AU2003203517B2 - Materials and methods for the modification of plant lignin content - Google Patents

Materials and methods for the modification of plant lignin content Download PDF

Info

Publication number
AU2003203517B2
AU2003203517B2 AU2003203517A AU2003203517A AU2003203517B2 AU 2003203517 B2 AU2003203517 B2 AU 2003203517B2 AU 2003203517 A AU2003203517 A AU 2003203517A AU 2003203517 A AU2003203517 A AU 2003203517A AU 2003203517 B2 AU2003203517 B2 AU 2003203517B2
Authority
AU
Australia
Prior art keywords
seq
sequence
linear
nucleic acid
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2003203517A
Other versions
AU2003203517A1 (en
Inventor
Leonard Nathan Bloksberg
Alistair Wallace Grierson
Ilkka Jaakko Havukkala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubicon Forests Holdings Ltd
ArborGen LLC
Original Assignee
Rubicon Forests Holdings Ltd
Genesis Research and Development Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU57975/01A external-priority patent/AU756359B2/en
Application filed by Rubicon Forests Holdings Ltd, Genesis Research and Development Corp Ltd filed Critical Rubicon Forests Holdings Ltd
Priority to AU2003203517A priority Critical patent/AU2003203517B2/en
Publication of AU2003203517A1 publication Critical patent/AU2003203517A1/en
Application granted granted Critical
Publication of AU2003203517B2 publication Critical patent/AU2003203517B2/en
Assigned to ARBORGEN, LLC, RUBICON FORESTS HOLDINGS LIMITED reassignment ARBORGEN, LLC Request for Assignment Assignors: GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED, RUBICON FORESTS HOLDINGS LIMITED
Priority to AU2007201050A priority patent/AU2007201050B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

