JP7261236B2 - 医用画像からの心エコー計測値の自動化抽出のための方法、コンピュータプログラム及び装置 - Google Patents
医用画像からの心エコー計測値の自動化抽出のための方法、コンピュータプログラム及び装置 Download PDFInfo
- Publication number
- JP7261236B2 JP7261236B2 JP2020534187A JP2020534187A JP7261236B2 JP 7261236 B2 JP7261236 B2 JP 7261236B2 JP 2020534187 A JP2020534187 A JP 2020534187A JP 2020534187 A JP2020534187 A JP 2020534187A JP 7261236 B2 JP7261236 B2 JP 7261236B2
- Authority
- JP
- Japan
- Prior art keywords
- echocardiographic
- medical
- medical images
- measurements
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims description 182
- 238000000605 extraction Methods 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 58
- 238000004590 computer program Methods 0.000 title claims description 15
- 238000013527 convolutional neural network Methods 0.000 claims description 62
- 238000012545 processing Methods 0.000 claims description 62
- 230000015654 memory Effects 0.000 claims description 31
- 238000012549 training Methods 0.000 claims description 30
- 238000013135 deep learning Methods 0.000 claims description 24
- 239000013598 vector Substances 0.000 claims description 23
- 230000004044 response Effects 0.000 claims description 6
- 238000003709 image segmentation Methods 0.000 claims description 5
- 230000001149 cognitive effect Effects 0.000 description 88
- 230000007246 mechanism Effects 0.000 description 32
- 238000002059 diagnostic imaging Methods 0.000 description 24
- 230000000875 corresponding effect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 21
- 238000002592 echocardiography Methods 0.000 description 21
- 238000011282 treatment Methods 0.000 description 20
- 210000002216 heart Anatomy 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 210000003484 anatomy Anatomy 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 12
- 230000009471 action Effects 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 8
- 230000000747 cardiac effect Effects 0.000 description 8
- 230000036541 health Effects 0.000 description 8
- 230000002861 ventricular Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000000053 physical method Methods 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 210000005242 cardiac chamber Anatomy 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 230000008447 perception Effects 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000003205 diastolic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003709 heart valve Anatomy 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 238000012952 Resampling Methods 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- UPLPHRJJTCUQAY-WIRWPRASSA-N 2,3-thioepoxy madol Chemical compound C([C@@H]1CC2)[C@@H]3S[C@@H]3C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@](C)(O)[C@@]2(C)CC1 UPLPHRJJTCUQAY-WIRWPRASSA-N 0.000 description 1
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005189 cardiac health Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 210000003516 pericardium Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0883—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Physiology (AREA)
- Quality & Reliability (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Geometry (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Biodiversity & Conservation Biology (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
Description
160:畳み込みニューラルネットワーク
161-165:畳み込みモジュール
166:畳み込み層
167:完全に接続された層
168:計測値ベクトル出力
204A-D:サーバ・コンピューティング・デバイス
210-212:クライアント・コンピューティング・デバイス
204、206:コーパス
300:データ処理システム
Claims (12)
- 少なくとも1つのプロセッサと、前記少なくとも1つのプロセッサによって実行されると前記少なくとも1つのプロセッサに自動化心エコー計測値抽出システムを実装させる命令を含む少なくとも1つのメモリとを含むデータ処理システムにおける方法であって、
前記データ処理システム上で実行される前記自動化心エコー計測値抽出システムによって、1つ又は複数の医用画像を含む医用画像データを受け取ることと、
前記自動化心エコー計測値抽出システムによって、前記1つ又は複数の医用画像を深層学習ネットワークに入力することと、
前記深層学習ネットワークによって、前記1つ又は複数の医用画像を自動的に処理して、前記1つ又は複数の医用画像から抽出された心エコー計測値についての1つ又は複数の値を含む、被抽出心エコー計測値ベクトル出力を生成することと、
前記深層学習ネットワークによって、前記被抽出心エコー計測値ベクトル出力を医用画像ビューアに出力することと、
を含み、
前記深層学習ネットワークによって、前記被抽出心エコー計測値ベクトル出力を医用画像ビューアに出力することは、
前記自動化心エコー計測値抽出システムによって、前記1つ又は複数の医用画像から抽出されることを要する各タイプの心エコー計測値に対して、当該タイプの心エコー計測値を生成するのに最適な視点をもたらす、対応する医用画像視点を識別することと、
前記自動化心エコー計測値抽出システムによって、各タイプの心エコー計測値について、前記1つ又は複数の医用画像が前記最適な視点に対応する視点を有する少なくとも1つの医用画像を含むか否かを判定することと、
を含む、
方法。 - 前記1つ又は複数の医用画像は、患者の1つ又は複数のBモード心エコー画像を含む、請求項1に記載の方法。
- 前記1つ又は複数の医用画像を自動的に処理して被抽出心エコー計測値ベクトル出力を生成することは、前記1つ又は複数の医用画像に対して画像のセグメント化を行うことなく行われる、請求項1に記載の方法。
- 前記深層学習ネットワークは、多層畳み込みニューラルネットワークを含む、請求項1に記載の方法。
- 前記1つ又は複数の医用画像は、複数の医用画像を含み、前記複数の医用画像のうち少なくとも2つの医用画像は異なる視点を有しており、前記1つ又は複数の医用画像を自動的に処理して被抽出心エコー計測値ベクトル出力を生成することは、前記複数の医用画像の特徴ベクトルを連結することを含む、請求項1に記載の方法。
- 前記深層学習ネットワークによって、前記被抽出心エコー計測値ベクトル出力を医用画像ビューアに出力することは、
前記自動化心エコー計測値抽出システムによって、前記1つ又は複数の医用画像に、前記心エコー計測値についての1つ又は複数の値を含めるように注釈付けすることと、
前記注釈付けされた1つ又は複数の医用画像を、前記医用画像ビューアを介して表示することと、
をさらに含む、請求項1に記載の方法。 - 前記深層学習ネットワークによって、前記被抽出心エコー計測値ベクトル出力を医用画像ビューアに出力することは、各タイプの心エコー計測値について、
前記1つ又は複数の医用画像が前記最適な視点に対応する視点を有する少なくとも1つの医用画像を含んでいないことに応答して、ユーザに対して、患者の少なくとも1つの追加の医用画像を取り込むべきとの通知を出力するとともに、対応するタイプの心エコー計測値に対する前記最適な視点を指定すること、
をさらに含む、請求項1に記載の方法。 - 前記深層学習ネットワークによって、前記被抽出心エコー計測値ベクトル出力を医用画像ビューアに出力することは、
前記自動化心エコー計測値抽出システムによって、前記1つ又は複数の医用画像から抽出されることを要する各タイプの心エコー計測値が前記1つ又は複数の医用画像から既に抽出されたか否かを判定することと、
前記自動化心エコー計測値抽出システムによって、ユーザに対して、医用画像の取り込みが完了したことの通知を出力することと、
をさらに含む、請求項1に記載の方法。 - 医用画像から心エコー計測値を抽出するように、注釈付き訓練画像データセットに基づいて前記深層学習ネットワークを訓練すること、
をさらに含む、請求項1に記載の方法。 - 請求項1から請求項9までのいずれか1項に記載の方法をデータ処理システムに実行させるコンピュータプログラム。
- 請求項10に記載のコンピュータプログラムを格納したコンピュータ可読ストレージ媒体。
- プロセッサと、
前記プロセッサによって実行されたとき、前記プロセッサに自動化心エコー計測値抽出システムを実装させる命令を含む、前記プロセッサに結合されたメモリと、を含む装置であって、前記自動化心エコー計測値抽出システムは、請求項1から請求項9までのいずれか1項に記載の方法を実行する、装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/848,077 US10531807B2 (en) | 2017-12-20 | 2017-12-20 | Automated extraction of echocardiograph measurements from medical images |
US15/848,077 | 2017-12-20 | ||
PCT/IB2018/059901 WO2019123110A1 (en) | 2017-12-20 | 2018-12-12 | Automated extraction of echocardiograph measurements from medical images |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021509301A JP2021509301A (ja) | 2021-03-25 |
JP7261236B2 true JP7261236B2 (ja) | 2023-04-19 |
Family
ID=66813686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020534187A Active JP7261236B2 (ja) | 2017-12-20 | 2018-12-12 | 医用画像からの心エコー計測値の自動化抽出のための方法、コンピュータプログラム及び装置 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10531807B2 (ja) |
JP (1) | JP7261236B2 (ja) |
CN (1) | CN111511287B (ja) |
DE (1) | DE112018006488T5 (ja) |
GB (1) | GB2583643B (ja) |
WO (1) | WO2019123110A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145910A (zh) * | 2017-05-08 | 2017-09-08 | 京东方科技集团股份有限公司 | 医学影像的表现生成系统、其训练方法及表现生成方法 |
US10531807B2 (en) * | 2017-12-20 | 2020-01-14 | International Business Machines Corporation | Automated extraction of echocardiograph measurements from medical images |
US11534136B2 (en) * | 2018-02-26 | 2022-12-27 | Siemens Medical Solutions Usa, Inc. | Three-dimensional segmentation from two-dimensional intracardiac echocardiography imaging |
US10685172B2 (en) * | 2018-05-24 | 2020-06-16 | International Business Machines Corporation | Generating a textual description of an image using domain-independent anomaly analysis |
US11616816B2 (en) * | 2018-12-28 | 2023-03-28 | Speedchain, Inc. | Distributed ledger based document image extracting and processing within an enterprise system |
US20210185091A1 (en) * | 2018-12-28 | 2021-06-17 | Mox-SpeedChain, LLC | Advanced Security System for Implementation in an Internet of Things (IOT) Blockchain Network |
US10910100B2 (en) * | 2019-03-14 | 2021-02-02 | Fuji Xerox Co., Ltd. | System and method for generating descriptions of abnormalities in medical images |
CN110298831A (zh) * | 2019-06-25 | 2019-10-01 | 暨南大学 | 一种基于分块深度学习的医学图像处理系统及其方法 |
WO2021034960A1 (en) * | 2019-08-21 | 2021-02-25 | The Regents Of The University Of California | Systems and methods for imputing real-time physiological signals |
EP3839964A1 (en) * | 2019-12-19 | 2021-06-23 | Koninklijke Philips N.V. | Making measurements in images |
CN110739050B (zh) * | 2019-12-20 | 2020-07-28 | 深圳大学 | 一种左心室全参数及置信度的量化方法 |
CN111368899B (zh) * | 2020-02-28 | 2023-07-25 | 中国人民解放军南部战区总医院 | 一种基于递归聚合深度学习分割超声心动图的方法和系统 |
CN111523593B (zh) * | 2020-04-22 | 2023-07-21 | 北京康夫子健康技术有限公司 | 用于分析医学影像的方法和装置 |
JP7152724B2 (ja) * | 2020-08-21 | 2022-10-13 | 雅文 中山 | 機械学習装置、プログラム、及び検査結果推定装置 |
US20220059221A1 (en) * | 2020-08-24 | 2022-02-24 | Nvidia Corporation | Machine-learning techniques for oxygen therapy prediction using medical imaging data and clinical metadata |
JP2022070037A (ja) * | 2020-10-26 | 2022-05-12 | キヤノン株式会社 | 情報処理装置、情報表示装置、情報処理方法、情報処理システム及びプログラム |
US11875505B2 (en) * | 2021-01-29 | 2024-01-16 | GE Precision Healthcare LLC | Systems and methods for adaptive measurement of medical images |
CN113762388A (zh) * | 2021-09-08 | 2021-12-07 | 山东大学 | 一种基于深度学习的超声心动图视图识别方法及系统 |
US20230310080A1 (en) * | 2022-03-31 | 2023-10-05 | Dasisimulations Llc | Artificial intelligence-based systems and methods for automatic measurements for pre-procedural planning |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010113998A1 (ja) | 2009-03-31 | 2010-10-07 | 株式会社 日立メディコ | 医用画像診断装置、容積計算方法 |
JP2016214393A (ja) | 2015-05-15 | 2016-12-22 | 東芝メディカルシステムズ株式会社 | 超音波診断装置及び制御プログラム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8308646B2 (en) * | 2005-04-18 | 2012-11-13 | Mayo Foundation For Medical Education And Research | Trainable diagnostic system and method of use |
CN103732134B (zh) * | 2010-12-29 | 2016-08-17 | 迪亚卡帝奥有限公司 | 用于自动左心室功能评价的系统、装置、设备和方法 |
US9122956B1 (en) | 2012-11-09 | 2015-09-01 | California Institute Of Technology | Automated feature analysis, comparison, and anomaly detection |
US10271817B2 (en) * | 2014-06-23 | 2019-04-30 | Siemens Medical Solutions Usa, Inc. | Valve regurgitant detection for echocardiography |
US9842390B2 (en) * | 2015-02-06 | 2017-12-12 | International Business Machines Corporation | Automatic ground truth generation for medical image collections |
US11129591B2 (en) * | 2016-04-21 | 2021-09-28 | The University Of British Columbia | Echocardiographic image analysis |
WO2017198878A1 (de) * | 2016-05-20 | 2017-11-23 | Universität des Saarlandes | Automatisierte empfehlung zur gabe von echokontrastmittel mittels machine-learning-algorithmen |
WO2017205836A1 (en) * | 2016-05-26 | 2017-11-30 | Icahn School Of Medicine At Mount Sinai | Systems and methods for categorization |
CN106096632A (zh) * | 2016-06-02 | 2016-11-09 | 哈尔滨工业大学 | 基于深度学习和mri图像的心室功能指标预测方法 |
CN107169528B (zh) * | 2017-06-06 | 2020-01-07 | 成都芯云微电子有限公司 | 一种基于机器学习的集成电路图像的通孔识别装置 |
US9968257B1 (en) * | 2017-07-06 | 2018-05-15 | Halsa Labs, LLC | Volumetric quantification of cardiovascular structures from medical imaging |
US10470677B2 (en) * | 2017-10-11 | 2019-11-12 | Bay Labs, Inc. | Artificially intelligent ejection fraction determination |
US10531807B2 (en) | 2017-12-20 | 2020-01-14 | International Business Machines Corporation | Automated extraction of echocardiograph measurements from medical images |
-
2017
- 2017-12-20 US US15/848,077 patent/US10531807B2/en active Active
-
2018
- 2018-12-12 GB GB2010761.1A patent/GB2583643B/en active Active
- 2018-12-12 WO PCT/IB2018/059901 patent/WO2019123110A1/en active Application Filing
- 2018-12-12 JP JP2020534187A patent/JP7261236B2/ja active Active
- 2018-12-12 CN CN201880079409.3A patent/CN111511287B/zh active Active
- 2018-12-12 DE DE112018006488.3T patent/DE112018006488T5/de active Pending
-
2019
- 2019-12-13 US US16/713,999 patent/US10987013B2/en active Active
-
2021
- 2021-03-18 US US17/205,485 patent/US11813113B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010113998A1 (ja) | 2009-03-31 | 2010-10-07 | 株式会社 日立メディコ | 医用画像診断装置、容積計算方法 |
JP2016214393A (ja) | 2015-05-15 | 2016-12-22 | 東芝メディカルシステムズ株式会社 | 超音波診断装置及び制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
GB2583643A (en) | 2020-11-04 |
GB2583643B (en) | 2022-10-12 |
US11813113B2 (en) | 2023-11-14 |
GB202010761D0 (en) | 2020-08-26 |
CN111511287B (zh) | 2023-08-04 |
WO2019123110A1 (en) | 2019-06-27 |
US20210204856A1 (en) | 2021-07-08 |
US20190183366A1 (en) | 2019-06-20 |
DE112018006488T5 (de) | 2020-10-29 |
JP2021509301A (ja) | 2021-03-25 |
CN111511287A (zh) | 2020-08-07 |
US20200113463A1 (en) | 2020-04-16 |
US10531807B2 (en) | 2020-01-14 |
US10987013B2 (en) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7261236B2 (ja) | 医用画像からの心エコー計測値の自動化抽出のための方法、コンピュータプログラム及び装置 | |
US10930386B2 (en) | Automated normality scoring of echocardiograms | |
US11645833B2 (en) | Generative adversarial network medical image generation for training of a classifier | |
US10902588B2 (en) | Anatomical segmentation identifying modes and viewpoints with deep learning across modalities | |
US10540578B2 (en) | Adapting a generative adversarial network to new data sources for image classification | |
US10937540B2 (en) | Medical image classification based on a generative adversarial network trained discriminator | |
US10929708B2 (en) | Deep learning network for salient region identification in images | |
US10327712B2 (en) | Prediction of diseases based on analysis of medical exam and/or test workflow | |
JP7540873B2 (ja) | 生物医学画像内の異常を検出するためのノックアウト・オートエンコーダ | |
Azad et al. | Foundational models in medical imaging: A comprehensive survey and future vision | |
US10984024B2 (en) | Automatic processing of ambiguously labeled data | |
US11663057B2 (en) | Analytics framework for selection and execution of analytics in a distributed environment | |
de Siqueira et al. | Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review | |
US10650923B2 (en) | Automatic creation of imaging story boards from medical imaging studies | |
US20190197419A1 (en) | Registration, Composition, and Execution of Analytics in a Distributed Environment | |
KR20190139722A (ko) | 진단명 레이블링을 위한 딥러닝을 이용한 판독기록문으로부터 최종 진단명 추출 방법 및 장치 | |
US20190197135A1 (en) | Intelligently Organizing Displays of Medical Imaging Content for Rapid Browsing and Report Creation | |
JP2024054748A (ja) | 言語特徴抽出モデルの生成方法、情報処理装置、情報処理方法及びプログラム | |
US10910098B2 (en) | Automatic summarization of medical imaging studies | |
Zolgharni | Automated assessment of echocardiographic image quality using deep convolutional neural networks | |
US20240257967A1 (en) | Methods, systems, apparatuses, and devices for facilitating a diagnosis of pathologies using a machine learning model | |
CN116249474A (zh) | 内部和外部接近扫描 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200820 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210525 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220607 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220906 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7261236 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |