JP2020522794A - ニューラルネットワーク分類 - Google Patents
ニューラルネットワーク分類 Download PDFInfo
- Publication number
- JP2020522794A JP2020522794A JP2019565479A JP2019565479A JP2020522794A JP 2020522794 A JP2020522794 A JP 2020522794A JP 2019565479 A JP2019565479 A JP 2019565479A JP 2019565479 A JP2019565479 A JP 2019565479A JP 2020522794 A JP2020522794 A JP 2020522794A
- Authority
- JP
- Japan
- Prior art keywords
- neural network
- output
- inputting
- training
- neural networks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 344
- 238000012549 training Methods 0.000 claims abstract description 108
- 230000004044 response Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims description 58
- 238000013527 convolutional neural network Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 14
- 238000005192 partition Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 12
- 238000009795 derivation Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000002591 computed tomography Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000002790 cross-validation Methods 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004195 computer-aided diagnosis Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010056342 Pulmonary mass Diseases 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/217—Validation; Performance evaluation; Active pattern learning techniques
- G06F18/2178—Validation; Performance evaluation; Active pattern learning techniques based on feedback of a supervisor
- G06F18/2185—Validation; Performance evaluation; Active pattern learning techniques based on feedback of a supervisor the supervisor being an automated module, e.g. intelligent oracle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24143—Distances to neighbourhood prototypes, e.g. restricted Coulomb energy networks [RCEN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24317—Piecewise classification, i.e. whereby each classification requires several discriminant rules
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/778—Active pattern-learning, e.g. online learning of image or video features
- G06V10/7784—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors
- G06V10/7788—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors the supervisor being a human, e.g. interactive learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30061—Lung
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Public Health (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Pathology (AREA)
- Image Analysis (AREA)
Abstract
Description
ブロック図及び/又はフローチャート図の各ブロック、及びブロック図及び/又はフローチャート図中のブロックの組合せは、指定された機能又は動作を実行する専用ハードウェア・ベースのシステムによって実装することもでき、又は専用ハードウェアとコンピュータ命令との組合せを実行することもできることにも留意されたい。
110、210:第2のニューラルネットワーク
112、212:複数の第1のニューラルネットワーク
113、213:第1のニューラルネットワーク
215:サンプル
216:態様
218:出力
219:各出力
700:コンピュータ
Claims (22)
- 複数の第1のニューラルネットワークの各々に、複数のサンプルを含む訓練データセットを入力することと、
前記複数の第1のニューラルネットワークから複数の出力値セットを取得することであって、各出力値セットは、前記複数のサンプルのうちの1つに対応する複数の出力値を含み、各出力値は、前記訓練データセットの前記サンプルのうちの1つを入力することに応答して対応する第1のニューラルネットワークから出力される、複数の出力値セットを取得することと、
第2のニューラルネットワークに前記複数の出力値セットを入力することと、
対応する出力値セットを入力することに応答して各サンプルに対応する期待結果を出力するように、前記第2のニューラルネットワークを訓練することと、
を含む、ニューラルネットワークのための方法。 - 前記複数の第1のニューラルネットワークをカスケード畳み込みニューラルネットワーク(CNN)から導出することをさらに含む、請求項1に記載の方法。
