gln Thr Gly Gln Thr Tyr Val Tyr Asn Phe Thr Val Thr Gly Gln 115 120 125 Arg Gly Thr Leu Trp Trp His Wing His He Ser Trp Leu Arg Wing 130 135 140 Val Tyr Gly Wing Phe He He Tyr Pro Lys Arg His Val Pro Tyr Pro 145 150 155 160 Phe Pro Lys Pro Tyr Lys Glu Val Pro Leu He Leu Gly Glu Trp Trp 165 170 175 Asn Ala < 210 > 338 < 211 > 358 < 212 > PRT < 213 > Pinus radiata < 400 > 338 Pro He Pro Pro Gly Gly Arg Tyr Thr Tyr Arg Phe Asn He Ser Gly 1 5 10 15 Gln Glu Gly Thr Val Trp Trp His Wing His Tyr Ser Trp Leu Arg Ala 25 30 Thr Val His Gly Wing Phe Val He Leu Pro Lys Lys Gly Ser Ser Tyr 40 45 Pro Phe Ser Lys Pro His Wing Glu He Pro He He He Gly Glu Trp 50 55 60 Trp Asn Wing Asn Pro He Wing Val He Asp Glu Wing Val Arg Thr Gly 65 70 75 80 Gly Ala Pro Asn Leu Ser Asp Ala Phe Thr He Asn Gly Gln Pro Gly 85 90 95 Asp Leu Phe Asn Cys Ser Thr Be Gly Thr Phe Arg Leu Pro Val Glu 100 105 110 Ser Gly Glu Thr Tyr Leu Leu Arg He Val Asn Ala Ala Leu Asn Ser 115 120 125 Gly His Phe Phe Lys He Wing Gly His Glu Phe Thr Val Val Wing Val 130 135 140 Asp Ala Cys Tyr Thr Lys Pro Tyr Lys Thr Asp Val Leu Val He Ser 145 150 155 160 Wing Gly Gln Thr Thr Asp Val Leu He Thr Wing Asn Gln Ser Val Gly 120 165 170 175 Arg Tyr Tyr Met Wing Wing Arg Wing Tyr Gln Asn Gln Wing Wing Gly Asp 180 185 190 Phe Thr Asn Thr Thr Thr Thr Wing He Leu Glu Tyr He Gly Ser Glu 195 200 205 Asn Ser Thr Arg Pro He Leu Pro Ser Leu Pro Wing Tyr Asn Asp Thr 210 215 220 Wing Thr Val Thr Arg Phe Ser Arg Wing Leu Arg Ser Leu Wing Ser Gln 225 230 235 240 Glu His Pro Val Asn Val Pro His Thr He Asp Glu Ser Leu He Ser 245 250 255 Thr Val Gly Leu Gly Leu Pro Cys Gly Wing Gly Asn Thr Cys Glu 260 265 270 Gly Pro Asn Gly Thr Arg Leu Ser Wing Being He Asn Asn He Ser Tyr 275 280 285 Val Glu Pro Thr He Ser Leu Leu Gln Ala Tyr Tyr Tyr Thr Ala Asn 290 295 300 Gly He Phe Thr Gly Asp Phe Pro Ser Lys Pro Glu Val Arg Phe Asn 305 310 315 320 Tyr Thr Gly Asp Asp He Pro Arg Lys Phe Trp Wing Pro Asp Pro Wing 325 330 335 Thr Lys Val Lys Val Leu Glu Tyr Asn Ser Thr Val Gln Leu Val Phe 340 345 350 Gln Ser Thr Asn He Phe 355 < 210 > 339 < 211 > 160 < 212 > PRT < 213 > Pinus radiata < 400 > 339 Phe Arg Arg Glu Thr Val He Gln His He Ser Arg Ser Phe Leu Ser 1 5 10 15 Lys Met Val He Ser Lys Tyr Ala Wing Wing Met Ser Cys Leu Leu He 20 25 30 Wing Val Val Wing Leu Glu Val Gly Wing Glu Thr Arg His Tyr Lys Phe 35 40 45 Asp He Lys Phe Lys Asn Val Thr Arg Leu Cys His Thr Lys Pro He 50 55 -60 Val Thr Wing Asn Gly Lys Phe Pro Gly Pro Thr He Tyr Wing Arg Glu 65 70 75 80 Gly Asp Thr Val Thr Val Lys Val Thr Asn His Val Thr Tyr Asn Val 85 90 95 Be He His Trp His Gly He Arg Gln Leu Arg Thr Gly Trp Wing Asp 100 105 110 Gly Pro Wing Tyr He Thr Gln Cys Pro He Gln Thr Gly Gln Thr Tyr 115 120 125 Val Tyr Asn Phe Thr He Thr Gly Gln Arg Gly Thr Leu Phe Trp His 130 135 140 Wing His He Leu Trp Leu Arg Wing Thr Leu Asn Gly Pro He Val He 145 150 155 160 < 210 > 340 < 2ii > 156 < 212 > PRT < 213 > Pinus radiata 121 < 400 > 340 Gly Cys Cys Leu Ser Thr Arg Met Asn Met Ser Arg Ser Lys Ala Leu 1 5 10 15 Leu Cys Pro Ser Pro Ala His Val Lys Tyr Val Leu He Val He Leu 25,. 30 Leu He He Met He Gln Cys Pro Asp He Val Wing Gly Lys His Wing 40 45 Gln Thr Thr Arg His Tyr Lys Phe Asn Val Arg Leu Ser Asn Val Thr 50 55 60 Arg Leu Cys Arg Thr Lys Pro Leu He Thr Val Asn Gly Lys Tyr Pro 65 70 75 80 Gly Pro Thr Val Val Wing Arg Glu Gly Asp Arg Val He He Lys Leu 85 90 95 Val Asn His Val Lys Asp Asn Val Thr He His Trp His Gly Val Arg 100 105 110 Gln Leu Arg Ser Gly Trp Wing Asp Gly Pro Gly Tyr He Thr Gln Cys 115 120 125 Pro Leu Gln Thr Gly Met Ser Tyr Val Tyr Asn Phe Thr He Val Gly 130 135 140 Gln Arg Gly Thr Leu Trp Trp His Wing His He Ser 145 150 155 < 210 > 341 < 211 > 157 < 212 > PRT < 213 > Pinus radiata < 400 > 341 Val He Gln Gln Ala Leu Gln Thr Gly Gly Pro Asn Val Ser Asp 1 5 10 15 Ala Tyr Thr He Asn Gly Leu Pro Gly Pro Leu Tyr Asn Cys Ser Asn 25 30 Glu Thr Phe Val Leu Lys Val His Pro Gly Gln Thr Tyr Leu Leu Arg 40 45 He He Asn Ala Ala Leu Asn Asp Glu Leu Phe Leu Ala He Ala Asn 50 55 60 His Ser Leu Thr Val Val Glu Val Asp Ala Val Tyr Val Lys Pro Phe 65 70 75 80 Gln Thr Asp Thr Leu Leu He Thr Pro Gly Gln Thr Thr Asn Val Leu 85 90 95 Leu Thr Ala Asn Ala Thr Ser Gly Lys Asn Lys Gln Phe Val He Ala 100 105 110 Wing Ser Pro Phe Val Thr Gly Ser Gly Thr Phe Asp Asn Ser Thr Val 115 120 125 Wing Gly He Val Ser Tyr Asn Ser His Lys Phe Lys Asn Ser Ser Thr 130 135 140 He He Leu Pro Lys Leu Pro Ser Phe Asn Asp Thr Asn 145 150 155 < 210 > 342 < 211 > 134 < 212 > PRT < 213 > Pinus radiata < 400 > 342 Gly Gln Thr Thr Asn Val Leu Leu Glu Wing Asn Lys Arg Ser Gly Ser 122 10 15 Tyr Phe Val Wing Wing Arg Pro Phe Met Asp Wing Pro Val Thr Val Asn 20 25 30 Asn Lys Thr Wing Thr Wing He Leu His Tyr He Gly Arg Asn Ser Glu 35 40 45 Being Asp He Pro Wing Val Asn Pro Leu Met P, ro Arg Leu Pro Leu Leu 50 55 60 Asn Asp Thr Wing Phe Wing Thr Ser Phe Thr Ser Lys Leu Arg Ser Leu 65 70 75 80 Asn Ser Val Gln Phe Pro Wing Lys Val Pro Gln Thr He Asp Arg Asn 85 90 95 Leu Phe Phe Wing Val Gly Leu Wing Thr Glu Ser Cys Gln Thr Cys Asn 100 105 110 Gly Gly Leu Arg Wing Being Wing Being He Asn Asn He Being Phe Val Met 115 120 125 Pro Ser He Be Leu Leu 130 < 210 > 343 < 211 > 419 < 212 > PRT < 213 > Pinus radiata < 400 > 343 Thr Thr Tyr Pro Phe Thr Phe Thr Arg Pro His Arg Gln He Pro He 1 5 10 15 Leu Leu Gly Glu Trp Trp Asn Arg Asn Pro Met Asp Val Val Asn Gln 20 25 30 Wing Thr Gln Thr Gly Wing Wing Pro Asn Val Ser Asp Wing Phe Thr He 35 40 45 Asn Gly Gln Pro Gly Asp Leu Tyr Lys Cys Ser Thr Being Asp Thr Phe 50 55 60 Being Val Being Met Lys Gly Gly Glu Thr Asn Leu Leu Arg Val He Asn 65 70 75 80 Wing Ala Leu Asn Thr Asp Leu Phe Phe Ser Wing Being His Thr Met 85 90 95 Thr Val Val Wing Val Asp Wing Leu Tyr Thr Lys Pro Phe Gln Thr Asn 100 105 110 Val Leu Met Leu Gly Pro Gly Gln Thr Thr Asp He Leu Leu Thr Ala 115 120 125 Asn Gln Wing Thr Gly Arg Tyr Tyr Met Wing Wing Arg Wing Tyr Being Ser 130 135 140 Gly Gln Gly Val Pro Phe Asp Asn Thr Thr Thr Thr Wing He Leu Glu 145 150 155 160 Tyr Glu Gly Be Ser Lys Thr Be Thr Pro Val Met Pro Pro Asn Leu Pro 165 170 175 Phe Tyr Asn Asp Thr Asn Be Wing Thr Ser Phe Wing Asn Gly Leu Arg 180 185 190 Ser Leu Gly Ser His Asp His Pro Val Phe Val Pro Gln Ser Val Glu 195 200 205 Glu Asn Leu Phe Tyr Thr He Gly Leu Gly Leu He Lys Cys Pro Gly 210 215 220 Gln Ser Cys Gly Gly Pro Asn Gly Ser Arg Phe Ala Ala Ser Met Asn 225 230 235 240 Asn He Be Phe Val Pro Pro Thr Thr Ser Be He Leu Gln Ala Gln 245 250 255 His Phe Gly Met Lys Gly Val Phe Ser Wing Asp Phe Pro Asp Asn Pro 123 260 265 270 Ser Val Gly Phe Asp Tyr Thr Wing Gln Asn He Ser Arg Asp Leu Trp 275 280 285 Ser Pro Val Lys Wing Thr Arg Val Lys Val Leu Lys Tyr Asn Ser Thr 290 295 300 Val Gln Val He Leu Gln Gly Thr Asn He Phe Wing Gly Glu Ser His 305 310 315 320 Pro He His Leu His Gly Tyr Asp Phe Tyr He Val Gly Wing Gly Phe 325 330 335 Gly Asn Tyr Asn Wing Gln Thr Asp Pro His Lys Phe Asn Leu Val Asp 340 345 350 Pro Pro Met Arg Asn Thr Val Asn Val Pro Val Asn Gly Trp Wing Wing 355 360 365 He Arg Phe Val Wing Asp Asn Pro Gly Wing Trp Val Met His Cys His 370 375 380 Leu Asp Val His He Thr Trp Gly Leu Wing Met Val Phe Val Val Asn 385 390 395 400 Asn Gly Pro Asp Ala Leu Leu Ser Leu Gln Pro Pro Pro Arg Asp Leu 405 410 415 Pro Leu Cys < 210 > 344 < 211 > 111 < 212 > PRT < 213 > Pinus radiata < 400 > 344 Leu Asn Tyr Asn Wing Thr Val Gln Val He Leu Gln Gly Thr Asn He 1 5 10 15 Phe Ala Gly Glu Ser His Pro He His Leu His Gly Tyr Asp Phe Tyr 25 30 He Val Gly Wing Gly Phe Gly Asn Tyr Asn Wing Gln Thr Asp Pro Gln 40 45 Lys Phe Asn Leu Val Asp Pro Pro Met Arg Asn Thr Val Asn Val Pro 50 55 60 Val Asn Gly Trp Wing Wing He Arg Phe Val Wing Asp Asn Pro Gly Wing 65 70 75 80 Trp Val Met His Cys His Leu Asp Val His He Thr Trp Gly Leu Wing 85 90 95 Met Val Phe Val Val Asn Asn Gly Pro Asp Pro Leu Leu Ser Leu 100 105 110 < 210 > 345 < 211 > 93 < 212 > PRT < 213 > Pinus radiata < 400 > 345 Thr Arg Val Lys Val Leu Asn Tyr Asn Thr Thr Val Gln Val He Leu 1 5 10 15 Gln Gly Thr Asn He Phe Wing Gly Glu Ser His Pro He His Leu His 25 30 Giy Tyr Asp Phe Tyr He Val Gly Ala Gly Phe Gly Asn Tyr Asn Frc 40 45 Gln Thr Asp Pro Gln Lys Phe Asn Leu Wing Asp Pro Pro Met Arg Asn 50 '55 60 124 Thr Val Asn Val Pro Val Asn Gly Trp Wing Wing He Arg Phe Val Wing 65 70 75 80 Asp Asn Pro Gly Wing Trp Val Met His Cys His Leu Asp 85 90 < 210 > 346 < 211 > 93 < 212 > PRT < 213 > Pinus radiata < 400 > 346 Lys Thr Phe Ser Asp Glu Cys Ser Asp Wing Arg Pro Arg Pro Asp Asn 1 5 10 15 Arg His Ser Gly Arg Val Asp Gln Leu Wing Asp Thr Phe Ser Val Ser 25 30 Met Lys Gly Gly Glu Thr Asn Leu Leu Arg Val He Asn Ala Ala Leu 40 45 Asn Thr Asp Leu Phe Phe Ser He Ala Ser His Thr Met Thr Val Val 50 55 60 Wing Val Asp Wing Leu Tyr Thr Lys Pro Phe Gln Thr Asn Val Leu Met 65 70 75 80 Leu Gly Pro Gly Gln Thr Thr Asp He Ala Wing Ala Asn 85 90 < 210 > 347 < 211 > 114 < 212 > PRT < 213 > Pinus radiata < 400 > 347 Pro Asp Ser Thr He Asn Thr Ser Phe Leu Gln Gln Leu Gln Gly Gln 1 5 10 15 'Cys Pro Arg Wing Gly Gly Asp Glu Leu Pro Being Ser Leu Asp Tyr Val 25 30 Thr Pro Wing Arg Phe Asp Asn Thr Tyr Phe Wing Asn Leu Lys Gln Gln 40 45 Lys Gly Val Leu His Ser Asp Arg Thr Leu Tyr Asp Pro Wing Wing 50 55 60 Gly Ser Val Thr Ser Ser Thr Val Asp His Phe Ser Ser Asp Gln Thr 65 70 75 80 Wing Phe Phe Glu Be Phe Lys Gly Wing Met He Lys Met Gly Asn Leu 85 90 95 Be Pro Pro Wing Gly Thr Gln Gly Glu He Arg Arg Asp Cys Arg Lys 100 105 110 Val Asn < 210 > 348 < 211 > 551 < 212 > PRT < 213 > Pinus radiata < 400 > 348 Met Glu Gly Gln He Ala Ala Leu Ser Lys Glu Asp Glu Phe He Phe 1 5 10 15 His Ser Pro Phe Pro Ala Val Val Pro Pro Glu Asn He Ser Leu Phe 20 25 30 125 Gln Phe Val Leu Glu Gly Ala Glu Lys Tyr Arg Asp Lys Val Ala Leu 40 45 Val Glu Wing Ser Thr Gly Lys Glu Tyr Asn Tyr Gly Gln Val He Ser 50 55 60 Leu Thr Arg Asn Val Wing Wing Gly Leu Val Asp Lys Gly He Gln Lys 65 70 75 80 Gly Asp Val Val Phe Val Leu Leu Pro Asn Met Wing Glu Tyr Pro He 85 90 95 He Val Leu Gly He Met Leu Ala Gly Ala Val Phe Ser Gly Ala Asn 100 105 110 Pro Ser Ala His He Asn Glu Val Glu Lys His He Gln Asp Ser Gly 115 120 125 Ala Lys He Val Val Thr Val Gly Ser Ala Tyr Glu Lys Val Arg Gln 130 135 140 Val Lys Leu Pro Val He He Wing Asp Asn Glu His Val Met Asn Thr 145 150 155 160 He Pro Leu Gln Glu He Phe Glu Arg Asn Tyr Glu Wing Allah Gly Pro 165 170 175 Phe Val Gln He Cys Gln Asp Asp Leu Cys Ala Leu Pro Tyr Being 180 185 190 Gly Thr Thr Gly Wing Ser Lys Gly Val Met Leu Thr His Arg Asn Leu 195 200 205 He Wings Asn Leu Cys Ser Ser Leu Phe Asp Val His Glu Ser Leu Val 210 215 220 Gly Asn Phe Thr Thr Leu Gly Leu Met Pro Phe Phe His He Tyr Gly 225 230 235 240 He Thr Gly He Cys Cys Wing Thr Leu Arg Asn Gly Gly Lys Val Val 245 250 255 Val Met Ser Arg Phe Asp Leu Arg His Phe He Ser Ser Leu He Thr 260 265 270 Tyr Glu Val Asn Phe Ala Pro He Val Val Pro Pro He Met Leu Ser Leu 275 280 285 Val Lys Asn Pro He Val Asn Glu Phe Asp Leu Ser Arg Leu Lys Leu 290 295 300 Lys Wing Val Met Thr Wing Wing Pro Pro Leu Wing Pro Asp Leu Leu Arg 305 310 315 320 Wing Phe Glu Glu Lys Phe Pro Gly Val Glu Val Gln Glu Ala Tyr Gly 325 330 335 Leu Thr Glu His Ser Cys He Thr Leu Thr His Cys Wing Pro Gly Asn 340 345 350 He Arg Gly Arg Ala Lys Lys Ser Ser Val Gly Phe He He Pro Asn 355 360 365 Leu Glu Val Lys Phe He Asp Pro Glu Thr Gly Lys Ser Leu Pro Arg 370 375 380 Asn Ser He Gly Glu Val Cys Val Arg Ser Gln Cys Val Met Arg Gly 385 390 395 400 Tyr Tyr Lys Lys Pro Thr Glu Thr Glu Lys Thr Val Asp Ser Asp Gly 405 410 415 Trp Leu His Thr Gly Asp Val Gly Phe He Asp Asp Asp Asp Asp Val 420 425 430 Phe He Val Asp Arg He Lys Glu Leu He Lys Tyr Lys Gly Phe Gln 435 440 445 Val Ala Pro Ala Glu Leu Glu Ala He Leu Leu Ser His Pro Ser Val 450 455 460 Glu Asp Ala Ala Val Val Pro Leu Pro Asp Glu Glu Ala Gly Glu He 465 470 475 480 Pro Wing Wing Cys Val Val Met Wing Wing Wing Wing Thr Glu Thr Glu Asp 126 485 490 495 Asp He Ser Lys Phe Val Wing Ser Gln Val Wing Thr Tyr Lys Arg Val 500 505 510 Arg Leu Val Lys Phe Val Ser Thr He Pro Lys Ser Ser Ser Gly Lys 515 520 525 He Leu Arg Arg Leu Leu Arg Asp Asn Leu Arg Glu Thr Leu Lys Asn 530 535 540 Gln His Gln Pro Leu Ser Thr 545 550 < 210 > 349 < 211 > 544 < 212 > < 213 > Pinus radiata < 400 > 349 Met Glu Ala Lys Pro Ser Glu Gln Pro Arg Glu Phe He Phe Arg Ser 1 5 10 15 Lys Leu Pro Asp He Tyr He Pro Asp Asn Leu Ser Leu His Wing Tyr 25 30 Cys Phe Glu Asn He Ser Glu Phe Wing Asp Arg Pro Cys Val He Asn 40 45 Gly Wing Thr Gly Arg Thr Tyr Thr Tyr Wing Glu Val Glu Leu He Ser 50 55 60 Arg Arg Val Ser Wing Gly Leu Asn Gly Leu Gly Val Gly Gln Gly Asp 65 70 75 80 Val He Met Leu Leu Leu Gln Asn Cys Pro Glu Phe Val Phe Ala Phe 85 90 95 Leu Gly Wing Being Tyr Arg Gly Wing Being Thr Thr Wing Asn Pro Phe 100 105 110 Tyr Thr Pro Gly Glu He Wing Lys Gln Wing Ser Wing Wing Arg Wing Lys 115 120 125 He Val He Thr Gln Ala Ala Phe Ala Asp Lys Val Arg Pro Phe Ala 130 135 140 Glu Glu Asn Gly Val Lys Val Val Cys He Asp Thr Ala Pro Glu Gly 145 150 155 160 Cys Leu His Phe Ser Glu Leu Met Gln Wing Asp Glu Asn Ala Wing Pro 165 170 175 Wing Wing Asp Val Lys Pro Asp Asp Val Leu Wing Leu Pro Tyr Being 180 185 190 Gly Thr Thr Gly Leu Pro Lys Gly Val Met Leu Thr His Arg Gly Gln 195 200 205 Val Thr Ser Val Ala Gln Gln Val Asp Gly Asp Asn Pro Asn Leu Tyr 210 215 220 Phe His Lys Glu Asp Val He Leu Cys Thr Leu Pro Leu Phe His He 225 230 235 240 Tyr Ser Leu Asn Ser Val Met Phe Cys Ala Leu Arg Val Gly Ala Wing 245 250 255 He Leu He Met Gln Lys Phe Glu He Val Ala Leu Met Glu Leu Val 260 265 270 Gln Arg Tyr Arg Val Thr He Leu Pro He Val Pro Pro He Val Leu 275 280 285 Glu He Ala Lys Ser Wing Glu Val Asp Arg Tyr Asp Leu Ser Ser He 290 295 300 Arg Thr He Met Ser Gly Wing Wing Pro Met Gly Lys Glu Leu Glu Asp 305 310 315 320 Thr Val Arg Wing Lys Leu Pro Asn Wing Lys Leu Gly Gln Giy Tyr Gly 127 325 330 335 Met Thr Glu Ala Gly Pro Val Leu Ala Met Cys Pro Ala Phe Ala Lys 340 345 350 Glu Pro Phe Glu He Lys Ser Gly Ala Cys Gly Thr Val Val Arg Asn 355 360 365 Ala Glu Met Lys He Val Asp Pro Glu Thr Gly Wing Ser Leu Pro Arg 370 375 380 Asn Gln Wing Gly Glu He Cys He Arg Gly His Gln He Met Lys Gly 385 390 395 400 Tyr Leu Asn Asp Wing Glu Wing Thr Wing Asn Thr He Asp Lys Glu Gly 405 410 415 Trp Leu His Thr Gly Asp He Gly Tyr He Asp Asp Asp Asp Aslu Glu Leu 420 425 430 Phe He Val Asp Arg Leu Lys Glu Leu He Lys Tyr Lys Gly Phe Gln 435 440 445 Val Wing Pro Wing Glu Leu Glu Wing Met Leu He Wing His Pro Ser He 450 455 460 Ser Asp Wing Wing Val Val Pro Met Lys Asp Glu Val Wing Gly Glu Val 465 470 475 480 Pro Val Wing Phe Val Val Lys Ser Asn Gly Ser Val He Thr Glu Asp 485 490 495 Glu He Lys Gln Tyr He Ser Lys Gln Val Val Phe Tyr Lys Arg He 500 505 510 Lys Arg Val Phe Phe Thr Asp Ala He Pro Lys Ala Pro Ser Gly Lys 515 520 525 He Leu Arg Lys Asp Leu Arg Ala Lys Leu Ala Ser Gly Val Ty r Asn 530 535 540 < 210 > 350 < 211 > 717 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 350 cctgttttgg caacaactcc agcagctctc tgctcttttt actataaaaa aacccatctt 60 cacttcttct gtacttgcac acgaacatta agcgcttgat cagaacttgt atcagctccc 120 aaacagaaga caccaccacc gaaacagaag aaaaggaaaa gttcgaacaa cttcgaacga 180 tgcgagccct tgctgttgtg ctcggttctg ctatcttgct ggcgtatgtc gcgagcagtg 240 cgggtgcgct gagcttggat tactatgacc agacgtgccc gaagctcgag ttttcggtga 300 ggggggctgt gaagaaagcg atgaagaacg acaacaccgt tcctgctgct ttacttcgca 360 tgcacttcca cgactgcttc atcagaggat gtgacggttc cgtgctcttg aactcgacgg 420 caaagaacac agccgaaaaa gacgggccgc actccacgca cgaacatctc ttctatgtga 480 tcgaccttgc gaaggaagcg gtggaagctc agtgccctgg ggtcgtctct tgcgccgaca 540 tcttggcctt ggccgctcgg gatgctgtcg ctctgtctgg aggaccgcat tgggatgtgc 600 cgaaaggaag aaaagatggg aggattcgaa agcgaatgac acaaggcaat taccagctcc 660 gaccttcaac atctctcaac tacagcaagc ttctctcaag aggcctttcc atggaga 717 < 210 > 351 < 211 > 369 < 212 > DNA < 213 > Eucalyptus grandis 128 < 400 > 351 ggcgtctctc ctctgtctag tcatgtttct gaaatacctc tccgccgcac tcatctctct 60 tgcaacgatt cgctctgctt acggtgcctc cactccgaag cgaagagcaa catgcgcggg 120 cgggcagacc gtgaaaaacg aggcctgttg cgcctggttc cccgtcctgg aagacattct 180 gcccaacatg ttcgacaacg aatgtggcga cgacgcccat ggcgctctgc gtctgagctt 240 ccacgacgcg atcggtttct ctccttctca aggtggagga ggcgcggacg gatccatttt 300 gtcttcagtg acaccgaact gcagttcccc gcgaacgctg gcctcgacga cccgatcgac actgagctt 360 369 < 210 > • 352 < 211 > • 1391 < 212 > • DNA < 213 > • Eucalyptus! grandis < 400 > • 352 gaaaaactgt ggtggtgaag ctgcctcgca aagatgtgac gttatctaat cagcgtctcc 60 ctgcccggaa aaagccggaa aaggaactgt tattttcaag cttttatttc accacaatca 120 tattatacca cggagttata agatttccgc gttaacctta cgccggagaa acttcatctg 180 agtgtgtgct cttgctggtt ttcaacagga acatatcgat aatttatgtc atggctacac 240 acgatatggt cggcttttcc gtcgtcgttg tcctccttgc cacttcggtt atcaccactg 300 cccgttgtaa gctctcaccg agtcattatc aatcaacatg tccgaaagca ttgtcgattg 360 ttcgagctgg agtagcaaaa gcaatcaaga atgagacccg gacgggcgcg tccttgcttc 420 ggctgcactt ccatgactgc ttcgtcaatg ggtgcgatgc gtcgatattg ttggatgaca 480 cgcctagctt cgtgggcgag aaaacagcag ctccgaacaa caattccgtg agagggttcg 540 aagtgatcga ccgcatcaag gctagtctgg agaaggagtg ccctggagtg gtttcctgtg 600 cagatatcgt tgccctggct gctcgcgact tttgggaggt cagtcgttca ccttcatgga 660 ccgtaagctt agggagaaag gattccatta ctgctagcag gagccttgct aacacctcca 720 tacctccacc tacttctaat ctcagtgctc tcataaccag cttcgctgct cagggtcttt 780 cagtcaagaa catggtggct ctttctggtt cacataccat tggcctagcg agatgcactt 840 ccttccgaag ac ggatctac aacgactcga acatagatac atccttcgcc cataaattgc 900 agaagatatg tcccaggatt ggaaatgata gtgtccttca aaggctagac atccaaacgc 960 cgaccttctt tgacaacctt tactaccaca atttactgca gaagaagggc cttcttcact 1020 ctgatcaaga gctcttcaat ggcagttctg tggattcact ggtcaagaag tatgcatgcg 1080 atttttccga acacaggaaa gattttgcca aggcaatgat caaaatgagc gaaattaagc 1140 cccccaaagg aagcaatggt caaataagga aaaattgcag gaaagtgaac taagtatgaa 1200 gctcatatat gcaatttgaa actgccacat atgaacacgg tagtgaaatc agggctcgat 1260 aatgtcccct gacaatttgt cgtcatgtat ctgtcttctt gactaatttg tggttgctgc 1320 ttgaaaaata aaggagctcg tctcagtttc tgtaaaaaaa aaaaaaaaaa aaaaaaaaaa 1380 aaaaaaaaaa a 1391 < 210 > 353 < 211 > 337 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 353 cagaatgcct agtcgtcatc cgatttgggt aattgtcgcc atagcttttg taaccgcact 60 cgggtgggga agtgcctccg cacaactctc tacaaacttc tactccaaaa gttgtcccaa 120 tgttttgagc acggtgaaat ctgttgtccg gtccgcggtg tcgaaagagc gccgcatggg 180 tgcttctctc ctgcgcctct tctttcatga ttgcttcgtc aatgggtgcg atggctcgat 240 actcctggac gacacatcct cgttccaagg ggagaagacg gccggcccaa ataataagtc 300 tacaacgtca tttgagagga ttgaccggat caagtcc 337 < 210 > 354 < 211 > 368 < 212 > DNA 129 < 213 > Eucalyptus grandis < 400 > 354 ctcacttccg agcgcgccat gcagttcacc ttttccgccg ctttcctcgc tctcgtcaca 60 gtcgcggccg ctatgcccac caagcgtgcg gcgtgcagca acggacgaac ggccactcat 120 gcctcgtgct gtgtgtggtt cgacgtcctc gacgatat.tc aagagaatct gttcgacggt 180 ggagagtgcg gagaggaaac acacgagtct ctgcggctca ctttccacga tgccatcggc 240 ttctccccga gcctgtttct cgagggaaaa ttcggtggtc tcggcgctga tggttccatc 300 ctgacatcga atggctcact gaccgtgttc cccgccaaca atggaattga tgatatcgtc gacgcgca 360 368 < 210 > 355 < 211 > 955 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 355 aagaaactca gacccagacc cagaccacat catggcctcc cgtttcagct ctttcgtttt 60 ggtttctttt cttgtgatag ctgcatcaca tgttcatgtt acgagctctg ctcacttggt 120 gaaggggctc tcgtggtcct tctacgagaa gagctgtccc aaggtggagt ccgtcatcaa 180 gaaacatctc aagaaggtgt tcgaggagga tattggccaa gctgctgggc tgcttcgtct 240 gcacttccat gactgctttg ttaagggatg tgatgcttcg gtgttgctgg atggatcagc 300 cagtggacca agtgagcagg acgctccacc gaaccggagc ttgagaccat cagcattcaa 360 gatcatcgat gacctccgtg agctcgtgga caagaagtgt ggtcgagtag tctcttgtgc 420 tgatatcgca gccattgccg ctcgtgactc cgttgtcctg tcaggcggac ctgagtatga 480 tgtgccgttg ggaaggcggg atggactcac gtttgcgact caaaatgtga ccttagagaa 540 ccaactgaga tttacctgca acgccagtgc aattctctcc gccctagcca agaaaaactt 600 agacgctacc gacgtggtgg ccctctctgg aggccacacc atcgggcttg ggcactgcac 660 ctcctttgag aatcggctct acccgaccca agaccccacg cctttgccca atggagaaga 720 tgatctcaag ggcgtgtgcc ccaccacaaa ctccaccaac actacggtct tggacatccg 780 cgattcgaca atcacccaac acaagtactt tgtcgatttg gtgaaccgcc aaggcctgtt 840 cacctcagac caagat ctgt atgaggatcc cacaaccagg gacattgtca ctagctttgc 900 cgaggaccag gaattgttct ttgagaagtt tgtcctagcc atgacgaaga tgggg 955 < 210 > 356 < 211 > 308 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 356 ctgtgtctag tcatgttcct gaagtatctc tccggcgccc tcgtctccct tgcaacgatc 60 cgcggtgttt gcggtgcttc cgctccgatg cgaagagcaa catgtgcggg tgggcagact 120 gtcaaaaatg cggcatgttg tgcatggttc ccagtactcg acgacatcag ggaaaacttt 180 ttcgacaacg aatgcggcga tgacgcccat gctgccctgc gtctgagttt ccacgatgca 240 atcggtttct ctcgttcgaa aggtggagga ggcgcggacg gatccatcat tgccttcaat 300 aagactga 308 < 210 > 357 < 211 > 373 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 357 tcaggtcctt gtcaacatgg cattcaaact cgtggttaat cttgttagtc ttgctctcgc 60 cgtcagtgct gcaaacttca agcgagttgc ttgcccaggt actacggcca cagctcgcaa 120 tccggcgtgc tgcgcattct tctcactgag agatgacttg cttacaaatc tcttcggggg 180 tgtgtgcggc gaagaggcgc acgagtctct ccgattgtct ttccatgatg ccattgcgtt 240 130 ttcgcccgca ttaattaggc aaggcaaacc gggaggtgga ggtgctgatg gctctatgat 300 tactttccca aacgtcgagc ccaattttaa tgccaacaac ggcattattg attctgtcga 360 ctttttgaca cca 373 < 210 > 358 < 211 > 417 < 212 > DNA < 213 > Eucalyptus grandis < 400 > 358 ctcttgtcct gggaccgtgt cttgcgccga cattctcgcc ctcggtgctc aagcttctgt 60 cgttctgtca ggaggtccat cttggagggt gctctcgggg aggagggaca gcttgacggc 120 ggagcgaaca gaaccaagca catcgatacc tagccctttt gattccttgg ctaacctcac 180 ttccaaattc gccgctgttg gcttggacac caatgacctt gtcactcttt ccggagctca 240 cacctttgga cgtgcacagt gcaggacatt cagccctagg ctctacaact tcaacgcgag 300 gatccaacca tggcagccca taagtccttc atacttgacc actctccaac aactttgccc 360 acagaatgga agcggctccg tcctcgccaa cctcgacccg acgaccgtga acacatt 417 < 210 > • 359 < 211 > • 659 < 212 > • DNA < 213 > • Pinus radiata < 400 > • 359 cacaatggaa atagtttagg tcagtaatgg aacggatgaa acatattccc ggccttacac 60 tgcagtttca gtctgtgctg atcactggag cggcattgtt tctatggatc cagacatcgg 120 atgctcagga ctgtaatggt ctgagtcatc actattatca gaagtcctgt ccaaatgccc 180 aggctatcat taaatctgta gtttcagatg ctgtcaaaaa ggaagcgaga atggctgctt 240 ccttgcttcg tctgcatttt catgactgtt ttgttcaggg ctgtgatgct tcaattctgc 300 ttgatgacac tgctagtttc acaggggaga agacagcatt acctaacaga aattctgtaa 360 gaggctttga ggtagtggat aagatcaaaa gcaaattgga ggaagcatgt cctggagtgg 420 tctcatgtgc tgacattctt gctgtggcag cccgtgattc agtaggcttt agtgtgggtc 480 cgtattggga ggttctactg ggcaggaggg actcaaagac tgcaagcaag agcggtgcaa 540 acaacgacat tcctgcaccc aactcaaccc atcagactct ggaaaccaaa ttcaacctca 600 aaggtctcaa tgtgcttgac ctagttgctc tatcaaggtc ccataacaat agggttagc 659 < 210 > 360 < 211 > 669 < 212 > DNA < 213 > Pinus rad: Can < 400 > 360 gcggcacgag cggcaaaact aaagctattc gcagcctccc tctatggcga cattagggat 60 ccctctcggc tcactcagcc tgctcctcct cttcttctgc tgcgcacaac gcagtgtggg 120 actgaaggaa aattactacg caacgtcgtg tccgagagca gagcacatag tgaaggagca 180 ggtctacaat ctctaccagg agcacggcaa cactgccgtt tcatggatca gacttatctt 240 ccatgactgc atagttcagt cgtgcgatgc ctccattcta ttagacagta gtggagacgt 300 gcagacagag aaacaatcgg accgaaactt cggaatgcga aacttcaagt atgtggacac 360 cattaaggag gccatcgagg tggaatgtcc tggagtggtg tcgtgtgctg acattattgt 420 tctcgccgca aaggaggcag ctgcaatgct aggaggtcca cgcatcgcgg tgaaaacagg 480 gagacgagac agcagaaaaa gcagtgcagc agtggtggac aaatacgttc cgctgcataa 540 tggcagcatc tcatctcttc tctctgcctt tgcctctgtg ggcatcgatg cggaaggagc 600 ttaggtttga tgtggccctt tacttatcca ttctgtatta cattatacat aaataaaaaa aaaaaaaaa 660 669 < 210 > 361 < 211 > 916 131 < 212 > • DNA < 213 > • Pinus radiata < 400 > • 361 agcaaattgg ttgcttttgg agcgcttgtt ccaacagcaa aaatggctgt tttgatgaag 60 agctttccgt gcattgctgt cattgtgttc attatctgtt cgattactga tactgtgaat 120 gggaaactga gctccacgtt ttatgataag tcttgtccca aggccctgtc tatagtgcaa 180 gccggggtga agcaagcagt ggctaaggaa aaacgtatgg gggcatcgct tctccgcctt 240 catttccacg actgcttcgt taatggctgc gatgggtctg tactgttgga caattccacg 300 gcgagaaata accttcacta tgctcttccc aataacaatt ccgcgagggg tttcgaggtg 360 taaagagcca atcgatagca actcgagaat gcttgcaccg gcgtcgtttc ttgtgcagac 420 attctcacga ttgctgctcg tgattctgtt gttcagttgg gtggaccttc gtggaaggtg 480 atgttgggga ggcgagactc aacaacagcg agcattagcg gtgcaaacaa taacattccg 540 cctcccactt ccaatctgac gaaactcatt tcactatttc aggcacaggg cctctccaca 600 aaggaaatgg ttgcactctc tggtggtcat accatcgggc aggcgcaatg caagaatttc 660 tttacaacga agagcccata gatactacgt caccaacata attgcgttca acgccacttc 720 aagtgtccta gtaccacagg ctccggagac agcaacctgt cgccactgga ttatacgact 780 cccactgtgt ttgacaaaaa ctattactac aatctgaaaa gcaaaagagg acttctccac 840 tccgaccagg aa ctcttcaa cggaggctcc actgattcgc atgtgactaa gtacgcctcc 900 aaccagaata ccttct 916 < 210 > 362 < 211 > 586 < 212 > DNA < 213 > Pinus radiata < 400 > • 362 gcaaacagca accttccctc gccagcttcc agtctcagca cactcatgac agcatttcaa 60 aaacagggtc tctctaccaa ggacctcgtc gcactctcag gtgctcatac aattggtcaa 120 gcacggtgca ccacattcag aactcgcatc tacaacgata ccaacattaa cgctgccttc 180 gctacatctg cgaaggcgaa ctgccccagc actggtggcg acaacaccct ctctcccttg 240 cccctaccac gatgttctca aagtattaca atttgacaac ctaatctgaa aagccaaaag 300 actccgatca ggacttttcc ggagctattt aatggaggtt ccacagactc tagagttagt 360 atctacagca ccagtcaagc cattttcttt actgactttg cagccgccat ggtgaatatg 420 ggtaatatta gtcccctcac tggcaccaac ggcgagatcc gcacaaactg caggaaagtc 480 aattaaaatt tgtaaagatt gtattatcta tagcttttct ctgaagttat aagcgaagct 540 ttacaagaaa gcaataaatt actgtttaat taaaaaaaaaaaaaa 586 < 210 > 363 < 211 > 1224 < 212 > DNA < 213 > Pinus radiata < 400 > 363 ctaccactca atttcgctct tatcttctgt gtttcatcgt tttcttccaa atatgatgat 60 gaggactcta gtgtgcattg ggttaatggc tgtgtttgta gccttcatac atataaacgc 120 tgtgaatggg cagctgagct caacgtttta tgccaaatcg tgtccgaggt tgccatcgat 180 agtgaaatca gtggtgaagc aagcggtagc taaggagaaa agaatgggag cgtccttggt 240 ccgccttcac tttcacgatt gcttcgtcaa cgggtgcgat ggttcaatct tattggatga 300 caacgctacg tttaccggag aaaagactgc aggcccaaac gccaattctg cgagaggctt 360 cgaggtaatt gacagcatta aaactcaagt ggaggcagcc tgcagtggag tcgtgtcgtg 420 tgcagacatt ctcaccattg ctgctcgtga ctctattgtt gaacttcaag gcccaacatg 480 gacggtaatg cttggaaggc gagactccac gactgcgagt ttaagcgctg caaacaacaa 540 cccgcttcca cattccatct gtctgagcac actcatctca tcttttcaag ctcacggtct 600 ttctaccaaa gaccttgttg cactctcagg tgctcataca attggtcaat cacgatgcgc 660 ctttttcaga actcggatct acaacgaaac gaacattaac gctgctttcg ctacatctgt 720 aaaggcaaac tgccccagcg ctggtggcga cagcaacctc tctcccttag atgcggtcac 780 132 tttgacaaca ctcaatcaca taatcttaaa agtattactc gacttctcca atacagaaag 840 ctccgaccag cagctcttta atggaggttc tacagattct caggttactg cgtacagcag 900 caatcagaac agcttcttta tagactttac agctgccatg gtgaagatgg gaaatattag 960 ccctctcact ggcactaacg ggcaaatccg caaaaactgc aggaagtcca attagtctct 1020 ctgaagattg tattctccgt actctttcag cttatttttt ctttgtaaca ttgattttcg 1080 atcggctagt gagccttcaa atcgaagctc taaaagaaag caataaacta catttctgag 1140 attatgttca gagttgtatg cagttcagac cataattcca attttgcttc ccaaaaaaaa 1200 aagacttgta aaaaaaaaaa aaaa 1224 < 210 > 364 < 211 > 519 < 212 > DNA < 213 > Pinus radiata < 400 > 364 aaactgccca agtcaggagg cgacaataac ctgtcaccgt tggatctact gactccaaca 60 ataaatacta acgttcgaca cacaaatctg aagagccaaa agggtcttct ccactcagac 120 cagcagctgt ttaatggcgg ctctgcagat tcccaggtta ctacctacag caccactcag 180 agcaccttct ttaccgactt cgcagcttcc atgttgaata tgggtaatat cagtcccctc 240 actggcacca gcggacaaat ccgcaaaaac tgcagaaaac ctaattgatg cctctcttag 300 gccatatgta ctttactgtt ctcatgggat tatattttga ttgtagaatt atatagatag 360 ttgggagacc tacggctgcg ttagacacta gcaagcctcc aattggatct gtgcgtccct 420 agtttgttga ctatttggtt gatttcgatg taccaagtac aaagtttctc aacagattaa 480 tccaatgaat taggttttat aaaaaaaaaa aaaaaaaaa 519 < 210 > 365 < 211 > 646 < 212 > DNA < 213 > Pinus radiata < 400 > 365 aacccaccga aaaccattca agatttcatt gcgtcgcagc atcatgactt cctttacagc 60 gtcgtgtgca aatggcgtca tcgctctgct ctttttttcg accgttgctt ttgctcaact 120 caactcaacg tattatgata cgtcgtgtcc caaactcctg gcaacggtga aggctgcagt 180 gaagacggcg gtggccaatg agaaacgcat gggggcatca ttgctccgtc ttcactttca 240 tgattgtttc gtcaatggtt gcgatgggtc agtgttgttg gacgactctt cgagtctaac 300 tggggaaaag actgctcttc ccaacaacaa ttcgttgagg ggtttcgacg tcatagacac 360 catcaaatca caagtggaag cagtttgcag cggaatcgta tcgtgcgctg acattttggc 420 tattacggct agagattctg tcgtcgaatt gggaggacca acatggacag tgctgcttgg 480 aaggagagac tcagcaactg ccagcctaag cgccgcaaac accaacattc ccgctcccac 540 ttccaatctc agtggtctca tctcatcttt tcaagcacag ggcctttcaa ccaaggatat 600 gattgtccta tcaggtgcac ataccattgg ccaagctcga tgcaca 646 < 210 > 366 < 211 > 364 < 212 > DNA < 213 > Pinus radiata < 400 > 366 ctcttttaca ccttaatctc gcccatggtc tttccacaaa ggatctcggt gcactctcgg 60 gagctcatac gattggccaa gcgcggtgca ccacattcag agctcgcgtc tacaacgaat 120 ccaacattga cacttccttc gccacttcgg tgaaggcaaa ctggccaagc gctggtggcg 180 acaacaccct ctcgccctta gatctggcca cgcctaccac atttgacaac aagtattaca 240 ctgatttgag aagccaaaag ggacttctgc actccgatca gcaaatgttt agcggagggt 300 ctacaaattc tcaagtcacc acctatagct ccaatcaaaa acaccttctt tacagacttt 360 ACAG 364 133 < 210 > 367 < 211 > 364 < 212 > DNA < 213 > Pinus radiata < 400 > 367 ggaaaaggat caactttcac ttaaaggagg acatcaccca agcggctggt ttgctgcgcg 60 tccatttcca tgactgcttc gttcagggtt gcgacggatc ggttctgttg gacggttctg 120 ccagcggtcc tagcgaacaa gacgctccac cgaacttaac gctgagagca aaagcctttg 180 aaataattaa cgacatcaag aaacatgtgg aaaaggcttg cagcggcgtt gtctcttgcg 240 tgctctcgca cggacttgac gctcgcgagt cggtcagagc agttggagga ccagagtatc 300 gagtgcctct ggggcgcagg gacagcctga aattcgccac acgaaaagtg acccttgcca acct 360 364 < 210 > 368 < 211 > 801 < 212 > DNA < 213 > Pinus radiata < 400 > 368 gtcatggctt cgtttacagc aatgcgatct ctggccttta tcgccttgtt gatgtgttcg 60 accgttgcgt acgcgcagct tagcgcaacg ttttataata catcatgtcc caaactactc 120 tcaacggtgc aggccgctgt gaagcaagcg gtggccaacg agaagcgcat gggggcatcg 180 ctcctccgcc ttcactttca cgactgcttc gttaatggtt gcgatgggtc tgtgctgctg 240 gacgactctt cgactctaac tggagagaag accgccgttc ccaacaacaa ttcggcaagg 300 ggtttcgatg tgatagacac catcaagtct caagtggaag cagtttgcag tggagttgtg 360 tcgtgcgcag atattttggc tattgctgct agagattctg ttgtccagtt gggaggccca 420 acatggacag tgcagctggg gaggagagac tccaggactg ccagcctaag tggtgcaaac 480 aacaacattc cggctcctac ttctaatctc agtgctctca tctcattatt tcaagctcag 540 ggtctttcca cgaaggacat ggttgtccta tcaggtgcgc acaccatagg ccaagcgcgg 600 tgcacaagct tcagggcccg catctacaac gaatccaaca ttaatgcagc atacgcaact 660 caaactgtcc tccctgaaga gactacagga agcgacaaca acctgtcacc attggatcgt 720 ctacgtttga gttactccca catcaactac tactcaaatc tgagaagcca aaagggactt ctccactccg accagcagct g 801 780 < 210 > 369 < 211 > 1171 < 212 > DNA < 213 > Pinus radiata < 400 > 369 gccaaataaa gttatctttt ggctttattc cacaagaaaa aaatggctta cctaaggaag 60 agtttcgcct gtatagctgt aatggtgttt atcgtgtgtt ctattacaga tactgtgaat 120 gggcagctga gctccacgtt ttacgacaaa tcttgcccga cggcactgtc ggtagtgaag 180 gccgcagtga agcaagcggt cgctaacgag aaacggatgg gtgcgtcttt gctccgcctg 240 cactttcacg actgcttcgt taatggttgc gatgggtccg ttctgttgga cgattcttcg 300 accattactg gcgagaagac agctaatccc aatgccaatt ctgcgagggg attcgacgta 360 taaagagcaa atagatacca tgtcgagaaa gcttgcagtg gagtcgtttc ctgtgcagac 420 attctcgcca ttgctgctcg tgattctgtt gttgaactgg gcggtccttc atggacagta 480 atgttgggaa ggcgagactc gacaacagct agcaaaagcg gtgcaaacag taatattccg 540 cctccgactt ccagtctgag caacctcatc tcactattcc aagcgcaggg actctccgca 600 aaggaaatgg ttgcactttc tggcggtcat accatcgggc aggcgcaatg caagaatttc 660 agagcccata tttacaacga gacagtgcgt gaccaacata acgccacttc attgcgttca 720 aagtgtccga gtaccacagg ctccggagac agcaacttgt cgccattgga ttatatgact 780 cccactgtgt ttgacaaaaa ctattacagc gacctgaaaa gccaaaaagg acttctccac 840 tccgaccagg aactcttcaa cggaggctcc actgattcac aggtgactac gtacgcctcc 900 aaccagaaca ccttcttctc cgattttgct gcggccatgg ttaagatggg aaatatcaaa 960 134 cctcttaccg gcaccagcgg acagatccca aagaactgca ggaagccaaa ctaattatga 1020 tcactgtcga attatcatca ctccgttgca ctgcctttta attgtaaaag taacgtttcg 1080 actgatttca gtctatggat accatatgct gatggagctt gtcatgaata aataagttca 1140 taactttacc atcattaaaa aaaaaaaaaa to 1171 < 210 > 370,. < 211 > 1073 < 212 > • DNA < 213 > • Pinus radiata < 400 > • 370 atcagattaa gagtgcactt gagaaggagt gcccaaaaac tgtatcgtgt gcagatattc 60 tcgctattgc atctcgtgat tcagtggtcc tgagtggagg gctgggctgg gaagttttac 120 tggggaggag agattcgaag agtgcaagtt tgagtgggtc caacaacaat atcccggcgc 180 ccaactcaac tctgcagacg cttactacca agttcaaact acaaggtcta gatgaggtag 240 acttggtatc cctttcaggg agtcacacca tcggcctatc tcgatgcaca agtttcaggc 300 agaggcttta caaccagagt ggaaatgggc tgccagactt cactctaaac aggggttact 360 atgctcggct gaaatccgga tgtccaaaat ctggaggaga taataacttg ttcccattgg 420 atttcgtgac tcctaccaaa ttcgataact actacttcaa gagcttgctg agcggtcaag 480 cacagacgaa ggctgttgaa gaattgttcg caaagggctc agggaagacg aaggagctag 540 ttaaacttta tgcagcaaat gaggagctct ttctcaaaca gtttgcatta tctatggtga 600 catcaagcct agatgggaaa cttacaggca ccgtgggaga aatcagggtc aactgtcgta 660 aggttaacag ttgatcgttt taatttaatc attttccatc tcttgcattg cattttgtta 720 catctccctt cttagctgcc atcaaattgc attactagat catccttccc atggctttca 780 gttgtaacag gttgaataaa attgccactt ctgaattatt ttgggctgga aaacttctga 840 cgatagaggg aa acttcaac gtcccaatca aattgtcatg taagaaatat ctcgggcagt 900 aaactcagag tggtaaatca agattgttga ataaaatgtt agctcttcgt taatggctgt 960 ggagaaggtc aacactcctc gtgtgtttag ctatgtgtct gtttattaac gcttgcgagt 1020 tggaaatcgt tttgatgtaa gtcttcaaca agaataaaaa aaaaaaaaaa aaa 1073 < 210 > 371 < 211 > 1522 < 212 > DNA < 213 > Pinus radiata < 400 > 371 gaaaggcctg tcgatttcct ccatttgaat cgacaggatc gaagaatcta ttttacatca 60 aagcaaagcc aaagctgtgg ccgacatggg caagtttatc acggctctgg cttctgttat 120 tctctgcgtg tttgtgatct atggcggcgc tgtcaatgct ctgcccagtc ccgtggctgg 180 tctttcttgg acgttctaca gctcgagttg cccgtccttg gagtccatag tgtgggagcg 240 catggaagcc tatttgagtg cagacatcac ggattgttga acaggctgca ggctccactt 300 ccacgactgc tttgtccagg gatgcgatgg gtcggtgttg ttgaacgcaa cgtcaggtga 360 gcaaacggct cccccaaact tatcactcag agcgcaggct ttaaagatta ttaacgacat 420 caaagagaac gtcgaagccg cctgcagcgg aattgtgtcg tgtgccgaca ttgttacttt 480 agcagctcgt gactccgttg taatggctgg aggaccgttc taccccttac cactcggccg 540 cagggacagc cttaccttcg ccaatcgatc gaccgttctc gccaatttgc catccccaac 600 acggggctca ctccaatgta tcagtgtttt gggtcccaaa ggcttgaatt tcacagatct 660 ggtggccctc tcaggaggac atacaattgg cagaagcaac tgctcctcct tcgacaacag 720 actatataac agcaccaccg gtacacaaat gcgggatccc acgatggacc agagtttcgc 780 taagaatctt tatctcacct gccctaccag taccaccgtt aacaccacca aattggatat 840 tcgcactcca aatgt gttcg acaacaaata ctacgtcgat ctcctcaacc gacagaccct 900 cttcacttct gaccagactc tttacaccga cactcgaacc cgcgacattg tgatcaattt 960 tgcggtgaat cagagcctct tctttgaaca gtttgtgctg aaatggggca agcatgctca 1020 ctcacaggaa gctggatgtg gcgagggaga gatccgtaag aactgctggg ctgcgaatcc 1080 ttcaacattt tcgattatgg atccagaggc gtctcaagaa tcaacatctt actctatgtg 1140 agattagggt tatgagcgaa tctcaaatat aagcaagcag cgttaattcc cagcaaagtc 1200 taataaatat atatataacc ggcatcttgt aaaccctttg caatgctggt tctacaaatt 1260 actttttccc ttttgacctt ctgaaagagc agaaatcaag cctgaataca gtgcattctc 1320 gttgaaaata aatagcgttt cttgttgata atcagatttc caaccgattc cggcaatttc 1380 ctttactgaa caataagaaa tttaaactca aatgctggcc aattttgttt agggcgtttt 1440 tgaaatcgtt ggactgttat ctttggaaac ctacattaga cttatattta tctaaaatat 1500 aaaaaaaaaa aa tgcacccaaa 1522 < 210 > 372 < 211 > 311 < 212 > DNA < 213 > Pinus radiata < 400 > 372 ctcaatttcg ctcttatctt ctgtgtttca tcgttttctt cccaatatga tgatgaggac 60 tctagtgtgc attgggttaa tggctgtgtt tgtagccttc atacatataa acgcttgaat 120 gctcaacgtt gggcagctga ttatgccaaa tcgtgtccga gatagtgaaa ggttgccatc 180 tcagtggtga agcaagcggt cgctaaggag aaaagaatgg gagcgtcctt ggtccgcctt 240 cactttcacg attgcttcgt caatgggtgc gatggttcaa tcttattgga tgacaacgcg acgtttaccg g 311 300 < 210 > 373 < 211 > 474 <; 212 > DNA < 213 > Pinus radiata < 400 > 373 catcgatgct atcaagacag ccctcgagag ttcttgcaac gccactgttt cttgcgcaga 60 tattctcgct attgcagcgc gggattcagt ataccttagc ggtgggcctt actggcaagt 120 gcagatgggg agaagagatg gcaccactgc cagcaaaagt gcagcaaatg ccgacatccc 180 ttctcctatt gagtcgcttg gttcactcat atcccaattc caaggtgttg ggctttctgt 240 tcatgatctt gtagtgcttt caggggctca caccataggc cgtgcccact gtggcacctt 300 cagctcacgc ctattcaatt tcagcggctc aaacagtgcg gacccaacta ttcaccaatc 360 gacctgcata tctactgcaa gtttatgccc agatggaaac agtgatccaa ataccctggc 420 gccactggac cctgtgacca aagacaagct ccataatgtg tatttcagaa atct 474 < 210 > 374 < 211 > 353 < 212 > DNA < 213 > Pinus radiata < 400 > 374 cggatgtcgt ctttctgtta tgctttgtca gggggacata caattgggcg agctcggtgc 60 acagtgttca gcggtagact ctacaatttc agcggaacgg gcagtccgga tccgacactg 120 aattcctcct atctatccac cttgcaaagc acgtgcccgc agaatggaag cgcgaatacg 180 ttaacgtcac tggatccagg gactccaaat acgttcgaca acaactactt tgcaaatctg 240 cagattgaga tgggtctgct tcagtcgatc aagaacttct ttccacatcg ggagcaagca 300 ccatctctac tgtcaatgat tatgccagta gtcaatccga tttcttcttc aac 353 < 210 > 375 < 211 > 461 < 212 > DNA < 213 > Pinus rad: can < 400 > 375 caaagcagag ttgcgtttga agcgcaagaa atggccgctt taatgaaaag ctccgcatgc 60 attgctgtaa ttgtgtttat tgtgtgttcg attaataaca ctgtgcatgg gcagctgagc 120 tcaacatttt atgacaaatc ttgcccgacg gtgctgtcgg tagtgaaagc cggggtgaag 180 caagcggtcg ccaaggagca aaggatgggg gcgtcgcttc tccgacttca cttccacgac 240 136 tgcttcgtta atggttgcga tgggtccgtt ctgttggatg actcttcgaa aattactggc 300 gagaaaacgg ctattcccaa tgccaattcg gcgagggggt tcgatgtgat cgataccata 360 aagagtcagg tcgagaaatc ttgcagcgca gtcgtttcct gttctgacat tctagccatt 420 gctgctcgtg attctgttgt tgaactgggc ggcccttcat g 461 < 210 > 376 < 211 > 179 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 376 Met Arg Ala Leu Ala Val Val Leu Gly Be Ala He Leu Leu Ala Tyr 1 5 10 15 Val Ala Ser Be Ala Gly Ala Leu Ser Leu Asp Tyr Tyr Asp Gln Thr 20 25 30 Cys Pro Lys Leu Glu Phe Ser Val Arg Gly Wing Val Lys Lys Wing Met 35 40 45 Lys Asn Asp Asn Thr Val Pro Wing Wing Leu Leu Arg Met His Phe His 50 55 60 Asp Cys Phe He Arg Gly Cys Asp Gly Ser Val Leu Leu Asn Ser Thr 65 70 75 80 Wing Lys Asn Thr Wing Glu Lys Asp Gly Pro Pro Asn He Ser Leu His 85 90 95 Wing Phe Tyr Val He Asp Leu Wing Lys Glu Wing Val Glu Wing Gln Cys 100 105 110 Pro Gly Val Val Ser Cys Wing Asp He Leu Wing Leu Wing Wing Arg Asp 115 120 125 Wing Val Wing Leu Ser Gly Gly Pro His Trp Asp Val Pro Lys Gly Arg 130 135 140 Lys Asp Gly Arg He Arg Lys Arg Met Thr Gln Gly Asn Tyr Gln Leu 145 150 155 160 Arg Pro Ser Thr Ser Leu Asn Tyr Ser Lys Leu Leu Ser Arg Gly Leu 165 170 175 Ser Met Glu < 210 > 377 < 211 > 115 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 377 Met Phe Leu Lys Tyr Leu Ser Ala Ala Leu He Ser Leu Ala Thr He 1 5 10 15 Arg Ser Ala Tyr Gly Ala Ser Thr Pro Lys Arg Arg Ala Thr Cys Ala 20 25 30 Gly Gly Gln Thr Val Lys Asn Glu Ala Cys Cys Wing Trp Phe Pro Val 35 40 45 Leu Glu Asp He Leu Pro Asn Met Phe Asp Asn Glu Cys Gly Asp Asp 50 55 60 Wing His Gly Wing Leu Arg Leu Ser Phe His Asp Wing He Gly Phe Ser 65 70 75 80 Pro Ser Gln Gly Gly Gly Gly Wing Asp Gly Ser He Leu Ser Ser Val 85 90 95 Thr Pro Asn Cys Ser Ser Pro Arg Thr Leu Wing Ser Thr Thr Arg Ser 100 105 110 Thr Leu Ser 137 115 < 210 > 378 < 211 > 315 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 378 Met Val Gly Phe Ser Val Val Val Val Leu Leu Ala Thr Ser Val He 1 5 10 15 Thr Thr Wing Arg Cys Lys Leu Ser Pro Ser His Tyr Gln Ser Thr Cys 25 30 Pro Lys Ala Leu Ser He Val Arg Ala Gly Val Ala Lys Ala He Lys 40 45 Asn Glu Thr Arg Thr Gly Wing Ser Leu Leu Arg Leu His Phe His Asp 50 55 60 Cys Phe Val Asn Gly Cys Asp Ala Ser He Leu Leu Asp Asp Thr Pro 65 70 75 80 Being Phe Val Gly Glu Lys Thr Ala Wing Pro Asn Asn Asn Ser Val Arg 85 90 95 Gly Phe Glu Val He Asp Arg He Lys Wing Ser Leu Glu Lys Glu Cys 100 105 110 Pro Gly Val Val Ser Cys Wing Asp He Val Wing Leu Wing Wing Arg Asp 115 120 125 Ser Val Val His Leu Gly Gly Pro Ser Trp Thr Val Ser Leu Gly Arg 130 135 140 Lys Asp Ser He Thr Wing Ser Arg Ser Leu Wing Asn Thr Ser He Pro 145 150 155 160 Pro Pro Thr Ser Asn Leu Ser Wing Leu He Thr Ser Phe Wing Ala Gln 165 170 175 Gly Leu Ser Val Lys Asn Met Val Wing Leu Ser Gly Ser His Thr He 180 185 190 Gly Leu Wing Arg Cys Thr Ser Phe Arg Arg Arg He Tyr Asn Asp Ser 195 200 205 Asn He Asp Thr Ser Phe Ala His Lys Leu Gln Lys He Cys Pro Arg 210 215 220 He Gly Asn Asp Ser Val Leu Gln Arg Leu Asp He Gln Thr Pro Thr 225 230 235 240 Phe Phe Asp Asn Leu Tyr Tyr His Asn Leu Leu Gln Lys Lys Gly Leu 245 250 255 Leu His Ser Asp Gln Glu Leu Phe Asn Gly Ser Ser Val Asp Ser Leu 260 265 270 Val Lys Lys Tyr Wing Cys Asp Thr Gly Lys Phe Phe Arg Asp Phe Wing 275 280 285 Lys Ala Met He Lys Met Ser Glu He Lys Pro Pro Lys Gly Ser Asn 290 295 300 Gly Gln He Arg Lys Asn Cys Arg Lys Val Asn 305 310 315 < 210 > 379 < 211 > 111 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 379 Met Pro Ser Arg His Pro He Trp Val He Val Wing He Wing Phe Val 1 5 10 15 Thr Wing Leu Gly Trp Gly Ser Wing Being Wing Gln Leu Ser Thr Asn Phe 25 30 Tyr Ser Lys Ser Cys Pro Asn Val Leu Ser Thr Val Lys Ser Val Val 40 45 Arg Ser Ala Val Ser Lys Glu Arg Arg Met Gly Ala Ser Leu Leu Arg 50 55 .- 60 Leu Phe Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser He Leu 65 70 75 80 Leu Asp Asp Thr Ser Ser Phe Gln Gly Glu Lys Thr Wing Gly Pro Asn 85 90 95 Asn Lys Ser Leu Arg Gly Tyr Asn Val He Asp Arg He Lys Ser 100 105 110 < 210 > 380 < 211 > 116 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 380 Met Gln Phe Thr Phe Be Wing Wing Phe Leu Wing Leu Val Thr Val Wing 1 5 10 15 Wing Wing Met Pro Thr Lys Arg Wing Wing Cys Ser Asn Gly Arg Thr Wing 25 30 Thr His Wing Ser Cys Cys Val Trp Phe Asp Val Leu Asp Asp He Gln 40 45 Glu Asn Leu Phe Asp Gly Gly Glu Cys Gly Glu Glu Thr His Glu Ser 50 55 60 Leu Arg Leu Thr Phe His Asp Wing He Gly Phe Ser Pro Ser Leu Phe 65 70 75 80 Leu Glu Gly Lys Phe Gly Gly Leu Gly Wing Asp Gly Ser He Met Wing 85 90 95 Hi-S Ser Asp He Glu Thr Val Phe Pro Wing Asn Asn Gly He Asp Asp 100 105 110 He Val Asp Ala 115 < 210 > 381 < 211 > 308 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 381 Met Wing Being Arg Phe Being Being Phe Val Leu Val Being Phe Leu Val He 1 5 10 15 Ala Ala Ser His Val His Val Thr Ser Ser Ala Ala Leu Val Lys Gly 25 30 Leu Ser Trp Ser Phe Tyr Glu Lys Ser Cys Pro Lys Val Glu Ser Val 40 45 He Lys Lys His Leu Lys Lys Val Phe Glu Glu Asp He Gly Gln Ala 50 55 60 Wing Gly Leu Leu Arg Leu His Phe His Asp Cys Phe Val Lys Gly Cys 65 70 75 80 Asp Ala Ser Val Leu Leu Asp Gly Ser Ala Ser Gly Pro Ser Glu Gln 85 90 95 Asp Ala Pro Pro Asn Arg Be Leu Arg Pro Be Ala Phe Lys He He 100 105 110 Asp Asp Leu Arg Glu Leu Val Asp Lys Lys Cys Gly Arg Val Val Ser 139 115 120 125 Cys Ala Asp He Ala Ala Ala He Ala Ala Arg Asp Ser Val Val Leu Ser 130 135 140 Gly Gly Pro Glu Tyr Asp Val Pro Leu Gly Arg Arg Asp Gly Leu Thr 145 150 155 160 Phe Ala Thr Gln Asn Val Thr Leu Glu Asn L.eu Pro Ala Pro Thr Glu 165 170 175 Asn Ala Ser Ala He Leu Ser Ala Leu Ala Lys Lys Asn Leu Asp Ala 180 185 190 Thr Asp Val Val Ala Leu Ser Gly Gly His Thr He Gly Leu Gly His 195 200 205 Cys Thr Ser Phe Glu Asn Arg Leu Tyr Pro Thr Gln Asp Pro Thr Met 210 215 220 Glu Lys Thr Phe Ala His Asp Leu Lys Gly Val Cys Pro Thr Thr Asn 225 230 235 240 Be Thr Asn Thr Thr Val Leu Asp He Arg Ser Pro Asn Arg Phe Asp 245 250 255 Asn Lys Tyr Phe Val Asp Leu Val Asn Arg Gln Gly Leu Phe Thr Ser 260 265 270 Asp Gln Asp Leu Tyr Glu Asp Pro Thr Thr Arg Asp He Val Thr Ser 275 280 285 Phe Ala Glu Asp Gln Glu Leu Phe Phe Glu Lys Phe Val Leu Ala Met 290 295 300 Thr Lys Met Gly 305 < 210 > 382 < 211 > 98 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 382 Met Phe Leu Lys Tyr Leu Ser Gly Ala Leu Val Ser Leu Ala Thr He 1 5 10 15 Arg Gly Val Cys Gly Ala Be Ala Pro Met Arg Arg Ala Thr Cys Ala 25 30 Gly Gly Gln Thr Val Lys Asn Wing Wing Cys Cys Wing Trp Phe Pro Val 40 45 Leu Asp Asp He Arg Glu Asn Phe Phe Asp Asn Glu Cys Gly Asp Asp 50 55 60 Ala Ala Ala Ala Leu Arg Leu Ser Phe His Asp Ala He Gly Phe Ser 65 70 75 80 Arg Ser Lys Gly Gly Gly Gly Wing Asp Gly Ser He He Wing Phe Asn 85 90 95 Lys Thr < 210 > 383 < 211 > 119 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 383 Met Ala Phe Lys Leu Val Val Asn Leu Val Ser Leu Ala Leu Ala Val 1 5 10 15 Be Ala Wing Asn Phe Lys Arg Val Wing Cys Pro Gly Thr Thr Wing Thr 20 25 30 140 Ala Arg Asn Pro Ala Cys Cys Ala Phe Phe Ser Leu Arg Asp Asp Leu 40 45 Leu Thr Asn Leu Phe Gly Gly Val Cys Gly Glu Glu Ala His Glu Ser 50 55 60 Leu Arg Leu Ser Phe His Asp Wing He Wing Phe Ser Pro Wing Leu He 65 70 7.5 80 Arg Gln Gly Lys Pro Gly Gly Gly Gly Wing Asp Gly Ser Met He Thr 85 90 95 Phe Pro Asn Val Glu Pro Asn Phe Asn Wing Asn Asn Gly He He Asp 100 105 110 Ser Val Asp Phe Leu Thr Pro 115 < 210 > 384 < 211 > 138 < 212 > PRT < 213 > Eucalyptus grandis < 400 > 384 Ser Cys Pro Gly Thr Val Ser Cys Wing Asp He Leu Wing Leu Gly Wing 1 5 10 15 Gln Ala Ser Val Val Leu Ser Gly Gly Pro Ser Trp Arg Val Leu Ser 25 30 Gly Arg Arg Asp Ser Leu Thr Wing Asn Gln Wing Gly Wing Asn Thr Ser 40 45 He Pro Ser Pro Phe Asp Ser Leu Ala Asn Leu Thr Ser Lys Phe Ala 50 55 60 Wing Val Gly Leu Asp Thr Asn Asp Leu Val Thr Leu Ser Gly Wing His 65 70 75 80 Thr Phe Gly Arg Wing Gln Cys Arg Thr Phe Ser Pro Arg Leu Tyr Asn 85 90 95 Phe Asn Wing Ser Gly Ser Pro Asp Pro Thr He Ser Pro Pro Tyr Leu 100 '105 110 Thr Thr Leu Gln Gln Leu Cys Pro Gln Asn Gly Ser Gly Ser Val Leu 115 120 125 Ala Asn Leu Asp Pro Thr Thr Val Asn Thr 130 135 < 210 > 385 < 211 > 208 < 212 > PRT < 213 > Pinus radiata < 400 > 385 Met Lys His He Pro Gly Leu Thr Leu Gln Phe Gln Ser Val Leu He 1 5 10 15 Thr Gly Ala Ala Leu Phe Leu Trp He Gln Thr Ser Asp Ala Gln Asp 25 30 Cys Asn Gly Leu Ser His His Tyr Tyr Gln Lys Ser Cys Pro Asn Ala 40 45 Gln Ala He He Lys Ser Val Val Ser Asp Ala Val Lys Lys Glu Ala 50 55 60 Arg Met Ala Ala Ser Leu Leu Arg Leu His Phe His Asp Cys Phe Val 65 70 75 80 Gln Gly Cys Asp Wing Being He Leu Leu Asp Asp Thr Wing Being Phe Thr 85 90 95 Gly Glu Lys Thr Ala Leu Pro Asn Arg Asn Ser Val Arg Gly Phe Glu 141 100 105 110 Val Val Asp Lys He Lys Ser Lys Leu Glu Glu Wing Cys Pro Gly Val 115 120 125 Val Ser Cys Wing Asp He Leu Wing Val Wing Wing Arg Asp Being Val Gly 130 135 140 Phe Ser Val Gly Pro Tyr Trp Glu Val Leu Leu Gly Arg Arg Asp Ser 145 150 155 160 Lys Thr Wing Ser Lys Ser Gly Wing Asn Asn Asp He Pro Wing Pro Asn 165 170 175 Being Thr His Gln Thr Leu Glu Thr Lys Phe Asn Leu Lys Gly Leu Asn 180 185 190 Val Leu Asp Leu Val Ala Leu Ser Arg Ser His Asn Asn Arg Val Ser 195 200 205 < 210 > 386 < 211 > 202 < 212 > PRT < 213 > Pinus radiata < 400 > 386 Met Ala Thr Leu Gly He Pro Leu Gly Ser Leu Ser Leu Leu Leu Leu 1 5 10 15 Phe Phe Cys Cys Wing Gln Arg Ser Val Gly Leu Lys Glu Asn Tyr Tyr 25 30 Wing Thr Ser Cys Pro Arg Wing Glu His He Val Lys Glu Gln Val Tyr 40 45 Asn Leu Tyr Gln Glu His Gly Asn Thr Wing Val Ser Trp He Arg Leu 50 55 60 He Phe His Asp Cys He Val Gln Ser Cys Asp Ala Ser He Leu Leu 65 70 75 80 Asp Ser Ser Gly Asp Val Gln Thr Glu Lys Gln Ser Asp Arg Asn Phe 85 90 95 Gly Met Arg Asn Phe Lys Tyr Val Asp Thr He Lys Glu Wing He Glu 100 105 110 Val Glu Cys Pro Gly Val Val Ser Cys Ala Asp He He Val Leu Ala 115 120 125 Ala Lys Glu Ala Ala Ala Met Leu Gly Gly Pro Arg He Ala Val Lys 130 135 140 Thr Gly Arg Arg Asp Ser Arg Lys Ser Ser Ala Ala Val Val Asp Lys 145 150 155 160 Tyr Val Pro Leu His Asn Gly Ser He Ser Ser Leu Leu Ser Ala Phe 165 170 175 Wing Ser Val Gly He Asp Wing Glu Gly Wing Val Wing Leu Leu Gly Leu 180 185 190 He Leu He His Ser Val Leu His Tyr Thr 195 200 < 210 > 387 < 211 > 287 < 212 > PRT < 213 > Pinus radiata < 400 > 387 Met Lys Ser Phe Pro Cys He Ala Val He Val Phe He He Cys Ser 1 5 10 15 He Thr Asp Thr Val Asn Gly Lys Leu Ser Ser Thr Phe Tyr Asp Lys 20 25 30 142 Ser Cys Pro Lys Ala Leu Ser He Val Gln Ala Gly Val Lys Gln Ala 40 45 Val Ala Lys Glu Lys Arg Met Gly Ala Ser Leu Leu Arg Leu His Phe 50 55 60 His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser Val Leu Leu Asp Asn 65 70 7.5 80 Be Thr Thr Phe Thr Ser Glu Lys Tyr Ala Leu Pro Asn Asn Asn Ser 85 90 95 Wing Arg Gly Phe Glu Val He Asp Ser He Lys Ser Gln Leu Glu Asn 100 105 110 Wing Cys Thr Gly Val Val Ser Cys Wing Asp He Leu Thr He Ala Wing 115 120 125 Arg Asp Ser Val Val Gln Leu Gly Gly Pro Ser Trp Lys Val Met Leu 130 135 140 Gly Arg Arg Asp Being Thr Thr Wing Being Be Gly Wing Asn Asn Asn 145 150 155 160 He Pro Pro Pro Thr Ser Asn Leu Thr Lys Leu He Ser Leu Phe Gln 165 170 175 Wing Gln Gly Leu Ser Thr Lys Glu Met Val Wing Leu Ser Gly Gly His 180 185 190 Thr He Gly Gln Wing Gln Cys Lys Asn Phe Arg Wing His He Tyr Asn 195 200 205 Asp Thr Asn He Asp Thr Thr Tyr Wing Thr Ser Leu Arg Ser Lys Cys 210 215 220 Pro Ser Thr Thr Gly Ser Gly Asp Ser Asn Leu Ser Pro Leu Asp Tyr 225 230 235 240 Thr Thr Pro Thr Val Phe Asp Lys Asn Tyr Tyr Tyr Asn Leu Lys Ser 245 250 255 Lys Arg Gly Leu Leu His Ser Asp Gln Glu Leu Phe Asn Gly Gly Ser 260 265 270 Thr Asp Ser His Val Thr Lys Tyr Ala Ser Asn Gln Asn Thr Phe 275 280 285 < 210 > 388 < 211 > 161 < 212 > PRT < 213 > Pinus radiata < 400 > 388 Wing Asn Being Asn Leu Pro Being Pro Wing Being Ser Leu Being Thr Leu Met 1 5 10 15 Thr Ala Phe Gln Lys Gln Gly Leu Ser Thr Lys Asp Leu Val Ala Leu 25 30 Ser Gly Wing His Thr He Gly Gln Wing Arg Cys Thr Thr Phe Arg Thr 40 45 Arg He Tyr Asn Asp Thr Asn He Asn Wing Wing Phe Wing Thr Ser Wing 50 55 60 Lys Wing Asn Cys Pro Ser Thr Gly Gly Asp Asn Thr Leu Ser Pro Leu 65 70 75 80 Asp Val Leu Thr Pro Thr Thr Phe Asp Asn Lys Tyr Tyr Thr Asn Leu 85 90 95 Lys Ser Gln Lys Gly Leu Phe His Ser Asp Gln Glu Leu Phe Asn Gly 100 105 110 Gly Ser Thr Asp Ser Arg Val Ser He Tyr Ser Thr Ser Gln Ala He 115 120 125 Phe Phe Thr Asp Phe Ala Ala Ala Met Val Asn Met Gly Asn He Ser 130 135 140 143 Pro Leu Thr Gly Thr Asn Gly Glu He Arg Thr Asn Cys Arg Lys Val 145 150 155 160 Asn < 210 > 389 < 211 > 318 < 212 > PRT < 213 > Pinus radiata < 400 > 389 Met Arg Thr Leu Val Cys He Gly Leu Met Wing Val Phe Val Wing Phe 1 5 10 15 He His He Asn Ala Val Asn Gly Gln Leu Ser Ser Thr Phe Tyr Ala 25 30 Lys Ser Cys Pro Arg Leu Pro Ser He He Val Lys Ser Val Val Lys Gln 40 45 Wing Val Wing Lys Glu Lys Arg Met Gly Wing Ser Leu Val Arg Leu His 50 55 60 Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser He Leu Leu Asp 65 70 75 80 Asp Asn Wing Thr Phe Thr Gly Glu Lys Thr Wing Gly Pro Asn Wing Asn 85 90 95 Be Wing Arg Gly Phe Glu Val He Asp Be He Lys Thr Gln Val Glu 100 105 110 Ala Ala Cys Ser Gly Val Val Ser Cys Ala Asp He Leu Thr He Ala 115 120 125 Wing Arg Asp Ser He Val Glu Leu Gln Gly Pro Thr Trp Thr Val Met 130 135 140 Leu Gly Arg Arg Asp Ser Thr Thr Ala Ser Leu Ser Ala Ala Asn Asn 145 150 155 160 Asn He Pro Ser Pro Ala Be Ser Leu Ser Thr Leu He Ser Ser Phe 165 170 175 Gln Ala His Gly Leu Ser Thr Lys Asp Leu Val Ala Leu Ser Gly Ala 180 185 190 His Thr He Gly Gln Ser Arg Cys Wing Phe Phe Arg Thr Arg He Tyr 195 200 205 Asn Glu Thr Asn He Asn Wing Wing Phe Wing Thr Ser Val Lys Wing Asn 210 215 220 Cys Pro Ser Wing Gly Gly Asp Ser Asn Leu Ser Pro Leu Asp Wing Val 225 230 235 240 Thr Ser He Thr Phe Asp Asn Lys Tyr Tyr Ser Asn Leu Lys He Gln 245 250 255 Lys Gly Leu Leu His Ser Asp Gln Gln Leu Phe Asn Gly Gly Ser Thr 260 265 270 Asp Ser Gln Val Thr Ala Tyr Ser As Asn Gln Asn Ser Phe Phe He 275 280 285 Asp Phe Thr Wing Wing Met Val Lys Met Gly Asn He Ser Pro Leu Thr 290 295 300 Gly Thr Asn Gly Gln He Arg Lys Asn Cys Arg Lys Ser Asn 305 310 315 < 210 > 390 < 211 > 95 < 212 > PRT < 213 > Pinus radiata 144 < 400 > 390 Lys Leu Pro Lys Ser Gly Gly Asp Asn Asn Leu Ser Pro Leu Asp Leu 1 5 10 15 Leu Thr Pro Thr Thr Phe Asp Asn Lys Tyr Tyr Thr Asn Leu Lys Ser 25 30 Gln Lys Gly Leu Leu His Ser Asp Gln Gln Leu Phe Asn Gly Gly Ser 40 45 Wing Asp Ser Gln Val Thr Thr Tyr Ser Thr Thr Gln Ser Thr Phe Phe 50 55 60 Thr Asp Phe Ala Ala Ser Met Leu Asn Met Gly Asn He Ser Pro Leu 65 70 75 80 Thr Gly Thr Ser Gly Gln He Arg Lys Asn Cys Arg Lys Pro Asn 85 90 95 < 210 > 391 < 211 > 201 < 212 > PRT < 213 > Pinus radiata < 400 > 391 Met Thr Ser Phe Thr Ala Met Ala Ser Val Val Cys He Ala Leu Leu 1 5 10 15 Phe Phe Ser Thr Val Wing Phe Wing Gln Leu Asn Ser Thr Tyr Tyr Asp 25 30 Thr Ser Cys Pro Lys Leu Leu Wing Thr Val Lys Wing Ala Val Lys Thr 40 45 Wing Val Wing Asn Glu Lys Arg Met Gly Wing Ser Leu Leu Arg Leu His 50 55 60 Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser Val Leu Leu Asp 65 70 75 80 Asp Being Ser Leu Thr Gly Glu Lys Thr Ala Leu Pro Asn Asn Asn 85 90 95 Ser Leu Arg Gly Phe Asp Val He Asp Thr He Lys Ser Gln Vai Glu 100 105 110 Wing Val Cys Ser Gly He Val Ser Cys Wing Asp He Leu Wing He Thr 115 120 125 Wing Arg Asp Ser Val Val Glu Leu Gly Gly Pro Thr Trp Thr Val Leu 130 135 140 Leu Gly Arg Arg Asp Ser Ala Thr Ala Ser Leu Ser Ala Ala Asn Thr 145 150 155 160 Asn He Pro Pro Thr Ser Asn Leu Ser Gly Leu Ser Ser Phe 165 170 175 Gln Ala Gln Gly Leu Ser Thr Lys Asp Met He Val Leu Ser Gly Ala 180 185 190 His Thr He Gly Gln Wing Arg Cys Thr 195 200 < 210 > 392 < 211 > 120 < 212 > PRT < 213 > Pinus radiata < 400 > 392 Leu He Ser Ser Phe Thr Ala His Gly Leu Ser Thr Lys Asp Leu Gly 1 5 10 15 Wing Leu Ser Gly Wing His Thr He Gly Gln Wing Arg Cys Thr Thr Phe 20 25 30 145 Arg Ala Arg Val Tyr Asn Glu Be Asn He Asp Thr Ser Phe Ala Thr 40 45 Ser Val Lys Wing Asn Trp Pro Ser Wing Gly Gly Asp Asn Thr Leu Ser 50 55 60 Pro Leu Asp Leu Wing Thr Pro Thr Thr Phe Asp Asn Lys Tyr Tyr Thr 65 70 75 80 Asp Leu Arg Ser Gln Lys Gly Leu Leu His Ser Asp Gln Gln Met Phe 85 90 95 Be Gly Gly Be Thr Asn Be Gln Val Thr Thr Tyr Be Ser Asn Gln 100 105 110 Lys His Leu Leu Tyr Arg Leu Tyr 115 120 < 210 > 393 < 211 > 120 < 212 > PRT < 213 > Pinus radiata < 400 > 393 Lys Arg He Asn Phe His Leu Lys Glu Asp He Thr Gln Ala Wing Gly 1 5 10 15 Leu Leu Arg Val His Phe His Asp Cys Phe Val Gln Gly Cys Asp Gly 25 30 Ser Val Leu Leu Asp Gly Ser Ala Ser Gly Pro Ser Glu Gln Asp Ala 40 45 Pro Pro Asn Leu Thr Leu Arg Ala Lys Ala Phe Glu He He Asn Asp 50 55 60 He Lys Lys His Val Glu Lys Ala Cys Ser Gly Val Val Ser Cys Ala 65 70 75 80 Asp Leu Thr Ala Leu Ala Ala Arg Glu Ser Val Arg Ala Val Gly Gly 85 90 95 Pro Glu Tyr Arg Val Pro Leu Gly Arg Arg Asp Ser Leu Lys Phe Wing 100 105 110 Thr Arg Lys Val Thr Leu Ala Asn 115 120 < 210 > 394 < 211 > 266 < 212 > PRT < 213 > Pinus radiata < 400 > 394 Met Ala Be Phe Thr Ala Met Arg Ser Leu Ala Phe He Ala Leu Leu 1 5 10 15 Met Cys Ser Thr Val Wing Tyr Wing Gln Leu Being Wing Thr Phe Tyr Asn 25 30 Thr Ser Cys Pro Lys Leu Leu Ser Thr Val Gln Ala Wing Val Lys Gln 40 45 Wing Val Wing Asn Glu Lys Arg Met Gly Wing Ser Leu Leu Arg Leu His 50 55 60 Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser Val Leu Leu Asp 65 70 75 80 Asp Being Ser Thr Leu Thr Gly Glu Lys Thr Wing Val Pro Asn Asn Asn 85 90 95 Being Wing Arg Gly Phe Asp Val He Asp Thr He Lys Ser Gln Val Glu 100 105 110 Wing Val Cys Ser Gly Val Val Ser Cys Wing Asp He Leu Wing He Wing 146 115 120 125 Wing Arg Asp Ser Val Val Gln Leu Gly Gly Pro Thr Trp Thr Val Gln 130 135 140 Leu Gly Arg Arg Asp Ser Arg Thr Wing Ser Leu Ser Gly Wing Asn Asn 145 150 155 160 Asn He Pro Wing Pro Thr Ser Asn Leu Ser A-la Leu He Ser Leu Phe 165 170 175 Gln Ala Gln Gly Leu Ser Thr Lys Asp Met Val Val Leu Ser Gly Ala 180 185 190 His Thr He Gly Gln Wing Arg Cys Thr Ser Phe Arg Wing Arg He Tyr 195 200 205 Asn Glu Ser Asn He Asn Wing Wing Tyr Wing Thr Ser Leu Lys Thr Asn 210 215 220 Cys Pro Thr Thr Gly Ser Asp Asn Asn Leu Ser Pro Leu Asp Arg Val 225 230 235 240 Thr Pro Thr Thr Phe Asp He Asn Tyr Tyr Ser Asn Leu Arg Ser Gln 245 250 255 Lys Gly Leu Leu His Ser Asp Gln Gln Leu 260 265 < 210 > 395 < 211 > 323 < 212 > PRT < 213 > Pinus radiata < 400 > 395 Met Wing Tyr Leu Arg Lys Ser Phe Wing Cys He Wing Val Met Val Phe 1 5 10 15 He Val Cys Ser He Thr Asp Thr Val Asn Gly Gln Leu Ser Ser Thr 25 30 Phe Tyr Asp Lys Ser Cys Pro Thr Ala Leu Ser Val Val Lys Ala Ala 40 45 Val Lys Gln Ala Val Ala Asn Glu Lys Arg Met Gly Ala Ser Leu Leu 50 55 60 Arg Leu His Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser Val 65 70 75 80 Leu Leu Asp Asp Being Ser Thr He Thr Gly Glu Lys Thr Wing Asn Pro 85 90 95 Asn Ala Asn Be Ala Arg Gly Phe Asp Val He Asp Thr He Lys Ser 100 105 110 Asn Val Glu Lys Wing Cys Ser Gly Val Val Ser Cys Wing Asp He Leu 115 120 125 Wing He Wing Wing Arg Asp Ser Val Val Glu Leu Gly Gly Pro Ser Trp 130 135 140 Thr Val Met Leu Gly Arg Arg Asp Ser Thr Thr Wing Ser Lys Ser Gly 145 150 155 160 Wing Asn Being Asn He Pro Pro Pro Thr Being Being Leu Being Asn Leu He 165 170 175 Being Leu Phe Gln Wing Gln Gly Leu Being Wing Lys Glu Met Val Ala Leu 180 185 190 Ser Gly Gly His Thr He Gly Gln Wing Gln Cys Lys Asn Phe Arg Ala 195 200 205 His He Tyr Asn Glu Thr Asn He Asp Ser Ala Tyr Ala Thr Ser Leu 210 215 220 Arg Ser Lys Cys Pro Ser Thr Thr Gly Ser Gly Asp Ser Asn Leu Ser 225 230 235 240 Pro Leu Asp Tyr Met Thr Pro Thr Val Phe Asp Lys Asn Tyr Tyr Ser 147 245 250 255 sp Leu Lys Ser Gln Lys Gly Leu Leu His Ser Asp Gln Glu Leu Phe 260 265 270 sn Gly Gly Ser Thr Asp Ser Gln Val Thr Thr Tyr Wing Ser Asn Gln 275 280 285 Asn Thr Phe Phe Ser Asp Phe Ala Ala Ala Met Val Lys Met Gly Asn 290 295 300 He Lys Pro Leu Thr Gly Thr Ser Gly Gln He Pro Lys Asn Cys Arg 305 310 315 320 Lys Pro Asn < 210 > 396 < 211 > 223 < 212 > PRT < 213 > Pinus radiata < 400 > 396 Gln He Lys Ser Ala Leu Glu Lys Glu Cys Pro Lys Thr Val Ser Cys 1 5 10 15 Wing Asp He Leu Wing He Wing Being Arg Asp Being Val Val Leu Being Gly 25 30 Gly Leu Gly Trp Glu Val Leu Leu Gly Arg Arg Asp Ser Lys Ser Ala 40 45 Ser Leu Ser Gly Ser Asn Asn Asn He Pro Pro Pro Asn Ser Thr Leu 50 55 60 Gln Thr Leu Thr Thr Lys Phe Lys Leu Gln Gly Leu Asp Glu Val Asp 65 70 75 80 Leu Val Ser Leu Ser Gly Ser His Thr He Gly Leu Ser Arg Cys Thr 85 90 95 Being Phe Arg Gln Arg Leu Tyr Asn Gln Being Gly Asn Gly Leu Pro Asp 100 105 110 Phe Thr Leu Asn Arg Gly Tyr Tyr Ala Arg Leu Lys Ser Gly Cys Pro 115 120 125 Lys Ser Gly Gly Asp Asn Asn Leu Phe Pro Leu Asp Phe Val Thr Pro 130 135 140 Thr Lys Phe Asp Asn Tyr Tyr Phe Lys Ser Leu Leu Ser Gly Gln Gly 145 150 155 160 Leu Leu Asn Thr Asp Glu Glu Leu Phe Wing Lys Gly Ser Gly Lys Thr 165 170 175 Lys Glu Leu Val Lys Leu Tyr Ala Wing Asn Glu Glu Leu Phe Leu Lys 180 185 190 Gln Phe Ala Leu Ser Met Val Lys Met Gly Asn He Lys Pro Leu Thr 195 200 205 Gly Thr Val Gly Glu He Arg Val Asn Cys Arg Lys Val Asn Ser 210 215 220 < 210 > 397 < 211 > 351 < 212 > PRT < 213 > Pinus radiata < 400 > 397 Met Gly Lys Phe He Thr Ala Leu Ala Ser Val He Leu Cys Val Phe 1 5 10 15 Val He Tyr Gly Gly Wing Val Asn Wing Leu Pro Ser Pro Val Wing Gly 20 25 30 148 Leu Ser Trp Thr Phe Tyr Ser Ser Cys Pro Ser Leu Glu Ser He 40 45 Val Trp Glu Arg Met Glu Wing Tyr Leu Ser Wing Asp He Thr Gln Wing 50 55 60 Wing Gly Leu Leu Arg Leu His Phe His Asp Cys Phe Val Gln Gly Cys 65 70 75 80 Asp Gly Ser Val Leu Leu Asn Wing Thr Ser Gly Gllu Gln Thr Ala Pro 85 90 95 Pro Asn Leu Ser Leu Arg Ala Gln Ala Leu Lys He He Asn Asp He 100 105 110 Lys Glu Asn Val Glu Wing Wing Cys Ser Gly He Val Ser Cys Wing Asp 115 120 125 He Val Thr Leu Ala Wing Arg Asp Ser Val Val Met Wing Gly Gly Pro 130 135 140 Phe Tyr Pro Leu Pro Leu Gly Arg Arg Asp Ser Leu Thr Phe Ala Asn 145 150 155 160 Arg Ser Thr Val Leu Wing Asn Leu Pro Ser Pro Thr Ser Asn Val Thr 165 170 175 Gly Leu He Ser Val Leu Gly Pro Lys Gly Leu Asn Phe Thr Asp Leu 180 185 190 Val Ala Leu Ser Gly Gly His Thr He Gly Arg Ser Asn Cys Ser Ser 195 200 205 Phe Asp Asn Arg Leu Tyr Asn Ser Thr Thr Gly Thr Gln Met Arg Asp 210 215 220 Pro Thr Met Asp Gln Ser Phe Ala Lys Asn Leu Tyr Leu Thr Cys Pro 225 230 235 240 Thr Ser Thr Thr Val Asn Thr Thr Lys Leu Asp He Arg Thr Pro Asn 245 250 255 Val Phe Asp Asn Lys Tyr Tyr Val Asp Leu Leu Asn Arg Gln Thr Leu 260 265 270 Phe Thr Ser Asp Gln Thr Leu Tyr Thr Asp Thr Arg Thr Arg Asp He 275 280 285 Val He Asn Phe Wing Val Asn Gln Ser Leu Phe Phe Glu Gln Phe Val 290 295 300 Leu Ser Met Leu Lys Met Gly Gln Leu Asp Val Leu Thr Gly Ser Glu 305 310 315 320 Gly Glu He Arg Lys Asn Cys Trp Wing Wing Asn Pro Ser Thr Phe Ser 325 330 335 He Met Asp Pro Glu Wing Being Gln Glu Ser Thr Ser Tyr Ser Met 340 345 350 < 210 > 398 < 211 > 103 < 212 > PRT < 213 > Pinus radiata < 400 > 398 Leu Asn Phe Ala Leu He Phe Cys Val Ser Ser Phe Ser Ser Gln Tyr 1 5 10 15 Asp Asp Glu Asp Ser Ser Val Valp Tr Val Asn Gly Cys Val Cys Ser 25 30 Leu His Thr Tyr Lys Arg Leu Asn Gly Gln Leu Ser Ser Thr Phe Tyr 40 45 Ala Lys Ser Cys Pro Arg Leu Pro Be He Val Lys Ser Val Val Lys 50 55 60 Gln Ala Val Ala Lys Glu Lys Arg Met Gly Ala Ser Leu Val Arg Leu 65 70 75 80 149 is Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser He Leu Leu 85 90 95 sp Asp Asn Wing Thr Phe Thr 100 < 210 > 399 < 211 > 157 < 212 > PRT < 213 > Pinus radiata < 400 > 399 He Asp Ala He Lys Thr Ala Leu Glu Ser Ser Cys Asn Ala Thr Val 1 5 10 15 Ser Cys Wing Asp He Leu Wing He Wing Wing Arg Asp Ser Val Tyr Leu 25 30 Ser Gly Gly Pro Tyr Trp Gln Val Gln Met Gly Arg Arg Asp Gly Thr 40 45 Thr Ala Ser Lys Ser Ala Ala Asn Ala Asp He Pro Ser Pro He Glu 50 55 60 Ser Leu Gly Ser Leu He Ser Gln Phe Gln Gly Val Gly Leu Ser Val 65 70 75 80 His Asp Leu Val Val Leu Ser Gly Ala His Thr He Gly Arg Ala His 85 90 95 Cys Gly Thr Phe Ser Being Arg Leu Phe Asn Phe Being Gly Being Asn Being 100 105 110 Wing Asp Pro Thr He His Gln Ser Leu Leu Gln Asp Leu His Ser Leu 115 120 125 Cys Pro Asp Gly Asn Ser Asp Pro Asn Thr Leu Ala Pro Leu Asp Pro 130 135 140 Val Thr Lys Asp Lys Leu His Asn Val Tyr Phe Arg Asn 145 150 155 < 210 > 400 < 211 > 117 < 212 > PRT < 213 > Pinus radiata < 400 > 400 Leu Ser Val Thr Asp Val Val Ala Leu Ser Gly Gly His Thr He Gly 1 5 10 15 Arg Ala Arg Cys Thr Val Phe Ser Gly Arg Leu Tyr Asn Phe Ser Gly 25 30 Thr Gly Ser Pro Asp Pro Thr Leu Asn Ser Ser Tyr Leu Ser Thr Leu 40 45 Gln Ser Thr Cys Pro Gln Asn Gly Ser Wing Asn Thr Leu Thr Ser Leu 50 55 60 Asp Pro Gly Thr Pro Asn Thr Phe Asp Asn Asn Tyr Phe Wing Asn Leu 65 70 75 80 Gln He Glu Met Gly Leu Leu Gln Ser He Lys Asn Phe Phe Pro His 85 90 95 Arg Glu Gln Ala Pro Ser Leu Leu Ser Met He Met Pro Val Val Asn 100 105 110 Pro He Ser Ser Ser Ser 115 < 210 > 401 < 211 > 143 150 < 212 > PRT < 213 > Pinus radiat .a < 400 > 401 Met Wing Wing Leu Met Lys Ser Wing Cys He Wing Val He Val Phe 1 5 10, _, 15 He Val Cys Ser He Asn Asn Thr Val His Gly Gln Leu Ser Ser Thr 20 25 30 Phe Tyr Asp Lys Ser Cys Pro Thr Val Leu Ser Val Val Lys Ala Gly 35 40 45 Val Lys Gln Ala Val Ala Lys Glu Gln Arg Met Gly Ala Ser Leu Leu 50 55 60 Arg Leu His Phe His Asp Cys Phe Val Asn Gly Cys Asp Gly Ser Val 65 70 75 80 Leu Leu Asp Asp Being Ser Lys He Thr Gly Glu Lys Thr Wing He Pro 85 90 95 Asn Wing Asn Being Wing Arg Gly Phe Asp Val He Asp Thr He Lys Ser 100 105 110 Gln Val Glu Lys Ser Cys Ser Wing Val Val Ser Cys Ser Asp He Leu 115 120 125 Wing He Wing Wing Arg Asp Ser Val Val Glu Leu Gly Gly Pro Ser 130 135 140 < 210 > 402 < 211 > 1474 < 212 > DNA < 213 > Pinus radiata < 400 > 402 gaattcggca cgagaaaacg tccatagctt ccttgccaac tgcaagcaat acagtacaag 60 agccagacga tcgaatcctg tgaagtggtt ctgaagtgat gggaagcttg gaatctgaaa 120 aggatatgca aaactgttac ccagtggcca gctcgggact tacacttaca cttgtcccct 180 atctcagaaa gaaaggacct gaggatgtaa ttgtaaaggt catttactgc ggaatctgcc 240 actctgattt agttcaaatg cgtaatgaaa tggacatgtc tcattaccca atggtccctg 300 ggcatgaagt ggtggggatt gtaacagaga ttggcagcga ggtgaagaaa ttcaaagtgg 360 gagagcatgt aggggttggt tgcattgttg ggtcctgtcg cagttgcggt aattgcaatc 420 agagcatgga agcaagagga acaatactgc tttggaccta caatgatgtg aaccatgacg 480 gcacacctac tcagggcgga tttgcaagca gtatggtggt tgatcagatg tttgtggttc 540 gaatcccgga gaatcttcct ctggaacaag cggcccctct gttatgtgca ggggttacag 600 ttttcagccc aatgaagcat ttcgccatga cagagcccgg gaagaaatgt gggattttgg 660 gtttaggagg cgtggggcac atgggtgtca agcctttgga agattgccaa ctccacgtga 720 cggttatcag ttcgtctgat aaaaagaaag aagaagccat ggaagtcctc ggcgccgatg 780 cttatcttgt tagcaaggat actgaaaaga tgatggaagc agcagagagc ctagattaca 840 taatggacac cattccagtt gctcatcctc tggaaccata tcttgccctt ctgaagacaa 900 atggaaagct agtgatgctg ggcgttgttc cagagccgtt gcacttcgtg actcctctct 960 taatacttgg gagaaggagc atagctggaa gtttcattgg cagcatggag gaaacacagg 1020 tttctgtgca aaactctaga gagaagaagg tatcatcgat gattgaggtt gtgggcctgg 1080 actacatcaa cacggccatg gaaaggttgg agaagaacga tgtccgttac agatttgtgg 1140 tggatgttgc tagaagcaag ttggataatt agtctgcaat caatcaatca gatcaatgcc 1200 tgcatgcaag atgaatagat ctggactagt agcttaacat gaaagggaaa ttaaattttt 1260 atttaggaac tcgatactgg tttttgttac tttagtttag cttttgtgag gttgaaacaa 1320 ttcagatgtt tttttaactt gtatatgtaa agatcaattt ctcgtgacag taaataataa 1380 tccaatgtct tctgccaaat taatatatgt attcgtattt aaaaaaaaaa aaaaaaaaaa 1440 aaaaaaaaaa ttatatgaaa aaaaaaaaaa aaaa 1474 < 210 > 403 151 < 211 > 414 < 212 > DNA < 213 > eucalyptu-i grandis < 400 > 403 gaattcggta cacgctcgac gaaatcgata ccccgggttc caaagcaaca agcttggatc 60 cattgaactc tctctctctc tctctctctc tctctctctc tcccccaccc ccccttccca 120 catacagaca accccaccca agtagatacg cgcacacaga agaagaaaag atgggggttt 180 caatgcagtc aatcgcacta gcgacggttc tggccgtcct aacgacatgg gcgtggaggg 240 cggtgaactg ggtgtggctg aggccgaaga ggctcgagag gcttctgaga cagcaaggtc 300 tctccggcaa gtcctacacc ttcctggtcg gcgacctcaa ggagaacctg cggatgctca 360 aggaagccaa gtccaagccc atcgccgtct ccgatgacat caagcctcgt CTCT 414 152

Claims (19)

102 CLAIMS:
1. An isolated polynucleotide comprising a nucleotide sequence that is selected from the group consisting of: (1) the sequences mentioned in SEQ ID NOS: 89-266 and 350-375; (2) the complements of the sequences mentioned in SEQ ID NOS: 89-266 and 305-375; (3) inverse complements of the sequences disclosed in SEQ ID NOS: 89-266 and 350-375; (4) reverse sequences of the sequences mentioned in SEQ ID NOS: 89-266 and 350-375; (5) nucleotide sequences that produce an Expectation ("E") value of 0.01 or less when compared to a sequence mentioned in (1) - (4) above; (6) nucleotide sequences having at least 50 percent identity for a nucleotide sequence mentioned in (1) - (4) above-cited; (7) nucleotide sequences that hybridize to a sequence mentioned in (1) - (4) above cited under stringent hybridization conditions; (8) nucleotide sequences that are 200 numbers of a sequence mentioned in (1) - (4) above-cited; (9) nucleotide sequences that are 100-mers of a sequence mentioned in (1) - (4) above-cited; (10) nucleotide sequences that are 40-mers of a sequence mentioned in (1) - (4) above cited; (11) - 103 - nucleotide sequences that are 20-mers of a sequence mentioned in (1) - (4) - above-cited; (12) nucleotide sequences that are degeneratively equivalent to a sequence mentioned in (1) - (4) above-cited; and (13) nucleotide sequences which are allelic variants to a sequence mentioned in (1) - (4) above.
2. An isolated oligonucleotide test probe or primer comprising at least 10 contiguous residues complementary to 10 contiguous residues of a nucleotide sequence mentioned in claim 1.
3. A kit comprising a plurality of oligonucleotide test probes or primers of claim 2.
4. A storage medium having a plurality of polynucleotides registered thereon, at least one of the polynucleotides comprises a nucleotide sequence mentioned in claims 1 or 2.
5. A construct comprising a The polynucleotide of claim 1.
6. A transgenic cell comprising a construct according to claim 5. - 104 -
7. A construct comprising, in the 5'-3 'direction: (a) a sequence of the gene promoter; (b) a polynucleotide sequence comprising at least one of the following: (1) a polynucleotide coding for at least a functional portion of a polypeptide encoded by a nucleotide sequence of claim 1; and (2) a polynucleotide comprising a non-coding region of a gene encoding a polypeptide encoded by a nucleotide sequence that is selected from the group consisting of sequences recited in claim 1; and (c) a gene termination sequence.
The construct of claim 7, wherein the polynucleotide is in a sense orientation.
The construction of claim 1, wherein the polynucleotide is in an antisense orientation.
The construct of claim 7, wherein the gene promoter sequence is functional in a plant host to provide transcription in xylem.
11. A transgenic plant cell comprising a construct of claim 7. - 105
12. A plant comprising a transgenic plant cell according to claim 11, or a part or propagule or progeny thereof.
13. A method for modulating one or more of the lignin content, lignin composition and lignin structure of a plant, which comprises stably incorporating into the plant genome a polynucleotide of claim 1.
14. The method of Claim 20 wherein the plant is selected from the group consisting of the eucalyptus and pine species.
The method of claim 20 which comprises stably incorporating into the plant genome a construct of claim 7.
16. A method for producing a plant having one or more of the altered lignin content, the altered lignin composition and the altered lignin structure, comprising: (a) transforming a plant cell with a construct of claim 7 to provide a transgenic cell; and (b) cultivating the transgenic cell under conditions that lead to regeneration and growth of the mature plant. - 106 -
17. A method for modifying the activity of a polypeptide involved in a biosynthetic lignin access pathway in a plant comprising stably incorporating into the plant genome a construct of claim 7.
18. An isolated polypeptide comprising an amino acid sequence that is selected from the group consisting of: (a) the sequences of SEQ ID NO: 267-349 and 376-401; (b) sequences that have at least 50 percent identity to a sequence of (a); sequences having at least 70 percent identity to a sequence of (a); and sequences that have at least 90 percent identity to a sequence of (a).
19. An isolated polypeptide encoded by a polypeptide sequence isolated from claim 1.
MXPA/A/2001/003475A 1998-10-09 2001-04-05 Materials and methods for the modification of plant lignin content MXPA01003475A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09169789 1998-10-09
US60/143,811 1999-07-14

Publications (1)

Publication Number Publication Date
MXPA01003475A true MXPA01003475A (en) 2002-06-05

Family

ID=

Similar Documents

Publication Publication Date Title
AU777237B2 (en) Materials and methods for the modification of plant lignin content
US5952486A (en) Materials and methods for the modification of plant lignin content
US20030131373A1 (en) Materials and methods for the modification of plant lignin content
Blázquez et al. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose‐6‐phosphate synthase
Toguri et al. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA
Holton et al. Cloning and expression of flavonol synthase from Petunia hybrida
Brugliera et al. Isolation and characterization of a flavonoid 3′‐hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida
Nakamura et al. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene
Meldgaard Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis
Kleines et al. Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.)
CA2275885C (en) Transgenic potatoes having reduced levels of alpha glucan l- or h-type tuber phosphorylase activity with reduced cold-sweetening
US20040199943A1 (en) Coffee plant with reduced alpha-D-galactosidase activity
AU2008255238B2 (en) Compositions isolated from forage grasses and methods for their use
US7154027B2 (en) Compositions isolated from forage grasses and methods for their use
Tapernoux-Luthi et al. Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase, from common bugle leaves
AU2002360228A1 (en) Compositions from the grasses lolium perenne and festuca arundinacea
US6653528B1 (en) Pinus radiata nucleic acids encoding O-methyl transferase and methods for the modification of plant lignin content therewith
Taliercio et al. Isolation, characterization and expression analyses of two cell wall invertase genes in maize
HUT73468A (en) Method of improving the quality of stored potatoes
AU754464B2 (en) Genes encoding proteins having transglycosylation activity
US6204434B1 (en) Materials and methods for the modification of plant lignin content
MXPA01003475A (en) Materials and methods for the modification of plant lignin content
AU756359B2 (en) Materials and methods for the modification of plant lignin content
AU733388B2 (en) Materials and methods for the modification of plant lignin content
AU2003203517B2 (en) Materials and methods for the modification of plant lignin content