Regulation 3.2 Revised 2/98
AUSTRALIA
Patents Act, 1990
ORIGINAL
COMPLETE SPECIFICATION TO BE COMPLETED BY THE APPLICANT NAME OF APPLICANTS: ACTUAL INVENTORS: ADDRESS FOR SERVICE: INVENTION TITLE: DETAILS OF ASSOCIATED APPLICATION NO(S): Genesis Research Development Corporation Limited and Rubicon Forests Holdings Limited LEONARD NATHAN BLOKSBERG; ALISTAIR WALLACE GRIERSON and ILKKA JAAKKO HAVUKKALA Peter Maxwell Associates Level 6 Pitt Street SYDNEY NSW 2000 MATERIALS AND METHODS FOR THE MODIFICATION OF PLANT LIGNIN CONTENT Divisional of Australian Patent Application No. 756,359 (57,975/01) filed on 10 August 2001 which is a divisional of Australian Patent Application No. 733,388 (44,036/97) filed on 10 September 1997 which claims priority from US 08/713,000 filed 11 September 1996 The following statement is a full description of this invention including the best method of performing it known to us:m:\docs\971240\031255.doc MATERIALS AND METHODS FOR THE MODIFICATION OF PLANT LIGNIN CONTENT Technical Field of the Invention This invention relates to the field of modification of lignin content and composition in plants. More particularly.., this invention relates to enzymes involved in the lignin biosynthetic pathway and nucleotide sequences encoding such enzymes.
Background of the Invention Lignin is an insoluble polymer which is primarily responsible for the rigidity of plant stems. Specifically, lignin serves as a matrix around the polysaccharide components of some plant cell walls. The higher the lignin content, the more rigid the plant. For example, tree species synthesize large quantities of lignin, with lignin constituting between 20% to 30% of the dry weight of wood. In addition to providing rigidity, lignin aids in water transport within plants by rendering cell walls hydrophobic and water impermeable. Lignin also plays a role in disease resistance of plants by impeding the penetration and propagation of pathogenic agents.
The high concentration of lignin in trees presents a significant problem in the paper industry wherein considerable resources must be employed to separate lignin from the cellulose fiber needed for the production of paper. Methods typically employed for the removal of lignin are highly energy- and chemical-intensive, resulting in increased costs and increased levels of undesirable waste products. In the U.S. alone, about 20 million tons of lignin are removed from wood per year.
Lignin is largely responsible for the digestibility, or lack thereof, of forage crops, with small increases in plant lignin content resulting in relatively high decreases in digestibility. For example, crops with reduced lignin content provide more efficient forage for cattle, with the yield of milk and meat being higher relative to the amount of forage crop consumed. During normal plant growth,-the increase in dry matter content is accompanied by a corresponding decrease in digestibility. When deciding on the optimum time to harvest forage crops, farmers must therefore chose between a high yield of less digestible material and a lower yield of more digestible material.
I
For some applications, an increase in lignin content is desirable since increasing the lignin content of a plant would lead to increased mechanical strength of wood, changes in its color and increased resistance to rot. Mycorrhizal species composition and abundance may also be favorably manipulated by modifying lignin content and structural composition.
As discussed in detail below, lignin is formed by polymerization of at least three different monolignols which are synthesized in a multistep pathway, each step in the pathway being catalyzed by a different enzyme. it has been shown that manipulation of the number of copies of genes encoding certain enzymes, such as cinnamvl alcohol dehydrogenase (CAD) and caffeic acid 3-O-methyllransferase (COMT) results in modification of the amount of lignin produced: see, for example. U.S. Patent No.
5,451,514 and PCT publication no. WO 94/23044. Funhermore, it has been shown that antisense expression of sequences encoding CAD in poplar leads to the production of lignin having a modified composition (Grand, C. et al. Planta (Berl.) 163:232-237 (1985)).
While DNA sequences encoding some of the enzymes involved in the lignin biosynthetic pathway have been isolated for certain species of plants, genes encoding many of the enzymes in a wide range of plant species have not yet been identified.
Thus there remains a need in the art for materials useful in the modification of lignin content and composition in plants and for methods for their use.
Summary of the Invention Briefly, the present invention provides isolated DNA sequences obtainable from eucalyptus and pine which encode enzymes involved in the lignin biosynthetic pathway, DNA constructs including such sequences, and methods for the use of such constructs. Transgenic plants having altered lignin content and composition are also provided.
In a first aspect, the present invention provides isolated DNA sequences coding for the following enzymes isolated from eucalyptus and pine: cinnamate 4-hydroxylase (C4H), coumarate 3-hydroxylase (C3H), phenolase (PNL), O-methyl transferase (OMT), cinnamyl alcohol dehydrogenase (CAD), cinnamoyl-CoA reductase (CCR), phenylalanine ammonia-lyase (PAL), 4-coumarate:CoA ligase (4CL), coniferol 3 Sglucosyl transferase (CGT), coniferin beta-glucosidase (CBG), laccase (LAC) Z and peroxidase (POX), together with ferulate-5-hydroxylase (F5H) from eucalyptus. In one embodiment, the isolated DNA sequences comprise a nucleotide sequence selected from the group consisting of: coding 5 sequence recited in SEQ ID NO: 19 20 and 21; complements of the coding Ssequences recited in SEQ ID NO: 19, 20 and 21; reverse complements of the coding sequences recited in SEQ ID NO: 19, 20 and 21; reverse ci sequences of the coding sequences recited in SEQ ID NO: 19, 20 and 21; and sequences having at least 90% identity to a coding sequence recited in SEQ ID NO: 19, 20 and 21, and wherein the sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19, 20 and 21.
In a preferred embodiment, the isolated DNA sequences comprise a nucleotide sequence selected from the group consisting of: nucleotides 1-535 of SEQ ID NO: 1; nucleotides 46-671 of SEQ ID NO: 2; nucleotides 1-535 of SEQ ID NO: 3; nucleotides 290-949 of SEQ ID NO: 4; nucleotides 15-959 of SEQ ID NO: nucleotides 15-1454 of SEQ ID NO: 7; nucleotides 15-740 of SEQ ID NO: 8; nucleotides 108-624 of SEQ ID NO: 9; nucleotides 68-274 of SEQ ID NO: nucleotides 1-765 of SEQ ID NO: 11; nucleotides 1-384 of SEQ ID NO: 12; nucleotides 1-278 of SEQ ID NO: 13; nucleotides 14-472 of SEQ ID NO: 16; nucleotides 1-672 of SEQ ID NO: 17; nucleotides 15-469 of SEQ ID NO: 18; nucleotides 15-469 of SEQ ID NO: 19; nucleotides 1-341 of SEQ ID NO: nucleotides 15-387 of SEQ ID NO: 21; nucleotides 1-443 of SEQ ID NO: 22; nucleotides 15-607 of SEQ ID NO: 23; nucleotides 15-421 of SEQ ID NO: 24; nucleotides 1-760 of SEQ ID NO: 25; nucleotides 58-469 of SEQ ID NO: 26; nucleotides 15-495 of SEQ ID NO: 27; nucleotides 15-472 of SEQ ID NO: 28; nucleotides 13-396 of SEQ ID NO: 29; nucleotides 15-592 of SEQ ID NO: 16/11/06
ID
O 3a Snucleotides 15-468 of SEQ ID NO: 31; nucleotides 1-405 of SEQ ID NO: 32; Z nucleotides 1-380 of SEQ ID NO: 33; nucleotides 1-305 of SEQ ID NO: 34; nucleotides 15-693 of SEQ ID NO: 35; nucleotides 1-418 of SEQ ID NO: 36; nucleotides 15-777 of SEQ ID NO: 37; nucleotides 1-344 of SEQ ID NO: 38; nucleotides 1-341 of SEQ ID NO: 39; nucleotides 1-358 of SEQ ID NO: nucleotides 1-409 of SEQ ID NO: 41; nucleotides 1-515 of SEQ ID NO: 42; 0) nucleotides 1-409 of SEQ ID NO: 41; nucleotides 1-515 of SEQ ID NO: 42; nucleotides 15-471 of SEQ ID NO: 43; nucleotides 15-487 of SEQ ID NO: 44; iN nucleotides 108-664 of SEQ ID NO: 45; nucleotides 15-418 of SEQ ID NO: 46; nucleotides 65-479 of SEQ ID NO: 47; nucleotides 127-1785 of SEQ ID NO: 48; nucleotides 15-475 of SEQ ID NO: 49; nucleotides 288-801 of SEQ ID NO: nucleotides 51-711 of SEQ ID NO: 51; nucleotides 1-426 of SEQ ID NO: 52; nucleotides 1-1961 of SEQ ID NO: 56; nucleotides 1-1010 of SEQ ID NO: 57; nucleotides 15-741 of SEQ ID NO: 58; nucleotides 1-643 of SEQ ID NO: 59; nucleotides 15-441 of SEQ ID NO: 60; nucleotides 15-913 of SEQ ID NO: 61; nucleotides 15-680 of SEQ ID NO: 62; nucleotides 15-492 of SEQ ID NO: 63; nucleotides 15-524 of SEQ ID NO: 64; nucleotides 1-417 of SEQ DI NO: nucleotides 1-511 of SEQ ID NO: 66; nucleotides 176-609 of SEQ ID NO: 67; nucleotides 1-474 of SEQ ID NO: 68; nucleotides 1-474 of SEQ ID NO: 69; nucleotides 176-608 of SEQ ID NO: 70; nucleotides 15-1474 of SEQ ID NO: 71; nucleotides 15-1038 of SEQ ID NO: 72; nucleotides 1-372 of SEQ ID NO: 73; nucleotides 18-545 of SEQ ID NO: 74; nucleotides 40-463 of SEQ ID NO: nucleotides 32-435 of SEQ ID NO: 76; nucleotides 15-451 of SEQ ID NO: 77; nucleotides 1-374 of SEQ ID NO: 78; nucleotides 1-457 of SEQ ID NO: 79; nucleotides 1-346 of SEQ ID NO: 80; nucleotides 15-957 of SEQ ID NO: 81; nucleotides 40-452 of SEQ ID NO: 82; nucleotides 15-471 of SEQ ID NO: 83; nucleotides 1-338 of SEQ ID NO: 84; nucleotides 150-1229 of 16/11/06 SEQ ID NO: 85; nucleotides 1-1410 of SEQ ID NO: 86; nucleotides 1-687 of SEQ ID NO: 87; and nucleotides 1-688 of SEQ ID NO: 88.
In another aspect, the invention provides DNA constructs comprising a DNA sequence of the present invention, either alone, in combination with one or more of the inventive sequences or in combination with one or more known DNA sequences; together with transgenic cells comprising such constructs.
In a related aspect, the present invention provides DNA constructs comprising, in the direction, a gene promoter sequence; an open reading frame coding for at least a functional portion of an enzyme encoded by the inventive DNA sequences or variants thereof; and a gene termination sequence. The open reading frame may be orientated in either a sense or antisense direction. DNA constructs comprising a non-coding region of a gene coding for an enzyme encoded by the above DNA sequences or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided.
Preferably, the gene promoter and termination sequences are functional in a host plant. Most preferably, the gene promoter and termination sequences are those of the original enzyme genes but others generally used in the art, such as the Cauliflower Mosaic Virus (CMV) promoter, with or without enhancers, such as the Kozak sequence or Omega enhancer, and Agrobacterium tumefaciens nopalin synthase terminator may be usefully employed in the present invention. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues. In a preferred embodiment, the gene promoter sequence provides for transcription in xylem. The DNA construct may further include a marker for the identification of transformed cells.
7/03/01 In a further aspect, transgenic plant cells comprising the DNA constructs of the present invention are provided, together with plants comprising such transgenic cells, and fruits and seeds of such plants.
In yet another aspect, methods for modulating the lignin content and composition of a plant are provided, such methods including stably incorporating into the genome of the plant a DNA construct of the present invention. In a preferred embodiment, the target plant is a woody plant, preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus grandis and Pinus radiata. In a related aspect, a method for producing a plant having altered lignin content is provided, the method comprising transforming a plant cell with a DNA construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.
In yet a further aspect, the present invention provides methods for modifying the activity of an enzyme in a plant, comprising stably incorporating into the genome of the plant a DNA construct of the present invention. In a preferred embodiment, the target plant is a woody plant, preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus grandis and Pinus radiara.
The above-mentioned and additional features of the present invention and the manner of obtaining them will become apparent, and the invention will be best understood by reference to the following more detailed description, read in conjunction with the accompanying drawing.
Brief Description of the Figures Fig. 1 is a schematic overview of the lignin biosynthetic pathway.
Detailed Description Lignin is formed by polymerization of at least three different monolignols, primarily para-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. While these three types of lignin subunits are well known, it is possible that slightly different variants of these subunits may be involved in the lignin biosynthetic pathway in various plants. The relative concentration of these residues in lignin varies between different plant species and within species. In addition, the composition of lignin may also vary between different tissues within a specific plant. The three monolignols are derived from phenylalanine in a multistep process and are believed to be polymerized into lignin by a free radical mechanism.
Fig. I shows the different steps in the biosynthetic pathway for coniferyl alcohol together with the enzymes responsible for catalyzing each step. para-Coumaryl alcohol and sinapyl alcohol are synthesized by similar pathways. Phenylalanine is first deaminated by phenylalanine ammonia-lyase (PAL) to give cinnamate which is then hydroxylated by cinnamate 4-hydroxylase (C4H) to form p-coumarate. p-Coumarate is hydroxylated by coumarate 3-hydroxylase to give caffeate. The newly added hydroxyl group is then methylated by O-methyl transferase (OMT) to give ferulate which is conjugated to coenzyme A by 4-coumarate:CoA ligase (4CL) to form feruloyl-CoA.
Reduction of feruloyl-CoA to coniferaldehyde is catalyzed by cinnamoyl-CoA reductase (CCR). Coniferaldehyde is further reduced by the action of cinnamyl alcohol dehydrogenase (CAD) to give coniferyl alcohol which is then converted into its glucosylated form for export from the cytoplasm to the cell wall by coniferol glucosyl transferase (CGT). Following export, the de-glucosylated form of coniferyl alcohol is obtained by the action of coniferin beta-glucosidase (CBG). Finally, polymerization of the three monolignols to provide lignin is catalyzed by phenolase (PNL), laccase (LAC) and peroxidase (POX).
The formation of sinapyl alcohol involves an additional enzyme, hydroxylase (FSH). For a more detailed review of the lignin biosynthetic pathway, see: Whetton, R. and Sederoff, The Plant Cell, 7:1001-1013 (1995).
Quantitative and qualitative modifications in plant lignin content are known to be induced by external factors such as light stimulation, low calcium levels and mechanical stress. Synthesis of new types of lignins, sometimes in tissues not normally lignified, can also be induced by infection with pathogens. In addition to lignin, several other classes of plant products are derived from phenylalanine, including flavonoids, coumarins, stilbenes and benzoic acid derivatives, with the initial steps in the synthesis of all these compounds being the same. Thus modification of the action of PAL, C4H and 4CL may affect the synthesis of other plant products in addition to lignin.
Using the methods and materials of the present invention, the lignin content of a plant can be increased by incorporating additional copies of genes encoding enzymes involved in the lignin biosynthetic pathway into the genome of the target plant. Similarly, a decrease in lignin content can be obtained by transforming the target plant with antisense copies of such genes. In addition, the number of copies of genes encoding for different enzymes-in the lignin biosynthetic pathway can be manipulated to modify the relative amount of each monolignol synthesized, thereby leading to the formation of lignin having altered composition. The alteration of lignin io composition would be advantageous, for example, in tree processing for paper, and may also be effective in altering the palatability of wood materials to rotting fungi.
In one embodiment, the present invention provides isolated complete or partial DNA sequences encoding, or partially encoding, enzymes involved in the lignin biosynthetic pathway, the DNA sequences being obtainable from eucalyptus and pine. Specifically, the present invention provides isolated DNA sequences encoding the enzymes CAD (SEQ ID NO: 1, in particular nucleotides 1 535; and SEQ ID NO: 30, in particular nucleotides 15 592), PAL (SEQ ID NO: 16, in particular nucleotides 14 472), C4H (SEQ ID NO: 17, in particular nucleotides 1 672), C3H (SEQ ID NO: 18, in particular nucleotides 15 469), F5H (SEQ ID NO: 19, in particular nucleotides 15 469; SEQ ID NO: 20, in particular nucleotides 1 341; and SEQ ID NO: 21, in particular nucleotides 15 387), OMT (SEQ ID NO: 22, in particular nucleotides 1 443; SEQ ID NO: 23, in particular nucleotides 15 607; SEQ ID NO: 24, in particular nucleotides 15 421; and SEQ ID NO: 25, in particular nucleotides 1 760), CCR (SEQ ID NO: 26, in particular nucleotides 58 469; SEQ ID NO: 27, in particular nucleotides 15 495; SEQ ID NO: 28, in particular nucleotides 15 472; and SEQ ID NO: 29, in particular nucleotides 13 396), CGT (SEQ ID NO: 31, in particular nucleotides 15 468; SEQ ID NO: 32, in particular nucleotides 1 405; and SEQ ID NO: 33, in particular nucleotides 1 380), CBG (SEQ ID NO: 34, in particular nucleotides 1 305), PNL (SEQ ID NO: in particular nucleotides 15 693; and SEQ ID NO: 36, in particular nucleotides 1 418), LAC (SEQ ID NO: 37, in particular nucleotides 15 777; SEQ ID NO: 38, in particular nucleotides 1 344; SEQ ID NO: 39, in particular nucleotides 1 341; SEQ ID NO: 40, in particular nucleotides 358; and SEQ ID NO: 41, in particular nucleotides 1 409) and POX (SEQ ID NO: 42, in particular nucleotides 1 515; SEQ ID NO: 43, in particular nucleotides 15 571; and SEQ ID NO: 44, in particular nucleotides 15 487) from Eucalyptus grandis; and the enzymes C4H (SEQ ID NO: 2, in particular nucleotides 46 671; SEQ ID NO: 3, in particular nucleotides 1 535; SEQ ID NO: 48, in particular nucleotides 127 1785; and SEQ ID NO: 49, in particular nucleotides 15 475), C3H (SEQ ID NO: 4, in particular nucleotides 290 949; SEQ ID NO: 50, in particular nucleotides 288 801; SEQ ID NO: 51, in particular nucleotides 51 711; and SEQ ID NO: 52, in particular nucleotides 1 426), PNL (SEQ ID NO: in particular nucleotides 15 959; and SEQ ID NO: 81, in particular nucleotides 15 957), CAD (SEQ ID NO: 7, in particular nucleotides 15 1454; and SEQ ID NO: 71, in particular nucleotides 15 1474), CCR (SEQ ID NO: 8, in particular nucleotides 15 740; SEQ ID NO: 58, in particular nucleotides 15 741; SEQ ID NO: 59, in particular nucleotides 1 643; SEQ ID NO: 60, in particular nucleotides 15 441; SEQ ID NO: 61, in particular nucleotides 15 913; SEQ ID NO: 62, in particular nucleotides 680; SEQ ID NO: 63, in particular nucleotides 15 492; SEQ ID NO: 64, in particular nucleotides 15 524; SEQ ID NO: 65, in particular nucleotides 1 417; SEQ ID NO: 66, in particular nucleotides 1 511; SEQ ID NO: 67, in particular nucleotides 176 609; SEQ ID NO: 68, in particular nucleotides 1 474; SEQ ID NO: 69, in particular nucleotides 1 474; and SEQ ID NO: 70, in particular nucleotides 176 608), PAL (SEQ ID NO: 9, in particular nucleotides 108 624; SEQ ID NO: 10, in particular nucleotides 68 274; SEQ ID NO: 11, in particular nucleotides 1 765; SEQ ID NO: 45, in particular nucleotides 108 664; SEQ ID NO: 46, in particular nucleotides 15 418; and SEQ ID NO: 47, in particular nucleotides 65 479), 4CL (SEQ ID NO: 12, in particular nucleotides 1 384; SEQ ID NO: 56, in particular nucleotides 1 1961; and SEQ ID NO: 57, in particular nucleotides 1 1010), CGT (SEQ ID NO: 72, in particular nucleotides 15 1038), CBG (SEQ ID NO: 73, in particular nucleotides 1 372; SEQ ID NO: 74, in particular nucleotides 18 545; SEQ ID NO: in particular nucleotides 40 463; SEQ ID NO: 76, in particular nucleotides 32 435; SEQ ID NO: 77, in particular nucleotides 15 451; SEQ ID NO: 78, in particular nucleotides 1 374; SEQ ID NO: 79, in particular nucleotides 1 457; and SEQ ID NO: 80, in particular nucleotides 1 346), LAC (SEQ ID NO: 82, in particular nucleotides 40 452; SEQ ID NO: 83, in particular nucleotides 15 471; and SEQ ID NO: 84, in particular nucleotides 1 338) and POX (SEQ ID NO: 13, in particular nucleotides 1 278; SEQ ID NO: 85, in particular nucleotides 150 1229; SEQ ID NO: 86, in particular nucleotides 1 1410; SEQ ID NO: 87, in particular nucleotides 1 687; and SEQ ID NO: 88, in particular nucleotides 1 688) from Pinus radiata. Complements of such isolated DNA sequences, reverse complements of such isolated DNA sequences and reverse sequences of such isolated DNA sequences, together with variants of such sequences, are also provided. DNA sequences encompassed by the present invention include cDNA, genomic DNA, recombinant DNA and wholly or partially chemically synthesized DNA molecules.
The definition of the terms "complement", "reverse complement" and "reverse sequence", as used herein, is best illustrated by the following example. For the sequence 5' AGGACC the complement, reverse complement and reverse sequence are as follows: 7 complement 3' TCCTGG reverse complement 3' GGTCCT reverse sequence 5' CCAGGA 3'.
As used herein, the term "variant" covers any sequence which exhibits at least about 50%, more preferably at least about 70% and, more preferably yet, at least about 90% identity to a sequence of the present invention. Most preferably, a "variant" is any sequence which has at least about a 99% probability of being the same as the inventive sequence. The probability for DNA sequences is measured by the computer algorithm FASTA (version 2.0u4, February 1996; Pearson W. R. et al..
Proc. Natl. Acad. Sci., 85:2444-2448, 1988), the probability for translated DNA sequences is measured by the computer algorithm TBLASTX and that for protein sequences is measured by the computer algorithm BLASTP (Altschul, S. F. et al. J.
Mol. Biol., 215:403-410, 1990). The term "variants" thus encompasses sequences wherein the probability of finding a match by chance (smallest sum probability) in a database, is less than about 1% as measured by any of the above tests.
Variants of the isolated sequences from other eucalyptus and pine species, as well as from other commercially important species utilized by the lumber industry, are contemplated. These include the following gymnosperms, by way of example: loblolly pine Pinus taeda, slash pine Pinus elliotti, sand pine Pinus clausa, longleaf pine Pinus palustrus, shortleaf pine Pinus echinata, ponderosa pine Pinus ponderosa, Jeffrey pine Pinus jeffrey, red pine Pinus resinosa, pitch pine Pinus rigida, jack pine Pinus banksiana, pond pine Pinus serotina, Eastern white pine Pinus strobus, Western white pine Pinus monticola, sugar pine Pinus lambertiana, Virginia pine Pinus virginiana, lodgepole pine Pinus contorta, Caribbean pine Pinus caribaea, P. pinaster, Calabrian pine P. brutia, Afghan pine P. eldarica, Coulter pine P. coulteri, European pine P.
nigra and P. sylvestris; Douglas-fir Pseudorsuga menziesii; the hemlocks which include Western hemlock Tsuga heterophylla, Eastern hemlock Tsuga canadensis, Mountain hemlock Tsuga mertensiana; the spruces which include the Norway spruce Picea abies, red spruce Picea rubens, white spruce Picea glauca, black spruce Picea mariana, Sitka spruce Picea sitchensis, Englemann spruce Picea engelmanni, and blue spruce Picea pungens; redwood Sequoia sempervirens; the true firs include the Alpine fir Abies lasiocarpa, silver fir Abies amabilis, grand fir Abies grandis, noble fir Abies procera, white fir Abies concolor, California red fir Abies magnifica, and balsam fir Abies balsamea, the cedars which include the Western red cedar Thuja plicata, incense -7cedar libocedrus decurrens, Northern white cedar Thujaoccidentalis, Port Orford cedar Chamaecyparis lawsoniona, Atlantic white cedar Chamaecyparis thyoides, Alaska yellow-cedar Chamaecyparis noorkatensis. and Eastern red cedar Huniperus virginiana; the larches which include Eastern larch Larix laricina, Western larch Larix occidentalis, European larch Larix decidua, Japanese larch Larix leptolepis, and Siberian larch Larix siberica; bold cypress Taxodium distichum and Giant sequoia Sequoia gigantea; and the following angiosperms, by way of example: Eucalyptus alba, E. bancroftii, E. botyroides, E. bridgesiana, E. calophylla, E.
camaldulensis. E. citriodora. E. cladocalyx, E. coccifera, E. curtisii, E. dalrympleana, E.
deglupta. E. delagatensis, E. diversicolor, E. dunnii, E. ficifolia, E. globulus, E.
gomphocephala. E gunnii, E. henryi, E. laevopinea, E. macarthurii, E. macrorhyncha.
E. maculata. E. marginata, E. megacarpa, E. melliodora. E. nicholii, E. nitens, E. novaanglica. E. obliqua, E. obrusiflora, E. oreades, E. pauciflora, E. polybractea, E. regnans, E. resinifera, E. robusta, E. rudis, E. saligna, E. sideroxylon, E. stuarriana, E. rerericomis, E. torelliana. E. umigera, E. urophylla, E. viminalis, E. viridis, E. wandoo and E.
youmanni.
The inventive DNA sequences may be isolated by high throughput sequencing of cDNA libraries such as those prepared from Eucalyptus grandis and Pinus radiata as described below in Examples 1 and 2. Alternatively, oligonucleotide probes based on the sequences provided in SEQ ID NO: 1-13 and 16-88 can be synthesized and used to identify positive clones in either cDNA or genomic DNA libraries from Eucalyptus grandis and Pinus radiata, or from other gymnosperms and angiosperms including those identified above, by means of hybridization or PCR techniques.
Probes can be shorter than the sequences provided herein but should be at least about 10, preferably at least about 15 and most preferably at least about nucleotides in length. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well known in the art. Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like.
In addition, the DNA sequences of the present invention maybe generated by synthetic means using techniques well known in the art. Equipment for automated synthesis of oligonucleotides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems Division (Foster City, CA) and may be operated according to the manufacturer's instructions.
-8- In one embodiment, the DNA constructs of the present invention include an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence of the present invention or a variant thereof. As used herein, the "functional portion" of an enzyme is that portion which contains the active site essential for affecting the metabolic step, i.e. the portion of the molecule that is capable of binding one or more reactants or is capable of improving or regulating the rate of reaction. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high substrate specificity. The term "enzyme encoded by a nucleotide sequence" as used herein, includes enzymes encoded by a nucleotide sequence which includes the partial isolated DNA sequences of the present invention.
For applications where amplification of lignin synthesis is desired, the open reading frame is inserted in the DNA construct in a sense orientation, such that transformation of a target plant with the DNA construct will lead to an increase in the number of copies of the gene and therefore an increase in the amount of enzyme. When down-regulation of lignin synthesis is desired, the open reading frame is inserted in the DNA construct in an antisense orientation, such that the RNA produced by transcription of the DNA sequence is complementary to the endogenous mRNA sequence. This, in turn, will result in a decrease in the number of copies of the gene and therefore a decrease in the amount of enzyme. Alternatively, regulation can be achieved by inserting appropriate sequences or subsequences DNA or RNA) in ribozyme constructs.
In a second embodiment, the inventive DNA constructs comprise a nucleotide sequence including a non-coding region of a gene coding for an enzyme encoded by a DNA sequence of the present invention, or a nucleotide sequence complementary to such a non-coding region. As used herein the term "non-coding region" includes both transcribed sequences which are not translated, and non-transcribed sequences within about 2000 base pairs 5' or 3' of the translated sequences or open reading frames.
Examples of non-coding regions which may be usefully employed in the inventive constructs include introns and 5'-non-coding leader sequences. Transformation of a target plant with such a DNA construct may lead to a reduction in the amount of lignin synthesized by the plant by the process of cosuppression, in a manner similar to that discussed, for example, by Napoli et al. (Plant Cell 2:279-290, 1990) and de Carvalho Niebel et al. (Plant Cell 7:347-358, 1995).
The DNA constructs of the present invention further comprise a gene promoter sequence and a gene termination sequence, operably linked to the DNA sequence to be transcribed, which control expression of the gene. The gene promoter sequence is generally positioned at the 5' end of the DNA sequence to be transcribed, and is employed to initiate transcription of the DNA sequence. Gene promoter sequences are generally found in the 5' non-coding region of a gene but they may exist in introns (Luehrsen, K. Mol. Gen. Genet. 225:81-93, 1991) or in the coding region, as for example in PAL of tomato (Bloksberg, 1991. Studies on the Biology of Phenylalanine Ammonia Lyase and Plant Pathogen Interaction. Ph.D. Thesis, Univ. of California, Davis, University Microfilms International order number 9217564). When the construct includes an open reading frame in a sense orientation, the gene promoter sequence also initiates translation of the open reading frame. For DNA constructs comprising either an open reading frame in an antisense orientation or a non-coding region, the gene promoter sequence consists only of a transcription initiation site having a RNA polymerase binding site.
A variety of gene promoter sequences which may be usefully employed in the DNA constructs of the present invention are well known in the art. The promoter gene sequence, and also the gene termination sequence, may be endogenous to the target plant host or may be exogenous, provided the promoter is functional in the target host.
For example, the promoter and termination sequences may be from other plant species, plant viruses, bacterial plasmids and the like. Preferably, gene promoter and termination sequences are from the inventive sequences themselves.
Factors influencing the choice of promoter include the desired tissue specificity of the construct, and the timing of transcription and translation. For example, constitutive promoters, such as the 35S Cauliflower Mosaic Virus (CaMV promoter, will affect the activity of the enzyme in all parts of the plant. Use of a tissue specific promoter will result in production of the desired sense or antisense RNA only in the tissue of interest. With DNA constructs employing inducible gene promoter sequences, the rate of RNA polymerase binding and initiation can be modulated by external stimuli, such as light, heat. anaerobic stress, alteration in nutrient conditions and the like. Temporally regulated promoters can be employed to effect modulation of the rate of RNA polymerase binding and initiation at a specific time during development of a transformed cell. Preferably, the original promoters from the enzyme gene in question, or promoters from a specific tissue-targeted gene in the organism to be transformed, such as eucalyptus or pine are used. Other examples of gene promoters which may be usefully employed in the present invention include, mannopine synthase (mas), octopine synthase (ocs) and those reviewed by Chua et al. (Science. 244:174- 181. 1989).
The gene termination sequence, which is located 3' to the DNA sequence to be to transcribed, may come from the same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art may be usefully employed in the present invention, such as the 3' end of the Agrobacterium tumefaciens nopaline synthase gene. However, preferred gene terminator sequences are those from the original enzyme gene or from the target species to be transformed.
The DNA constructs of the present invention may also contain a selection marker that is effective in plant cells, to allow for the detection of transformed cells containing the inventive construct. Such markers, which are well known in the art, typically confer resistance to one or more toxins. One example of such a marker is the NPTII gene whose expression results in resistance to kanamycin or hygromycin, antibiotics which is usually toxic to plant cells at a moderate concentration (Rogers et al. in Methods for Plant Molecular Biolonv, A. Weissbach and H. Weissbach. eds., Academic Press Inc., San Diego, CA (1988)). Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques well known in the art, such as Southern and Western blots.
Techniques for operatively linking the components of the inventive DNA constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Maniatis et al., (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). The DNA construct of the present invention may be linked to a vector having at least one replication system, for example, E. coli, whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined.
The DNA constructs of the present invention may be used to transform a variety of plants, both monocotyledonous grasses, corn, grains, oat, wheat and barley), dicotyledonous Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and Gymnosperms Scots pine (Aronen, Finnish Forest Res. Papers, vol. 595, 1996), white spruce (Ellis et al.. Biotechnoloev 11:94-92, 1993), larch (Huang et al., In Vitro Cell 27:201-207, 1991). In a preferred embodiment, the inventive DNA constructs are employed to transform woody plants, herein defined as a tree or shrub whose stem lives for a number of years and increases in diameter each year by the addition of woody tissue. Preferably the target plant is selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus grandis and Pinus radiata. As discussed above, transformation of a plant with a DNA construct including an open reading frame coding for an enzyme encoded by an inventive DNA sequence wherein the open reading frame is orientated in a sense direction will lead to an increase in lignin content of the plant or, in some cases, to a decrease by cosuppression. Transformation of a plant with a DNA construct comprising an open reading frame in an antisense orientation or a non-coding (untranslated) region of a gene will lead to a decrease in the lignin content of the transformed plant.
Techniques for stably incorporating DNA constructs into the genome of target plants are well known in the art and include Agrobacterium tumefaciens mediated introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous plants and certain monocots and gymnosperms may be transformed by Agrobacterium Ti plasmid technology, as described, for example by Bevan (Nucl. Acid Res. 12:8711-8721, 1984). Targets for the introduction of the DNA constructs of the present invention include tissues, such as leaf tissue, disseminated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. One preferred method for transforming eucalyptus and pine is a biolistic method using pollen (see, for example, Aronen 1996, Finnish Forest Res. Papers vol. 595, 5 3 pp) or easily regenerable embryonic tissues. Other transformation techniques which may be usefully employed in the inventive methods include those taught by Ellis et al. (Plant Cell Reports, 8:16-20, 1989), Wilson et al. (Plant Cell Reports 7:704-707, 1989) and Tautorus et al. (Theor. Appl. Genet. 78:531-536, 1989).
Once the cells are transformed, cells having the inventive DNA construct incorporated in their genome may be selected by means of a marker, such as the kanamycin resistance marker discussed above. Transgenic cells may then be cultured in an appropriate medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, an appropriate germination or callus initiation medium is employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. For a review of regeneration of forest trees see Dunstan et al., Somatic embryogenesis in woody plants. In: Thorpe, T.A. ed., 1995: in vitro embryogenesis of plants. Vol. 20 in Current Plant Science and Biotechnology in Agriculture, Chapter 12, pp. 471-540.
Specific protocols for the regeneration of spruce are discussed by Roberts et al., (Somatic Embryogenesis of Spruce. In: Synseed Applications ofsynthetic seed to crop improvement. Redenbaugh, ed. CRC Press, Chapter 23, pp. 427-449, 1993). The resulting transformed plants may be reproduced sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.
As discussed above, the production of RNA in target plant cells can be controlled by choice of the promoter sequence, or by selecting the number of functional copies or the site of integration of the DNA sequences incorporated into the genome of the target plant host. A target plant may be transformed with more than one DNA construct of the present invention, thereby modulating the lignin biosynthetic pathway for the activity of more than one enzyme, affecting enzyme activity in more than one tissue or affecting enzyme activity at more than one expression time. Similarly, a DNA construct may be assembled containing more than one open reading frame coding for an enzyme encoded by a DNA sequence of the present invention or more than one noncoding region of a gene coding for such an enzyme. The DNA sequences of the present inventive may also be employed in combination with other known sequences encoding enzymes involved in the lignin biosynthetic pathway. In this manner, it may be possible to add a lignin biosynthetic pathway to a non-woody plant to produce a new woody plant.
The isolated DNA sequences of the present invention may also be employed as probes to isolate DNA sequences encoding enzymes involved in the lignin synthetic pathway from other plant species, using techniques well known to those of skill in the art.
The following examples are offered by way of illustration and not by way of limitation.
Example 1 Isolation and Characterization of cDNA Clones from Eucalyptus grandis Two Eucalyptus grandis cDNA expression libraries (one from a mixture of various tissues from a single tree and one from leaves of a single tree) were constructed and screened as follows.
mRNA was extracted from the plant tissue using the protocol of Chang et al.
(Plant Molecular Biology Reporter 11:113-116 (1993)) with mirior modifications.
Specifically, samples were dissolved in CPC-RNAXB (100 mM Tris-Cl, pH 8,0; mM EDTA; 2.0 M NaCl; 2%CTAB; 2% PVP and 0.05% Spermidine*3 HCl)and extracted with Chloroform:isoamyl alcohol, 24:1. mRNA was precipitated with ethanol and the total RNA preparate was purified using a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, CA). A cDNA expression library was constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 pi of sample DNA from the pl ligation mix. Mass excision of the library was done using XL1-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, MD) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside
(IPTG).
Of the colonies plated and picked for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems, Foster City, CA) according to the manufacturer's protocol.
DNA sequence for positive clones was obtained using an Applied Biosystems Prism 377 sequencer. cDNA clones were sequenced first from both the 5' end and, in some cases, also from the 3' end. For some clones, internal sequence was obtained using subcloned fragments. Subcloning was performed using standard procedures of restriction mapping and subcloning to pBluescript II SK+ vector.
The determined cDNA sequence was compared to known sequences in the EMBL database (release 46, March 1996) using the FASTA algorithm of February 1996 (version 2 .0u4) (available on the Internet at the ftp site ftp://ftp.virginia.edu/pub/fasta/). Multiple alignments of redundant sequences were used to build up reliable consensus sequences. Based on similarity to known sequences from other plant species, the isolated DNA sequence (SEQ ID NO: 1) was identified as encoding a CAD enzyme.
In further studies, using the procedure described above, cDNA sequences encoding the following Eucalyptus grandis enzymes were isolated: PAL (SEQ ID NO: 16); C4H (SEQ ID NO: 17); C3H (SEQ ID NO: 18); F5H (SEQ ID NO: 19-21);
OMT
(SEQ ID NO: 22-25); CCR (SEQ ID NO: 26-29); CAD (SEQ ID NO: 30); CGT (SEQ ID NO: 31-33); CBG (SEQ ID NO: 34); PNL (SEQ ID NO: 35, 36); LAC (SEQ ID NO: 37-41); and POX (SEQ ID NO: 42-44).
Example 2 Isolation and Characterization of cDNA Clones from Pinus radiata a) Isolation of cDNA clones by high throuh-ut screening A Pinus radiata cDNA expression library was constructed from xylem and screened as described above in Example 1. DNA sequence for positive clones was obtained using forward and reverse primers on an Applied Biosystems Prism 377 sequencer and the determined sequences were compared to known sequences in the database as described above.
Based on similarity to known sequences from other plant species, the isolated DNA sequences were identified as encoding the enzymes C4H (SEQ ID NO: 2 and 3), C3H (SEQ ID NO: PNL (SEQ ID NO: OMT (SEQ ID NO: CAD (SEQ ID NO: CCR (SEQ ID NO: PAL (SEQ ID NO: 9-11) and 4CL (SEQ ID NO: 12).
In further studies, using the procedure described above, additional cDNA clones encoding the following Pinus radiata enzymes were isolated: PAL (SEQ ID NO: 47); C4H (SEQ ID NO: 48, 49); C3H (SEQ ID NO: 50-52); OMT (SEQ ID NO: 53- 4CL (SEQ ID NO: 56, 57); CCR (SEQ ID NO: 58-70); CAD (SEQ ID NO: 71); CGT (SEQ ID NO: 72); CBG (SEQ ID NO: 73-80); PNL (SEQ ID NO: 81); LAC (SEQ ID NO: 82-84); and POX (SEQ ID NO: 85-88).
b) Isolation of cDNA clones by PCR Two PCR probes, hereinafter referred to as LNB010 and LNB011 (SEQ ID NO: 14 and 15, respectively) were designed based on conserved domains in the following peroxidase sequences previously identified in other species: vanpox, hvupox6, taepox, hvupoxl, osapox, ntopox2, ntopoxl, lespox, pokpox, luspox, athpox, hrpox, spopox, and tvepox (Genbank accession nos. D11337, M83671, X56011, X58396, X66125, J02979, D11396, X71593, D11102, L07554, M58381, X57564, Z22920, and Z31011, respectively).
RNA was isolated from pine xylem and first strand cDNA was synthesized as described above. This cDNA was subjected to PCR using 4 pM LNB010, 4 uM LNB011, 1 x Kogen's buffer, 0.1 mg/ml BSA, 200 mM dNTP, 2 mM Mg 2 and 0.1 U/al of Taq polymerase (Gibco BRL). Conditions were 2 cycles of 2 min at 94 OC, 1 min at 55 °C and 1 min at 72 25 cycles of I min at 94 1 min at 55 and I min at 72 and 18 cycles of 1 min at 94 OC, 1 min at 55 and 3 min at 72 *C in a Stratagene Robocycler. The gene was re-amplified in the same manner. A band of about 200 bp was purified from a TAE agarose gel using a Schleicher Schuell Elu- Quik DNA purification kit and clones into a T-tailed pBluescript vector (Marchuk D. et al., Nucleic Acids Res. 19:1154, 1991). Based on similarity to known sequences, the isolated gene (SEQ ID NO: 13) was identified as encoding pine peroxidase (POX).
I
Example 3 Use of an O-methvltransferase (OMT Gene to Modify Lignin Biosynthesis a) Transformation of toao ants with a Pinus radiata OMT ene Sense and anti-sense constructs containing a sequence including the coding region of OMT (SEQ ID NO: 53) from Pinus radiata were inserted into Agrobacterium tumefaciens LBA4301 (provided as a gift by Dr. C. Kado, University of California Davis, CA) by direct transformation using published methods (see, An G, Ebert PR, Mitra A, Ha SB: Binary Vectors. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht (1988)). The presence and integrity of the trar.genic constructs were verified by restriction digestion and DNA sequencing.
Tobacco (Nicotiana tabacum cv. Samsun) leaf sections were transformed using the method of Horsch et al. (Science, 227:1229-1231, 1985). Five independent transformed plant lines were established for the sense construct and eight independent transformed plant lines were established for the anti-sense construct for OMT.
Transformed plants containing the appropriate lignin gene construct were verified using Southern blot experiments. A in the column labeled "Southern" in Table 1 below indicates that the transformed plant lines were confirmed as independent transformed lines.
b) Expression ofPinus OMT in transformed olants Total RNA was isolated from each independent transformed plant line created with the OMT sense and anti-sense constructs. The RNA samples were analysed in Northern blot experiments to determine the level of expression of the transgene in each transformed line. The data shown in the column labeled "Northern" in Table 1 shows that the transformed plant lines containing the sense and anti-sense constructs for OMT all exhibited high levels of expression, relative to the background on the Northern blots.
OMT expression in sense plant line number 2 was not measured because the RNA sample showed signs of degradation. There was no detectable hybridisation to RNA samples from empty vector-transformed control plants.
r c) Modulation of OMT enzyme activity in transformed plants The total activity of OMT enzyme, encoded by the Pinus OMT gene and by the endogenous tobacco OMT gene, in transformed tobacco plants was analysed for each transformed plant line created with the OMT sense and anti-sense constructs. Crude protein extracts were prepared from each transformed plant and assayed using the method of Zhang et al. (Plant Physiol., 113:65-74, 1997). The data contained in the column labeled "Enzyme" in Table I shows that the transformed plant lines containing the OMT sense construct generally had elevated OMT enzyme activity, with a maximum of 199%, whereas the transformed plant lines containing the OMT anti-sense construct generally had reduced OMT enzyme activity, with a minimum of relative to empty vector-transformed control .plants. OMT enzyme activity was not estimated in sense plant line number 3.
d) Effects ofPinus OMT on lignin concentration in transformed plants The concentration of lignin in the transformed tobacco plants was determined using the well-established procedure of thioglycolic acid extraction (see, Freudenberg et al. in "Constitution and Biosynthesis of Lignin", Springer-Verlag, Berlin, 1968).
Briefly, whole tobacco plants, of an average age of 38 days, were frozen in liquid nitrogen and ground to a fine powder in a mortar and pestle. 100 mg of frozen powder from one empty vector-transformed control plant line, the five independent transformed plant lines containing the sense construct for OMT and the eight independent transformed plant lines containing the anti-sense construct for OMT were extracted individually with methanol, followed by 10% thioglycolic.acid and finally dissolved in 1 M NaOH. The final extracts were assayed for absorbance at 280 nm. The data shown in the column labelled "TGA" in Table 1 shows that the transformed plant lines containing the sense and the anti-sense OMT gene constructs all exhibited significantly decreased levels of lignin, relative to the empty vector-transformed control plant lines.
I
2 3 4 1 2 3 4 6 7 8 Table 1 lant line trnsene orientation Southern Norther Enyme
TGA
control
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
OMT
na sense sense sense.
sense sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense blank 2.9E+6 na 4.1 E+6 2.3E+6 3.6E+5 1.6E+4 5.7E+3 8.0E+3 1.4E+4 2.5E+4 2.5E+4 2.5E+4 1.1E+4 100 86 162 na 142 199 189 105 109 87 58 97 151 These data clearly indicate assay, can be directly manipulated biosynthetic gene such as OMT.
that lignin concentration, as measured by the TGA by either sense or anti-sense expression of a lignin Examole 4 Use f a 4 -Coumarate-CoA liae (4CL) Gene to Modi Linn B ios nthesis a) Transformation of tobacco lants with a Pinus radiata 4CL Sense and anti-sense constructs containing a sequence including the coding region of 4CL (SEQ ID NO: 56) from Pinus radiata were inserted into Agrobacterium tumefaciens LBA4301 by direct transformation as described above. The presence and integrity of the transgenic constructs were verified by restriction digestion and DNA sequencing.
Tobacco (Nicotiana tabacum cv. Samsun) leaf sections were transformed as described above. Five independent transformed plant lines were established for the sense construct and eight independent transformed plant lines were established for the anti-sense construct for 4CL. Transformed plants containing the appropriate lignin gene construct were verified using Southern blot experiments. A in the column 19 labeled "Southern" in Table 2 indicates that the transformed plant lines listed were confirmed as independent transformed lines.
b) Expression ofPinus 4CL in transformed plants Total RNA was isolated from each independent transformed plant line created with the 4CL sense and anti-sense constructs. The RNA samples were analysed in Northern blot experiments to determine the level of expression of the transgene in each transformed line. The data shown in the column labelled "Northern" in Table 2 below shows that the transformed plant lines containing the sense and anti-sense constructs for o0 4CL all exhibit high levels of expression, relative to the background on the Northern blots. 4CL expression in anti-sense plant line number 1 was not measured because the RNA was not available at the time of the experiment. There was no detectable hybridisation to RNA samples from empty vector-transformed control plants.
c) Modulation of 4CL enzyme activity in transformed plants The total activity of 4CL enzyme, encoded by the Pinus 4CL gene and by the endogenous tobacco 4CL gene, in transformed tobacco plants was analysed for each transformed plant line created with the 4CL sense and anti-sense constructs. Crude protein extracts were prepared from each transformed plant and assayed using the method of Zhang et al. (Plant Physiol., 13:65-74, 1997). The data contained in the column labeled "Enzyme" in Table 2 shows that the transformed plant lines containing the 4CL sense construct had elevated 4CL enzyme activity, with a maximum of 258%, and the transformed plant lines containing the 4CL anti-sense construct had reduced 4CL enzyme activity, with a minimum of 59%, relative to empty vector-transformed control plants.
d) Effects of Pinus 4CL on lienin concentration in transformed plant The concentration of lignin in samples of transformed plant material was determined as described in Example 3. The data shown in the column labelled "TGA" in Table 2 shows that the transformed plant lines containing the sense and the antisense 4CL gene constructs all exhibited significantly decreased levels of lignin, relative to the empty vector-transformed control plant lines. These data clearly indicate that lignin concentration, as measured by the TGA assay, can be directly manipulated by either sense or anti-sense expression of a lignin biosynthetic gene such as 4CL.
Table 2 plant line transgene orientation Southern Northern Enzyme
TGA
1 to 2 1 2 3 4 5 2 3 4 5 6 7 8 control control 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL 4CL na na sense sense sense sense sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense anti-sense blank blank 2.3E+4 4.5E+4 3.1E+4 1.7E+4 1.6E+4 na 1.OE+4 9.6E+3 1.2E+4 4.7E+3 3.9E+3 1.8E+3 1.7E+4 100 100 169 258 174 164 184 59 81 101 116 125 106 Example Transformation of Tobacco using the Inventive Li in Biosyvnthetic Genes Sense and anti-sense constructs :containing sequences including the coding regions of C3H (SEQ ID NO: 18), F5H (SEQ ID NO: 19), CCR (SEQ ID NO: 25) and CGT (SEQ ID NO: 31) from Eucalyptus grandis, and PAL (SEQ ID NO: 45 and 47), C4H (SEQ ID NO: 48 and 49), PNL (SEQ ID NO: 81) and LAC (SEQ ID NO: 83) from Pinus radiata were inserted into Agrobacterium tumefaciens LBA4301 by direct transformation as described above. The presence and integrity of the transgenic constructs were verified by restriction digestion and DNA sequencing.
Tobacco (Nicotiana tabacum cv. Samsun) leaf sections were transformed as described in Example 3. Up to twelve independent transformed plant lines were established for each sense construct and each anti-sense construct listed in the preceding paragraph. Transformed plants containing the appropriate lignin gene construct were verified using Southern blot experiments. All of the transformed plant lines analysed were confirmed as independent transformed lines.
Example 6 Manipulation of Lgnin Content in Transformed Plants a) Determination oftransene .exression bv Nonhern blot exeriments Total RNA was isolated from each independent transformed plant line described in o 0 Example 5. The RNA samples were analysed in Northern blot experiments to determine the level of expression of the transgene in each transformed line. The column labelled "Northern" in Table 3 shows the level of transgene expression for all plant lines assayed, relative to the background on the Northern blots. There was no detectable hybridisation to RNA samples from empty vector-transformed control plants.
b Determination ofli cncentration in transformed plants The concentration of lignin in empty vector-transformed control plant lines and in up to twelve independent transformed lines for each sense construct and each anti-sense construct described in Example 5 was determined as described in Example 3. The column labelled "TGA" in Table 3 shows the thioglycolic acid extractable lignins for all plant lines assayed, expressed as the average percentage of TGA extractable lignins in transformed plants versus control plants. The range of variation is shown in parentheses.
22 Table 3 trans g ene orientation no. of lines Northern
TGA
control na 3 blank 100 (92-104) C3H sense 5 3.7E+4 74 (67-85) sense 10 5.8E+4 70 (63-79) anti-sense 9 5.8E+4 73 (35-93) CCR sense na 74 CCR anti-sense 2 na 74 (62-86) PAL sense 5 1.9E+5 77 (71-86) PAL anti-sense 4 1.5E+4 62 (37-77) C4H anti-sense 10 5.8E+4 86 (52-113) s1 PNL anti-sense 6 1.2E+4 88 (70-114) LAC sense 5 1.7E+5 na LAC anti-sense 12 1.7E+5 88 (73-114) Transformed plant lines containing the sense and the anti-sense lignin biosynthetic gene constructs all exhibited significantly decreased levels of lignin, relative to the empty vector-transformed control plant lines. The most dramatic effects on lignin concentration were seen in the F5H anti-sense plants with as little as 35% of the amount of lignin in control plants, and in the PAL anti-sense plants with as little as 37% of the amount of lignin in control plants. These data clearly indicate that lignin concentration, as measured by the TGA assay, can be directly manipulated by conventional anti-sense methodology and also by sense over-expression using the inventive lignin biosynthetic genes.
Example 7 Modulation of Lignin Enzyme Activity in Transformed Plants The activities and substrate specificities of selected lignin biosynthetic enzymes were assayed in crude extracts from transformed tobacco plants containing sense and anti-sense constructs for PAL (SEQ ID NO: 45), PNL (SEQ ID NO: 81) and LAC (SEQ ID NO: 83) from Pinus radiata, and CGT (SEQ ID NO: 31) from Eucalyptus grandis.
Enzyme assays were performed using published methods for PAL (Southerton, S.G. and Deverall, PlanPath. 39:223-230, 1990), CGT (Vellekoop, P. et al., FEBS, 330:36-40, 1993), PNL (Espin, C.J. et al., Phtochemistr 44:17-22, 1997) and 23 LAC (Bao, W. et al., Science, 260:672-674, 1993). The data shown in the column labelled "Enzyme" in Table 4 shows the average enzyme activity from replicate measures for all plant lines assayed, expressed as a percent of enzyme activity in empty vector-transformed control plants. The range of variation is shown in parentheses.
Table 4 trans s ene orientation no. of lines Enzyme control na 3 100 PAL sense 5 87 (60-124) PAL anti-sense 3 53 (38-80) CGT anti-sense 1 89 PNL anti-sense 6 !44 (41-279) LAC sense 5 78 (16-240) LAC anti-sense 11 64 (14-106) All of the transformed plant lines, except the PNL anti-sense transformed plant lines, showed average lignin enzyme activities which were significantly lower than the activities observed in empty vector-transformed control plants. The most dramatic effects on lignin enzyme activities were seen in the PAL anti-sense transformed plant lines in which all of the lines showed reduced PAL activity and in the LAC anti-sense transformed plant lines which showed as little as 14% of the LAC activity in empty vector-transformed control plant lines.
Example 8 Functional Identification of Linin Biosynthetic Genes Sense constructs containing sequences including the coding regions for PAL (SEQ ID NO: 47), OMT (SEQ ID NO: 53), 4CL (SEQ ID NO: 56 and 57) and POX (SEQ ID NO: 86) from Pinus radiata, and OMT (SEQ ID NO: 23 and 24), CCR (SEQ ID NO: 26-28), CGT (SEQ ID NO: 31 and 33) and POX (SEQ ID NO: 42 and 44) from Eucalyptus grandis were inserted into the commercially available protein expression vector, pProEX-1 (Gibco BRL). The resultant constructs were transformed into E. coli XL-Blue (Stratagene), which were then induced to produce recombinant protein by the addition of IPTG. Purified proteins were produced for the Pinus OMT and 4CL constructs and the Eucalyptus OMT and POX constructs using Ni column 24
I
chromatography (Janknecht, R. et al., Proc. Natl. Acad. Sci., 88:8972-8976, 1991).
Enzyme assays for each of the purified proteins conclusively demonstrated the expected substrate specificity and enzymatic activity for the genes tested.
The data for two representative enzyme assay experiments, demonstrating the verification of the enzymatic activity of a Pinus radiata 4CL gene (SEQ ID NO: 56) and a Pinus radiata OMT gene (SEQ ID NO; 53), are shown in Table 5. For the 4CL enzyme, one unit equals the quantity of protein required to convert the substrate into product at the rate of 0.1 absorbance units per minute. For the OMT enzyme, one unit equals the quantity of protein required to convert 1 pmole of substrate to product per minute.
Table purification total ml total mg total units yield fold transgene step extract protein activity activity purification 4CL crude 10 ml 51 mg 4200 100 1 Ni column 4 ml 0.84 mg 3680 88 53 OMT crude 10 mi 74 mg 4600 100 1 Ni column 4 ml 1.2 mg 4487 98 The data shown in Table 5 indicate that both the purified 4CL enzyme and the purified OMT enzyme show high activity in enzyme assays, confirming the identification of the 4CL and OMT genes described in this application. .Crude protein preparations from E. coli transformed with empty vector show no activity in either the 4CL or the OMT enzyme assay.
Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

Claims (49)

1. An isolated DNA sequence comprising a nucleotide sequence selected from the group consisting of: coding sequence recited in SEQ ID NO: 19 21; complements of the coding sequences recited in SEQ ID NO: 19 S21; c reverse complements of the coding sequences recited in SEQ ID NO: 19-21; reverse sequences of the coding sequences recited in SEQ ID NO: 19-21; and sequences having at least 90% identity to a coding sequence recited in SEQ ID NO: 19 -21; and wherein said sequences of (e) encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21.
2. A DNA construct comprising a DNA sequence according to claim 1.
3. A transgenic cell comprising a DNA construct according to claim 2.
4. A DNA construct comprising, in the direction: a gene promoter sequence, an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme 16/11/2006 involved in the lignin biosynthetic pathway as encoded by SEQ ID NO:
19-21; and a gene termination sequence. The DNA construct of claim 4 wherein the open reading frame is in a sense orientation. 6. The DNA construct of claim 4 wherein the open reading frame is in an antisense orientation. 7. The DNA construct of claim 4 wherein the gene promoter sequence and gene termination sequences are functional in a plant host. 8. The DNA construct of claim 4 wherein the gene promoter sequence provides for transcription in xylem. 9. The DNA construct of claim 4 further comprising a marker for identification of transformed cells. A DNA construct comprising, in the direction: a gene promoter sequence, a non-coding region of a gene coding for an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21; and 16/11/2006 a gene termination sequence. z 11. The DNA construct of claim 10 wherein the non-coding region is in a sense orientation. O 12. The DNA construct of claim 10 wherein the non-coding region is in an antisense orientation. 13. The DNA construct of claim 10 wherein the gene promoter sequence and gene termination sequences are functional in a plant host. 14. The DNA construct of claim 10 wherein the gene promoter sequence provides for transcription in xylem. A transgenic plant cell comprising a DNA construct, the DNA construct comprising, in the direction: a gene promoter sequence; an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and coding sequences having at least 90% identity to a sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19-21; and a gene termination sequence. 16/11/2006 16. The transgenic plant cell of claim 15 wherein the open reading frame is Z in a sense orientation. IND 17. The transgenic plant cell of claim 15 wherein the open reading frame is in an antisense orientation. 18. The transgenic plant cell of claim 15 wherein the DNA construct further c- comprises a marker for identification of transformed cells. 19. A plant comprising a transgenic plant cell according to claim 15, or fruit or seeds thereof. The plant of claim 19 wherein the plant is a woody plant.
21. The plant of claim 20 wherein the plant is selected from the group consisting of eucalyptus and pine species.
22. A transgenic plant cell comprising a DNA construct, the DNA construct comprising, in the direction: a gene promoter sequence; a non-coding region of a gene coding for an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and coding sequences having at least 90% identity to a sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21; and a gene termination sequence. 16/11/2006 cIN \O
23. The transgenic plant cell of claim 22 wherein the non-coding region is in O Z a sense orientation.
24. The transgenic plant cell of claim 22 wherein the non-coding region is in an antisense orientation. c A plant comprising a transgenic plant cell according to claim 22, or fruit C, or seeds thereof.
26. The plant of claim 25 wherein the plant is a woody plant.
27. The plant of claim 26 wherein the plant is selected from the group consisting of eucalyptus and pine species.
28. A method for modulating the lignin content of a plant comprising stably incorporating into the genome of the plant a DNA construct comprising, in the direction: a gene promoter sequence; an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19-21; and a gene termination sequence. 16/11/2006 \O
29. The method of claim 28 wherein the plant is selected from the group z consisting of eucalyptus and pine species. The method of claim 28 wherein the open reading frame is in a sense orientation.
31. The method of claim 28 wherein the open reading frame is in an cl antisense orientation.
32. A method for modulating the lignin content of a plant comprising stably incorporating into the genome of the plant a DNA construct comprising, in the direction: a gene promoter sequence; a non-coding region of a gene coding for an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21; and a gene termination sequence.
33. The method of claim 32 wherein the non-coding region is in a sense orientation.
34. The method of claim 32 wherein the non-coding region is in an antisense orientation. 16/11/2006 The method of claim 32 wherein the plant is a woody plant. z
36. The method of claim 35 wherein the plant is selected from the group consisting of eucalyptus and pine species. O 37. A method for producing a plant having altered lignin structure comprising: ci transforming a plant cell with a DNA construct comprising, in the direction, a gene promoter sequence, an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21, and a gene termination sequence to provide a transgenic cell; and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.
38. The method of claim 37 wherein the open reading frame is in a sense orientation.
39. The method of claim 37 wherein the open reading frame is in an antisense orientation. The method of claim 37 wherein the DNA construct further comprises a marker for identification of transformed cells. 16/11/2006 IND \O
41. The method of claim 37 wherein the produced plant is a transgenic z plant, or fruit or seeds thereof. IND
42. The method of claim 37 wherein the plant is a woody plant.
43. The method of claim 40 wherein the plant is selected from the group consisting of eucalyptus and pine species.
44. A method for producing a plant having altered lignin structure comprising: transforming a plant cell with a DNA construct comprising, in the direction, a gene promoter sequence, a non-coding region of a gene coding for an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 -21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 -21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by the SEQ ID NO: 19 -21, and a gene termination sequence to provide a transgenic cell; and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. The method of claim 42 wherein the non-coding region is in a sense orientation.
46. The method of claim 42 wherein the non-coding region is in an antisense orientation. 16/11/2006
47. The method of claim 42 wherein the DNA construct further comprises a marker for identification of transformed cells. ID
48. The method of claim 42 wherein the produced plant is a transgenic i n plant, or fruit or seeds thereof. S49. The method of claim 42 wherein the plant is a woody plant. The method of claim 49 wherein the plant is selected from the group consisting of eucalyptus and pine species.
51. A method of modifying the activity of an enzyme in a plant comprising stably incorporating into the genome of the plant a DNA construct including a gene promoter sequence; an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19-21; and a gene termination sequence.
52. The method of claim 51 wherein the open reading frame is in a sense orientation. 16/11/2006 S53. The method of claim 51 wherein the open reading frame is in an Z antisense orientation.
54. A method of modifying the activity of an enzyme in a plant comprising stably incorporating into the genome of the plant a DNA construct including O a gene promoter sequence; a non-coding region of a gene coding for an enzyme encoded by c-I a nucleotide sequence selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 21; and sequences having at least 90% identity to a coding sequence of SEQ ID NO: 19 21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by the SEQ ID NO: 19 -21; and a gene termination sequence. The method of claim 54 wherein the non-coding region is in a sense orientation.
56. The method of claim 54 wherein the non-coding region is in an antisense orientation.
57. The method of claim 54 wherein the plant is a woody plant.
58. The method of claim 57 wherein the plant is selected from the group consisting of eucalyptus and pine species.
59. A method for producing a transgenic plant cell having altered lignin structure comprising: 16/11/2006 transforming a plant cell with a DNA construct comprising, in the Z direction, a gene promoter sequence, an open reading frame coding for at least a functional portion of an enzyme encoded by a nucleotide sequence selected from the group consisting of: (1) u' coding sequences recited in SEQ ID NO: 19 -21; and (2) sequences having at least 90% identity to a coding sequence of SSEQ ID NO: 19 -21; wherein said sequences of encode an c, enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21 and a gene termination sequence to provide a transgenic cell; and cultivating the transgenic cell. The method of claim 59, wherein the open reading frame is in a sense orientation.
61. The method of claim 59, wherein the open reading frame is in an antisense orientation.
62. The method of claim 59, wherein the DNA construct further comprises a marker for identification of transformed cells.
63. The method of claim 59, wherein the plant cell is a woody plant cell.
64. The method of claim 63 wherein the plant cell is selected from the group consisting of cells of eucalyptus and pine species. 16/11/2006 O 65. A method for producing a transformed plant cell having altered lignin structure comprising: transforming a plant cell with a DNA construct comprising, in the direction, a gene promoter sequence, a non-coding region of a gene coding for an enzyme encoded by a nucleotide sequence O selected from the group consisting of: coding sequences recited in SEQ ID NO: 19 21; and sequences having at least 1 90% identity to a coding sequence of SEQ ID NO: 19 21; wherein said sequences of encode an enzyme involved in the lignin biosynthetic pathway as encoded by SEQ ID NO: 19 -21, and a gene termination sequence to provide a transgenic cell; and cultivating the transgenic cell.
66. The method of claim 65, wherein the non-coding region is in a sense orientation.
67. The method of claim 65, wherein the non-coding region is in an antisense orientation.
68. The method of claim 65, wherein the DNA construct further comprises a marker for identification of transformed cells.
69. The method of claim 65, wherein the plant cell is a woody plant cell. The method of claim 69, wherein the plant cell is selected from the group consisting of cells of eucalyptus and pine species. 16/11/2006
71. A wood obtained from a transgenic tree which has been transformed Z with the DNA construct of any one of claims 1 to 14.
72. The wood of claim 71, wherein the DNA construct comprises the coding u' sequence recited in SEQ ID NO: 19 21.
73. A wood pulp obtained from a transgenic tree which has been ci transformed with the DNA construct of any one of claims 1 to 14.
74. The wood pulp of claim 73, wherein the DNA construct comprises the coding sequence recited in SEQ ID NO: 19 21. A method of making wood, comprising: transforming a plant with a DNA construct of any one of claims 1 to 14; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood from the plant.
76. The method of claim 75, wherein the DNA construct comprises the coding sequence recited in SEQ ID NO: 19 -21.
77. A method of making wood pulp, comprising: transforming a plant with a DNA construct comprising any one of claims 1 to 14; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood pulp from the plant.
78. The method of claim 77, wherein the DNA construct comprises the coding sequence recited in SEQ ID NO: 19 -21. 16/11/2006 O 79. An isolated DNA sequence comprising a nucleotide sequence substantially as hereinbefore described with reference to the example 1. -IN Dated this 16 t day of November 2006 O Genesis Research Development Corporation Limited and SRubicon Forests Holdings Limited c1 Patent Attorneys for the Applicant PETER MAXWELL AND ASSOCIATES 16/11/2006 SEQUENCE LISTING GENERAL INFORMATION APPLICANT: Genesis Research and Development Corp. Ltd. (ii) TITLE OF THE INVENTION: MATERIALS AND METHODS FOR THE MODIFICATION OF PLANT LIGNIN CONTENT (iii) NUMBER OF SEQUENCES: 88 (iv) CORRESPONDENCE ADDRESS: ADDRESSEE: Russell McVeagh West-Walker STREET: The Todd Building, Cnr Brandon Street Lambton Quay CITY: Wellington STATE: COUNTRY: New Zealand ZIP: COMPUTER READABLE FORM: MEDIUM TYPE: Diskette COMPUTER: IBM Compatible OPERATING SYSTEM: DOS SOFTWARE: Wordperfect 5.1 (vi) CURRENT APPLICATION DATA: APPLICATION NUMBER: FILING DATE: CLASSIFICATION: (vil) PRIOR APPLICATION DATA: APPLICATION NUMBER: FILING DATE: (viii) ATTORNEY/AGENT INFORMATION: NAME: Bennett, Michael Roy REGISTRATION NUMBER: REFERENCE/DOCKET NUMBER: 22315\MRB (ix) TELECOMMUNICATION INFORMATION: TELEPHONE: +64 4 495 7740 TELEFAX: +64 4 499 9306 TELEX: INFORMATION FOR SEQ ID NO:1: SEQUENCE CHARACTERISTICS: LENGTH: 535 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: CTTCGCGCTA CCGCATACTC CACCACCGCG TGCAGAAGAT GAGCTCGGAG GGTGGGAAGG AGGATTGCCT CGGTTGGGCT GCCCGGGACC CTTCTGGGTT CCTCTCCCCN TACAAATTCA 120 CCCGCAGGCC GTGGGAAGCG AAGACGTCTC GATTAAGATC ACGCACTGTG GAGTGTGCTA 180 CGCAGATGTG GCTTGGACTA GGAATGTGCA GGGACACTCC AAGTATCCTC TGGTGCCGGG 240 GCACGAGATA GTTGGAATTG TGAAACAGGT TGGCTCCAGr G TCCAACGCT 'CAAAGTTGG 300 CGATCATGTG GGGGTGGGAA CTTATGTCAA TTCATGCAGA GAGTGCGAGT ATTGCAATGA 360 CAGGCTAGAA GTCCAATGTG AAA-AGTCGGT TRTGACTTT T GATGGAATTG ATGCAGATGG 420 TACAGTGACA AAGGGAGGAT ATTCTAGTCA CATTGTCGTC CATGAAAGGT ATTGCGTCAG 480 GATTCCAGAA AACTACCCGA TGGATCTAGC AGCGCATTGC TCTGTGCTGG ATCAC 535 INFORNIATION FOR SEQ IC NO:2: SEQUENCE CHARACTERISTICS: LENGTH: 671 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: GCGCCTGCAG TGATTTGAAT 120 CAAGATGGGC 180 GCACACCCAG 240 GGGCAAGGGG 300 GATCATGACT 360 AGACGAGATC 420 CATTGTCATC 480 GACAGGAGAT 540 GAGCGAAGTC 600 AGGCCCTTCC 660 CTTTTCAAGG 671 GTCGACACTA GTGGATCCAA AGAAT'TCGGC-ACGAGGTTGC AGGTCGGGGA CACAGAAACC CAGAGGAATC GGCGTCGAGT CAGGACATGG GTGCCTTTCT AGCCGCGTGG CGTAGCGCCT TCGAATCCGA GATTGGCCCA TCAGAGGTTA TCAC-CGATTT TTGTGGTAGT TTGGGTCTCG TGTTCACCGT TTACGAATAA TCGCGGATGT CCAGCTCATG GGACGACCCG GAGCTTT GAG TCACAGAATC TGCC.AAGAA.A TTCATCTCCC AACCCGGAAC CTATGGAGAT AGTTGTCCAG GAAATCCCGC ATGTATAATA CTTTTCCTCA TACAAT TAT G TGCAATGAGA TAT GGCAAAA GATCTCGCCA GTGGTGTTCG CACTGGAGAA CACTACAGAT GCCGAGTCTT TTATGTATAG AGCTCAAGGC GGGATTTCAT TTAAAGAGAA TCTTTCTGCT AGGAGGTCCT ATATCTTCAC AGATGCGCAG TCGCGTGGGA CCACCTCGGG GATGATGTTC CCTCAACGGA TCCCAGTCTT ACGGCTCTCT INFORMATION FOR SEQ ID NO:3: Wi SEQUENCE CHARACTERISTICS: LENGTH: 940 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ED NO:3: CTTCAGGACA AGGOAGAGAT CAATGAGGAT AATGTTTTGT ACATCGTTGA GAACATCAAC GTTGCAGCAA TTGAGACAAC GCTGTGGTCG ATGGAATGGG GAATAGCGGA GCTGGTGAAC 120 CACCAGGACA TTCAGAGCAA GGTGCGCGCA GAGCTGGACG CTGTTCTTGG ACCAGGCGTG 180 CAGATAACGG AACCAGACAC GACAAGGTTG CCCTACCTTC AGGCGGTTGT GAAGGAAACC 240 CTTCGTCTCC 300 CTCGGGGGCT 360 AACAACCCCG 420 GAGAAGCACA 480 AGGAGCTGCC 540 T TCAGAACTT 600 GCGGGCAATT 660 CTGCTTAATC 72 0 CTCCATCTAT '78 0 CTTCAAAAGT 840 AAGTTTGCAT 900 ATTTTACTGC 940 GCATGGCGAT ACGATArTCC CCAACTGGAA CCGAAGCCAA CGGGAATCAT CCACCTTCTG CAGCCTTCAC CCAACTTGTC CATGACTGTG TTGC'TAGGAT AAATTAAATG TAAAAAAAAA CCCGTTGCTC GGCAGAGAGC GAACCCCGAG TGGCAACGAC 7CTGGCGCTG CCGCCU'CCCG ATTCTCAACC AGTGACTGGT 7GTGCGTGTC TTCAATAACA ATATTTCAAT AAAAAAAA GTCCCCCACA AAGATCCTGG GAGTTCCGCC TTCAAATTCC CTC-CCTCGC GGCAGAGCAA ATTCTCTCAT ATATAAATCC CACTGTCGAG GACACCGTCA ATACTATTTT AAAAAA TGAATCTCCA TGAACGCCTG CCGAGCGGTT TGNCCTTCGG ACTCTCCATC AGTGGATGTC CGTCGCCAAG GCGCACCTGA TCTACTAAGA ATTATGTCAT' GACTCTCCAC CGACGCCAAG GTCGTTGGCC CTTCGAGGAG TGTGGGGAGG GGAAGACTTG ACTGAGAAGG CCCATAGCTT ACAAAAAACA GCTCATAGCA GTTTCAATAA CAATTGGGGA INFORMATION FOR SEQ ID NO:4: SEQUENCE CHARACTERISTICS: LENGTH: 949 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:- NNGCTCNACC CAGGCAATTC 120 CTCGTATGTT 180 ATGATTACGC 240 GCGGTGGCGG 300 TTCAGGCCTG 360 CTGCCATTGG 420 AGTCTATGTT 480 CAGAAGACAT 540 AGGCCATTGC 600 CAATTGATCT 660 TCTCCTTTTC 720 TCTGAAGCCC 780 AAATTGAGWA 840 TANTTTAGGG 900 GACGGTGGAC GGTCCGCTAC TCAGTAACTG AGTGGGATCC CCCGGGCTGA GATTTAGCTC GTGTGGAATT CAAGCGCGCA CCGCTCTAGA AGAGATTTCT TGCAGGGCGC GGGACACCTG AGATCTCACA TATTCCTCGA GATAGTAAGT CATAGTCAAC AACTTCTAGC TTTCTCTGTA NATTTTAATA ACTCATTAGG GTGAGCGGAT ATTAACCCTC ACTAGTGGAT TGAGGAAGAT AGGATCTGCC CTTCATCATT GAGAATCCAG TTGCCTGATC TTGAATTTTG ATGCAGCTTT AAGCAATAAC GGGGNNGNTA GTCCTANGTA CACCCCAGGC AACAATTTCA ACTAAAGGGA CCAAAGAATT GTTGATATTA CTGGTGCACA TCGTATC-GGC GGCTTGTTAC ATCTCTACAA TTTTGATACA CTTTCTCTGA TGTATATT'TT ATTGTGCAAT ANANGNGGNA TTTACACTTT CACAGGAAAC ACAAAAGCTG CGGCACGAGA AGGGCCATGA ATTGGGTATT ACCTCCTGAG TTTCATGGCC GCGACAGCCA AAACGAAATA AGCGCATGCA AGAACAAATA TTGCAAGNAA ATGNTAGNGG ATGCTTCCGG AGCTATGACC GAGCTCCACC CCCAGTGACC TTACAGGCTA AATTTAGTTC GGAATGAAGG AAGCCTGTGC CTCAATTGAT ACGTGCAGTT GCTTTCTTTC CCTATTCCTC TAGTAAAGTT GCATTNAGAA 29 ANCCCTAATA GNTGTTGGNG GNNGNTAGGN TTTTT NACCA AAAAAAAAA 949 INFORMATION FOR SEQ I D NO: Wi SEQUENCE CHARACTERISTICS: LENGTH: 959 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID GAATTCGGCA CGAGAAAGCC 'CTTTAACTGC AATAACTGTG 120 CTGGTCAGGT TCCAGCATTT 180 CTTGCACTCA GCCCTACATT 240 TGGAAGCTTG TGTCAACACG 300 TCAAGCAAGT'TTTGTCATCT 360 TGACCCTCTC TCTTCAAGAC 420 AACTCCATGT TCTGCAGPLTG 480 ATGGGATGGT GAGCTTCAAff 540 ATATAGATAC TGCAATTCGG 600 AGCAGP.TTTC GTGTGATCAT 660 ACATAGATGAI TTTTGATACT 720 TCATCTTCAAL GACTCGCTTA 780 TAGTACTGTG GCTGAGTCCA 840 AAAATCTCAAL ATTTCTCGAT CTAGA.ATTTT TTCAGCATGC TATCACAGCC GAAGCGTACA AAAAGTTTGT CCTAGTTTCT CCAAAATACA- CACCTGCTGT TG.TCCAAAGA CCAGCGACAA CTCATTCAGA AATTTGAAAT GATTTAGCAA-ACAACTACAG TAGTGGGWA ATTTCTGTAT AACACAGAGA CTTTATAAAC ATAGCAAGTA ATtCAAGATG GAGGATCCTG AGAATCATGG TCCTACCTGA GTTCCCCAGA TATTCATTAC GAAAGGATCT GTCTAGTCTT AGTTCAAGAA GGAATATTCA CGGTACAGTT GTGAGATTTT APLCAGTACAA AACATGTCAG CACTATCAAA GAAGCTCACC GTAAGGTGGG GAGAGAGCGT AGTTCA4AAA TATGTAACAA TTTCTATGTG PATTGATAGT CTCGGTATTA TCACTTGACA GATTTTGATT ATGAATGCGA TGATAGTAAT GAGATTGACA GGAGACTGCT TGCAACCATA TGGGTTAG CAGP.CATATC AAGCAGGCTG AATCAGAAAG ATGACTGAAT ACAGTAGATG TCAAGATTTG ATGATGTAAA CTGTTAACAA TGCCATC-AAA CTTTTAGTTG TGACATTTGA GCACCTCGAG 959 TGAACTPLCAA AGTTGCATGT TAAAAAAAAA -AAAAAAAAA INFORMATION FOR SEQ ID NO:7: SEQUENCE CHARACTERISTICS: LENGTH: 1454 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:- GAATTCGGCA TGAAGTGGTT 120 GCTCGGGACT 180 GAGGATGTAA 240 CGTAATGAAA 300 GTAACAGAGA 360 TGCATTGTTG 420 AGCAAGAGGA 480 TTTGCAAGCA 540 CTGGAACAAG 600 TTCGCCATGA 660 ATGGGTGTCA CGAGGCCAAC TGCAAGCAAT ACAGTACAAG CTGAAGTGAT GGGAAGCTTG GAATCTGAAA. CCAGTGGCCA CTTGTCCCCT TACACTTACA TTGTAAAGGT CATTTACTGC GGAATCTGCC TGGACATGTC TCATTACCCA ATGGTCCCTG TTGGCAGCGA GGTGAAGAAA TTCAAAGGG GGTCCTGTCG CAG'TTGCGGT APATTGCAATC TTTGGACCTA CAATGATGTG AACCATGACG GTATGGTGGT TGATCAGATG TWTGTGGTTC CGGCCCCTCT GTTATGTGCA GGGGTTACAG ACCCAGACGA TCGAATCCTG AAACTGTTAC AGGATATGCA ATCTCAGAAA ACTCTGATTT GGCATGAAGT GAGAGCATGT GAAAGGACCT AGTTCAPIATG GGTGGGGATT AGGGGTTGGT AGAGCATGGA ACAATACTGC GCACACCTAC GAATCCCGGA TTTTCAGCCC TCAGGGCGGA GAATCTTCCT AATGAAGCAT CGTGGGGCAC TTCGTCTGAT CAGAGCCCGG AGATTGCCAA GAAGAAATGT AGCCTTTGGA GGGATTTTGG GTTTAGGAGG CTCCACGTGA CGGTTATCAG 120 AAAAAGAAAG AAGAAGCCAT 180 GGAAGTCCTC GGCGCCGATG CTTATCTTG'T TAGCAAGGAT ACTGAAAAGA 840 GCTCATCCTC 900 GGCGTTGTTC 960 ATAGCTGGAA 1020 GAGAAGAAGG 1080 GAAAGGTTGG 1140 TTGGATAATT 1200 CTGGACTAGT 1260 TTTTTGTTAC 1320 GTATATGTAA 1380 TAATATATGT 1454 AAAAAA 1454 TGATGGA.AGC TGGAACCATA CAGAGTCGTT GTTTCATTGG TATCATCGAT AGAAGAACGA AGTCTGCAAT AGCTTAACAT TTTAGTTTAG AGATCAATTT ATTCGTATTT PAGCAGAGAGC TCTTGCCCT GCACTTCGTG CAGCATGGAG GATTGAGGTT TGTCCGTTAC CAATCAATCA GAAAGGGAAA CTTTTGTGAG CTCGTGACAG* CTAGATTACA CTGPAGACAA ACTCCTCTCT GAAACACAGG GTG;GGCCTGG AGATTTGTGG GATCAATGCC T TAAATTTTT GTTGAAACAA TAAATAATAA TAATGGACAC ATGGAAAGCT TAATACTTGG AAAC'ICTAGA ACTACATCAA TGGATGTTGC TGCATGCAAG ATTTAGGAAC TTCAGATGTT TCCAATGTCT CATTCCAGTT AGTGATGCTG GAGAAGGAGC TTTCTGTGCA CACGGCCATG TAGAAGCAAG ATGAATAGAT TCGATACTGG TTTTTAACTT TCTGCCAAAT TTATATG.AA.AAAAAAAAAA AAAA 1440 AAAAAAAAAA AAA.A INFORMATION FOR SEQ ID NO:8: SEQUENCE CHARACTERISTICS: LENGTH: '740 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID N0:3: GAATTCGGCA GTCAT'AGGAG 120 TACCCAGATG 180 CGAGATTCTC 240 GCATTTGCCA 300 TTTAGTATAG 360 AACAAATACT 420 TCTTTGGAAA 480 CCAAAATCAT 540 CAGTGAATAA 600 GTGTTAGTGA 660 AATCTTGATG 740 720 740 CGAGACCATT TCCAGCTAAT ATTGGCATAG CAATTGGTCA TTCTATCTTT ATCAAACAAA TGAAATATAC TTCCACATGC AATTGTGGGT TATGACGAGC CACCTGTGGT CCGCTTAGTG GGCTGATGTG TTTTGTTAGA ACGGAATGAT GATTGTGTCT TTTTGAAATT CACTGTCGAT TTCAGAGATA TATAATCCTT TAGGCACTGC TTGTTTTCTT TGGAATGCTA AACTGGTTGT GTGTTTAGAT GTCAAATCTT TTTTCAATGG AAAAAAAAAA GGACCTAATG GAGTACCTCA CATAACAGTT CGTAGGTGTT AGATCCTTCA. TCTTTCTGGA AGTACTAGTG TCCAGAGGGT CCATCTTTAC GATGGGCTGA TAAAAAAAAA GTGTGGAGGC GCAA.ATTTGT TCAATCAATG TGGCAGAACA CACTTTTCTC ACTTTGGTAT TCCAGAGTTC GTTTACAACC AAGGCTATTG CTGACTCTCT TAGtCAGCTA GTGAAGTATG TTTGTCCTAG GAACCTCCTG TTCCATAAGA GGCAATAATG TAAGGGAGTT AACAGTTGTT AGTAAGGTTG TGT.GATGTCA INFORMATION FOR SEQ ID NO:9: SEQUENCE CHARACTERISTICS: LENGTH: 624 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: GAATTCCTGC AGCCCGGGGG ATCCACTACT TCTAGAGCGG CCGCCACCGC GGTGGAGCTC 6O GCGCGCCTC 120 TTGTTGGACG 180 CCCAAGGAAG 240 GTCTGTGTTG 300 GAGGTCATGC 360 CCAGGGCAGA 420 'AAAGAAGCAG 480 GCTCTGCGAA 540 CACTCCATCG 600 GACATGGCTG 624 AGGTCGACAC CCAMGGAAGC GACTGGCTCT ACGCCAACGT AAGGGAAACC TCGAAGCCC CGCGGCTTCA CATCGCCACA AGCGGGAGAT TCCACGGCGG TAGTGGATCC T CTCCGGAAA CGTCAACGC GCTGGGCGTG GGAGTTCGTA GGCCGTCATG. CGAGAAAGAC. GTGGTTGGGG CAATTCCGTC CAAC AAAGAATTCG GCCGGGATTC ACAGCGGTCG CTGGCTGAGA GATCCG TTAA GAGTTCCTCC CCGTTGAGCA CCTCCGATCG AACGACAATC GCACGAGGCC TGGAACCGTT GATCCGCCGT TTCTGTCTGC CCCACCAGTT TCGACGGTAG AACCGAAACA AAGTCATCCG CGTTAATCGA CGACGGCCAC TAAACTGCAG GGCCGCGTCC GCTCTTCTGC GAAGCACCAC CGACTACGTG AGACCGCTAC CGCTGCYACT TGTCTCCAGG INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 278 base pairs TYPE: nucleic acid STRANDEDNESS: single (D)-TOPOLOGY: linear (xi) GAATTCCTGC CAGTACCTGG 120 GTCAATTCCC 180 CTGATGTTCG 240 -GAAAACATGC 278 SEQUENCE DESCRIPTION: SEQ ID NO:1D: AGCCCGGGGG ATCCACTAGT TCTAGAGCGG CCGCCACCGC GGTGGAGCTC CCAACCCCCT CACGACTCAC GTCCAGAGCG CCGAACAACA. CAACCAGGAT TCGGCTTGAT CTCCGCCAGA -AAGACTGCCG .AGGCCGTTGA GATTTTAAAG CTACATATCT GGTGGCCTTA TGCCAGGCGA TCGATCTCCG GCACCTGGAA GATCCGTTGT GAAGCACGTA GTCTTGCA INFORMATION FOR SEQ ID NO:1l: SEQUENCE CHARACTERISTICS: LENGTH: 765 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:11: GAGCTCCTGC AAGTCATCGA TCATCAGCCC GTTTTCTCGT ACATCGACGA TCCCACAAAT CC-ATCATACG CGCTTATGCT CCAACTCAGA GAAGTGCTCG TAGATGAGGC TCTCAAATCA 120 TCTTGCCCAG 180 GCTGCTGGAA 240 AAGGCCCGTT 300 CCAATTGCAA 360 GAGTTGGGAA 420 AAGGTATTTG 480 GCTTGGGGTG TTCAATGCCT 600 AGAGGTTTCT 660 CCTAAACAGC 720 GGGTTCCAAC 765 ACGGGAATGA TATTACCCAA TAGAGGAAGA ACAGAATAAA CCGATTTGCT AGGGCATTTG GGTGCGCTGG CATATTGGGC GGAGCGCCCA TTGTTCTTCG AAAATAGAAG CGAATCCGAT TTGGGTGTTT GGTTCCGAAG CAAGTCCACG AACAGGG CCC CCAAGGGAAA ACCATTCACT ATGGTTTGAT ACAACAACAA CAATAACGAA AAATATTTTC CACAATTTGC AGCAGGATCC GCGAGGGAAC ACATATCCCA AAGTGGAGA.A ATTGGAAACG CCACGTGCAT AGCACCAAAT GTTCTTTGAT TCTTTCATCT GATCCAAAAA AGCCCGCTGA CCATATTTCA GATTCGATAA TTTACAGATT CC CCC GGCGA TGATCCTCAA ATCCTGCGTC- C ACCCTC TCC TTAACTGACT TCGTTACTTT GAGCGCTGGA AGAGGAGTTG TGGGGACTTC CCTGAGATCA AGATATACA.A ATGTCTGGAC TCCTGCAGCG AACGAGCGGC CTTAAGCATT GTAAAAGATG INFORMATION FOR SEQ ID NO: 12: SEQUENCE CHARACTERISTICS: LENGTH: 453 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) TGATTATGCG TGAACCTAGC 120 TCCGGAACGC 180 CAAGCCGGCG 240 GAATCCACGG 300 ATTGACGATG 360 GCTTCCAGGT 420 CGGCCGCCAC 453 SEQUENCE DESCRIPTION: GATCCTTGGG CAGGGATACG CTTCGCAAAG AA71CCTTTCC TCAAATAAAG ATCCTCGATT AAATCTGCAT CCGCGGACCC CCGCTACAAT CGATGAAGAA ACGAAGAAAT CTTCATAGTC. GGATCCTGCT AATCGAATTC CGCGGTGGAG CTCCAGCTTT SEQ I D NO: 12: GCATGACAGA AGCAGGCCCG CCGCCAAATC- TCGCTCCTGC ACAGGAACTC GCGAGTCTCT GAAATAATGA AAGGATATAT GGCTGGCTCC ACACAGGCGA GACAGAGTAA. AGGAGATTAT CTGCAGCCCG GGGGTCCACT TGT GTGCTGGCAA GGAACAGTCG CCCGCACAAT TAACGACCCG CGTCGGGTAC CAATATAAAG AGTTCTAGAG INFORMATION FOR SEQ ID NO:13: SEQUENCE CHARACTERISTICS: LENGTH: 278 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ I0 NO:13: TCTTCGAATT CTCTTTCACG ACTGCTTCGT TAATGGCTGC GATGGC.TCGA TATTGTTAGA TGATAACTCA ACGTTCACCC GAGAAAAGAC TGCAGGCCCA AATCTTAATT CTGCGAGAGG 120 ATTCGACGTA ATAGACACCA TCAAAACTCA Ac-TTGAGGCA GCCTGCAGTG GTGTCGTGTc 180 AGTTGCCCAC ATTCTCGCCA TTGCTGCACG CGATTCAGTC GTCCAACTGG GGGGCCCALAC 240 ATGGACGGTA CTTCTGGGAG AAAAGACGGA TCCGATCA 278 INFORMATION FOR SEQ ID NO:14: Ci) SEQUENCE CHARACTERISTICS: LENGTH: 23 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: CTTCGAATTC WYTTYCAYGA YTG 23 INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 22 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID GATCGGATCC RTCYYKYCTY CC 22 INFORMATION FOR SEQ ID NO:16: Ci) SEQUENCE CHARACTERISTICS: LENGTH: 472 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) AATTCGGCAC GTTCTAGTGC 120 CTGCGCCGCC 180 CACAGGGAGC 240 GCGCCTCGGC 300 GGTAGGGGTC 360 CATGGAGAGC 420 CTTCTCAAAC 472 SEQUENCE DESCRIPTION: GAGACGACCT CTTGTATCGG TGA.ATGGAGA TGGAGAGCAC GGGAGCCACC ATGCCGACCC CACCTCGACG AGGTGAAGCG GGGGAGTCCC TCACGATAGC GAGCTCTCGG AGGCGGCCCG ATGAACAAGG GAACTGACAG CGGAGGCCGA AGCAAGGCGG SEQ ID NO:16: ACCCGGATCC GCTATCGTTA CACCGGCACC GGCAACGGCC ACTGAACTGG GGGGCGGCGG GATGGTCGAG GAGTACCGGA CCAGGTGGCG GCGGTGGCGA TCCCAGGGTC AAGGCCAGCA CTACGGGGTC ACCACCGGGT TCCTTTTCAG AAGGAACTTA ACGTACACAC TTCACAGCCT CAGCAGCCCT GGCCGGCGGT GTCAGGAGGG GCGACTGGGT TCGGCGGCAA TA INFORMATION FOR SEQ ID NO:17: Ci) SEQUENCE CHARACTERISTICS: LENGTH: 622 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) CCAAAGCTCC CCCCGAGGCA 120 GACGATCCCA 180 CGACTATTGC 240 GTGGTGAGCT 300 GAATTGGTGG 360 GCCTTGTGCA 420 CGTTGTCTAA 480 CTGAAAATAG 540 GCCAATGCAG 600 AACATTGTTC 622 SEQUENCE DESCRIPTION: SEQ ID NO:13: TAGTGCCTCA TGAGTCTGCT GAGGATTGCA CA.ATTGGCGG GTTCGACGTG CCATGATCCT GGTTAATGCG CAAATTTTAA ACCGGAGAGG CGTTTGGGAT GGGGAGGAGA TGGTCCTGGC GGCGCTTATT ACTTGTCCGA GGGGACGGGA AAGCGCGTGA ATGCATGATA TGAATTTACA TTGGTGATGT GCCAGTGCAG CTTTAGGAAT CTTTAGGCCT TTCTCTTAGG AAAAAAAAAA PA rGGGCAATTC TACGAGGGAT AGTTGTCCTG CAGTGCTTC-G CTCACAATGC GCTAATGTTC ATCTCCAATG GATCGTGAGC AGAAAAATGA AAAGAGACCC TGGAAGGTGA GTGCTGGCCT AATGGGAACG CAAAGAGAGA TTGCGCACCT TTTTTGAATA ATCAATAGCA TGGTTTATAT AAAAGTGTGG TCATGCCTAC TGCCAATAGA AGTTGGCGAA GCCATTGGAG TTAAGAAGGT ATCAAATAGA TCCTGAGGAG AGGTACTU'GC INFORMATION FOR SEQ ID NO:18: SEQUENCE CHARACTERISTICS: LENGTH: 414 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) CACGCTCGAC CATTGAACTC 120 ACCCCACCCA 180 CAATGCAGTC 240 CGGTGAACTG 300 TCTCCGGCAA 360 AGGAAGCCAA 414 SEQUENCE DESCRIPTION: GAATTCGGTA CCCCGGGTTC TCTCTCTCTC TCTCTCTCTC CATACAGACA AGTAGATACG AATCGCACTA GCGACGGTTC GGTGTGGCTG AGGCCGAAGA GTCCTACACC TTCCTGGTCG GTCCAAGCCC ATCGCCGTCT SEQ ID NO:18: GAAATCGATA AGCTTGGATC TCTCTCTCTC. TCCCCCACCC CGCACACAGA AGAAGAAAAG TGGCCGTCCT AACGACATGG GGCTCGAGAG GCT TCTGAGA GCGACCTCAA GGAGAACCTG CCGATGACAT CAAGCCTCGT CAAAGCAACA CCCCTTCCCA ATGGGGGTTT GCGTGGAGGG CAGCAAGGTC CGGATGCTCA CTCT INFORMATION FOR SEQ ID NO:19: SEQUENCE CHARACTERISTICS: LENGTH: 469 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: GAATTCGGCA CTCATCTCCT 120 CT TCTCCGAA 180 TCATAGGCCA 240 TGGCGGACAA 300 TAAGCAGCCG 360 GCCCCAAATC 420 AATACGGGGA 469 CGAGTGTCTC AGCAGTTCTA CAAACCCAAA CATCCACTTG GCAGGGCCCG TGAGGCGGTC CAAGGCGGGA TCTCTCTC:TC GGGGTTGTGT GGTACTGCCT CTGGGCGGCG ATGTTTCGGA CGGGAGTGCT ATCCACTTSG TCTCTCTGTA TGC-,CCTGCT TACCCCCGGA AGACCCCGCT TCCGTCTCGS TCACCACCCA GCTACGGGTA AACCACCATG AATTCTATGG GCTGCCGGGC GGCCAGGACC AGTCCACCCG CGACAAGGAC TGCCGGTTTT CTCTTCCTCA AGGGCAAGAT GCATGGCCGA CTGGCCGCCA GCGACCATCA CTCGCTTCTC GGCTI2CGTAG CTTTTGGCGC GAGATGAGGA AGATCACCAT GCTCGAGCT INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 341 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) CGGGCTCGTG TCATCGGGAA 120 AGAAGTATGG 180 CCCCCGACGT 240 CCACCATCGC 300 GCCCGTTCTG 341 SEQUENCE DESCRIPTION: GCTCGGCTCC GGCGCAACGC CATGCTCATG ATGGGCGAGC CGGGATCTTC CACCTCCGCA GGCCCGCCAG GTCCTCCAGG GATCAGCTAC CTCACGTATG GCGGCAGATG CGGA.AGCTGT SEQ ID CCTTCCCACC GGGCCCGAGG TCACCCACCG CGGCCTCGCG TGGGCTTCCT GCACATGGTT TCCACGACGG GATCTTCTCG ACCGGGCCGA CATGGCCTTC GCGTGATGAA A GGCCTCCCGG AGTCTGGCGA GCCGTGTCGT AACCGGCCTG GCGCACTACG INFORMATION FOR SEQ ID NO:21: Ci) SEQUENCE CHARACTERISTICS: LENGTH: 387 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA GAGGGGCCTC 120 CGCGAGTCTG 180 GGTTGCCGTG 240 CTCGAACCGG 300 CTTCGCGCAC 360 SEQUENCE DESCRIPTION: CGAGCGGGCT CGTGGCTCGG CCGGTCATCG GGAACATGCT GCGAAGAAGT ATGGCGGGAT TCGTCCCCCG ACGTGGCCCG CCTGCCACCA TCGCGATCAG TACGGCCCGT TCTGGCGGCA SEQ ID NO:21: CTCCGGCGCA ACGCCCTTCC CATGATGGGC GAGCTCACCC CTTCCACCTC CGCATGGGCT CCAGGTCCTC CAGGTCCACG CTACCTCACG TATGACCGGG GATGCGGAAG CTGTGCGTGA CACCGGGCCC ACCGCGGCCT TCCTGCACAT ACGGGATCTT CCGACATGGC TGAAAGCTCT TCAGCGGAAG CGGGCTGAGT CSTGGGA 387 INFORMATION FOR SEQ ID NO:22: SEQUENCE CHARACrTE-RISTICS: LENGTH: 443 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear CACGAGCTCG CACTCCTTTC 120 AAAGCCCAAA 180 GAACCAAGCA 240 TGCTCTGATA 300 ACTGGCCGAG 360 CGCAAAGAAC 420 CTCCATCCTC 443 SEQUENCE DESCRIPTION: TGAGCCTTCC TCAAGAAACC CTCGTACAGA ATCACGACGG GCACTCCCCT TGCGGGCCTA CCGGAAGCCC CGGAGACPAAG TAGTCATCCA AGGAGAGAGA CCAGTGAAGA TGGTCTTGAA TGGCTCCACT SEQ ID NO:22: GCCATCTTAC TTCGCAACAA AGAAGCAGAG CAT 1GCXACT .GAGAGAGAAT AGAAGCATGA TGAAGAGTTC TTGTTCGCCA GGCCACCATC GAACTGGGGA TTCGCCTGCT CAGATTGCCT TGACCGGATC CTCCGGTTTC ATTGCGTCCG GCAAACAGCC GTGCATGCAC TGGAAATGAA TCCTCGAA.AT CCCGTCTCTC TCGCCAGCTA TCTTGCACTC TCG INFORMATION FOR SEQ ID NO:23: SEQUENCE CHARACTERISTICS: LENGTH: 607 base pairs TYPE: nucleic acid STRANDEDNESS: single (DI TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: GAATTCGGCA AACCGGTCCA 120 ACTTAGGTCA 180 AGAGAGAGAG 240 GGAGAGCCAG 300 TGATGCTCTT 360 GAAGGAGCTC 420 CGAAGGGCAG 480 TGGTGTCrTC 540 GATTTTGGCT 600 GCCGGTG 607 CGAGCCAACC AACCGGACCA ACTGCAACAT AGAGAGAGAG ACCCAAGCCG TACCAATATA AGGGAAATAA TTCTTGAACA ACTGGCTACT ATGGACATTA CTGGACCAGG TCACTGTCCT TTCTTGATCA AGAGAGAGAG GGAGGCACCA TTTTGGAGAC CAGCAAAACA TGCTTCTCAA C TC TC CTCGC ACAGAGAGAG TACTTTTGGC TATATACGTT CAACATATTA AGAGTTTGPA GGAGGTTGGC CAGCGTGTAC TCCATGGAAC. GCTCATCAAA CACCGCTCTT CTATGAACTT AGGCGGTCCA GCATCATGCC CAATATTCCT TCAATGGCCA CACAAGTCTC CCAAGAGAGC ATAATGACAA GCCAAGAACA GCTCTTCCTG GGCCTGCCGG TTGCCCTTCA TGCTCATAGA AAGCAGAGAG CCGCCGGAGA TCCTTCAGAG CTGAGCCCAT CATCAGCAGA CCATGGAGAT ATGACGGAAA CATCCAAAAA INFORMATION FOR SEQ ID NO:24:- SEQUENCE CHARACTERISTICS: LENGTH: 421 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: GAATTCGGCA AGAGAAGAGA 120 CCAAGTCTCG 180 CCCCATGGTC 240 GCCGGGCGCG 300 GGCACCCGTA 360 CACCCTCCGC 420 CGAGCCGTTT TATTTCCTCT GATTTCCTTT GGAGAGGAGA GAATGGGTTC GACCGGATCC GACGAGGAGG CGAACCTCTT CGCCATGCAG CTCAAGGCCG CCATCGAGCT CGACCTCCTC TTCCTCTCCC CGGGGGAAGT: CGCGGCCCAG ATGCTCGACC GGATCTTCCG GCTGCTGGCC GCTCGAGTCT *GAGACCCAGA CTGGCGAGCG GAGATCATGG CTCCCGACCC AGCTACTCCG CGCGGAAGAG TGACCCCCAC CCTCCGTGCT CCAAGGCCGG AGAACCCCGA TGCTCACGTG GACCTCCCCG ATGGCAAGGT CGAGCGGCTC TACGGCTTAG CuGCCGGTGTG INFORMATION FOR SEQ ID NO- SEQUENCE CHARACTERISTICS: LENGTH: 760 base uairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID GGAAGAAGCC AAGGAGCTTA 120 CGAAGCATTC 180 TATTGGAGAC 240 CAGCCAAACA 300 TGCTCCTCAA 360 CTCTCCTCGC 420 ATAGGGAGAA 480 TCGATTTCAG 540 ACCATGGAAC 600 TCAATGGTTC 660 TAAGGGTAGT 720 GCTGACCCGG 760 GAGCAAACGA AGAAG CAT CA GGAAGTCGGC CAGCGTCTAC TCCATGGAAC GCTCATCAAC AACCGCCCTT CTTCGAGATC AGAAGGCCCT GTACGACTTC APLAGACAACA TTCTCATTTC CGGCACAGGT ATTGCAGACG TCAATGGCAG CACAAGAGCC CCAAGAGAGC CTGATGACCA GCCAAGAACA GCTCTTCCCG GGGCTGCCCG GCCCTGCCGC TTCTCAATCC TAAGACAGAA ATCAATGCTT GATGCCATCC CCATTGAAAA CCAACGCAGA TCTTGCAGAG CAGAGCCCAT CATCGGCGGA CCATGGAGAT ATGACGGAAA TCATCCAGAA TCCTTGATCA TTAATCGTTC GATGGAAAAA GATTTTGAGA CCGACGGGAA AAGACACGAA GCCTCAGCAG CGATGCTCTC TGAAGGGCAG CGGCGTCTAC GATCTTGGCC GGCCGGCCTT GCTCGTGCAA ATTTGAATAC ATAGAAAGGA AGAGATCAAG ACCCAACCAG TACCAGTATA AGGGAAATAA TTCCTGAACA ACCGGCTACT AT GGCCAT CA GCCCACAAGA GATGAGAAGA AAATACATGC AGGAAAGTAT TCTCCTTTCT GGTGCGATCA INFORMATION FOR SEQ ID NO:26: SEQUENCE CHARACTERISTICS: LENGTH: 508 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGTA G0 ACTAACCATC 120 ATATCGTGAA 180 AGGGACGGGC 240 GTTCGCGCTG 300 CTTCAAGAAC 360 GAAGGCAATC 420 TCAGACCAAA 480 GGTTCArTTG 508 SEQUENCE DESCRIPTION: CCCGGGTTCG AAATCGATAA TGCCTTTCTT CATCTTCTTT AGGAGTCCGT CGACGACAAT TACGTCGGCA AGTTCATCGT GTTAGGCAGA GCACGGTCTC TTGGGCGTCA CTCTGCTCAT AAGCAAGCCG ACGTGGTGAT GAATCGTCGA CGCCATTAAA ATCTGGTTTG GGGGGGTC SEQ ID NO:26: GCTTGGATCC AAAGAATTCG CTTCTGCTTC TCCTCCGTTT GGCCGAGAAG AGCAAGGTCC GGAAGCGAGT GCAAAAGCAG CGACCCCGTC .*PAGGGCCAGC CGGTGATCTG TACGATCATG ATCGACAGTC GGGCACATGC GGAAGCTGGC AACGTTAAGG GCACGAGATC *CCTCGTTTCG TGATCATCGG GGCATCCCAC TCGT CGAGAG AGAGCT TGGT AA-"ATGGCGGA TTTGTTGGTT INFORMATION FOR SEQ ID NO:27: SEQUENCE CHARACTERISTICS: LENGTH: 495 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: GAATTCGGCA CGAGGTTAAT GGCAGTGCAG CCTCAACACC ACCCACCTTC CTCCATCTCT CTCCTCCCTT 120 AAGAGGAAGG 180 ATCCTCATCA 240 GAAGGTCATC 300 GGTGAGTCGG 360 AGAAAGGATT 420 GACATTAACG 480 ACCAGTCAAC 4 CTTCTTTCTC TGGGGCAGCC TGGGAGGCAC AGGTCACTTT ACAAGGACTT TTGATTTTGT GCGAGAGGCG TACTG TGACTTCAAT -TAAAGGGGCA CCGTTTCATC GTTTPSCCAGA CGCTGATTTT TAAATCTAGT GATGAAGTCG GGCAGCCGAC CTGCGGGTCA GGTGTGTTTT GGAAAAGCAC TCATCCAAGA CTTGCTGCAG CACCAATTTT TCCATGCTTG CTGCATCAAG CCATCACTCA TCCTGCATTT AAGGCTTTGA GGATGCCTGC CGTTCAGTAT CAATAAGAAG ACTTGTCAAA ACAATTGCCT GAAAGGAGAC CGT TGTTTAT CAAACCTTGA INFORMATION FOR SEQ ID NO:28: SEQUENCE CHARACTERISTICS: LENGTH: 472 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA CCTCGTCGTT 120 GGGCCACCCC 180 GACGCTACTG 240 -GAGGJAG-CC-TC 300 CCACTTCCGG 360 TGGAPLATGTC 420 TGCAATTGAG 472 SEQUENCE DESCRIPTION: CGAGCATAiAG CTCTCCCGTA GGCGGCACTG GCTACCTCGG ACGTACGTCC TCCAGCGTCC CGCTTCAAGA GGCGTGGCGC GjTCGACGCTG TGAGGCGGGT AGCCACAACA TCCTGATGCA AAGCGGTTTT TGCCGTCAGA CCGGGAAGGG TCACGTTCGA SEQ ID NO:28: ATCCTCACAT CACATGGCGA GCGGAGGTTC GTGAGGGCGA GGAGACCGGC CTCGACATTG CCAACTCGTC GAGGCCTCGT CGATGTCGTC GTCTGTGCCA GCTCAAGCTC GTGGAGGCTA GTTCGGAATG GACCCGGCCC TGAGAAATGG. AGGTGAGAAA AGAGCA.AGGT GOCTGGACCA AGAAGCTCCA TCTCAGACCT TOGT CGGGG'T TCAAAGA?.GC TCATGGGTCA AG INFORMATION FOR SEQ ID NO: 29: SEQUENCE CHARACTERISTICS: LENGTH: 396 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA AGACGAAGGC 120 CGTCCGGTTA 180 AGGCCACCGT 240 GAGCGAAAGA 300 CTATTGTTGA 360 AGGATCCGCA 396 SEQUENCE DESCRI PT ION: CGAGGAGGCA CCTCCTCGAA GAGAATGAGC GCGGCGGGCG CATCGCCTCG TGGCTCGTCA CCGCGATCCG AATGATCCAA TAGACTTCAA CTGTTCAAAG GGGTTGTGCA GGCGTTTTTC GGCAGAATTA CTTGATCCGG SEQ ID NO:29: ACGAAGAAGA AGAAGGACGA AGGACGAAGG GTGCCGGGAA GGTCGTGTGC GTGACCGGGG AGCTCCTCCT CCAGCGCGGC TACACCGTCA AAAAGACTGA ACATTTGCTT GGACTTGATG CAAACCTGCT GGAAGAGGGT TCATTTGATC AAACTGCCTC TCCCTTTTAT.CATGATGTCA CTGTAA INFORMATION FOR SEQ ID Wi SEQUENCE CHARACTERISTICS: LENGTH: 592 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3O: GAATTCGGCA CGAGGTTGAA CCTCCCGTCC TCGGCTCTGC TCGGCTCGTC ACCCTCTTCG CGCTCCCGCA TACTCCACCA CCGCGTACAG AAGATGAGCT CGGAGGGTGG GAAGGAGGAT 120 TGCCTCGGTT GGGCTGCCCG GGACCCTTCT GGGTTCCTCT CCCCCTACAA ATTCACCCGC 180 AGGGCCC-TGG GAAGCGAAGA CGTCTCGATT AAGATCACGC ACTGTGGAGT GTGCTACGCA 240 GATGTGGCTT 300 GAGATAGTTC 360 CATGTGGGGG 420 CTAGAAGTCC 480 GTGACAAAGG 540 CCAGAAALACT 592 GGACTAGGAA GAATTGTGAA TGGGAACTTA AATGTGAAAA GAGGATATTC ACCCGATGGA TGTGCAGGGA ACAGGTTGGC TGTCAATTCA GTCGGTTATG TAG TCACATT TCTAGCAGCG CACTCC-AAGT TCCAGTGTCC TGCAGAGAGT ACTTTTGATG GTCGTCCATG CATTTGCTCT c TGGT AACGCTTCAA GCGAGTATTG GAATTGATGC AAAGGTATTG GTGCTGGATC '.:CCAGGGCAC -IGTTGGCGAT :AATGACAGG AG.ATGGTACA ZGTCAGGATT INFORMATION FOR SEQ ID NO: 31: SEQUENCE CHARACTERISTICS: LENGTH: 468 base pairs TYPE: nucleic acid STRANDEDN4ESS: single TOPOLOGY: linear (xi) GAATTCGGCA AAACAAATGG 120 TACCCTGCAC 180 GGCTTCCACA 240 GGCr-CCGAGT 300 CTTCCTCCTT 360 AACTATATGG 420 CCTCCGGTGA 468 SEQUENCE DESCRIPTION: CGAGAACTCA TCTTGAAATG GTTCCGCCGG ATTCGAATCG AAAGCCACAT TGGCGCCATG TCTCCTTCGT CAACACCGAG TCACAAATGG AATGCTCAGC CGGACTTGGA TGCGATCCAA TCAGCCCCAT CAACGATCTT CTTGCATCAA TCTCGGATGG SEQ ID NO:.31: TCATTGGAGT CATCATCCTC GCCACAAAGC CGCACGCCGT CTCAAGCTAG CAAAGCTCCT TTCAACCACC GGCGGCTCGC GACTTTCAGT TCC:TGCAAT GACATCAAGA TGCTCTGCGA GTATCGAGCC TGGGCTCGAA. TTTCATGACA CTCGTGAC :AGTGAGAAG T TCATTCCC fCATCACAAG CAGGGCTCGA CCCGCATGGT ATCGTCCAGG CCCGAGCGTC INFORMATION FOR SEQ ID NO:32: SEQUENCE CHARACTERISTICS: LENGTH: 405 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) CTTTACTCCG GTCCATCTTC 120 AGCAAGCCCC 180 CGGAATTTTC 240 TTCGACCCGG 300 AGGCATTACA 360 ATCGGGCTGT 405 SEQUENCE DESCRIPTION: CCAAGAAGAT CCAATCGCAG ATCGGGAAGT CTCTTGGCAG TAACTCAGTG GTCTATGTGA CGAAATAGCT TTAGGTTTAG GTCAGTGAGC GGCTCGGAAC GGAGAGGGGG AAGATTGTGA CGGAGCGTTT ?GGACTCACA SEQ ID NO:32: TTTTCGCAAT TGGCCCATTA AAGACCGGAG TTGCATTTCC GTCTTGGGAG CATCGCCTCT CCGATAGCCA GCAGCCATTC TCTTAGAGAA TTTGCCCGGT AATGGGCGCC TCAACATGAA ATGGATGGAA CTCCA CACAAATGCG TGGCTGGACA GTGAACGAGT TTGTGGGTGG TGCTTTCTGG GTGCTGGCTC INFORMATION FOR SEQ ID '40:33: Wi SEQUENCE CHARACTERISTICS: LENGTH: 380 base Dairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GGCAAACACG TCGAGAGCTT 120 AGGAGCTCAC 1.80 TCCCGACCAT 240 ACGAGGAGCT 300 TCCCCAACGA 360 TCGAGGAGAA 380 SEQUENCE DESCRIPTION: CCCGTTTTCG TTTTACTAAG GTCGAGCAGT GGCATTCAGT AAGC?.TTGGC CACATCTTCG CGACCTCGAG GACATAGCGT CAGGAAGGCT GCCACCGACT CCTGATTGAG CGTGTAAAGA GGACAAGCAT SEQ ID NO:33: AGP.AGATGGTL GAGCGTTGTG CGA TCCCGCA GGAGTATGTG AGGAGGAGAA GAAGC-ATGAG CTAAAGACCC CGTGGTGAGG GGGGCG-TCAT GCACCTCGTC AGGCTGGCGA GGTGTTCTTC GCTGGTAGAG AGGCCGAAGG GGCCCTCAGG GAGAGGTGCC AACCATGGGA AACCTCCCGA INFORMATION FOR SEQ ID NO:34: SEQUENCE CHARACTERISTICS: LENGTH: 305 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) TTGTACCCGA CGAGGCCGCC 120 CGTCGTGGTC 180 AGGAAGCGGA 240 TCGGAGATGG 300 TGTTT 305 SEQUENCE DESCRIPTION: SEQ ID NO:34: AGATCTCCGG GACCGTTCGA CGGCGACATC GCCGTCGGCC GGGAACCCGT GCCGGAGGCC GGGGAGAAGC TGGAGTAGCC GCCGTAGCCG GAGAAGGCGC GGCGGCGGCG GCGTGGTGGA CCTCATCGCC GTCCATGCTG AAGGCGTCGA CATGGCTGGG GGATCGATCG ACCGATCCGATCGGCCGGAG GATTTCGAGA AGAGATGGAA ATGAAAGAGA GAGAGAGAGA GAGATCCGGT GGACTGGTGG INFOR1MATION FOR SEQ ID Wi SEQUENCE CHARACTERIS TICS: LENGTH: 693 base pairs TYPE: nucleic acid STRANOEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID GAATTCGGCA -CGAGCTA AGA GAGGAGAGGA. GAGGAGCAAG ATGGCACTAG CAGGAGCTGC ACTGTCAGGA ACCGTGGTGA GCTCCCCCTT TGTGAGGATG CAGCCTGTGA ACAGACTCAG 120 GGCATTCCCC 180 TGCCATGGCC 240 CCCCGACGAT 300 CTGCCGTGCC 360 GAGCGACGGC 420 CGCCTACCC', 480 AAGCTCTCCT 540 TCTCCCCCCT 600 GGGATGATTT 660 TGAGGAAATA 693 AATGTGGGTC GCTTACAAGG GTTTACATCT GGCTCTTGCT AGCTTCCTGG AAGTCTGAGG ATATTTGCTT TCACTACATG GATGTTATTC AAACTCATGC AGGCCCTGTT TCACCCTGCT TGGACTACGC CCTCCTGCGC ATGATGATCA TCACCATTGA TTGCATAAAT TTTGTTAGTT TGAGTCTAAT TCTAAAAAPA TGGTGTCA AC CACCCCTG.A CGAGGAGCA.A GGGCALAGGTC GATTGAGGAA GACCCACAAG CAGTCTCACT CCTTTAGTCT GTAATGGCT-, AAA TCTGGCCGTG GGCAAAGTCG GGCATCGACT GTGGCGGGGA GGTTGGGTCC GAAGAGGAGC CTACGCAACT CTTCCTTTTT TTCTTTTTCC GCAGAGTGAC AACTCGACGT TGCCCTACTC GCGTCGACCA TCACTTGTGT TCACTGCTTG TTCTCCACTC TACTGTACGA TAT TTCTGTA INFORMATION FOR SEQ, ID NO:36: SEQUENCE CHARACTERISTICS: LENGTH: 418 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) AGGACTTTAT TCCAATAATC 120 ATGCCTTAGT 180 TGTGAAAAAC 240 GATATGATGA 300 TCCTCGGCAG 360 ACATCCCGCA 418 SEQUENCE DESCRIPTION: SEQ ID NO:36: TATAAGCATT GTAAAAAGAG TCAAACTAAT ACATCGCAAG TACAAAAAGA AAAAAGTTTG ATGCATTGAG ATGGTAACTG TTGAAAAATT AACCAACTAT TAAAATTAAT GATGATGA.AT TATATAGACT TAAAATTGAC TCAGAAGACA TTCTTTTCTT ATTCGGTCTA AACAGGCA.AA TGGTGTCAAA CGGGAAGTCG TGACTACCGG GCGGGCGATG.ATGCGGATCC GGGGGCCGGG CGGACCGGTC CACGTTTGGT GCGGTGACAA CAGGCAGCCC AATTGGGTTA CTTAATTCAA ATGGATTATG CTTATTTTAT GCAAAACTCT TCGCTGGAGA AACCTGGA INFORMATION FOR SEQ, ID NO:37: SEQUENCE CHARACTERISTICS: LENGTH: 777 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37: GAATTCGGCA CGAGCATACA ACTACACTGC GACGCCGCCG CAGAACGCGA GCGTGCCGAC CATGAACGGC ACCAAGGTCT ACCGGTTGCC GTATA.ACGCT ACGGTCCAGC TCGTTTTACA 120 GGACACCGGG ATAATCGCGC CGGAGACCCA CCCCATCCAT CTGCACGGAT TCAACTTCTT CGGTGTGGGC AAAGGAGTGG GGAATTATGA CCCAAAGAAG GATCCCAAGA AGTTCAATCT 240 GO TTGACCCA 300 ATTCACAGCA 360 TTGGGGACTG 420 TCCACCTCCA 480 ACTAATGACA 540 ATAAGAAAGA 600 CCAAAGAGAC 660 ACTCCGACAC 720 AGTGTAATTT 777 GTGGAGAGGA GACAATCCAG AAGATGGCAT ACT GATCTTC CCAAGT TAGT TGAGGAGAGA CCTTGAGATC TGCTACAATA GTTTTTTGGC ACACCATTOG GAGTTTGG7T TCTTGGTGGA CAAAATGTTG GGAATCTTCT AGCCATAGAA ACGACATCCC AATTAAGGAA AAGCTCATCA AATCCCATCT CCrGCACTGC CAAT GGGAAG ATCATTTGAT CTTTGAAAAA GATT TGACCA GCAATTGTTT GACAAGGAAT CATGAATCAC GGTGGATGGA CATCTGGAAG GGGCCTAAAG CATGAGGACG GAAGAAGAAG AGAAGAGAGA CTAGAGTAZAT TTGGTTTTTT AT GGAAAAAA TAGCCATCAG TGCACACAAC AGACCCTGCT ACAAGCGATT AGCAAGAAGA GGGCAATAAA AGAAGGATTT TCATTGGAGG PAAAAAAA INFORMATION FOR SEQ ID NO:38: SEQUENCE CHARACTERISTICS: LENGTH: 344 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) ATATGTTCAG ATACGTTGAA 120 TCGATGTTCA 180 ACTACTACAT 240 TACACTACAC 300 AAAAACATTG 344 SEQUENCE DESCRIPTION: AATTTCAAAT GTGGGAATGT GCTAGTCGAG GTTGAAGGAT CGTGGGCCAA TCCATGGCTG TGTCGCATCC ACCCGGTTCA CAACTCGCTT ACCCCAGTTT GTCCATGAAG CAAGCAAGAA SEQ ID NO:36: CAACCTCCTT GAACTTCAGA ATTCAGGGCC CTCACACCGT CCAGAACATG TATGATTCAA TCTTAGTGAC CTTAAATCAG CCTCCAAAGG CCAAGACGGT TC:TCAATGCA ACTGCAGTGC CCGGGCCACT ACCAGCTGGT CCAACTTACC CAATCAGGTG GAAC INFORMATION FOR SEQ ID NO:39: SEQUENCE CHARACTERISTICS: LENGTH: 341 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GCCGCAACTG GGGAGCTCTC 120 TGATTTTGTC 1~80 GGTGAACGGG 240 CAATGTCGC 300 GAGATCTGGCT 341 SEQUENCE DESCRIPTION: CAATTCTCTT CGTAAAACAT CTCCTCTTCT CTGTGGCGGT GTTCAAGCGA CCAAGGTGAA CAATTCCCGG GTCCGACTTT AACAAAGCTC GCTACAACGT TGGGCTGATG GGGCGGAATT SEQ ID NO:39: GACGGCTGTC GGCAAAACCT CTTTCCTCTT GACATTGGCA GATGCAAAAG TTTACTACCA GAGGCTGTGC ACGACCCACA ACACCATCAC GGA.AGTTAAC GACGGCGACA CCCTCGTTGT CACCATTCAC TGGCACGGCG TCCGGCAGGT TGTGACTCAA T INFORMATION FOR SEQ.ID SEQUENCE CHARACTERISTICS: LENGTH: 358 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA CAGAATTCAG 120 CATGTATGAT 180 TCPIGCCTCCA 240 TGCAACTGCA 300 TGGTCCAACT 358 SEQUENCE DESCRI PT ION: SEQ ID NO: CGAGATATGT GGCCATACGT TCAATCGATG AAGGACTACT GTGCTACACT TACCAAAAAC TCAGAATTTC TGAAGCTAGT TTCACGTGGG ACATTGTCGC ACACCAACTC ATTGGTCCAT AAATGTGGGA ATGTCAACCT CGAGGTTGAA, GGATCTCACA CCAATCCATG GCTGTCTTAG ATCCACCCGG *TTCACCAAGP. GCTTACCCCA"GTTTCCGGGC GAAGCAAGCA AGAACAATCA CCTTGAACTT CCGTCCAGAA TGACCTTAAA CGGTTCTCAA CACTACCAGC GGTGGAAC INFORMATION FOR SEQ ID NO.41: SEQUENCE CHARACTERISTICS: LENGTH: 409 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) ATCAAGAGTT TGCTGATCGG 120 TTCCTCTTGG 180 TACTACCATG 240 ACCATCACGG 300 CT C T TG TCA 360 CGGCAGGTGA 409 SEQUENCE DESCRIPTION: TGAGTCTAAA CCTTGTCTAA CCGCAGCTGC ATTCTCTTCG GAGCTCTCCT CCTCTTCTCT ATTTTGTCGT TCAAGCGACC TGAACGGGCA ATTCCCGGGT ATGTCGTCAA CAAAGCTCGC GATCTGGTTG GGCTGATGGG SEQ ID NO: 41: TCCTCTCTCG CATAGTCATT TAAAACATGA CGGCTGTCGG GTGGCGGTGA CATTOCCAGA AAGGTGAAGA GGCTGTGCAt CCGACTTTGG AAGTTAACGA TACAACGTCA CCATTCACTG GCGGAATTTG TGACTCAAT TGGAGACGAA CAAAACCTCT TGCAAAAGTT GACCCACAAC CGGCGACACC GCACGGCGTC INFORMATION FOR SEQ ID NO:42: SEQUENCE CHARACTERISTICS: LENGTH: 515 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42: CTCTCTCTCT CTCTCTCTCT GTGTGTTCAT TCTCGTTGAG CTCGTGGTCG CCTCCCGCCA TGGATCCGCA CAAGTACCGT CCATCCAGTG CTTTCAACAC T TCTT'rCTGG ACTACGAACT 120 CTGCCTGCTCC 180 TTCTTGAGGA 240 AGCGTGTGGT 300 TTTCCCAGCT 360 TCCGTTTCTC 420 GTTTTGCTGT 480 CTGT1CTTCTT 515 TGTCTGGAAC TTATCACCTC GCATGCCAGA TACCTGTGCT CACTGTCATC GAAGTTCTAC TGTCCGTAAT AATAACTCTT GTGGAGAAAC GGAGCCAGTG GATTTCCTTC CACGAAACG ACAAGAGAGG GGGATAAATT CGCrTGACTZT TTGCCAACTT CAAAGGGATT GGGCACCAGG GCAGCCCTGA GTAACTTTGA CCCCG TGGAAGCAGA TGATAGGGAG CTTTGAGGTC AGTTC.AAACA AACCCTGAGG TCTGGTGGGA C-GTCCAATTC AGGATTCCAG ACT CAT GACA CC-CGTGATTG GACCCTCGAG AACAATTTCC INFORMATION FOR SEQ ID NO:43: Wi SEQUENCE CHARACTERISTICS: (A LENGTH: 471 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA ATTTGCGGCG 120 GTAAGCCAGG 180 GCGAGAAGA 240 GATGTGAAGA 300 CACGGGGCCA 360 420 ACTGGTGGAC 471 SEQUENCE DESCRIPTION: CGAGGCTCCC TCTCGTACTG ATCCATTTCT CGATTCAAGG AGTACAAGAA GGCTGTCGAG GCTGCGCTCC GCTCATGCTC CGAAGACCGG AGGCCCGTTC ACAGCGGGCT CGACGTTGCC TCACTTATGC TGATTTCTAC CTGAAGTTGC TTTTCACCCG SEQ ID NO:43: CCATACTCCT GGGACGGGAT GGAAGAATCA TGGGGAAGTC AAATGCAAGA AGAAGTTGAG CGCATCGCGT GGCACTCCGC GGGACCATGA AGCACGCCGC GATCAGGTCT TGCAGCCGAT CAGCTGGCTG GCGTCGTTGC GPIAGAGAGGC AAACCACAAC TCGGATAGGG CTACCCGACC AGGCCTCATC CGGTACCTTC GGAGCTCAGC CAAGGATCAG TGTGGAAGTT C INFORMATION FOR SEQ ID NO:44: SEQUENCE CHARACTERISTICS: LENGTH: 487 base pairs (B).TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA TCAGTTTCGT 120 CGTCCAGCGC 180 ATGACTCATC 240 TTGAGAAACT 300 GAGCCAGCGC 360 SEQUENCE DESCRIPTION: CGAGCTCCCA CTTCTGTCTC GCTCTCTTCG TCATCTCTC TTACGATTCC AGCTTTTGGA CCTGACTGTT GGAACTAGAG TGCCAACTTC GAGAGAGAGA GAAAGGGTTC TTCGAGGTCA SEQ ID NO:44: GCCACCATTA CTAdCTTCAA CTCTTGCCAT GGATCCGTAC CAACCAACTA CGGTGCTCCC GTCCGATTCT CCTGGAGGAC GGATTCCTGA GCGGGTGGTC CCCACGACAT CT CTCACTTG AGCCCAGATC AAGTATCGCC GTCTGGAACA TACCATCTGA CATGCACGGG ACCTGTGCTG ATTTCCTCCG GGCTCCTGGA GTCCAGACGC CCGTAATCGT CCGTTTCTCC :CCGTCATCC 420 ACGAGCGCGG CAGCCCGAAC CTCAGGGACC CTCGTGGTTT TGCAGTGA.AG =TTACACCA 480 GAGAGGG 487 INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 684 base pairs, TYPE: nucleic acid STRANDEDNtSS: single TOPOLOGY: linear (xi) GAATTCCTGC GCGCGCCTGC 120 TTGTTGGACG 180 CCCAAGGAAG 240 GTCTGTTTTG 300 GAGGTGATGC 360 CCAGGGCAGA 420 AAAGAAGCAG 480 GCTCTGCGAA 540 CACTCCATCG 600 GACATGGCTC 660 ATGCGAATCT 684 SEQUENCE DESCRIPTION: AGCCCGGGGG ATCCACTAGT AGGTCGACAC CCATGGAAGC GACTGGCTCT ACGCCAACG~T AAGGGAAACC TCGAAGCCGC CGCGGCTTCA CATCGCCACA AGCGGGAGAT TCCACGGCGG CTTTGGCAGC TAGTGGATCC TCTCCGGAAA CGTCAACGGC GCTGGGCGTG GGAGTTCGTA GGCCGTCATG CGAGAAAGAC GTGGTTGGGG CAATTCCGTC CAACTTCCAG CGTC SEQ ID TCTAGAGCGG CCGCCACCGC AAAGAATTCG GCACGAGGCC GCCGGGATTC TGGAACCGTT ACAGCGGTGG GATCCGCCGT CTGGCTGAGA TTCTGTCTGC GATCCGTTAA CCCACCAGTT GAGTTCCTCC TCGACGGTAG CCGTTGAGCA AACCGAAACA CCTCCGATCG AAGTCATCCG AACGACAATC CGTTAATCGA GGAACACCCA TCGGAGTTTC GGTGGAGCTC CACGGCCAC TAAACTGCAG GCCGCGTCC GCTCTTCTGC GAAGCACCAC CGACTACGTG AGACCGCTAC CGCTGCTACT TGTCTCCAGG CATGGACAAC INFORMATION FOR SEQ ID NO.46: SEQUENCE CHARACTERISTICS: LENGTH: 418 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA GAACTCCTGG 120 TATGATTTGA 180 TGGTCATAAA 240 CATTGGATTT 300 AAAGTGGCGG 360 SEQUENCE DESCRIPTION: CGAGGACAAG GTCATAGGCC C.CCATTCTGA AATAAATAAT GTCCTCGGAT CTTTTTGTTG GCTTGATTTT GTTTTTCTTT GCCAGAAATA TGTAAGGGTG ATCATTTGGG TAGCATGCAG SEQ ID NO:46: CTCTCTTCAA ATGCTTGGAT CTTCCAAGAT CGCCTTTATA ATGCAGTTGTr TTACCGATCT CTTTTGTTTI ATACTGCTGG GCAGATCATT TGGGTGATCT ATCAGTTGGG TGATCGTGTA GGGTGGAAAG CA.ACGACTGC GGAATTTGAT oATTTGCATCC GAAACATGTA CTGCTTTCAC TATTACTTAC ATATTT.A.AAG ATCGGGAATA AAAACATGAT TTTAATTGAA. A.AAAAAA 4 18 INFORMATION FOR SEQ ID NO:47: SEQUENCE CHARACTERISTICS: LENGTH: 479 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47: GATATCCCAA CGAGCAAGGA 120 TTAA.AAGCAC 180 TTCGAGCAGC 240 CGTATTTGGG 300 CTGCCGTTGC 360 GGGTCGAGGA 420 GTGTCACTAC 479 CGACCGAAAA AGAAAATATG TGGGCTGTGC CAAGGCCATG AGCCAAGGAG TCGAAGATCG GAG TTCAAAC TGGTTTCGGA CCTGTATTTT GTTGCAGCAG ACGGACTTCG GAAGGAAGTC ATTTCCATTG CAAGTGAAAG TGGGTTCTCA GCCACTTCTC CAGGGCGCCA CAGAAATTAC GCTCGTCTGG ACTTTTGAAGA AAGGGAAATC TGAAATTGGA CCCAGATGAC ACAGGAGAAC TGGGGATCCG C-AATTCGGCA GCAGGCCAAT G,;AGTTCAAG CAZ*-CGATCCA -CTGAACTGGG, AGTGAAAGCG ATGGTGGATT TCTGACAATC TC-AGACGT7,G TGCTGCGGCT GCCAAATCTA CAAGGGGACG GATACCTATG GALACCAGGGA GCCGAGCTT INFORMATION FOR SEQ ID NO:48: SEQUENCE CHARACTERISTICS: LENGTH: 1785 base pairs TYPE: nucleic acid STRANOEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48: TATCGATAAG CGCCACCGCG 120 CACGAGGTTG 160 ATATGGCAAA 240 CGATCTCGCC 300 CG7GGTGTTC 360 TCACTGGAGA 420 GCACTACAGA 480 CGCCGAGTCT 540 TATTATGTAT 600 CAAGCTCAAG 660 TGGGGATTTC 720 CTTGATATCG GTGGAGCTCG, CAGGTCGGGG ATCTTTCTGC AAGGAGGTCC GATATCTTCA AAGATGCGCA TTCGCGTGGG TCCACCTCGG AGGATGATGT GCCCTCAACG ATTCCCATTC AATTCCTGCA CGCGCCTGCA ATGATTTGAA TCAAGATGGG TGCACACCCA CGGGCAAGGG GGATCATGAC AAGACGAGAT GCATTGTCAT TCGACAGGAG GAGAGCGAAG TTAGGCCCTT GCCCGGGGGA GGTCGACACT TCACAGAAAC CCAGAGGAAT GGGCGTCGAG GCAGGACATG TGTGCCTTTC CAGCCGCGTG CCGTAGGCGC ATTCGAATCC TCGATTGGCC CCTCAGAGG7 T.CCACTAGTT -CTAGAGCGGC AGTGGATCCA AAGAATTCGG CTCAGCGATT TTGCCAAGAA CTTGTGGTAG TTTCATCTCC TTTGGGTCTC GAACCCGGAA GTGTTCACCG TCTATGGAGA T TTACGAATA AAGTTGTCCA GTCGCGGATG TGAAATCCCG CTCCAGCTCA TGATGTATAA GAGGACGACC CGCTTTTCCT CAGAGCTTTG AGTACAATTA T'ATCTCAGAA T-CTGCA.ATGA GATTAAAGAG 780 CAACAGTACC 840 TAGATGCTCA 900 TCAACGTTGC 960 TGAACCACCA 1020 GCGTGCAGAT 1080 MAACCCTTCG 1140 CCAAGCTCGG 1200 TGGCCAACAA 1260 AGGAGGAGAA 1320 GAGGAGGAGC 1380 ACTTGTTCAG 1440 GAAGGGCGGG 1500 AGCTTCTGCT 1560 AAACACTCCA 1620 TAGCACTTCA 1680 AATAAAAGTT 1740 GGGGAATTTT 1785 AAACGGCTO:'1 CTCTTTTCAA GGACTACTT TGT0GGAAGAGC 0 CAAGAGT AAGACTAGTA GGACAAGGGA AGCAATTGAG GGACATTCAG AACGGAACCA TCTCCGCATG GGGCTACGAT CCCCGCCAAC GCACACCGAA TGCCCGGGAA AACTTCCACC CAGTTCAGCC TAATCCCAAC TCTATCATGA AAAGTTTGCT TGCATAAAT T CCAACACCGG GAGATCAATG ACAACGCTGT AGCAAGGTGC GACACGACAA GCGATCCCGT ATTCCGGCAG TGGAAGAACC GCCAATGGCA TCATTCTGGC TTCTGCCGCC TTCACATTCT TTGTCAGTGA CTGTGTGTGC AGGATTTCAA AAATGATATT GGGAGCTCAA AGGATAATGT GGTCGATGGA GCGCAGAGCT GGT1TGCCCTA TGCTCGTCCC AGAGCAAGAT CCGAGGAGTT ACGACTTCAA GCTGCCTC-TC GCCCGGGCAG CAACCATTCT CTGGTATATA GTGTCCACTG TAACAGACAC TCAATATACT GTGTGCA.ATG TTTGTACATC ATGGGGAATA GGACGCTGTT CCTTCAGGCG CCACA1'GAAT CCTGGTGAAC CCGCCCCGAG ATTCCTGCCT CTCGCACTCT AGCAAAGTGG CTCATCGTCG AATGCGCGCA TCGAGTCTAC CGTCAATTAT ATTTTGACTC GACCATA'TTT GT TGAGAACA GCGGAGCTGG .TTGGACCAG 13TTGTGAAGG Z"'CCACGACG GCCTGGTGGT ,--GTTCTTCG CGGTGTGGG CCATCGGAAG ATJGTCACTGA CCA.AGCCCAT CCTGAACAAA TAAGAGCTCA GTCATGTTtC 7 CCACCAATT ACT GCTAAAA AAAAAAAAAA AAAAAAAAAA AAAAA INFORMATION FOR SEQ ID NO:49: SEQUENCE CHARACTERISTICS: LENGTH: 475 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA GTCCTCGTCC 120 TAGGAACCTG 180 ATTTTCCAGC 240 ATTCACTGTG 300 CGAGGCGCTC 360 GAAAATCTTC 420 GAGCCTTCGC 475 SEQUENCE DESCRIPTIION: CGAGATTTCC ATGGACGATT TCGTTTTCCT TGTTCTTCCT CCGCCAGGAC CCCCGGCATG GGCGCGTTCG AGACCTCAGT TGGCTCGGTT CCCGCCCTCT GTACAGAAGG GCTCCGTCTT AGTAGCAACC AGCACAACAT AGGAATCTGG TTAAAGAAGC SEQ ID NO:49: CCGTTTGGCT TCAATTCGTT CCGACTTTTT CTCTGGAAGc GCCGATCGTP. GGGAACGTCC GAAGAAATTZ CATGAGAGAT GCTGATGATC ACCGACCGCG CGCTGACCGC CCGCCCGCCC CACTTCGGCT G.AATACGGCC CCTGAGACTT CGGCGATGAA TCCTCTGGCT TATGGCGTAA TTCAGATTGG ACGGTCCAAT AGCTTGCCCA TCGGGATGCA CGCTGTGGCG GGCTT INFORMATION FOR SEQ ID Wi SEQUENCE CHARACTERISTICS: LENGTH: 801 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID GCTCCACCGA GGCAATTCGA 120 CGTATGTTGT 180 GATTACGCCA 240 GGTGGCGCC 300 CAGGCCTGAG 360 GCCATTCGGT 420 GTCTATGTTG 480 AGAAGACATA 540 GGCCATTGCT 600 AATTGATCTG 660 CTCCTTTTCC 720 CTGAAGCCCA 780 AATTGAGTAT 801 CGGTGGACGG TTTAGCTCAC GTGGAATTGT AGCGCGCAAT GCTCTAGAAC AGATTTCTTG GCAGGGCGCA GGACACCTGC GAT CT CACAG ATTCCTCGAT ATAGTAAGTT ATAGTCAACA TCCGCTACTC TCATTAGGCA GAGCGGATAA TAACCCTCAC TACT GGATCC AGGAAGATGT GGATCTGCCC TTCATCATTT AGAATCCAGG TGCCTGATCA TGAATTTTGT TGCAGCTTTC AGTAACTGAG CCCCAGGCTT CA.ATTTCACA TAAAGGGAAC .AAAGAATTCG TGGGATCCCC 2GGGCTGACA TACACTTTAT GCTTCCGGCT CAGGAAACAG CTATGACCAT AAAAGCTGGA GCTCCACCGC GCACGAGAC.C* CAGTGACCTT TGATATTAAG GGCCATGATT- TGG TGCACAA CGTATGGGCA GCTTGTTACT TCTCTACALAG TTTGATACAA TTTCTCTGAA TTGGGTATTA CCTCCTGAGG TTCATGGCCA CGACAGCCAC AACGAAATAA GCGCATGCAG ACAGGCTACT ATTTAGTTCA GAATGAAGGC AGCCTGTGCA TCAATTGATC CGTGCAGTTT CTTTCTTTCT ACTTCTAGCA AGCAATAACT TTCTCTGTAG G GTATATTTTA GAACAAATAC CTATTCCTCA INFORMATION FOR SEQ ID NO:51: SEQUENCE CHARACTERISTICS: LENGTH: 744 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51: GGGCCCCCCT AAGGACGCTG 120 GAGTACCCGG 180 TCTACCATGT 240 TTGGTGGATG 300 CACATTTCAG 360 GCTGTGAAAC 420 ATGAAGTGGA 480 TCGAGGTGGA TGCTTGAAGG CCATCGATCA TGATGAACAA TGGGAGGAGG GAATCAACTT ATGTGGGTGG TTCTGCATGA CACTAGTGGA CTCCCAGCCA GAGATTCAAC GATTTTGGAT TATTGGGTCG CGACTTGTCC AGACATGTTT TTGGAGCGAT TCCAAAGAAT TTCACCAAAG AAGATTTTCA ACTTACGAGG ACTCTCAATC CATGTGCTGG GATAGTGTAC GATCATTGCA TCGGCACGAG CCCATGGAAT ACAGGGCTAT GTTT7AAGGA TCATAGTGTC CCGATGCTCC CAAGTGGCCA GGAAGCTTTT GTTTTATCTG GAATGCGTTC GTCTGAGAAT GGTTCAGGAG TAGGTATCCC TCACTACCCA AGCTATTTTT GAAGAATTGT 51 CACAAGGCGT TGCCAGAGAA GGGGAAGGTC ATTGCGGTGG ACACCATTCT CCCAGTGGCT 540 GCAGAGACAT CTCCTTATGC 7CGTCAGGGA TTTCATACAG ATT7ACTGAT GTTGGCATAC 600 AACCCAGGGG GCAAGGAACG CACAGAGCAA GAATTTCAAG A-LTTAGCTAA GGAGACGGGA 660 TTTGCAGGTG GTGTTGAACC TGTATGTTGT GTCAATGGAA TGTGGGTAAT GGAATTCCTG 720 CAGCCCGGGG- GATCCACTAG TTCT 744 52 INFORMATION FOR SEQ ID N'O:52 Mi SEQUENCE CHARACTERISTICS: LENGTH: 426 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GTGGCCCTGG GGTTTCTCTC 120 AGCTCAAGAA 180 CATTGCTGGG 240 TTGTCTATCT 300 AGGCGTTTCT 360 CGTACATCGC 420 TGGAGC 426 SEQUENCE DESCRIPTION: AAGTAGTGTG CGCGACATGG TTGGCTTGCT CTC'TACATTG GAGGCGCCTC CCGCCGGGCC AGCGATGCCT CACGTTACTC CAAACTGGGG ACGTCCGACA GAAGACTTTG GATATAAACT CTACGATTCT CAGGACATGG SEQ ID NO.:52: ATTCCTTGAA TTTGAACGAG GATTTCGTTA TGTTTTGAGA CATCGGGATG GCCAGTGGTG TCTACAACAT GTATAAGAAA TGGTTGTGGC CTCCACGCCC TCTCCAACCG GCCGGGAAAT TGTGGGCAGC GTATGGAGGA 'rTTATGTTGT TCGAACTTGA GGAAGTCTGC TATGGCCCCG GCTGCAGCTA GCAGGAGCCA CGGTGGAAGA INFORMATION FOR SEQ ID NO:56: Wi SEQUENCE CHAR~ACTERISTICS: LENGTH: 1961 base pairs TYPE: nucleic acid STRANDEDNESS: single- CD) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: GTTTTCCGCC AATCAFLTTGA 120 GGTCGAGCAT 180 TCATTCGTLT 240 GGCGACAGAC 300 CGGTCTGGCG 360 CATCGAATTT 420 CAATCCTTT-C 480 TCATAGTTAnC 540 TCGTCATCAC 600 ATTTTTCGCC AAGGTTT1TTA CTGTACAGAT TGCTTTGAGA AGAACTTATT AAGCTCGGGT GCGTTTGTGT TACAAGCCGG CCTGGCAdCT AATCGATGAT TGTTTCTGCG GAGAATTTGA TCAGGTTCGG ATTGGGATTG TTTTCLGTAT TTCGATCGCC ATGGCCAACG GAATCAAGAA CGAAGCTTCC CGATATCGAG ATCTCCGACC ATCTGCCTCT GAGTAGCGGA ATTCGCAGAC AGACCCTGTC TGATCGATGG GCTTTTCAGA GGTGGAACTG ATTTCTCGCA AGGTCGCTGC TGCAGCAGGG GCAGGTTGTC ATGCTTCTCC TTCCGAATTG TCATGGGGGC CTCTGTCCGG GGCGCCATTG TGACCACGGC GCGAGATCGC CAAACAGGCC AAGGCCGCGG GCGCGCGCGA TATGTGGAGA AACTGGCCGA TCTGCAGAGC CACGATGTGC GCTCCCAAGG AAGGTTGCCA ACATATTTCC GTTCTGACCG AAGCCGACGA 660 CCTATTCTTC 720 TGTCCAGCG', 780 ACGTGATACT 840 GCGCGCTCAG 900 TGGAGCTGAT 960 ACATCACAAA 1020 CCGGCGCTGO 1080 CCATTTTCGG 1140 CCTTCGCAAA 1200 C-TCAAATAAA 1260 AAAiTCTGCAT 1320 CCGCTACAAT 1380 ACGAAGAAAT 1440 TGGCTCCTGC 1500 TCGTTCCTCA 1560 CGGAAATCAG 1620 AAATACACAG 1680 GAAAGGATTT 1740 ATTCCTTTGC 1800 GTGCAGAGTA 1860 CAACGCCCTA 1920 TTTTTTATAA 1961 AACCCAATG C CGGAACCACG TGCCCAGCAG CTGTGTCTTG AGCCGGGGCT TCAGAAATAC GAGCCCCATC GCCTCTCGGG GCAGGGCTAC GAATCCTTTC GATCCTCGAT CCGCGGACCC CGATGAAGAA CTTCATAGTC TGAGCTGGAA AAAGCACGAG CGAGCAGGAA AGTTTACTTT GAGAAGCAGA CGATAAT TAT AGCGCCCTAT CACTCTTGCG ATTTACTGCA CCGGCCCTGA GGGCTCCCCA GTCGATGGTG CCTCTTTTCC GCGACCCTGA ?-AGGTTACCG G TTTCCCAGT AAGGALACTCG GCATGACAG. CCCGTCAAAT ACAGAAACTG GAAATAATGA GGCTGGCTCC GACAGAGTAA GCTTTACTTG GAGGCGGGCG ATCAAGGAAT GTGGATGCGA CTGGCAGCAA AGGATTCCTT AAGGAGAGAG ATCGCTTTCA CTTCTCGTTC CAATCCACCC AGGGCGTGAT AAAATCCCAA ACATCTATTC TTATGCAGAA TTGCCCCAAT ACGATGTCTC AAGATGCCCT AAGCAGG CCC CTGGCTCCTG GCGAGTCTCT AAGGATATAT ACACAGGCGA AGGAGATTAT TTGCTCATCC AGGTTCCGGT TCGTGGCAAA TTCCTAAGTC AATGAAAATG TCTGTTCACT AGAGCTTATC ATATGCATAT AAAAAAAAAA GGACGATGTC GTGGCGTTGC GTTAACGCAC AAAGGCCTGG TCTGTATTTC CATTCCGATG TCTCAATTCG GTTCTCCTCT ATTCAACCTC ACGACCTGTC TGTGCCTCCA ATTGTCCTGG GGCCGTCCGG ATAATCATGT CAGAGAGCGT TTTCCCAAGG GGTGCTGGCA ATGAACCTAG .CGGAACAGTC GTCCGGAACG CCCGCACAAT CAAGCCGGCG TAACGACCCG GAATCCACGG CGTCGGGTAC ATTGACGATG CAAATATAAG GGCTTCCAGG GTCAATCGCT GACGCAGCAG GGCGTTCGTG GTGAAGTCGT GCAGGTGATT TTCTACAAGA GCCGTCCGGC AAGATTCTGA AATTTCCATA TGATTCTAAG TCTATTTATA TAATAAAGTG AATTGTATCA TATGGATTGT TACTATAA.AC GATATATGTT A INFORMATION FOR SEQ ID NO:57: SEQUENCE CHARACTERISTICS: LENGTH: 1010 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: GACAAACTTG GTCGTTTGTT TAGGTTTTGC TTGCAGCATT AAGCAAAGAA GATGAGTTCA 120 TTCCAGAGAA TATAAGTCTT TTCCAGTTTG 180 AGGTGGCCC7 CGTGGAGGCC TCCACAGGGA 240 SEQ ID NO:57: TGCAGGTGAA CACTAATATG GAAGGCCAGA TTTTTCACAG CCCTTTTCCT GCAGTACCTG TTCTGGAAGG TGCTGAGAAA TACCGTGATA AGGAGTACAA CTATGGTCAG GTGATTTCGC TCACAAGGAA 300 TTGTTCTGCT 360 GCGCAGTGTT 420 AGGATTCTGG 480 TGAAACTGCC 540 AAATTTTTGA 600 TGTGTGCACT 660 ACAGAAATCT 720 GAAATTTCAC 780 GTTGCGCCAC 840 ACTTTATCAG 900 TGCTCTCCCT 960 TCCAAAGCTG 1010 TGTTGCAGCT GGGCTCGTGG TCCAAATATG TTCTGGGGCA AGCAAAGATT TGTTATTATT GAGAAACTAT CCCTTATTCC GATTGCAAAT CACGTTGGGG TCTTCOCAAC TTCTTTGATT CCGGTTTAA.A GCAGAATACC AATCCTTCTG GTTGTGACAG GCAGATAACG GAGGCCGCAG TCTGGCACCA CTGTGCTCTA CTGATGCCAT GGAGGCAAGG ACTTATGAGG PATCCTATCG ACAAAGG CAT CCATTATTGT CACACATCAA TrGGGTCTGC AGCATGTCAT GGCCTTTTGT CAGGGGCCTC GCTTGTTTGA TCTTTCACAT TCGTGGTCAT TCAACTTCGC TTAACGAG TT TC.AAAAGGGC GCTGGGAATA TGAAGTTGAA TTATGAGAAG GAACACAATT ACAAATTTGT TAAAGGTGTC TGTCCATGAA ATATGGCATC GTCCAGATTC GCCTATTGTC CGATCTCAGC GATGTTG TAT ATGTTGGCCG AAACATATCC GTGAGGCAAG CCATTGCAGG CAGGATGATC ATGCTCACTC TCTCTTGTAG &GGGCATC? .JATCTCCGAC CCGCCTATAA CGCTTGAAAC TTCATGACTG CGGCTGCTCC ACTGGCGCCG GATCTACTGC INFORMATION FOR SEQ ID NO:58: SEQUENCE CHARACTERISTICS: LENGTH: 741 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: GAATTCGGCA GTCAAAGGAG 120 TACCCAGATG 180 CGAGATTCTC 240 GCATTTGCCA 300 TTTAGTATAG 360 AACAAATACT 420 TCTTTGGAAA~ 480 CCAAA.ATCAT 540 CAGTGAATAA 600 GTGTTAGTGA 660 ALATCTTGATG 720 AAAAAAAAAA 741 CGAGACCATT ATCAAACAA TGAAATATAC TTCCACATGC A.ATTGTGGGT TATGACGAGC CACCTGTGGT CCGCTTAGTG GGCTGATGTG TTTTGTTAGA ACGGAATGAT GATTGTGTCT TCCAGCTAAT TTTTGAAATT CACTGTCGAT TTCAGAGATA TATAATCCTT TAGGCACTGC TTGTTTTCTT TGGAATGCTA AACTGGTTGT GTGTTTAGAT GTCAAATCTT TTTTCAATGG ATTGGCATAG GGACCTAATG GAGTACCTCA 'CATAACAGTT CGTAGGTG TT AGATCCTTCA TCTTTCTGGA AGTACTAGTG TCCAGAGGGT CCATCTTTAC GATGGGCTGA CAATTGGTCA GTGTGGAGGC GCAAATTTGT TCAATCAATG TGGCAGAACA CACTTTTCTC ACTTTGGTAT TCCAGAGTTC GTTTACAACC AAGGCTATTG CTGACTCTCT TTCTATCTTT TAGTCAGCTA GTGAAGTATG TTTGTCCTAG GAACCTCCTG TTCCATAAGA GGCAATAATG TAAGGGAGTT AACAGTTGTT AGTAAGGTTG TGTGATGTCA TAAAAAAAAA AAAAAAAAAA AAAAAAAAAA A INFORMATION FOR SEQ ID NO:59: SEQUENCE CHARACTERISTICS: LENGTH: 643 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NOI:59: CTCATCT CG GCAGATGAAG 120 ATGGCTTGTC 180 CCCAGCTGAT 240 GCTTGAGCTT 300 TTGCCACGGT 360 ACCAGCAGTC 420 CGTTGTTTTT 480 GATTGTCCAT 540 TGCTATGCAA 600 GAGCTTGCAG 643 AGTTGCAGGC CAAACGGATC AAGATGCTCC GGATAGGTGGA GTGAAAGCTG GTCTTTCACA GAAGGGACGA ACTTCTTCCA GATGACTGCT AAACCTTGGC TGATAAATCC TGCAGCTTTT AAACAGTTTG TCATCAGAGG AGTATGAGCA ATATTCTCCA GGCCCAAAGC CGTTACTGGA TTACACTGTC TCTGCGAGAG TTACCAGAGC ATGATATCAG GCAGCGGGTT AGAGCAGCAG TTGGAAGGAG T.TACTCACAG ATCAA-ACGAC T CAITCC TTCGGACCAA C.AAAAGAGAG T CATCAGAGG A AGTGATAGA GGGTGAAGCG ACCCGCTCGC GAATTGGTAT AAGGAATTTA TGGCTTCAGT TCTCAATGAT GACCC.TGAGC GGAATGTGAT GGAGGCCTGC GCAGAAACTG TCGGCGCAGT GGAGCGATTT AGAGAAATCT AGGCCTGGCC TTACATGA.AT GACTACTGCG GCATGGGATA TTAGGTCCCT CCTCATAGAG TACAAACCAA TTGCTAAGGG TGA INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 441 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear GAATTCGGCA ACGATGTCAG 120 TGGCATCTTG 180 GGGATCCTGG, 240 GACTGCAACT 300 GCTGCCATGG 360 TATGGTATGC 420 ACCATCTGGA 441 SEQUENCE DESCRIPTION: CGAGAATTTT TCTGTGGTAA CATAACAAAC GCTTATCAAG CAATGAGAAA AATGAAAGCT TGTTTTTCAC TCTGGCCAAG CATGGTTGCA TCCAAAGGAT CGTCTCCTCC AAGATGGCTC GATTTAATGG ACAGCGTCTC ACTTTAGCAG SEQ ID N0:60: GCATATCTAT GGCTCAAACC TGGTATGCGT GACAGGAGCG AGTGTGGTTA CCAAGTGAGA ATTTATGGAA GTTAGATGGG ACGAGGGCAG CTTCGATGAG CAGTCGTGCG TGTCAAATCA AAAAAGCAGC ATGGGATTTT AGAGAGAAGG GCTGGTTACT GGAACTGTGC GCGAAAGAGA GTCATCAGAG GATCCCAAGA GCCCAAGAAA IFORMATION~. FOR SEQ ID NO: 61: (W SEQUENCE CHARACTERISTICS: LENGTH: 913 base pairs TYPE: nucleic acid. STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ I NO:61: GAATTCGGCA CGAGGAAAAC ATCATCCAGG CATTTTGGAA AT-TTAGCTCG CCGGTTGATT CAGGATCCTG 120 AATCCTCCOG 180 TGGCTCATCA 240 GGTAATCC:S 300 CTCTGGAP-;G 360 GGTGTTT-.CC- 420 ATTAAGCCAA 480 GTGAAGCGAG 540 ACACCAGGCmA AAAATGACAG 660 TTTGCAGA.GG 720 TTCATTATGC 780 GAACCCCACT 840 TCACATATCT 900 GATGCTACCC 913 CAATGGCTTT TCCATCGAGG TGCGATTGCT TAAAGACAAkzk CAGATTTGGA ATGTTGCCAC CAATCAACGG TTGTTTTCAC AAGTTTTTGA GATGGATGTA AGAACAAGAT AGACCATGCC ACATGATACT TTGTATATGA ATT TGGCGAAGAG AACAGTGTC TGAGCGAGGA GCATCTGTTG TGATGAAGGA TCCCATGGAT GGTCTTGAAT GTCATCTGCT CGAATCATGC CTTTGTATCG CGATCTCATT ACCGAGCATG GAGACAGGTA ACATCCTGAA CAGACTGCCT GTTACAGGAG TATAGTGTTA GATCTGCCGG AGCTTTG!.ATG TTCGAGTCCG GTTATGAGAT GGGACTGTGA TGGACCAACG AAGACAT TAG ACT GTTATCC ATCACAGCCT CAGCTGGTTC GCAAAGGGCA TGCCACAAGA CTGCTGGGTT GAGCAACTGT GGGCAAATGA CTGCCATTGA AGGATCCCGA CGTGTGCAAA ATTTTACAGA TGGATCTTTG CAGAGAAAGC CCACATTGGT TGGCACTGTT ACTTGGATGA GATACATCTC PLACGCCT:-TG CATAGGGTCA GCGA'GACACT GAGATTGACT GGGTGTGAG GPLATGAC-ATA AGCCAAGTC TGATTTCCA CAGAA GTT- TGCTTGGGAT CGTTGGACCA AACGCGGAAT TCTCTGTrATG TTCCACATGT INFORMATION FOR SEQ ID NO:62: (i.t SEQUENCE CHARACTERISTICS: LENGTH: 680 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA AT2'GATCAC-T 120 AGATGP.AGCA 180 CGGCTCTTG 240 GGACCCAGAA- 300 GCTAAAGCTZr 360 TTGTCAAGGG3 420 GGAGGTTGTT 480 SEQUENCE DESCRIPTION: CGAGATCAAT TTTTGCATAT CACAGAGTCA TGGCCAGTTG TGCGAAGAGA ACAAGAGAGT CTGGTCATGA GATTACTGGA GACACAGGGA AGGTTGGGCA TTCAAGGCAG AGCTTAACGA GTTTTCCACG TTGCCAAGCC GGTCCTGCGG TGAGGGGAAC SEQ ID NO:62: TATTAAAAAG TAAGTGTATT TGGTTCCGAG AAAGTAAGAG GGTTTGTGTA ACTGGGGCAA ACATGGCTAT TATGTTCATG TTTGCTGCGG CTCCCAGGGG CGAAATGGCC TTTGATGATG TGTTAATCTG GACTCAAACG AGTAAATCTG CTTCGAGCCT CGTTCTCTAT GGTTGAATGG ATGGGTACAT GAACTGTTAG CAAGTGAGAA CTGTGAGCGO CTCTTCAGGG GCGAACGATC GGGCACTGTG AAACGAGTGA TACATACCTC G7CCGTTTC,- GCAGTrAGAT :ATGA 540 ACCTGACCCC CCTGATACTG TGCTGGATGA ATCTCATTGG ACTTCGGTCG AGTATTGCAG 600 AAAGACAAAG ATGGTCGGAT GGATGTACTA CATCGCCA.AC ACTTATGCAG AAGAGGGAGC 660 CCATAAGTTC GGATCAGAGA 680 INFORMATION FOR SEQ ID NO:63: SEQUENCE CHARACTERISTICS: LENGrH--492 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear GAATTC AGATTT 120 GAGCTG TTAGAG 240 CTGGGG 300 ACGCCG 360 CCGAGG 420 GATCGT 480 TGCTTT 492 (xi) SEQUENCE DESCRIPTION: GGCA CGAGGCTGGT TCAAGTGTCA CAGA AGAGCTGCTA AATCATGAGA CTGG CTTCATAGGA TCATGGCTCG GAAC TGTGCGAGAC ACTGGTAATC SEQ ID NO:63: CGAA CCAT ACCC GTGG TTAC TGAGAGGTTA TGATGGTTGT CGAGAACGAG GAAAACCAAG GG ACTCTCTGGA GAGGGAGTTT ATAATTAAAC TCTATGAAGC GCCCAATGGCCTCCTC TCCATCAAGG AAGTACAGTA TCATGCGTTT GCTTGAGCGA CGGTGAAGAC GAAGCATCTA AAGCAGATTT GGATGATGAA TCCATGTTGC CACTCCCATG CCGCTGTCAA TGGGATGTTG GAGTTGTTTT CACGTCGTCT GAGAATCCCC TCr-TGTGACAG GGATATACTG TTGGATCTGC GGAAGCTTTG GATTTTGAAT AATGTTTTGA GCTGGGACTC INFORMATION FOR SEQ ID NO:64: Wi SEQUENCE CHARACTERISTICS: LENGTH: 524 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) GAATTCGGCA TCCAAGCTTT 120 GGCTTCATAG 180 ACAGTTCGCA 240 AACGAAAGAC 300 GTAGATGGTG 360 CGCTTGAAGG 420 TGTTCAAGAT 480 SEQUENCE DESCRIPTION: CGAGCTTGTT CAAAGTCACA TCGTCTACCT CCCTGAAAAG CTGCTTATCT CATTCGTAGT ACCCAGATAA TGTGGAGAAG TCAACATCGT GAGAGCAGAT TAGATOGACT ATTCCATACT AAACCCTAAT AGATCCTTGT CACCTTCAGT AAAGCGGGTG SEQ ID NO:64: TATCTTATTT TCTTTGTGAT. ATCTGCAATT ATGAGCGAGG TATGCGTGAC AGGAGGCACA CTTCTCCAGA AAGGTTACAG AGTTCGCACT TTTAGTTATC TGTGGGATCT GCCTGGTGCA TTGCTAGAGG AAGGCAGTTT TGATGCAGCA GCATCACCTC TCTTAGTCCC ATATAACGAG GTGAAGGGCA CTATCAATGT CCTCAGGTCC GTGCTTACA'I CCTCCTGCTC ATCAATACCG ATACGACTAT AATAGCTTAG AGCGTTCCCT GC7TGG.ACT GA GTCA 524 INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 413 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) TCCTA.ATTGT GTTGTTCATG 120 ATAACGAGILG 180 TCTGGACCCC- 240 AGGTTTGTGG 300 GAGAGACGC'. 360 CTATGCAGAT 417 SEQUENCE DESCRIPTION: TCGATCCTCC CTTTTAAAGC CAGTGCTAGC AGGAGGAGCA GACAGAAGTA AGTTTGTGGA TCTGAGGACA ATGGCA-AGCT ATTGTTCAGG GCCTTCTTCA GGCGAGGTTG AGTCTCTCAG GTCTTGGATT ATCACAGCAT SEQ ID N0:65: CCT TCCOTGG CCTTCATTCC GCGTTrGCA-DT TGGGGAAAA.T AATAGCAA:CC CGTTTrGT1GT C ACGAGGCTAT AAAAT' -CAT A-TGCCGGTGT ATGGr'TGCGT TCAG-GCATG GGGGATCGAT A GGTCACAGA CCAAAAT-1CA TTCCTTCTGG -CAGTTrATGT CCACGGTGCA. T=GAGATCTT GTTCTGG TACTGATGCG CTCAAGGGCT INFORMATION FOR SEQ ID NO:66: SEQUENCE CHARACTERISTICS: LENGTH: 511 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID, NO:66: ATGACACG;A CTTCATTCCA 120 TGAAGAAAAT 180 GAGTTTCCTG 240 CGCAATTCCG 300 GGGGAAGC-3 360 CAATGGTTGC 420 GGAGTATCCG 480 GAATTTAAGG 511 TTTGTGCCTC TCATCCAGGA GGATACGGCG GGGATTCATA GTAACGCCAG GAGATATGCC TCCGGAGTCT GTATGATTAG TCTCTGACCA GCTTCTGTTA CTTCCAATTC TCGCAAGAAT AAGAGGCAGG AAGCCGATCT TCCACGTCCC TTTAATAGAT GAGCTTGAAG TATCCATTTC, TCGGAAATTA GCTGCTCGGC CTCACTTATG CTTGGATTAT TGCGCCCTGT TGACGGGGTA CTCTGTCTTC CTCAAAATGG ATGTGCCTTA CGGGGTTACT GAATCCGAAG CGCAGCGTTT GATCATCTGG TCCTGTATGA CTGATATCG ATGCCTACCT CCGGGGGCTG C-AGTCCGTTT AAGCATTATC TCGGCAACAT ATGGATTACA AT TAGTTTAT TTTTCTTAGA ATTTGGATAC T INFORMATION FOR SEQ I D NO: 67: SEQUENCE CHARACTERISTICS: LENGTH: 609 base pairs TYPE: nucleic acid STRANDEDNESS: single D) TOPOLOGY: linear (xii SEQUENCE DESCRIPTION4: SEQ ID NQ:67: CATTGATAG: TGATGGAAGA CCATCAGTAA AGCATGAAAA AGAAP.TTGTT CC-AAGGTGAX GAAGTCAGTT 120 AATATGTAAT 180 CT GAC CTT CZ 240 AGTGGCGAAC 300 GAGGAACAGG 360 CATTCCTTC- 420 CCTTCAAGGC' 480 TGGAGGCP.AT 540 TTCAAACAGG 600 TTTGGCCAA 609 GCTCCAGCAG CCATAAACTT CATATTTATT CAACTTGACA CTACATTGGT TGTCAGAGAG CTCAGGTGCT CPAGAAAGTT ATATTTATCC AACCTTTTTA ATGCAGGAAG CCAATTCTAA GGGTTGGACA- CGTCATATAA ACCTCCGCTT ATTATACTCC GATGTAGTTA AGGGTATTTA GCAATTG TTT TGCCTCGTGC TATCTCTACT TGC-CCAACAG CCAAAGCCAG CTAATCCTGA ATGGATC TTT TCTCGGCTGT AAGGGAGGT TTGTA.TCCTT CGAATTCGGC CGCTGTCTAC CAGCAAGATT CCTTGCTCT-T GAAGGCTAAG GGAGGACCAT CA.AGGGACCA 7 GGAACCCAT 77 TGCCTTTG ACGAGAATCA CTGATTTTTC CT GATTATTG GGTCATCCCA CTTCTGGAAT 'wCAAGTCTTG CAGCTGACGG CAAGAAGGGT 2) INFORMATION FOR SEQ ID NQ:68: Wi SEQUENCE CHARACTERISTICS: LENGTH: 474 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (x i) GCAAGATAGG GCATAGCAA.7 120 GCTCTATGTA 180 TGCAGCAA.T- 240 GGTGATGGGA 300 TCATCCTACC 360 CGTCCAACA-A 420 CCTCTTAGTA 474 SEQUENCE DESCRIPTION: TTTTATTCTT CTGGAGTTGG TAAGCAGTTG CAGCCATGGC GCTGCAGACA TGGTGGAAAA TGTGAGATGG AGAAGCCTCT GCCACAGGTT ACATTGGCCG TATGCTCTTA TACGCCCGTT TTGAAGGATG CCGGGGTCCA AATACATTGA AGGACATGGG SEQ ID NO: 68: GTGAGGCTTG GAAATTTAAG GGTCTGTGGA ACTGAAGTAG CAACACGTCT ATTGTGACCA TCTAPJ\TTCC TCTGCCACCT TTTTGTTGCC CAAGAAGCTG TGCTGCTTGT GACCTGGCCA TATCCTTTAT GGGTCTTTGA CCGTTGTTAT CTCTACCATT TAAAAAGGGT CTICATACTGT CCTCTATGGC CAAGAATACT TTGCTGCTGG AAGCACAGCG GTGATCACAA GGAG 2)INFORMATION FRSEQ ID NO:69: SEQUENCE CHARACTERISTICS: LENGTH: 474 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: l1inear SEQUENCE DESCRIPTION: SEQ ID No:69: GCAAGATAGG 120 GCTCTATGTA 180 TGCAGCAAAT 240 GGTGATGGGA 300 TCATCCTACC 360 CCT C CAAC'A 420 CCTCTTAGTA 474 TTTTATTCTT TAAGCAGTTG GCTGCAGACA TGTGAGATGG GCCACAGGTT TATGCTCTTA TTGAAGGATG AATACATTGA CTGGAGT7: C AG CCA7 20 C T GG-TGG;XAAA AGAAGCC:CT- ACATTGGCCG TACGCCCO-:TT C CGGGTCCA AGGACATGGG G7 '0A00CTTS GGTCTG-,GGA CAACACGTCT TCTAAATTCC TTTTrGT TOCC TGCTGCTTGT TAT CT TTAr CCC7TGT-TAF G3AATTTAAG ACTGA.AGTAG ATTGTGACCA TCTGCCACCT CA AGAAGCTG GA CCTGGCCA GGGTCTTTGA CrTACCATT T AAAAGGGT CTCATACTGT CC-TCTATGGC CAAGAATACT TTOGCTGCTGG AOCACAGCG GTGATCACAA GGAG INFORMATION FOR SEQ ID SEQUENCE CHARACT7ER:ST"ICS: LENGTH: 608 base zairs TYPE: nucleic aci= STRANOEDNESS: sln:2.e TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID CATTGATAGT GAAGTCAGTT 120 AATATGTAAT 180 CTGACCTTCA 240 AGTGGCGAAC 300 GAGGAACAGG 360 CATTCCT TCT 420 CCTTCAAGGC 480 TGGAGGCAAT 540 ATCAAACAOG 600 TTGGCCAA 608 TGATGGAAGA CCATCAGTAA AGCATGAAAA AGAAATTGTT CCAAGGTGAA GCTCCAGCAG CCATAAACTT AATATTTAT T CAACTTGACA CTACATTGGT TOT CAGAGAG CTCAGGTGCT CAAGAAAGTT ATATTTATCC AACCTT-TTA GCAATTGTTT ATGCAGGAAG TGCCTCGTGC CCAATTCTAA TATCTCTACT GGGTTOO.Z;CA TGGCCAACAG CGTCATATP-A CCAAAGGCAG ACCTCCGOTT CTAATCCTGA ATTATACTO-C ATGGATCTTT GATGTAGTTA TCTCGGCTGT AGGGTATTTA AAGGGAGGT'r TTGZTATCCTT COAATTCGOC CGCTGTCTAC CAGCAAGATT CCTTGCTCTT GAIAGGCTAAG GGAGGACCAT CAAGGGACCA GGAACCCATC TTTGCCTTTG ACOAGAATCA CTGATTTTTC CTGATTATTG GGTCATCCCA CTTCTGGAAT GCAAGTCTTG CAGCTGACOG AAGAAGGGTT INFORMATION FOR SE-Q ID NO:71: SEQUENCE CHARACTERISTICS: LENGTH: 1474 base pairs TYPE: nucleic acid STRANDEDNESS: singie TOPOLOGY: linear (xi) SEQUENCE DESCRI-PTC0,%: SEQ ID NO:71: OAATTCGGCA CGAGAAAACG TCCATAGCTT CCTTGCCAAC TGCAAGCAAT ACAGTACAAG AGCCAGACGA TCGAATCCTG TGAAGTGGTT CTOAAGTGAT GGGAAGCTTG OAATCTGAAA 120 AAACTGTTAC ?.GGATATGCA GCTCGGGACT CCAGTGGCCA C-7GTCC-CT TACACTTACA I8O ATCTCAGAAA 240 AC TCT GAT 7? 300 GGCATGAA- 360 GAGAGCATGT 420 AGAGCATGGA 480 GCACACCTAC 540 GAAtCCCGGA 600 TTTTCAGC'C 660 GTTTAGGAGG 720 CGGTTATCAG 780 CT TAT CTTGC7 840 TAATGGACAC 900 ATGGAAAGCT 960 TAATACTTGG 1020 AAACTCTAGA% 1080 ACTACATCA-A 1140 TGGATGTTGC 1200 TGCATGCAAG 1260 ATT TAG GAAC 1320 TTCAGATGTT 1380 TCCAATGTCT 1440 AAAAAAAAA 1434 GAAAGGACCT AG T TCAAAT C GGTGGGGATT AGGGGTTGGT ACAATACTGC TCAGGGCGGA GAATCTTCCT AATGAAGCAT CGTGGGGCA'C TTCGTCTGAT TAGCAAGGAT CATTCCAGTT AGTGATGCTG GAGAAGGAGC TTTCTGTGCA CACGGCCATG TAGAAGCAAG ATGAATAGAT TCGATACTGG TTTTTAACTT TCTGCCAAAT GAGGATGTAA CGTAATGAAA GTAACAGAGA TGCATTGTTG AGCAAGAGGA TTTGCAAGCA CTGGAACAAG TTCGCCATGA ATGGGTGTCA AAAAAGAAAG ACTGAAA-ZAGA GCTCATCCTC GGCGTTGTTC ATAGCTGGAA GAGAAGAAGG GAAAGGTTGG TTGGATAATT CTGGACTAGT TTTT TGTTAC GTATATGTAA. TAATATATGT AAAAAA TTGTAAAGGT TGGACATC-TC TTGGCAC-CGA GGTCCTGTCG TTTGGACCTA GTATGGTGGT CGGCCCCTCT CAGAGCC'.GG AGATTGCCAA AAGAAGC C.!T TGATGGAAGC TGGAACCATA CAGAGCCGTT GTTTCATTGG TATCATCGAT AGAAGAACGA AGTCTGCAAT AGCTTAACAT TTTAGTTTAG AGATCAATTT ATTCGTATTT AA, CA:'TTTACTGC CGAATCTGCC T'CATTACCCA ATGGTCCCTG GG7GA.AGAAA TTCAAAGTGG CAGTTGCGGT AATTGCAATC CAATGATGTG AACCATGACG TGATCAGATG TTTGTGGTTC GTTATGTGCA GGGGTTACAG GA AGAAATGT GGGATTTTGG AGCCTTTGGA'CTCCACGTGA GGAAGTCCTC GGCGCCCATG AGCAGAGAGC CTAGATTACA 'CTTGCCCTT CTGAAGACAP. GCACTTCGTG ACTCCTCTCT CAGCATGGAG GAAACACAGG GATTGAGCTT GTGGGCCTGG TGTCCGTTAC AGATTTCTGG CAATCAATCA GATCAATGCC GAAAGGGAAA TTAAATTTTT CTTTTGTGAG GTTGAAACAA CTCGTGACAG TAAATAATAA TTATATGAAA. AAAAAAAAAA INFORMATION FOR SEQ ID NO:72: SEQUENCE CHARACTERISTICS: LENGTH: 1038 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: GAATTCGGCA CGAGAGAGGG TTATATATCT TGCCAAGCT!C TGGGCCACGG ATtTGGAATC 120 GGCGAATTTC ACAAAGTATT TCACCGATA 180 CT'ITGAGGGa AAAAAACCCT GCTACTTCAA 240 SEQ ID NO:72: TGATTCTGAC CTGATTGTCG TCGACGACAT TCGTGTCCTC GGGGCACCAG AGTACTGCAA TTTCTGGTGG GATCCCCCAT TATCCAAGAC CACAGGCGTA ATGGTGATCG ATCTTGAAA-A ATGGCGGGCA 300 C CGTAT CTAT 360 GCAAGTCGAT 420 CCGAGATCTT 480 GCTACGCCTG 540 TTTATCGATC 600 ATCGAATTAA 660 GtTTTGAATT 720 CAAATCCATC 780 CGCCTGTGAA 840 CAGCCAGCAG 900 AATTTTCGGC 960 CCTGAACCAA 1020 1038 GGGGAAT TCA GAGCTCGGAT CATCGTTGGA CACCCTGGAC GAATGCCAAG AACGTATTAC ACCTGATTTG TCAATTCTGG ATGAGGGACC GAATGATATT AGAGGCAAGC GACTGTACAG CAACTGTATA CAAGA.AAGAT CAT TACCGCC ATCAGCACGG CTGTCAGTTT CGGACTTGCC CTAAATGGGT ATAAAATGCC TAACGAATAG AATCGTTTGA GTGGACTGAT AATGCCGCTG GATGTAAA.TT ATACCTTAkTA CGAAATCTSG ATTTTTACTG TTTAGGCGG 1 GT-TGCATT GG CTCTGGATAC GAGAGAGCCT AAATAGAACT AAGAAAACAA ATT-LAG TATT CTATTTATAT CAAGTCATG7 TT TGGAACAT ALATGTATCTG A:GGACATAC GT!TTTGCTG GAT.;ATTTGC AGTGGTAAGG TTTATGGGCT CTCTCCTCGG TTACGCCTAT TAGCACAGCC AATAAGGTTG TTGTACTGCC AGGGAAGGCG TAATATCATT CAACTCCATT .u .AAGGAACG r-TTTGGTTAA GGCCTTTG 'aCAAACCTTG -CTTATGATC GG~TGCTTTTT GCATCTTtCA AZCAGGCAGGtA 77CCATATAA AtTGCCATCCT T!TGTGAACTC :GATAAGT7 TTGCATAAA INFORMATION FOR SEQ ID NO: 73: SEQUENCE CHARACTERISTICS: LENGTH: 372 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear CTAGGGGTCT CATGCAAGAG 120 GTCCTTTTAG 180 CGGGAGGAGG 240 CCATCGGAAT 300 TGGGCAATTC 360 AAATCTGCCA 372 SEQUENCE DESCRIPTION: TGGGGGGTTC CTGATGCCCA ATCTGTAGTC AGTAGTCTTG GGTAACATCA TTCCAACCAT AGCAAGATAT TCAGCATTGC TCAGCCGAGC TCGCCCCCTC TGGCTCGAAA TCGCCAAATT GT SEQ ID NO:73: ATTGTLTGCTG TGCTTGG'CAT TTGGATCTAT AGCTTrTAGA ATCCAGTTCC ACCACCGGCT TTTGGGCACC AGATGGATAG AGTCCA.ATCG TCGTGAAAAT ATGGGCTACA ACAGGATTAA GT.ACCCAPAA AAAGAGTCAC ACACCTTCAA GCATTATTTT CCCTCAAAAT ALATTGCACAG INFORMATION FOR SEQ ID NO:74: SEQUENCE CHARACTERISTICS: LENGTH: 545 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: AAAGAATTCG GGGAGT TGGC 120 CCAACAAGCC 180 ATCCTGATAA 240 GAAACATAAC 300 CTGAAGTGGT 360 ATGCCATTGT 420 TGACCATTCC 480 TTGTAATCTT 540 GTTTT 545 GCACGAGGGC GAGAGAAGCT TTTGCTCCCT TCTGGGTTAT CGTAGGAACT TTATGAGCAA GGTTGTGGGT CC TAGGCGCGA GATAT CTGCGA PA.T CCC AGCC GTTACGPAAT TTGGAGAAGA CAGTGTGGTG ACAATTCTCG A?.TCCAGATG GAGGCACCAT GGGGACACGA AGGCCACTTG TAGCCPA-'CCA CTTT OCTArT ATGCTTC-CAA GATGGACGAT AAGCTATCAA CTAACTATGT ACGCAGAAAC TTAAGACGGT TATTGAACC ACTTGGCAGC =TGAAAAAT GGTTCTTGTT GGAATGGCAA ACTAGCTCTC CAAAGGACAA GTTTGGAGAC CTGTGGCTCC TTATCTTCCA A'GGA0CACA GGAAGTCAG C CAGGA;.C1C CAT TAAGTG .GCCCCTCTA ATC, TAATT -TGAA.A.TnCC TCGTGGATC INFORMATION FOR SEQ ID NO: Wi SEQUENCE CHARACTERISTICS: LENGTH: 463 base pairs TYPE: nucleic acid iC) STRANDEDNESS: single TOPOLOGY: linear (x i) GCAGGTCGAC CTAGTGATGA 120 TGTAGAGCCT 180 CGGTGGATTT 240 TCGTGCTTTT 300 ATATTTTTCT 360 CTGCACTGCG 420 ACATAGTACC 463 SEQUENCE DESCRIPTION: SEQ ID NO: ACTAGTGGAT CCAAAGAATT CGCGCACGAGA AAAAACAAAT GCTTTACGTA TACCTGGCCT TTTATACATG GATCTGAGTT TTTGTTACTC TGTATCACTG GGACTTGCCA CAAGCTCTGG CGTAGCA.AA-A AAGTTGTGGA TGACTTTGGC ATATTCTCAG GGAGACCGTG TGAAGTACTG GGTAACTGTT. AACGAkACCGT TACGATGTGG GGCTTCACGC ACCGGGCCGC TGTTCGCCTG GGP.AATTCAG CGACAGAGCC TTATATTGTA GCCCATAACA GCTGTTA.AA.A ATATATAGCA TAAATACCCA GGG GTTAGCTAGC T TTATGCAGG AGGACGAATA ;.AGAATGCTT -GATCTTZTC GATTTGGAAA TGCTTCTTGC INFORMATION FOR SEQ ID NO:76: SEQUENCE CHARACTERISTICS: LENGTH: 435 base pairs TYPE: nucleic acid STRLANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: ACACTAGTGG ATCCAAAGAA TTCGGCACGA GGCTACCATC TTCCCTCATA ATATTGGGCT TGGAGCTACC AGGGATCCTG ATCTGGCTAG pAGAATAGOG GCTGCTACGG CTTTGGAAGT 120 TCGAGCTACT GGCATTCAAT ACACATTTGC TCCATGTGTT GCTGTTTGCA C-AGATCC7CG ATGGGGCCGrC TGCTATGA-A GCTACAGTLGA GO A:CCA.;P A AT7C;TCAAGG ::-ATGAC:, 240 GATTATCGT- GGCCTGCAAG GAATCCTCC TGCTAATTC7 ACA?.A.GGGG n-GCCTTT7TAT 300 AGCTGGACAG TCAAATGTTG CAGCTTGTGC TAAGCA-'TT GGGGTTATG GCAAC..AC 360 CAAAGGTATC GATGAGALATA ATACTGTTAT CAACTA.:CAA GGGTTATTTC :-ACATTCCA.A 420 ATTACCCCCA ATTTT 435 INFORMATION FOR SEQ ID \10:77: Wi SEQUENCE CH1ARACTERISTICS: LENGTH: 4,11 base pairs TYPE: -nuclei, acid STRANDEODNESS: single iD) TOPOLOGY: linear SEQUENCE DESCRIPTION: *SEQ ID 77: GAATTCGGCA CGAGCCT.AGA ATTCTATGGT GAAAAT 7 JTTGG TACAAAGGA CAGTCCCAAA TrGGTTAAAGG T TCAATAGAC TA 120 CACTGCTTA- TACATGTATG ATCCTAAACA ACCTAAACAA AA. 180 TGGACTGGA A TACAGGCTTT GCATATGCTC GCAATGGAGT C 240 ACTCCAATTS GCTTTACATT GTGCCTTGGG GTCTATACAA. GG 300 AA.CACTATGG AAATCCAACT ATGATTCTCT CTGAAAATGG AA 360 GACACTTCCA GCAGGACTGC ATGATACCAT CAGGGGTAAC TA 420 AAATTTGATT AATGCACGTG AATGACCGGG G 451 GACA.AGGC 7nCCCAAG77 TCTAGGCG AACC.ATA TGTAACAG CTATTGGA CCGTCACA TGGACGAC .CTATAAAA ;.T7TACCAGAC .CAAGGGCGA 7ACGTAAA-AG TGGAAACGT GOCTATTTGCA INFORMATION FOR SEQ ID NO: 78: ji) SEQUENCE CHARACTERISTICS: LENGTH: 374 base pairs (3B) TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xiJ) SEQUENCE DESCRIPTION: CTGCTCTGCA AGCAGTACTA TGCACAGCAA CTTG AGGAA.A CGCTCAAGCA TTGCTGAGGC 120 CTTCAGAAAA ATGGCAATGG CACAAGCATT 180 GCTCCGCCC' AACATTCTGC CGGAGGATAA 240 AGCTCTTAG!C CTGCTCTCAT CAAAAGCCTT 300 AGCTGCTAC-A AATTCAACAA TTGTGTTGCA 360 GACAGGACAA-: TCTG 374 SEQ I D NO:7 GGCCTGCTTA CACCGTTTAT CAGAGGCCGT AAGC TTTGGA CATCTCTTTC ATCTCGAAAC ACTGAAAACA CT.AAATAGCG GTCTTGCAAG TCCGCTGCTT TCTGTTGAAC TTTTCTGCAA GAGCGCTGAG CALACATAGGG C-TGCCCGTTT CTCCTAGACG GGCATCGGCT A-AGGTAAAAA INFORMATION FOR SEQ ID NO:79: SEQUENCE CHARACTERISTICS: LENGTH: 457 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79: GAAGAATGGA TCATGTTTG 120 AAGGCCCA.; 180 ACGGTGAT-7 240 ATATGGGCGT 300 AAGGAGAGAT 360 AGAATGGA.AT 420 GATGA.ATA-G 457 AGAGATTAAT GATAGCAACT CAT CT GGGAC AGCAGTGGAT GGCTACCTAC CAATGAGGAA CCAAGCGTCT GCGGATTTCT GGTGATAACG TCTGCTTATC CAGT.AAGGAG AGT-GTGA-AGG GAGCTGCTTT CCTCCAGGTT TCATTTT!CAC GAACACCAGG CAGTATCATC GTTATAAGGC AGATTCTCGA TTTCATGGCC GGAGTAGCCT'ATTACAATAA GTCAACT'r-G TTrCACTGGG GAGGCCAACC ATTGTGA AGCTGCCAAC CAAP-ATTC-T AGATGTAAAA TCGTATATTT CCTCATCAAT ATACTCCCCA GA:.AGGTGGAA GATGGAAGCA CTGATGAAAG CCAAAGGGAA GAACTCCTCC GTCTCTGGAG 1,2) INFORMATION FOR SEQ ID (i)i SEQUENCE CHARACTERISTICS: LENGTH: 346 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (X-4) GGTGTGATGG ATGCTGCACA 120 GGTTTCAA.A T 180 GGCAAAGGCC 240 AATATTGGGA 300 AATACATGGG 346 SEQUENCE DESCRIPTION: CAGGAATTCC AGTCCTA'AGG TTGTAGCTGC AGTAGCTTCA TTGGTGCAGG GTCATCTGCT CAAGCATTTG GGATACAT-TC TGTTGCAGTA GATCAATACC AATGGACGTC TATCGTTTCT SEQ ID CCATTTTGCA TCTGTTTGCT TTCAGTCTAC CCAAGGCTAG GTAGAiAGCAG CTTCCCAAGG TATCAGGCGG AAGGAGCTGC TCATGAGGGT TCCC'ACACrC CAGGTAAAAT CGCTGATGGG ACCGTTATAA GGAAGATGTG CAGCTTCTCA CTATCTCCrG GTCACG INFORMATION FOR SEQ I D NO:-8 1: SEQUENCE CHARACTERISTICS: LENGTH: 957 base pairs TYPE: nucleic acid C)STRANDEDNESS: single TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:Bl: GAATTCGGCA CGAGAAAGCC CTAGAA7TTT T TCAGCATGC TATCACAGCC CCAGCGACAA. CTTTAAC---C AATAACTGTG GAAGCG'TACA AAAAGTTTGT CCTAGTTTCT CTCATTCAGA 120 CTGGTCAGG7 180 CT7GCACTC!A 240 TGGAAGCTT S 300 TCA.AGCAAG?.7 360 TGACCCTCT C 420 AACTCCATGT 480 ATGGGA'TGGT 540 ATATAGATAC 600 AGCAGAT TTr- 660 ACATAGATGI. 720 TCATCTTC'A 780 TAGTACTGTC 840 AAAAT-CTCA 900 TGACATTTGA' 957 TCCAGCATT- GCCCTACATT TGTCAACACG TTTGTCATCT TCTTCAAGAC TCTGCAGATG GAGCTTCAAT TGCAATTCCG GTGTGATCAT TTTTGATACT GACTCGCTTA GCTGAGTCCA ATTTCTCGAT GCACCTCGAG CC:%A.AATP-C.A GATTTAGCAA AACACAGAGA CTT TATAAAC ATAGCAAGTA ATTCAAGATG GAGGATCCTG AGAATCATGG TCCTACCTGA CAkCCTGCTG7 ACAACTACAG AGTTCAAGAA GGAATATTCA CGGTACAGTT GTGAGATTTT AACAGTACA.A CACTATCAAA GTAAGG-.OG TGT CCAAAGA AATTTGAA .T TAGTGGGAAA ATTTCTGTAT, TGATPAGTAAT TTGGGGTTAG GAGATTGACA CAGACATATC GGAGACTGCT AAGCAGGCTG TGCAACCATA AATCAGAALAG AACATGTCAG GAAGCTCACC GAGAGAGCGT, GTTCCCCAGA AGTTCACAAA TATGTAACAA ATGACTGAAT ACAGTAGATG TCAAGATTTG ATGATGTAAA CTGTTAACAA 7GCCATCAAA CTTTTAGTTG TATTCATTAC GAAAGGATCT GTCTAGTCTT TGAACTACAA TTTCTATGTG CTCGGTATTA GATTTTGATT AGTTGCATGT AATTGATAGT TCACTTGACA AT GMTGCGA TP-AAAAAAAA INFORMATION FOR SEQ ID NO:82: Wi SEQUENCE CHARACTERISTICS: LENGTH: 489 base Dairs TYPE: nucleic acid C) STRANDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION: SEQ ID NO:.82: GCAGGTCGAzC ATCCTCCACCT 120 GGACTAGAGT 180 GCATCTTCAG 240 GCCAAGGTG3T 300 CTGTCGAGAG 360 CAGACAATCC 420 TGAAAATGC 480 TACCAGTAA 489 ACTAGTGGAT CCCATTCAAT AAAAGTCCTT CACAGACAGC TGGAAACTAC AAACACTGTG AGGGGTTTGG GTGGGTAGTA CCAAAGAATT TACACTGGTA CCCTTTPACA CACCCTGTCC AATGAATCAA GGAGTTCCCA TTCATGCACT AAGAACGGAA CGGCACGAGA CTCCACCCAA CAACTGTTCA ATCTCCATGG CAGATGCACC AAGGAGGTTG GTCATTTGGA AAGGGCCCAT TAAGACTAAT TA-ATACACAG ATTGATTCTT TTTCAATTTC AAATTTTAAC GGCTGCTATA GGTTCACACA CGATTTTCCA TTCCAGACA GCTGTGAATG CAAGACACCA TTTGTGGTGG CTCATTGACC AGATTTCGTG TCGTGGGGAC CCCGGGTGGG 2) INFORMATION FOR SEQ ID NO:B3: SEQUENCE CHARACTERISTICS: LENGTH: 471 base pairs fB) TYPE: nucleic acid C) STRANDEDNESS: single D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: GAATTCGGCA CGAGAAAACC TT-TTCAGACG AATGTTCTGA TGCTCGGCCC ACAGACATAC 'TTCTCACTGC CAATCAGGCT ACAGGTAGAT ACTACATGGC 120 TATTCCAACG GGCAAGGAGT TCC CTTCGAT AACACCACTA CCACTGCCAT 180 GAGGGAAGCT CTAAGACTTC AACTCCAGTC ATGCCTAATC TTCCATTCTA 240 AACAGTGCTA CTAGCTTCGC -,AATGGTCTT AGAAGCTTGG -GCTCACACGA 300 TTCGTTCCTC AGAGTGTGGA GGAGA-ATCTG TTCTACACCA TCGG'ITTGCG 360 TGTCCGGGGC AGTCTTGTGG AGOTCCAACG GATCAAGATT TGCAGCAAGT 420 ATCATTTGTC CCGCAACCAC TTCTTCCAAT CCTTCAAGCT CAGCATTTTG 471 CGGCCAGACA TGCTCGAGCA TTTAGAATAC TAIACGACACC CCACCCAGTC GTT CAT CAAA 7.:GAATACAT INFORMATION FOR SEQ ID NO:84: SEQUENCE CHARACTERISTICS: LENGTH: 338 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (x i) GTTCGGCACT ATCTCTTTCA 120 AATCAGTGCG 180 TTGCTGTA.AC 240 CAGGCTATGC 300 CAT GTACGTG 338 SEQUENCE DESCRIPTION: GAGAGATCCA TTTCTTTCAA GGAATATATC GTGCTTGCAG TCTATCTTCT GCTCTCCTTG AAACGCAGAT GTCCACAATT SEQ ID NO:84: TGTTGAGACA GTGAGTAGTA GATCTTTAGT TTCTGCAACA TTTTGCTACT AGCATTTGTT ATACCTTCAT TATTAGAAAG CGTCAATGGC AGCTACCAGG CAAAGCTT TTAGTTTGAT ATGTCGT TGC GCTTACTTAG AGACAGTTAC CCCAACTA'TT AATAAGCGTA ATGGAGACGT TAATCGCCAC TGTTAAT TAT INFORMATION FOR SEQ ID SEQUENCE CHARACTERISTICS: LENGTH: 1229 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (xi) AGAGAAA.TAc% TGCAGGAGA 120 GTCTTTTCTC 180 CAAAGGAATT 240 TAAGCGAGGA 300 SEQUENCE DESCRIPTION: TTATATTTGT AAATTTAAGT AAAACAAGCA TGCTGTCTAC GTGCCGAATT CGGCACGAGA TTGTGGGTCA TTTGCAGGTG GTACAAGGCT GCCATTGACA SEQ ID CTACGTTTAT TAAAAAACTA TGAAGCTTAC AAATCAAATC AGATCTTGGT TCGAGTCTCT CAACCCTAAA CCTGCGATAT CAGCTCTCTC TAT CCCACCG GCTCTCATTG AAGACACCAT AATGCAAGAG GGTGAAGGCT GAAGCTCCGA CAGAGAAGA?.k 360 ATGTCAAGAC 420 .ACGGTO3CTAA 480 TCCCCATAT 540 C CG COGAC C 600 AAGGCCGCCT 660 TGGTTGAA 720 ACAAGGAGAG 780 CTTACTTCAC 840 AGGCACTGCT 900 ACGCTTTC'T 960 ATGCGTAGAT 1020 TCATCTAATC 1080 CTTGAACCTA 1140 ATTTTGGAT 1200 TAAAAAAAAA 1229 CTGTOCOCCG CAAGACCGGA CAGTGGTCTG CACCTAT OCT TGACATTCCG TCCTGATGCT TGATAAOGAA ATCTGGTTTT AGAG CT TO TO T GCTO AT CCT TO CTG AC TAT TCATACCTTC TTTTCGATTA CATGTTTTTG CTGGTTOTGT AATAAAATAA JTCATOOTT C GAATCOCATO GOCCCTTCG OGACGATOAC:% GACATCGCAG TTAGGCTCC- GACCTTTATC AOTTGGCTGG TTCCATCCTO OAAGAGAAGA A-.CAAAAGGAC CTGATCA'rC ,.TTGTGGCCT TOTCTGGTGC GAAOGACCAT GGACCTCTAA ACTOGAGAGA AGGAAOOCCT AGTTTTOAG TTTA'TGTTCA GCOOAAGCTC ACCTGAAGCT TGCAGAGACA ATTCC771C 7 TATAGTCACA TAGAAGTTGG AAAAGTAT7-CG ATGTTCTTTA TCTATCAAOGC GCATATTTTA AAAAA GC.ZCAGCG'CT GGOACTTACO ATATCGCCC OAGCTTGCCC OCAOCCAAPTC AAOOAACAGT TOTGOTGOCT GUTTOAAOTOA CAAGCCTGAO CCTCCAOAAO GAGGGATGTT1 TTTOOTCACA CCACACCTTG GOAGATGCC C-CCCTTATC TTTGACAACT GCTTCAGTTG CCATCTOATA OALAGTAT-1GCA. CAGGACGAAG TC-TOACTT: GGGTTTGCTG AGATAGCTTC 'QTTTTGTATT TGTTATGCGC 'ATAGTGATA AAATGP.ACAT TGAATACAAC ATCGAATGCT TCGTTCCTGT INFORMATION FOR SEQ ID NO:86: SEQUENCE CHARACTERISTICS: LENGTH: 1410 base pairs TYPE: nucleic acia STRANDEDNESS- singie TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86: GAAGATOGGGG CTOTGGGTGG TOCTGGCTTT GGCGCTCAkGT GCGCAC~TATT O.-AGTCTCAG GCTTACAATG 120 ATGAATTACT 180 CTGTTGTACA 240 TGTOCTGTG 300 GAAA.AGGACA 360 GAAGCCGTGG 420 GCCAGAGATG 480 GATGGACGGA 540 ATCTCCACTO 600 CT OCT GGGO 660 TOGTAAGTTC ATGGACTC AAAGACACAA AGTCATGTGA CTGACAGGAG AGAGGGAGTG GCGTTOTIATC AGAGCAGAOC TTCTOTCTCG CTCACAGCGT AAGCAATGCT TTGCCCTCAO GAACACTGCA TOCATCOCTT CTTCGGCC'TC CCCCGOGGTC GTTGGOAGGA AOATGTOOTG CTTCAAAGCC GGAGGACT ACTGGGAGTT GCTG.AAGAGA TTCTCATGGC CTGTTGGACT CGCAACTTTA GTTTCCTGTG CCATACATTC GAGAATTACC ATGGGAATCG CACTOCGTGA ACAGTGAGAA TCATTGCTGA TTAGAAATAT CAACAAGGAA GGTATTTGGA CAGATATACT CCCTGAAGAC TGCCCGATCA ACACCCGTGG AGCTGGTGCA TGGATTGGTO ACAAGTACGC TTTCCATGAC CAGCATATCA TACCATCAAG CGTTCTCTCT GOGAAGAAGA CA.ATGAGAGC GGTTGT TGCA CAGGCTGTAC C-GGAAGTAG a7CCGACACT GG=TG CACG TG 3:CC AC'ATG aAGCA AGTGCC GACGCGATCC -780 AAGCTGGACA 840 CAGCAACTGT 900 GAATACTTCT 960 ACCGQCGCTC 1020 AGCAAGCGTT7 1080 TGGTGGGCAT 1140 GGTGTGACTA 1200 CTTATTCCCT 1260 ATTCTAGTAT 1320 AAATTATGACA 1380 GACAACTACA 1410 CAACCCGAA ACAACTACTA ATGCAGATTC TCAAATACTT GAGGAGAAAT GAGCGATAGC TTCATATATZ TGCCCTGCGA TATGTAAGCA AATTTTGTCA ACTACGTATC TATATTCTT GGCAGTGCAG CGTGA.ACC7'G GAGGACCACGG CTCCCGGGCG C CC? C 3GCAG TrC,;ATGCCGC AAnTTGCAcT' ATCACATCGA C-AACCC-TTTTA TC.V3TTAAAG 7TC-TTGGTC A.!AAAAAAAA TATGTGCGGA ATGAACA ACA CCCTATGTGA CTCACCITCC TGCTCGCTC A AGTGGTGG. T G CG T" T TGAACCAnCP-A TTATAAGCAA. TTGCTCATCT A T C T GAAT P. ACCC^GGG Ac GGC' CCT AGAPAGAT GGC TO TOr TGAGAA AAAAATT GTC-AT 2GCGT T7T;GATAATC CCGAACCGTG ;LATA.kG'2AAT A,'!CCGGAAAC ;A AG T GCA AAAGCCAG S.-TGCCACAG :';ACAGT;.GG G AAACC77A 'k2) INFORMATION FOR SE-Q ID NO:B:7 SEQUENCE CHARAC71E-RISTICS: LENGTH: 687 base pairs TYPE: nucleic acid STRANDEDNESS: sinale TOPOLOGY: linear (xi) GTAGTTTCG' ATGACGAAGT 120 ATAATTTCTG 180 CTTTCGTGGA 240 CTTGAGCCGG 300 CATGACTGTT 360 CCCAGTGAGC 420 GACGAA.ATTA 480 CTGGCTTTGG 540O GGCCGCAGAG 600 CCAACTTTA 660 GAAATGGTTG 687 SEQUENCE DESCRIPTION: SEQ ID NO:87: TTTACAACAA TC-TCAGGTTT TGAATCTCAG AATAGTTGCG AP.AGGAAGCG ACGTGATCC-T ?CAATGGATT CATTTTATAA CGTTGGACGA TTGTGCAGGG AACAGGCTCA AA.ACCGCTGT CTGCTCGTGA ATAGCCTAAA ATTTGACACA CTCTTCAGGT TAGCT.CCn'TT AGT TGTCCAT GGACAGTTGC AGATATCACT TTGCGATGGG GCCAA.ACTTA AGAAGCTAGC CTCCGTCCGC GTTT-GCCAGT GCTGATGAAC GGCACAC GTGTGT7"---C GAAGATGATC r CCCGACTT .GG CAGGCCOCAG TCCGTGTTGC ACACTAAGAG TGCAGTGGGG TCAGGAGGCC CAATCCGTAG ATTTTTGGCT TT TGT A T-T G T TGT CPAAGCC AGGCCATAGT GCTTGCTGAG TGACAGGAAC CCCGGGCCTT TTGTAA!CTTG CAAAAT TTCC TTCTCZCCAA CCAA'AGGATT -CTGCG7GC ,TGCATCG C.AATCC-GTA ACTTCATTTC .AAAGAAAC GCAGCTGATC TGCAGACATT A.GTACCA;CTT TATACCAACT C.AGTTTGGCC INFORMATION FOR SEQ ID NO:88: ()SEQUENCE CHARACTERISTICS: LZNG7 68 base cairs TYPE: nucieic acid STRANDEDHESS: single TOPOLOGY: linear (xi' SEQUENCE DESCRIPTION: SEQ 1D N0:88: GTAGTTTCG: TTTACA'ACA.?. TCTACAGGTT TTGAATCTCa GA ATAGTTGC -Th.!AAGGAA-GC GATGACGAA-. 12 0 CATAATTTC '180 GCTTTCGTGG 240 ACTTGAGCC-- 300 CATGACTGT: 360 CCCCGAGTG. 420 T CGACGAAA7 480 TTI CTGGCT7- 540 TGGCCGCAGA 600 TCCAACTT'TA' 660 CGAAATGGTT7 688 TACGTGATCG- GTACAATGGAT ACAT-TTATA TTGTGCAGGG2 GCAACAGGCT T AAAAC C CCT GCCTGCTCST GATAGCCTAA AATTTGACAC GCTCTTCAGG -TAGCTCCAT T"TGTCCA AGGACAGTTG 'TT-CGATCGGG CAGCCAAACT GTAGAAGCTA GACTCCGTCG AGTTTGCCAG AGCTGATGAA TGGCACAC TG2AzTGTTTC TG.AAGATC-AT CCCCGACTT-3 ,Ca GCCGSCA T-AACACTAAG GC-:CAGTGG CTCAGGAGGC T C C G T CATTTTTGGC TTTGTATTTG CT OTCAPLACC GAGGCCATAG GGCTTGCTGAG T!:ACAGGAAC AGCCCGGGCC GGTTCGTAACT CC APAATTT C GC TCTCGCCA TCCAAAGGAT 7- CT'7CTG TGCATGG AAA C 77~GTCACT 77.:TGC2CAc 7C AGT7TGGC
AU2003203517A 1996-09-11 2003-04-08 Materials and methods for the modification of plant lignin content Ceased AU2003203517B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003203517A AU2003203517B2 (en) 1996-09-11 2003-04-08 Materials and methods for the modification of plant lignin content
AU2007201050A AU2007201050B2 (en) 1996-09-11 2007-03-13 Materials and methods for the modification of plant lignin content

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/713000 1996-09-11
AU57975/01A AU756359B2 (en) 1996-09-11 2001-08-10 Materials and methods for the modification of plant lignin content
AU2003203517A AU2003203517B2 (en) 1996-09-11 2003-04-08 Materials and methods for the modification of plant lignin content

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU57975/01A Division AU756359B2 (en) 1996-09-11 2001-08-10 Materials and methods for the modification of plant lignin content

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2007201050A Division AU2007201050B2 (en) 1996-09-11 2007-03-13 Materials and methods for the modification of plant lignin content

Publications (2)

Publication Number Publication Date
AU2003203517A1 AU2003203517A1 (en) 2003-06-12
AU2003203517B2 true AU2003203517B2 (en) 2006-12-14

Family

ID=3743340

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003203517A Ceased AU2003203517B2 (en) 1996-09-11 2003-04-08 Materials and methods for the modification of plant lignin content

Country Status (1)

Country Link
AU (1) AU2003203517B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023599A2 (en) * 1995-12-22 1997-07-03 Purdue Research Foundation A method for regulation of plant lignin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023599A2 (en) * 1995-12-22 1997-07-03 Purdue Research Foundation A method for regulation of plant lignin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PNAS Vol. 93, 1996,PP 6869-6874 *

Similar Documents

Publication Publication Date Title
US5952486A (en) Materials and methods for the modification of plant lignin content
AU777237B2 (en) Materials and methods for the modification of plant lignin content
Wilkinson et al. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2.
GB2320716A (en) Polypeptide having starch brancing enzyme (SBE) activity, and the nucleic acid sequence thereof
WO1999012950A9 (en) Improvements in or relating to stability of plant starches
US7154027B2 (en) Compositions isolated from forage grasses and methods for their use
US6204434B1 (en) Materials and methods for the modification of plant lignin content
US20030131373A1 (en) Materials and methods for the modification of plant lignin content
WO1994023044A1 (en) Method for reducing ligning content in plants
US6410718B1 (en) Materials and methods for the modification of plant lignin content
AU756359B2 (en) Materials and methods for the modification of plant lignin content
EP1321525A2 (en) Fruit ripening-related genes
CA2211665A1 (en) Coniferin beta-glucosidase cdna for modifying lignin content in plants
US6653528B1 (en) Pinus radiata nucleic acids encoding O-methyl transferase and methods for the modification of plant lignin content therewith
AU733388B2 (en) Materials and methods for the modification of plant lignin content
AU2003203517B2 (en) Materials and methods for the modification of plant lignin content
BRPI0813206A2 (en) modification of lignin biosynthesis via sense suppression.
MXPA99002262A (en) Materials and methods for the modification of plant lignin content
MXPA01003475A (en) Materials and methods for the modification of plant lignin content
AU2007201050B2 (en) Materials and methods for the modification of plant lignin content
AU2004201600B2 (en) Materials and methods for the modification of plant lignin content

Legal Events

Date Code Title Description
PC1 Assignment before grant (sect. 113)

Owner name: RUBICON FORESTS HOLDINGS LIMITED; ARBORGEN, LLC

Free format text: FORMER APPLICANT(S): RUBICON FORESTS HOLDINGS LIMITED; GENESIS RESEARCH AND DEVELOPMENT CORPORATIONLIMITED

FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired