MX2022003943A - Direccionamiento de diagnóstico médico y recomendaciones de intervención. - Google Patents

Direccionamiento de diagnóstico médico y recomendaciones de intervención.

Info

Publication number
MX2022003943A
MX2022003943A MX2022003943A MX2022003943A MX2022003943A MX 2022003943 A MX2022003943 A MX 2022003943A MX 2022003943 A MX2022003943 A MX 2022003943A MX 2022003943 A MX2022003943 A MX 2022003943A MX 2022003943 A MX2022003943 A MX 2022003943A
Authority
MX
Mexico
Prior art keywords
subject
data
medical diagnosis
recommendation
intervention
Prior art date
Application number
MX2022003943A
Other languages
English (en)
Inventor
Diego Ariel Rey
Jason Morrell Springs
Jeffrey Robert Osborn
Leonardo Maestri Teixeira
Ark Emily Mary Van
Rachel Elizabeth Kast
Jonathan Durbin
Rodrigo Octavio Deliberato
Maynard Joseph Cordero Gellada
Original Assignee
Endpoint Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endpoint Health Inc filed Critical Endpoint Health Inc
Publication of MX2022003943A publication Critical patent/MX2022003943A/es

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Un método para determinar al menos una recomendación de diagnóstico médico y una recomendación de intervención médica para un sujeto. Al menos uno de los datos de registro de salud electrónicos (EHR) y datos de biomarcadores para el sujeto se ingresan en un modelo de recomendación de diagnóstico/intervención que comprende parámetros y una función. Los parámetros se identifican con base en un conjunto de datos de entrenamiento que comprende una pluralidad de muestras de entrenamiento. Cada muestra de entrenamiento se asocia con un sujeto retrospectivo e incluye al menos de datos EHR y datos de biomarcadores para el sujeto retrospectivo. La función representa una relación entre el al menos uno de los datos EHR y datos de biomarcadores para el sujeto recibidos como entradas al modelo de recomendación de diagnóstico/intervención, y al menos uno de una recomendación de diagnóstico médico y una recomendación de intervención para el sujeto generada como una salida del modelo.
MX2022003943A 2019-10-02 2020-10-02 Direccionamiento de diagnóstico médico y recomendaciones de intervención. MX2022003943A (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962909534P 2019-10-02 2019-10-02
PCT/US2020/053987 WO2021067733A1 (en) 2019-10-02 2020-10-02 Directing medical diagnosis and intervention recommendations

Publications (1)

Publication Number Publication Date
MX2022003943A true MX2022003943A (es) 2022-07-21

Family

ID=75336483

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2022003943A MX2022003943A (es) 2019-10-02 2020-10-02 Direccionamiento de diagnóstico médico y recomendaciones de intervención.

Country Status (8)

Country Link
US (1) US20220344013A1 (es)
EP (1) EP4038617A4 (es)
JP (1) JP2022551612A (es)
AU (1) AU2020358087A1 (es)
CA (1) CA3153502A1 (es)
IL (1) IL291829A (es)
MX (1) MX2022003943A (es)
WO (1) WO2021067733A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024017703A (ja) * 2022-07-28 2024-02-08 株式会社日立製作所 情報処理装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070118399A1 (en) * 2005-11-22 2007-05-24 Avinash Gopal B System and method for integrated learning and understanding of healthcare informatics
CA2715825C (en) * 2008-02-20 2017-10-03 Mcmaster University Expert system for determining patient treatment response
CA2804293A1 (en) * 2010-06-20 2011-12-29 Univfy Inc. Method of delivering decision support systems (dss) and electronic health records (ehr) for reproductive care, pre-conceptive care, fertility treatments, and other health conditions
US20120232930A1 (en) * 2011-03-12 2012-09-13 Definiens Ag Clinical Decision Support System
US20140058755A1 (en) * 2011-11-23 2014-02-27 Remedev, Inc. Remotely-executed medical diagnosis and therapy including emergency automation
WO2014055718A1 (en) * 2012-10-04 2014-04-10 Aptima, Inc. Clinical support systems and methods
KR102119790B1 (ko) * 2013-10-08 2020-06-05 코타 인코포레이티드 임상 결과 추적 및 분석
US20150161331A1 (en) * 2013-12-04 2015-06-11 Mark Oleynik Computational medical treatment plan method and system with mass medical analysis
US9846938B2 (en) * 2015-06-01 2017-12-19 Virtual Radiologic Corporation Medical evaluation machine learning workflows and processes
US10971254B2 (en) * 2016-09-12 2021-04-06 International Business Machines Corporation Medical condition independent engine for medical treatment recommendation system
US20180181720A1 (en) * 2016-12-27 2018-06-28 General Electric Company Systems and methods to assign clinical goals, care plans and care pathways
US20190012592A1 (en) * 2017-07-07 2019-01-10 Pointr Data Inc. Secure federated neural networks
SG11202003337VA (en) * 2017-10-13 2020-05-28 Ai Tech Inc Deep learning-based diagnosis and referral of ophthalmic diseases and disorders
WO2019111077A1 (en) * 2017-11-12 2019-06-13 Aleph Bot Ltd. Systems, methods, devices, circuits and computer executable code for tracking evaluating and facilitating a medical procedure
US11126927B2 (en) * 2017-11-24 2021-09-21 Amazon Technologies, Inc. Auto-scaling hosted machine learning models for production inference
CN109411082B (zh) * 2018-11-08 2022-01-04 西华大学 一种医疗质量评价及就诊推荐方法
CN109801705B (zh) * 2018-12-12 2024-07-19 平安科技(深圳)有限公司 治疗推荐方法、系统、装置及存储介质

Also Published As

Publication number Publication date
AU2020358087A1 (en) 2022-05-12
CA3153502A1 (en) 2021-04-08
IL291829A (en) 2022-06-01
US20220344013A1 (en) 2022-10-27
EP4038617A1 (en) 2022-08-10
WO2021067733A1 (en) 2021-04-08
JP2022551612A (ja) 2022-12-12
EP4038617A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP7261236B2 (ja) 医用画像からの心エコー計測値の自動化抽出のための方法、コンピュータプログラム及び装置
JP2020522794A (ja) ニューラルネットワーク分類
Byass et al. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool
US20140057241A1 (en) Evaluating Candidate Answers To Questions In A Target Knowledge Domain
Upatising et al. Effects of home telemonitoring on transitions between frailty states and death for older adults: a randomized controlled trial
WO2019215055A1 (en) Personalized recommendations for health management
JP2019185751A (ja) 特徴量準備の方法、システム及びプログラム
Ning et al. A novel interpretable machine learning system to generate clinical risk scores: An application for predicting early mortality or unplanned readmission in a retrospective cohort study
Subudhi et al. Prognostic machine learning models for COVID‐19 to facilitate decision making
MacNell et al. Implementing machine learning methods with complex survey data: Lessons learned on the impacts of accounting sampling weights in gradient boosting
WO2021154869A8 (en) Systems and methods for delivery of digital biomarkers and genomic panels
US20150220698A1 (en) Systems and methods for determining secondary hyperparathyroidism risk factors
MX2022003943A (es) Direccionamiento de diagnóstico médico y recomendaciones de intervención.
Cvetković Breast cancer patients' depression prediction by machine learning approach
WO2023110477A1 (en) A computer implemented method and a system
Sanchez-Munoz et al. Trend from 2001 to 2015 in the prevalence of bronchiectasis among patients hospitalized for asthma and effect of bronchiectasis on the in-hospital mortality
Jung et al. On sample size calculation for comparing survival curves under general hypothesis testing
Güiza et al. Predictive data mining on monitoring data from the intensive care unit
Weng et al. Predicting cardiovascular disease risk using photoplethysmography and deep learning
MX2022011728A (es) Dispositivo de monitoreo de proceso, metodo de monitoreo de proceso y programa.
US11844633B2 (en) Feature identifying method and electronic device
CN104951292A (zh) 数据处理系统及数据处理方法
Heston et al. ChatGPT provides inconsistent risk-stratification of patients with atraumatic chest pain
Gallacher et al. Assessing the health economic agreement of different data sources
Gontkovsky Influence of IQ in interpreting MMSE scores in patients with multiple sclerosis