- 前記複数の第1のニューラルネットワークの各第1のニューラルネットワークを訓練することをさらに含む、前記請求項のいずれかに記載の方法。
- 前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークを訓練することが、対応するサンプルを入力することに応答して各サンプルに対応する期待結果を出力するように、各第1のニューラルネットワークを訓練することを含む、請求項3に記載の方法。
- 前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークを訓練することが、多段CNNを多分割交差検証することを含む、請求項3に記載の方法。
- 前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークを訓練することが、前記複数のサンプルの中の各サンプルを入力することを含む、請求項3に記載の方法。
- 各サンプルは、複数の態様を含み、各態様は、前記複数の第1のニューラルネットワークのうちの1つに対応し、前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークを訓練することは、前記複数の態様の中の対応する態様を入力することを含む、請求項3から請求項6のいずれか一項に記載の方法。
- 前記サンプルは、3D画像であり、各態様は、前記3D画像内の平面の画像である、請求項7に記載の方法。
- 前記サンプルは、生物であり、各態様は、前記生物の診断情報である、請求項7に記載の方法。
- 前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークは、第1のネットワーク構造を有する、前記請求項のいずれか一項に記載の方法。
- 前記複数の第1のニューラルネットワークの中の少なくとも1つの第1のニューラルネットワークは、第1のネットワーク構造を有し、前記複数の第1のニューラルネットワークの中の少なくとも1つの第1のニューラルネットワークは、第2のネットワーク構造を有する、前記請求項のいずれか一項に記載の方法。
- 前記第2のニューラルネットワークを、前記第2のニューラルネットワークの訓練の結果である第2の重み値セットとして記録することをさらに含む、前記請求項のいずれか一項に記載の方法。
- コンピュータ可読媒体内に、各第1のニューラルネットワークを第1の重み値セットとして格納することにより前記複数の第1のニューラルネットワークを格納するとともに、前記第2の重み値セットとして前記第2のニューラルネットワークを格納することをさらに含む、請求項12に記載の方法。
- 対応する出力値セットを入力することに応答して各サンプルに対応する期待結果を出力するように、複数の第2のニューラルネットワークを訓練することであって、各第2のニューラルネットワークには、対応する複数の第1のニューラルネットワークからの出力値セットが入力される、複数の第2のニューラルネットワークを訓練することと、
前記複数の第2のニューラルネットワークからの前記サンプルに対応する出力を入力することに応答して各サンプルに対応する期待結果を出力するように、第3のニューラルネットワークを訓練することと、
をさらに含む、前記請求項のいずれか一項に記載の方法。 - 複数の第1のニューラルネットワークの各々にサンプルを入力することと、
前記複数の第1のニューラルネットワークから出力値セットを取得することであって、前記出力値セットは、前記サンプルに対応する複数の出力値を含み、各出力値は、前記サンプルを入力することに応答して対応する第1のニューラルネットワークから出力される、出力値セットを取得することと、
第2のニューラルネットワークに前記出力値セットを入力することと、
前記出力値セットを入力することに応答して前記サンプルに対応する結果を取得することと、
をさらに含む、前記請求項のいずれか一項に記載の方法。 - 複数の第1のニューラルネットワークの各々にサンプルを入力することと、
前記複数の第1のニューラルネットワークから出力値セットを取得することであって、前記出力値セットは、前記サンプルに対応する複数の出力値を含み、各出力値は、前記サンプルを入力することに応答して対応する第1のニューラルネットワークから出力される、出力値セットを取得することと、
第2のニューラルネットワークに前記出力値セットを入力することと、
前記出力値セットを入力することに応答して、前記サンプルに対応する結果を取得することと、
前記結果を出力することと、
を含む、方法。 - 請求項1から請求項16のいずれか一項に記載の方法を行うために処理回路によって実行される命令を格納する、前記処理回路によって可読のコンピュータ可読媒体を含む、
ニューラルネットワークのためのコンピュータプログラム製品。 - コンピュータ可読媒体に格納され、デジタルコンピュータの内部メモリにロード可能なコンピュータプログラムであって、前記プログラムがコンピュータ上で実行されるとき請求項1から請求項16のいずれか一項に記載の方法を行うためのソフトウェアコード部分を含む、コンピュータプログラム。
- プロセッサと、
具体化されたプログラム命令を有する1つ又は複数のコンピュータ可読ストレージ媒体と、
を含むシステムであって、前記プログラム命令は、プロセッサによって実行可能であり、
複数の第1のニューラルネットワークの各々に、複数のサンプルを含む訓練データセットを入力することと、
前記複数の第1のニューラルネットワークから複数の出力値セットを入力することであって、各出力値セットは、前記複数のサンプルのうちの1つに対応する複数の出力値を含み、各出力値は、前記訓練データセットの前記サンプルのうちの1つを入力することに応答して対応する第1のニューラルネットワークから出力される、複数の出力値セットを入力することと、
第2のニューラルネットワークに前記複数の出力値セットを入力することと、
対応する出力値セットを入力することに応答して各サンプルに対応する期待結果を出力するように、前記第2のニューラルネットワークを訓練することと、
を含む動作を前記プロセッサに実行させる、
システム。 - 前記動作は、
前記複数の第1のニューラルネットワークをカスケード畳み込みニューラルネットワーク(CNN)から導出することをさらに含む、
請求項19に記載のシステム。 - 前記動作は、
前記複数の第1のニューラルネットワークの各第1のニューラルネットワークを訓練することをさらに含む、
請求項19又は請求項20に記載のシステム。 - 前記複数の第1のニューラルネットワークの中の各第1のニューラルネットワークを訓練することが、対応するサンプルを入力することに応答して各サンプルに対応する期待結果を出力するように、各第1のニューラルネットワークを訓練することを含む、請求項21に記載のシステム。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/611,065 US10713783B2 (en) | 2017-06-01 | 2017-06-01 | Neural network classification |
US15/611,065 | 2017-06-01 | ||
US15/802,944 US11138724B2 (en) | 2017-06-01 | 2017-11-03 | Neural network classification |
US15/802,944 | 2017-11-03 | ||
PCT/IB2018/053870 WO2018220566A1 (en) | 2017-06-01 | 2018-05-31 | Neural network classification |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020522794A true JP2020522794A (ja) | 2020-07-30 |
JP7110240B2 JP7110240B2 (ja) | 2022-08-01 |
Family
ID=64456394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019565479A Active JP7110240B2 (ja) | 2017-06-01 | 2018-05-31 | ニューラルネットワーク分類 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11138724B2 (ja) |
JP (1) | JP7110240B2 (ja) |
CN (1) | CN110622175B (ja) |
DE (1) | DE112018002822T5 (ja) |
GB (1) | GB2577017A (ja) |
WO (1) | WO2018220566A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11138724B2 (en) | 2017-06-01 | 2021-10-05 | International Business Machines Corporation | Neural network classification |
JP2023523029A (ja) * | 2020-08-25 | 2023-06-01 | 深▲セン▼思謀信息科技有限公司 | 画像認識モデル生成方法、装置、コンピュータ機器及び記憶媒体 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111492382B (zh) * | 2017-11-20 | 2024-05-07 | 皇家飞利浦有限公司 | 训练第一神经网络模型和第二神经网络模型 |
KR20190114694A (ko) * | 2018-03-30 | 2019-10-10 | 삼성에스디에스 주식회사 | 인공지능을 이용한 시계열 데이터 학습 및 분석 방법 |
US11537848B2 (en) * | 2018-07-26 | 2022-12-27 | Raytheon Company | Class level artificial neural network |
US11763133B2 (en) * | 2018-08-31 | 2023-09-19 | Servicenow Canada Inc. | Data point suitability determination from edge device neural networks |
US11783949B2 (en) * | 2018-11-30 | 2023-10-10 | Ariel Precision Medicine, Inc. | Methods and systems for severity calculator |
CN109740735B (zh) * | 2018-12-29 | 2020-12-29 | 百度在线网络技术(北京)有限公司 | 多神经网络输出方法及装置、服务器、计算机可读介质 |
CN110164549A (zh) * | 2019-05-20 | 2019-08-23 | 南通奕霖智慧医学科技有限公司 | 一种基于神经网络分类器的儿科分诊方法及系统 |
CN114026570A (zh) * | 2019-05-21 | 2022-02-08 | 弗劳恩霍夫应用研究促进协会 | 多个人工学习单元与投影层级耦接 |
US11763450B1 (en) * | 2019-11-14 | 2023-09-19 | University Of South Florida | Mitigating adversarial attacks on medical imaging understanding systems |
SE1951443A1 (en) * | 2019-12-12 | 2021-06-13 | Assa Abloy Ab | Improving machine learning for monitoring a person |
CN111598130A (zh) * | 2020-04-08 | 2020-08-28 | 天津大学 | 基于多视图卷积神经网络的中药识别方法 |
SE544261C2 (en) | 2020-06-16 | 2022-03-15 | IntuiCell AB | A computer-implemented or hardware-implemented method of entity identification, a computer program product and an apparatus for entity identification |
US11341354B1 (en) * | 2020-09-30 | 2022-05-24 | States Title, Inc. | Using serial machine learning models to extract data from electronic documents |
DE102020130604A1 (de) * | 2020-11-19 | 2022-05-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren und System zum Verarbeiten von Eingabewerten |
CN114529760B (zh) * | 2022-01-25 | 2022-09-02 | 北京医准智能科技有限公司 | 一种针对甲状腺结节的自适应分类方法及装置 |
SE2250135A1 (en) * | 2022-02-11 | 2023-08-12 | IntuiCell AB | A data processing system comprising first and second networks, a second network connectable to a first network, a method, and a computer program product therefor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10171910A (ja) * | 1996-11-29 | 1998-06-26 | Arch Dev Corp | 診断支援装置及び方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8126267B2 (en) | 2007-02-05 | 2012-02-28 | Albany Medical College | Methods and apparatuses for analyzing digital images to automatically select regions of interest thereof |
US20100266185A1 (en) * | 2009-04-21 | 2010-10-21 | Sloan Kettering Institute of Cancer | Malignant tissue recognition model for the prostate |
US8811697B2 (en) | 2010-04-06 | 2014-08-19 | Siemens Aktiengesellschaft | Data transmission in remote computer assisted detection |
CN103679185B (zh) | 2012-08-31 | 2017-06-16 | 富士通株式会社 | 卷积神经网络分类器系统、其训练方法、分类方法和用途 |
EP2916739B1 (en) | 2012-11-11 | 2021-06-30 | The Regents Of The University Of California | Automated image system for scoring changes in quantitative interstitial lung disease |
US20160026851A1 (en) | 2013-09-20 | 2016-01-28 | Applied Visual Sciences, Inc. | System and method for improved detection of objects of interest in image data by management of false positives |
US20150095017A1 (en) | 2013-09-27 | 2015-04-02 | Google Inc. | System and method for learning word embeddings using neural language models |
US9430829B2 (en) | 2014-01-30 | 2016-08-30 | Case Western Reserve University | Automatic detection of mitosis using handcrafted and convolutional neural network features |
CN103824049A (zh) | 2014-02-17 | 2014-05-28 | 北京旷视科技有限公司 | 一种基于级联神经网络的人脸关键点检测方法 |
KR20160066927A (ko) | 2014-12-03 | 2016-06-13 | 삼성전자주식회사 | 컴퓨터 보조 진단 지원 장치 및 방법 |
US9607217B2 (en) | 2014-12-22 | 2017-03-28 | Yahoo! Inc. | Generating preference indices for image content |
WO2017100903A1 (en) | 2015-12-14 | 2017-06-22 | Motion Metrics International Corp. | Method and apparatus for identifying fragmented material portions within an image |
CN105631519A (zh) | 2015-12-31 | 2016-06-01 | 北京工业大学 | 一种基于预决策的卷积神经网络加速方法及系统 |
CN106056210B (zh) | 2016-06-07 | 2018-06-01 | 浙江工业大学 | 一种基于混合神经网络的pm2.5浓度值预测方法 |
US10599977B2 (en) | 2016-08-23 | 2020-03-24 | International Business Machines Corporation | Cascaded neural networks using test ouput from the first neural network to train the second neural network |
US10713783B2 (en) | 2017-06-01 | 2020-07-14 | International Business Machines Corporation | Neural network classification |
US11138724B2 (en) | 2017-06-01 | 2021-10-05 | International Business Machines Corporation | Neural network classification |
-
2017
- 2017-11-03 US US15/802,944 patent/US11138724B2/en active Active
-
2018
- 2018-05-31 DE DE112018002822.4T patent/DE112018002822T5/de active Pending
- 2018-05-31 JP JP2019565479A patent/JP7110240B2/ja active Active
- 2018-05-31 WO PCT/IB2018/053870 patent/WO2018220566A1/en active Application Filing
- 2018-05-31 GB GB1917993.6A patent/GB2577017A/en not_active Withdrawn
- 2018-05-31 CN CN201880031724.9A patent/CN110622175B/zh active Active
-
2021
- 2021-08-10 US US17/444,756 patent/US11935233B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10171910A (ja) * | 1996-11-29 | 1998-06-26 | Arch Dev Corp | 診断支援装置及び方法 |
Non-Patent Citations (2)
Title |
---|
MASAHARU SAKAMOTO ET AL.: ""Multi-stage Neural Networks with Single-sided Classifiers for False Positive Reduction and its Eval", ARXIV.ORG [ONLINE], vol. arXiv:1703.00311v3, JPN6021041195, March 2017 (2017-03-01), pages 1 - 11, ISSN: 0004619633 * |
YANI CHEN ET AL.: ""Hippocampus segmentation through multi-view ensemble ConvNets"", 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), JPN6021041196, 18 April 2017 (2017-04-18), US, pages 192 - 196, ISSN: 0004619632 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11138724B2 (en) | 2017-06-01 | 2021-10-05 | International Business Machines Corporation | Neural network classification |
US11935233B2 (en) | 2017-06-01 | 2024-03-19 | International Business Machines Corporation | Neural network classification |
JP2023523029A (ja) * | 2020-08-25 | 2023-06-01 | 深▲セン▼思謀信息科技有限公司 | 画像認識モデル生成方法、装置、コンピュータ機器及び記憶媒体 |
JP7376731B2 (ja) | 2020-08-25 | 2023-11-08 | 深▲セン▼思謀信息科技有限公司 | 画像認識モデル生成方法、装置、コンピュータ機器及び記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
CN110622175B (zh) | 2023-09-19 |
US20210374958A1 (en) | 2021-12-02 |
US20180350069A1 (en) | 2018-12-06 |
GB201917993D0 (en) | 2020-01-22 |
JP7110240B2 (ja) | 2022-08-01 |
US11935233B2 (en) | 2024-03-19 |
CN110622175A (zh) | 2019-12-27 |
DE112018002822T5 (de) | 2020-02-13 |
GB2577017A (en) | 2020-03-11 |
US11138724B2 (en) | 2021-10-05 |
WO2018220566A1 (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020522794A (ja) | ニューラルネットワーク分類 | |
US11237713B2 (en) | Graphical user interface based feature extraction application for machine learning and cognitive models | |
US10713783B2 (en) | Neural network classification | |
US11544494B2 (en) | Algorithm-specific neural network architectures for automatic machine learning model selection | |
US20190354810A1 (en) | Active learning to reduce noise in labels | |
US20180300630A1 (en) | Cooperative execution of a genetic algorithm with an efficient training algorithm for data-driven model creation | |
US20180314938A1 (en) | Pre-processing for data-driven model creation | |
JP2022524878A (ja) | 画像解析方法、装置、プログラム | |
CN110532376B (zh) | 分类文本以确定用于选择机器学习算法结果的目标类型 | |
CN108475287A (zh) | 用于流数据的离群值检测 | |
US20160012202A1 (en) | Predicting the risks of multiple healthcare-related outcomes via joint comorbidity discovery | |
US11494353B2 (en) | Detecting interesting decision rules in tree ensembles | |
JP2018507450A (ja) | 自動スキーマ不整合検出 | |
US20170132531A1 (en) | Analysis device, analysis method, and program | |
Fung et al. | Automation of QIIME2 metagenomic analysis platform | |
MacNell et al. | Implementing machine learning methods with complex survey data: Lessons learned on the impacts of accounting sampling weights in gradient boosting | |
JP7059151B2 (ja) | 時系列データ分析装置、時系列データ分析方法、および時系列データ分析プログラム | |
CN116719926A (zh) | 基于智慧医疗的先天性心脏病报告数据筛选方法及系统 | |
US20190272904A1 (en) | Generation of test data for a data platform | |
US11087050B2 (en) | Generation of event transition model from event records | |
US20210373987A1 (en) | Reinforcement learning approach to root cause analysis | |
EP4305562A1 (en) | Device, method, and system for weighted knowledge transfer | |
KR20230029753A (ko) | 인공 지능을 이용하여 소프트웨어 애플리케이션에서 편향을 검출하고 모니터링하기 위한 방법 및 디바이스 | |
US20220058514A1 (en) | Online machine learning-based model for decision recommendation | |
US11151420B2 (en) | Determination using learned model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200609 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211019 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220316 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7110240 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |