MX2007015787A - Bovine abcg2 gene missense mutations and uses thereof - Google Patents

Bovine abcg2 gene missense mutations and uses thereof

Info

Publication number
MX2007015787A
MX2007015787A MXMX/A/2007/015787A MX2007015787A MX2007015787A MX 2007015787 A MX2007015787 A MX 2007015787A MX 2007015787 A MX2007015787 A MX 2007015787A MX 2007015787 A MX2007015787 A MX 2007015787A
Authority
MX
Mexico
Prior art keywords
abcg2
qtl
seq
gene
protein
Prior art date
Application number
MXMX/A/2007/015787A
Other languages
Spanish (es)
Inventor
Seroussi Eyal
R Band Mark
Cohenzinder Miri
K Drackley James
M Larkin Denis
J Loor Juan
Ron Micha
Shani Moshe
Ira Weller Joel
A Lewin Harris
Original Assignee
R Band Mark
Cohenzinder Miri
K Drackley James
M Larkin Denis
A Lewin Harris
J Loor Juan
Ron Micha
Seroussi Eyal
Shani Moshe
The Agricultural Research Organization Of Israel
The Board Of Trustees Of The University Of Illinois
Ira Weller Joel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R Band Mark, Cohenzinder Miri, K Drackley James, M Larkin Denis, A Lewin Harris, J Loor Juan, Ron Micha, Seroussi Eyal, Shani Moshe, The Agricultural Research Organization Of Israel, The Board Of Trustees Of The University Of Illinois, Ira Weller Joel filed Critical R Band Mark
Publication of MX2007015787A publication Critical patent/MX2007015787A/en

Links

Abstract

A quantitative trait locus (QTL) affecting milk fat and protein concentration was localized to a 4cM confidence interval on chromosome 6 centered on the microsatelliteBM143. The genes and sequence variation in this region were characterized, and common haplotypes spanning five polymorphic sites in the genesIBSP,SPP1,PKD2, andABCG2for two sires heterozygous for this QTL were localized. Expression ofSPP1andABCG2in the bovine mammary gland increased from parturition through lactation.SPP1was sequenced, and all the coding exons ofABCG2andPKD2were sequenced for these two sires. The single nucleotide change capable of encoding a substitution of tyrosine-581 to serine (Y581S) in theABCG2transporter was the only polymorphism corresponding to the segregation status of all three heterozygous and 15 homozygous sires for the QTL in the Israeli and US Holstein populations.

Description

ANTICIFY MUTATIONS OF THE BOVINE GENE ABCG2 AND USES OF THE SAME BACKGROUND OF THE INVENTION Although many studies have demonstrated the binding between genetic markers and loci of quantitative traits (QTL) in commercial animal populations, the current DNA polymorphisms responsible for the observed effects - a nucleotide of quantitative characteristics (QTN), has been identified in only a simple case in dairy cattle (a polymorphism in exon 8 of the gene encoding acylCoA: diacylglycerol acyltransferase DGATl) on chromosome 14 of Bos taur s ( BTA 14) that was associated with increased fat, fat and protein percent yield, as well as decreased protein and milk production. This gene was identified using a comparative bioinformatics mapping, and a functional analysis. Several studies have proposed candidate genes for QTL in BTA6 based on their assumed physiological role with features of interest. PPARGC1A (coactivator 1, alpha, peroxisome proliferator activated by the gamma receptor) was suggested as a positional and functional candidate gene for QTL in BTA6, due to its key role in the metabolism of energy, fats, and glucose. The function of PKD2 corresponds to Ref: 188527 with the effect of QTL. This gene encodes an integral membrane protein involved in intracellular calcium homeostasis and other signal transduction pathways. It was established that the SPPl has an essential role in the differentiation of the mammary glands and the ramification of the mammary epithelial ductal system, therefore, and is a superior candidate. In addition, the transgenic SPPl anti-sense mice showed abnormal differentiation in the mammary glands and milk secretion. The sites of quantitative segregation characteristics (QTL) were reported for the characteristics of milk production on chromosome BTA6 in Holstein cattle of E.U., British black and white cattle, Norwegian cattle and Finnish Ayrshires. Three QTLs that affect milk, fat, and protein production, as well as fat and protein concentration are secreted in BTA6 in the Israeli Holstein Cattle population. The most important QTL was located near half of the chromosomes, with a confidence interval of 4 cM for the percentage of the protein centered on the microsatellite BM 143. It was found that two unrelated Israeli parents are heterozygous for this QTL, considering that seven other parents were homozygous for the QTL. The QTL confidence interval in BTA6 is orthologous in two regions in both arms of human chromosome 4 (HSA4) which contains the following annotated genes: FAM1 3A1, HERC3, HERC5, HERC6, PPM1K, ABCG2, PKD2, SPP1, MEPE, IBSP , LAP3, MED28, KIAA1276, HCAP-G, MLRl, and SLIT2. Physical mapping and combined linkage and linkage disequilibrium mapping determined that this QTL is located within a region of 420 Kbp between the ABCG2 and LAP3 genes. ABCG2, a member of the cassette superfamily (ABC) that binds ATP, is a "medium transporter", with only one cassette that binds ATP at the N terminus and a transmembrane domain at the C terminus. In an ATP-dependent process, ABCG2 transports various xenobiotics and cytostatic drugs through the plasma membrane. The analysis of different stages of mammary development by immunohistochemistry and western analysis revealed that ABCG2 was not expressed in virgin mice, but that they were widely induced during late pregnancy, especially during the lactating period. The expression ABCG2 is confined to the alveolar apical membrane; but not to non-ductal mammary epithelial cells of mice, cows, and humans; and is responsible for the active secretion of clinically and toxicologically important substrates in mouse milk. Homozygous mice for a mutation with an inactivated ABCG2 gene lack this function. Nevertheless, mice - / - and their offspring in lactation showed no adverse effects. It is thought that ABCG2 is a drug transporter, but it is induced by estrogen. The related genes, ie ABCG1, 5, and 8 are sterol transporters. It is therefore reasonable to propose that ABCG2 could transport cholesterol in milk. Whereas in other tissues, ABCG2 generally has a protective function for xenotoxin, the transfer of xenotoxins from the mother to the nursing infant or a young person via milk, it is difficult to reconcile a protectionist role. Compared with other agricultural species, dairy cattle are unique in the value of each animal, the long generation interval, and the very limited fertility of the females. Thus, unlike plants and poultry, most breeding programs for dairy cattle are based on a selection within the commercial population. Similarly, quantitative characteristic site detection (QTL) and marker assisted selection (MAS) programs are generally based on the analysis of existing populations. The specific requirements of raising dairy cattle have led to the generation of very large data banks in most developed countries, which are available for analysis.
BRIEF DESCRIPTION OF THE INVENTION An isolated polynucleotide includes a coding region of the ABCG2 gene having an antisense mutation. The ABCG2 gene includes three splice variants. A promoter region for the expression of ABCG2 and its variants is described. An expression construct that includes the ABCG2 gene or its variants or a functional fragment thereof is described. A positional cloning of a QTL in a population of cattle multiplied by mixture of races is described herein. A single nucleotide polymorphism (SNP) capable of encoding a substitution of tyrosine-581 to serine (Y581 S) in ABCG2 is responsible for the main composition and production of milk that affects QTL. The sequences designated by GenBank are the Numbers of Access AJ871966, AJ871964, AJ871963, AJ871176, AJ871967, AJ871968, AJ871965, AJ877268 which are incorporated herein by reference. A functional role for the ABCG2 gene in the secretion of natural milk is described. A method for determining whether a mammal has an ABCG2 gene such as that which includes an antisense mutation, as described herein, includes obtaining a suitable sample from the animal and determining the presence or absence of an antisense mutation at the ABCG2 site. At least, three ant mutations are described. Found in the ABCG2 place. The methods for raising cattle and selecting livestock for an increased production of milk based on the analysis of antisense mutation to ABCG2 are described. A herd of cattle is described in which individuals carry the ABCG2 gene having an antisense mutation as described herein in a homozygous or heterozygous form. A kit includes reagents to execute the methods discovered in the present. Small molecules or drugs are used to control the expression of ABCG2. A single nucleotide change (A / C) in exon 14 is capable of encoding a serine-tyrosine-581 substitution in serine (Y581S) in the ABCG2 gene that affects the characteristics of milk production. A polymorphism that is in unbalance with the link or in allelic association with the ABCG2 polymorphisms described herein are within the scope of this disclosure. Polymorphisms tightly bound or tightly associated with the ABCG2 site are useful in marker-assisted selection programs for increased milk production and other desirable characteristics such as time to wean. Table 10 presents the terminology used herein.
BRIEF DESCRIPTION OF THE FIGURES Figure 1. Genes within the critical region of the QTL in the BTA6 close to BM143 were classified based on the comparative map of the human genome of the cattle, the BAC clones of bovine 23 representing the contig (sets of fragment of a genome that are contiguous) 503; with SPP1, IBSP, and LAP3 as the anchors for the orthologous regions in HSA4. The BM143 is indicated (in bold type) as the marker of the most information for the QTL in cattle. The polymorphisms are displayed at the respective gene positions for the two progenitors 2278 and 3099, heterozygous for QTL (+/-). The alleles of diallel markers are denoted as or 1 or 2, with the most frequent allele 1 denoted. The BM143 alleles were consecutively numbered from the shortest to the longest based on all the alleles detected in the population. Shared haplotypes are shown in accordance with the segregation status of the two parents for the QTL. FIG 2. Expression data for SPP1 and ABCG2 in mammary (M) and liver (L) tissues of cattle. The intensity of the fold change values during pregnancy is normalized (-65, -30 and -15 of the date when the cow stops) and the lactating period (1, 15, 30, 60 and 120 days after birth) using -15 d days as a basis for comparison. FIG. 3: Genetic trends for protein and fat concentration and allele frequency ABCG2 581Y in the population of Israeli cows of Holstein cattle per year of birth. -, frequency allele ABCG2 58 IY, o or o, means breeding values annually for% fat; -, means breeding values annually for% protein. FIG 4: Conservation of the 5th extracellular domain of the ABCG2 protein in mammals. The ClustalW alignment (Thompson et al., 1994) of predicted amino acid sequences of nine orthologous ABCG genes (SEQ ID NOS: 190-198, respectively in order of appearance) is shown. The identity and similarity between the amino acid sequences are indicated by the black and gray boxes, respectively. The white boxes indicate the changes of non-conservative amino acids between the proteins. The stripes indicate gaps introduced by the alignment program. The position of 58 IY in Bos taurus for the heterozygous progenitors of QTL were 581Y / 581S indicated by an arrow. A conserved phenylalanine residue is located in this position for most other mammals. FIG. 5: Imbalance of link values for adjacent markers computed from the 411 Israeli bulls of Holstein Cattle. FIG 6 is a schematic representation of the ABCG2 gene of bovine, which includes the first three alternative exons (variants la, Ib and Ic). Black boxes and numbers from 2 to 16. First, the ATG is located in exon number 2. FIG. 7A and 7B show the expression data for the variants (dark), Ib (dark gray) and Ic (light gray) in the first exons of the bovine ABCG2 gene: (7A) in the mammary glands (7B) in the liver, during the lactating period, compared to day 15 of a dry period. Expression levels were analyzed using real-time PCR analysis.
DETAILED DESCRIPTION DB THE INVENTION A place of quantitative characteristics (QTL) affecting the milk fat and the protein concentration was located in a confidence interval of 4cM on chromosome 6 centered on the microsatellite BM1 43. genes and sequence variation in this region, and common haplotypes were located that measure the five polymorphic sites in the IBSP, SPP1, PKD2, and ABCG2 genes for two heterozygous progenitors for this QTL. The expression of SPP1 and ABCG2 in the bovine mammary gland increased from the stage of childbirth to the lactating period. The SPP1 was sequenced and all the coding exons of ABCG2 and PKD2 were sequenced for these two parents. The only change of the nucleotide capable of encoding a substitution of tyrosine-581 to serine (Y581S) in the transporter ABCG2 was the only polymorphism corresponding to the state of the segregation state of all three heterozygotes and the 15 progenitors homozygous for the QTL in the populations of American and Israeli Holstein Cattle. The effects fixed for the substitution of the allele in the genetic evaluations of the 335 Israeli parents were -341 kg of milk, +0.16% of fat, and + 0.13% of protein (F value = 200). No other polymorphism gave significant effects for fat and protein concentration in models that also included Y581S. The effects of substitution of the allele in the genetic evaluations of 670 cows, daughters of two heterozygous parents, were -226 kg of milk, 0.09% fat, and 0.08% protein (F value = 394), with partial dominance towards the homozygous 581S. The Y581S in ABCG2 is probably the site causing this QTL. The SPPl variation (OPN3907) is an indel (insertion and deletion) in the poly-T tract of -1240 bp upstream of the SPPl transcription initiation site. The exact genotyping of such a region would require a tedious subcloning of the PCR products to allow separation between the homologous chromosomes present in each individual heterozygote. In several cases, the OPN3907 region was sequenced using cloned DNA or individual homozygotes that reveal three distinct alleles that are present at this site. Interestingly, all the cloned sequences deposited in GenBank (AJ871176, AC185945, NW_931635) were from the allele with nine thymines (T9) described as rare (frequency 0.05). The last one also sequenced the allele (TIO, AY878328) from an individual homozygote. Sequencing of parent 3208 revealed the third allele with nine thymines followed by three adenines. From this site the typical length variation of a microsatellite was displayed with different numbers of repeats of both thymine and adenine. These alleles were designated SPP1M1-M3, respectively. The sequencing of heterozygous individuals resulted in overlays, which were designed as follows: SPP1M1 and SPP1M2; SPP1M2 and SPP1M3; SPP1M1 and SPP1M3. Using this scheme, we found a sample of genotypes of progenitors that segregate (Y) and do not segregate for the QTL (N) and the progenitor homozygote for the allele ABCG2 58 IS. While the state of the ABCG2 mutation was in accordance with the QTL state, the concordance was observed without the length of the T fingerprint or the state of the microsatellite allele SPP1. For example, the traces of the three progenitors that secrete the QTL were all of the M1 / M2 type and were indistinguishable from the 3241 non-segregating progenitors. This indicates that the variation in ABCG2 is probably responsible for the QTL Sequencing of homozygous progenitors for the Y581S haplotypes (2182; 2227; 3573; 3396; 3094) associated with SPP IM1 (T9). The results indicate that the 2176 parents have a lower% protein always registered in Israel which is homozygous for Y581 S but heterozygous for SPPlM. On the other hand, within the BAC clone of the Holstein Cattle breed (AJ871176) the SPP1M1 (T9) is associated with the ABCG2 Y581 plus the allele, thus demonstrating that there is Holstein cattle available for such a link imbalance study. The 3028 progenitors have a higher% protein and therefore, are unlikely to be homozygous without the QTL allele. This progenitor is indeed the homozygous allele ABCG2 581 S but also for SPP1M3 (T9) and would have been considered to be homozygous without the QTL allele. The 5117 parent, which segregates QTL is Carlin-M Ivanhoe Bell which was used heavily in the global breeding programs. The evidence for zygote status matching between the QTL segregation state and the candidate polymorphism is a powerful tool to identify the functional mutation that lies in the QTL. A polymorphism that is in linkage disequilibrium or in allelic association with the ABCG2 polymorphisms described herein are within the scope of this disclosure. Polymorphisms tightly linked or tightly associated with the ABCG2 site are useful in marker-assisted selection programs for increased milk production and other desirable characteristics such as time to wean, quality and quantity of meat. For example, a person of ordinary skill in the art can easily identify polymorphisms that are closely linked to Y581S and other polymorphisms described herein. Thus, the Y581S polymorphisms serve as an anchor polymorphism to find other closely related polymorphisms.
Comparative and physical mapping of the critical region for By comparative genomic combination and cloning of the in silico gene, a map was produced from genes and sequence variation in the critical region of the QTL (FIG 1). The order of the gene was confirmed by a physical mapping of PCR probes in BAC clones that are part of the genomic contigs 503 and 8342 described herein. BM1 43 and SLIT2 were identified within contig 8342. Fifteen genes were identified within 2 cM centromeric for BM143 within the 503 ortholog contig in two different regions in HSA4. FIG. 1 shows the predicted order, size, and orientation of transcription of genes within contig 503, based on their characteristics that correspond to the human genome.
Polymorphism detection, LD mapping, and haplotype analysis.
A total of 31,655 bp was sequenced in intergenic, exonic, and intronic regions of 10 genes within the critical QTL region using DNA from two progenitors (2278 and 3099) heterozygous for the QTL (Table 1). Thirteen heterozygous sites in at least one of the two parents were selected as markers and genotypes were assigned to the 411 parents. A single polymorphic site was assigned a phenotype in seven genes, and two polymorphic sites were assigned genotypes to each of the three SPP1 genes, ABCG2, and FAM1S1A1. From here on, the polymorphisms will be denoted by gene symbols for seven polymorphisms of the simple gene, by means of the gene symbol followed by either (1) or (2) of the genes with two polymorphisms. The AU sites of the polymorphism were in highly significant LD (P <0.0001) with at least one other site. The LD values of adjacent markers are described in FIG. 5. Generally, the LD values between the adjacent markers were > 0.2. The exceptions were the segment of BM143-MRL1-MED28, LAP3-IBSP, and HERC6-FAM13A1. The two heterozygous progenitors for the QTL share common haplotypes for the polymorphic sites in IBSP, SPP1, PKD2, and ABCG2 (FIG 1). For both parents, the same haplotype was associated with the increased protein concentration.
Cloning of ABCG2 genes, PKD2, and bovine SPPl A bovine BAC clone containing three genes, SPP1, PKD2, and ABCG2 (GenBank access AJ871176) was sequenced by gun firing. By aligning this sequence with bovine ESTs and human orthologous genes in this BAC, the last 15 exons of the bovine ABCG2 gene were identified in this BAC that included the entire putative polypeptide sequence of the ABCG2 transporter (protein CAI38796.1). In the opposite orientation in the BAC, the 15 exons of the orthologous gene were recorded for the human PKD2 gene (CAI38797.1), and seven exons of bovine SPPl (CAI38798.1) The complete description of the cloning procedure is presented in the Materials and Methods.
Expression of candidate genes in the bovine mammary glands Of the eight genes analyzed, three genes; SPPl, ABCG2, and MED28 showed a significant differential expression in the mammary glands during the lactating period, compared with the dry period (p <0.02). Significant differential expression was not found in liver tissue. The expression of SPP1 and ABCG2 in the mammary glands and the liver during the lactating period and the dry period is shown in FIG. 2. The increase in the mammary glands was 8- and 20 folds for the two genes respectively. Antibody Y581S ABCG2 mutation Using the BAC data, the exons, introns, and part of the regulatory region of SPP1, and all coding exons of PKD2 and ABCG2 were sequenced for the two heterozygous of Israeli parents for the QTL. The change of the single nucleotide, A to C, denoted ABCG2 (2), capable of encoding a tyrosine for the substitution of serine at position 581 (Y581S) in the 5th extracellular region of the ABCG2 protein, was detected. From here on, the A allele, capable of encoding tyrosine, which was the most frequent allele in the population, the allele + QTL will be denoted. The allele + QTL decreases milk production, and therefore, increases the concentration of fat and protein. Of the 341 progenitors with valid genotypes, 12 were homozygous - / -, 109 were heterozygous, and 220 were homozygous + / +. The frequency allele + QTL was 0.805 and the genotype frequencies corresponded almost exactly to those expected at the Hardy-Weinberg frequencies. ABCG2 (2) was the only polymorphism corresponding to the segregation state of all three heterozygotes and 15 progenitors homozygous for QTL in the American and Israeli Holstein Cattle populations. The probability of coincidence by chance, computed as described in the Materials and Methods = (0.6815) (0.162) = O .00008. Effects of allele substitution and domination The effects of Model 1 on markers on quantitative characteristics are given in Table 2. This model estimated that the effects associated with polymorphisms in parent evaluations for milk production characteristics, with each combination of polymorphism characteristics were analyzed separately (Cohen et al, 2004a). The number of bulls with valid genotypes and the most common allele frequency for each marker is also given. Most markers had very significant effects on protein concentration, but the effect associated with ABCG2 (2) was more than double the larger proximal effect. LAP3, MED28, ABCG2 (2), and HERC6 had significant effects on fat and protein production, while ABCG2 (2), SPP1 (1), SPP1 (2), and PKD2 were associated with milk production. The effect associated with ABCG2 (2) in the milk was double the next larger effect, and the effect associated with% fat was three times the largest observed effect. The effects on the quantitative characteristics associated with 670 daughters of the two heterozygous parents for the QTL are given in Table 3, both as class effects, and as regression effects. The class effects are given in relation to homozygous 581S (- / -). Domination was estimated from the class effects, relative to homozygous 581 S. Estimated regression effects are also given from the analyzes of the animal model of the entire Israeli population of Holstein cattle. Israel and Weller (1998) showed that QTL effects were underestimated by the analysis of genetic evaluations, especially genetic evaluations of cows that have relatively low inheritance, while the estimates derived from the animal model analyzes of the whole population will be unbiased. The effects derived from the animal model for milk, percentage of fat were no more than twice the regression effects of the analyzes of the genetic evaluations. This was not the case for fat and protein production, but these effects were only marginally significant in the analyzes of the genetic evaluations. For all five characteristics, the effect of the heterozygotes was within the range of the two homozygous effects. Significant partial dominance was obtained for both percentages of fat and protein towards the 581 homozygotes S, which were also the less frequent alleles among the daughters of the heterozygous progenitors.
Components of variance and substitution effects markers of REML analysis. The number of assigned bulls with genotypes and ancestors included in the variance component analyzes is provided herein by analyzes of ABCG2 only (2), and analysis of ABCG2 (2) with SPP 7 (2), HERC6, and LAP3. These analyzes are presented because these markers provided effects in Model 1 higher in the production after ABCG2 (2). In each analysis the number of ancestors was slightly higher than the numbers of bulls assigned with genotype. The total number of bulls included in each analysis was found in the range of 641 to 758. The components of variance are presented in the present for all four analyzes. The residual effects were generally low, because the genetic evaluations were analyzed. In all four analyzes, the components of variance and the substitution effects associated with ABCG2 (2) for the percentage of fat and protein were quite similar. The substitution effects were close to 0.21% for both characteristics in all the analyzes. These values are also close to the values of 0.22 and 0.19 for the percentage of fat and protein obtained from the analysis of the animal model. The components of variance for all markers other than ABCG2 (2) were close to zero for the percentage of fat and protein. The variance components associated with SPP1 (2) were close to zero for all five characteristics. These results correspond to the hypothesis that ABCG2 (2) is the causative mutation that the QTL affects the concentration of fat and protein. The component of variance associated with ABCG2 (2) for milk was similar in all analyzes, except for the analysis that included HERC6. In this analysis, the variance component for ABCG2 (2) increased to 160,000. This can be explained by postulating that two QTL are secreted in this chromosome that affects milk production, and that, in general, these two QTL are in repulsion throughout the population. Thus, a greater effect associated with ABCG2 (2) was observed with HERC6 included in the model, due to the fact that the "concealment" effect was removed. Progenitor 2278 was also segregated for the QTL close to the centromere, but the effects on milk were repulsive for this parent. This QTL affects milk, fat, and protein production, but not the concentration of fat or protein. The effects associated with LAPS affected the production of milk and fat and the concentration of the protein. In contrast to the analyzes in which ABCG2 (2) and HERC6 are included, in the analyzes that include ABCG2 (2) and LAPS, the components of variance associated with both markers were positive for the production of fat and protein. This corresponds to the hypothesis that none of these markers is in complete union for the QTL responsible for the production of fat and proteins. Genetic Trend The genetic tendency for 581Y of ABCG2 (2) in the entire cow population is shown in FIG. 3. The average annual aging values for fat and protein percentage are also given. The frequency of the 581Y allele by the date of birth of cows decreased from 0.75 in 1982 to 0.62 in 1990, and then increased to 0.77 in 2002. These trends correspond to the change in the rate of Israeli breeding that was based mainly on the production of milk until 1990. Since then, the index has been based mainly on protein with a negative weight for milk production.
Conservation of ABCG2 581 in mammals Comparison of the domain of this protein by mammals is presented in FIG. 4 for the region measuring from amino acid 557 to 630. The arrow indicates position 581 for which tyrosine and serine were found for the three progenitors heterozygous for QTL. Phenylalanine is the amino acid conserved in the analyzed mammals, except for Canis familiaris and Bos taurus with tyrosine in this position. Both tyrosine and phenylalanine are aromatic acids, while serine is a nucleophilic acid.
The test for the identification of a gene that lies beneath a QTL in commercial animal populations results from multiple segments of evidence, not one of which convinces, but that together consistently point to a candidate gene. The various supporting fragments of the evidence support the conclusion that ABCG2 is the QTL that segregates in BTA6: 1. The shared haplotypes of the two progenitors that secrete QTL for the five measured sites of polymorphism in the IBSP, SPP1, PKD2, and ABCG2. This is equivalent to the 420 Kbp region found in Norwegian cattle (Olsen et al., 2005), only it is shorter at the 5 'ends of ABCG2 (exons 1 to 3) and the 3' end of LAPS (exons) 12 and 13). The same haplotype was associated with the allele + QTL in both parents. 2. The two genes within the shared haplotype, ABCG2 and SPP1, were preferentially expressed in the bovine mammary glands during the onset of the lactating period. In addition, large-scale analysis of mouse and human transcriptionists revealed that ABCG2 had the highest expression in the mammary stage among 61 organs and tissues tested. 3. Of the polymorphisms assigned with genotypes only ABCG2 (2) was in agreement with the state of segregation of all three heterozygotes and 15 progenitors homozygous for the QTL in American and Israeli Holstein cattle populations. The probability that this would happen was by chance of 0.00008. 4. ABCG2 (2) is able to encode a non-conservative amino acid change (Y581S) that can affect this function of the gene transporter. 5. The broad substitution effects of the highest population on milk production and fat and protein concentration were obtained by the Y581S polymorphism on ABCG2, and these effects were more than double that of the larger next effects associated with any of the others polymorphisms. 6. In the analysis of more than 300 bulls assigned with genotypes, none of the other polymorphisms produced significant effects for fat and protein concentration in models that also included Y581S. 7. The substitution effects of the higher Y581S allele in the genetic evaluations of 670 cows, daughters of two heterozygous parents, represent the connection effects of both paternal and maternal alleles. The F value was 394 for the% protein. 8. The protein and fat concentration for homozygotes of 581S allele cows was lower than that of the heterozygotes, although the second 581S allele was of maternal origin, and therefore unrelated to the design effects of the daughter. 9. The frequency of allele 581Y by date of birth of cows decreased from 0.75 in 1982 to 0.62 in 1990, and then increased to 0.77 in 2002, in correspondence with changes in the Israeli Holstein Cattle selection index. The close correspondence between the two analyzes supports the conclusion that ABCG2 (2) is the QTN, although it could also be due to an "advance in stretches or hitch" effect. 10. Eller et al., Estimated the frequency of the allele + QTL in the population of Israeli Holstein cattle as 0.69 and 0.63, relative to the percentage of fat and protein, by designing modified granddaughter for cows between the years of 1992 and 1996 This corresponds closely to the frequency of 0.69 by 58 IY estimated in the current study for cows born in 1994. All 18 Israeli and American parents with known QTL genotypes were sequenced and showed that this chromosome segment is hyper-variable. At least four simple changes of the nucleotide were found within the 20 bp region centered on the poly-A sequence. All the progenitors except one were heterozygous for at least one of these polymorphisms. The conclusion was that OPN3907 is not QTN. However, as long as the entire chromosomal segment within the QTL confidence interval has not been sequenced in the progenitors with the fully known QTL genotypes, it is not possible to eliminate the possibility that the QTN may be some other polymorphism in the LD strong with Y581S. This is the first example of a functional role for the ABCG2 gene in the secretion of natural milk.
Identification of three promoters for the bovine ABCG2 gene The existence of three different promoters for three transcripts from 16 different exons of the ABCG2 gene is reported in GenBank accesses BE480042 and CK838023. The 5 'region of this gene is assembled and the sequence is described herein. The current sequence of the bovine genome is based on the sequence derived from a Hereford cow. The WGS tracking files were BLAST investigated from the cow genome database using the sequences of three different variants. All the tracking files were downloaded and their peers corresponded and congregated using the GAP4 computer program, monitoring the consistency of peer partner data and adding or removing the trace files accordingly. The contigs of each of the three variations were expanded using additional trace files that were found by investigating the contig extreme sequences. Eventually, all the contigs were joined in a montage, confirming the existence of three first alternative exons ABCG2 that include the GT portions for the splice donors and their ends. The final assembly measured 627 sequence readings in a length of 235.109 bp (FIG 6). Following the confirmation of the existence of the three promoters, their expression was verified in the mammary glands of cows in lactating period. The ABCG2 gene promoters and their splice variants are useful in the increased expression of a gene of interest in a suitable tissue such as mammary glands, and for a specific period, for example, during the lactating period.
Expression of the three splice variants of the ABCG2 gene in bovine mammary glands. All three variants showed significant expression in the mammary glands of the cow during the lactating period, compared to the dry period (p <0.0002), using real-time PCR analysis. Significant differential expression was not found in liver tissue that was used as a control. The expression of the three variants in the mammary glands and tissues of the liver are shown in FIGS. 7A-B. The Ic variant showed the highest expression of the mammary glands of 5 folds at day 120 during the lactating period. The la and Ib variants respectively showed an expression of 3 and 4 folds respectively on day 60 during the lactating period.
MATERIALS AND METHODS PCR primers and their corresponding numbers are presented in Table 7. All GenBank and other publicly available database access numbers are described herein and are incorporated herein by reference.
Physical mapping and bioinformation. The order and location of the genes in the QTL region were determined in bovine bacterial artificial chromosomes (BACs) of the CHORI-240 BAC library (Warren et al., 2000). Repeated masked final sequences of CHORI-240 clones obtained from GenBank were used for the BLASTN search against the human genome sequence (NCBI residue 33). The cattle fingerprint contigs (BCCRC, Vancouver, Canada) containing clones anchored to the human genome were identified by sequence similarity. The livestock fingerprint contig 503 that covers the region of the QTL confidence interval in upstream chain to BM1 43 in HSA4, is shown in the diagram of FIG. 1. The contig is represented on the HSA4 axis in the following positions: 89,077,921-90,827,214 and 17,255,215-17,699,645 available on the website (genome.ucsc.edu/goldenPath/hgTracks.html). A minimum tile path of 23 livestock BACs was selected between these positions covering the QTL region from FAM1SA1 to MLR1. The exact position of each gene in the human genome was identified using the Genome UCSC navigator database. Bovine BAC clones that presumably contain the same gene in cattle were identified by their extreme sequence similarity to the human genome presented in Table 5. When no BAC clone was present with both ends covering the entire range of the gene candidate, several overlapping BACs with single ends that coincide with the upper and lower limits of the gene range and covering the entire region were selected for PCR analysis. The BAC templates were prepared by choosing colonies that were grown overnight by letting them boil in 200 μ? of ddH20 for 10 minutes. The procedures of Bioinformatics, DNA sequence management and EST assembly were done as previously described (Cohen et al., 2004a).
Identification of polymorphism in genes within the critical region of the QTL. To search for the informative genomic variation relevant to the critical region of the QTL, the genomic DNA of two heterozygous progenitors for the QTL served as a template. The genomic fragments amplified by PCR of bovine orthologs of human genes are listed in Table 1. In most cases, the bovine sequence required for the design of PCR primers was obtained from bovine ESTs from orthologous genes. The PCR products were sequenced by detection of the polymorphism. The nucleotide substitution was detected by double peaks for the specific nucleotides, and the insert was detected by a sequence overlap that was analyzed using ShiftDetector (Seroussi et al., 2002).
Experimental design and haplotype analysis. The search for the QTN was based on the assignment of genotypes of the following samples: 1. Two progenitors of heterozygotes for QTL (2278 and 3070), and seven progenitors homozygous for QTL in the Israeli population determined using a design or plan for the daughter (Ron et al., 2001). 2. A single heterozygous parent for the QTL (family 9 DBDR), and eight progenitors homozygous for the QTL in the American population (DBDR family 1 to 8) as determined using a granddaughter design analysis (Ashwell et al. , 2004). 3. Six hundred and seventy daughters of two Israeli heterozygous parents for the QTL with genetic evaluations for production characteristics (Ron et al., 2001). 4. Four hundred and eleven proven Israeli progenitors by offspring with genetic evaluations for production characteristics (Cohen et al., 2004a). 5. Eight cows with mammary biopsies and five cows with liver biopsies. The 411 progenitors of Israeli Holstein Cattle with genetic evaluations for all five milk production characteristics were assigned with genotypes for the 13 markers listed in Table 1 and BMl 43. Eleven markers were SNPs, one was a polymorphism of two bases, and two were microsatellites (BM143, and the polymorphic site in MLRl). Twenty daughters of each of the two Israeli heterozygous parents for the QTL were also assigned with genotypes for all 14 markers, to determine the haplotypes of the two parents. The polymorphism genotype assignment was made following Cohen et al., (2004a). The specific genotype assignment and testing platform for each site are presented in Table 6.
Statistic analysis. The values of the LD parameters were computed between each pair of markers as described in Hedrick (1987). The probability of concordance by chance between the QTL and a polymorphism was calculated only for ABCG2 (2), which was the only marker in complete agreement with the 18 progenitors with known QTL genotype (Ron et al., 2001; Ashwell et al. , 2004). Since only heterozygous polymorphisms in at least one of the parents heterozygous for the QTL were assigned genotypes in the complete sample of bulls, the probability of concordance with the QTL only considered the remaining 17 progenitors. This is computed as the probability in which all 15 progenitors homozygous for the QTL should also be homozygous for the polymorphism, and that the remaining heterozygous parents for QTL should also be the heterozygotes for the polymorphism, and that in all three progenitors heterozygous, the same QTL allele must be associated with the same allele marker. Thus, the probability of concordance = pi15 (p2 / 2) 2 where Px = the probability of homozygotes, and P2 = probability of heterozygotes. P2 was divided by two, so that the agreement is complete, the two additional heterozygous progenitors must have the same allele ABCG2 (2) associated with the allele + QTL as the parent assigned with original genotypes. Genetic evaluations for milk, fat, and protein were computed by an exemplary animal model analysis of multiple characteristics of the entire population of Israeli Holstein cattle (Weller and Ezra, 2004). Evaluations were derived for the percentage of fat and protein from the evaluations for the production characteristics. The following fixed linear model, denoted Model 1, was used to estimate the effect associated with each of the polymorphisms for each of the five characteristics analyzed (Cohen et al., 2004a): Yijki = aiJ + biK + Ci (K ( ) 2 + eijki where, Yijk is the genetic evaluation of progenitor 1 with the genotype j marker and k the year of birth for the characteristics i; J is the number of "+" alleles (j = 0, 1 or 2); K is the year of the birth of the parent; a1, b1, and C1 are the regression coefficients for the characteristics; e eAi is the random residual for each characteristic i of the parent. The "+" 1 allele for ABCG2 (2) was the allele associated with the increased protein concentration. For all other markers, the allele in association LD with the "+" for ABCG2 (2) was denoted as the "+" allele. BM 143 was analyzed as a diallyl marker, as described herein. The lineal and quadratic effects of the year of the parents' birth were included to consider the genetic tendencies in the population. The effects of markers with three marker genotypes as class effects were also analyzed. Linear and quadratic birth year trends of markers were also estimated.
Model 1 does not respond to the relationships between the parents or union between the markers. Thus, genetic evaluations were also analyzed for a subset of markers with the largest effects using the following model, denoted Model 2: Yijk = iJ + giK + eijk where, gik is the additive polygenic effect for the animal k in the characteristics i , and the other terms are as previously defined. This model differed from the previous model in that all three effects were considered random, and the relationship matrix of the numerator was used to compute the variation matrix for the polygenic effect. To obtain a more complete relationship structure, all known parents and maternal grandparents of bulls assigned with genotypes were included in the analysis. The numbers of animals in each analysis are given in Table 6. The components of variance REML were computed for the effects of "a" and "g" by the MTC program (http: // nce. Ads., Uga. Edu / ~ ignacy / oldprograms .html). The substitution effects of the marker were derived as: [(Var a) / (2pq)] 1 2 where "Var a" is the marker variance component, and p and p are the frequencies of the two QTL alleles, derived from the 411 sample progenitors with genotypes (Weller, 2001). This model was also used to analyze the marker pairs with very significant effects on the quantitative characteristics as determined for Model 1. The dominance of the QTL effect can only be estimated by comparing cows that are heterozygous for QTL, for cows that are homozygous for the two alternative alleles (Weller et al., 2003). Genetic evaluations for the five milk production characteristics of 670 daughters of two Israeli heterozygous parents for QTL were analyzed by a model that also included the effect of the parent. The QTL was considered an effect of class and importance of domination that was estimated by the importance of the difference between the midpoint of the two homozygous effects and the mean of the heterozygous effect. The effect of dominance was estimated as the proportion of the difference between the effect of the heterozygote and the half point of the effects of the homozygote, divided by half the difference between the effects of the homozygote. Genetic evaluations of the cow are based on relatively few records, and therefore are highly regressed. Thus, the estimated QTL effects from this model will also be underestimated (Israel and Weller 1998). However, this should not have a greater effect on the estimate of domination, which was derived as a proportion of the estimated effects. The genotype probabilities for ABCG2 (2) were determined for the total recorded population of Israeli Holstein cattle milk, which includes 600,478 cows and 1,670 bulls, using the segregation analysis algorithm of Kerr and Kinghorn (1996), based on the 335 bulls with valid genotypes. Finally, the QTL effects for milk, fat, and protein production were estimated from the total population of Israeli Holstein cattle milk, based on cows with genotypes, proposed by Israel and Weller (1998). These QTL estimates must be unbiased, different from estimates derived from the analysis of genetic evaluations. The effects for the percentage of fat and protein were derived from the estimated effects of the production characteristics as described by Weller et al., (2003). We present here detailed procedures for biopsy procedures, RNA extract, BAC clone selection, subcloning and gun triggering sequencing, real-time PCR, and computation of LD parameter values and genotype ABCG2 probabilities ( 2) for the entire Israeli Holstein Cattle population. The BAC livestock covering region FA 13A1 to MLRl: E0152P21, E0375J15, E0259M14, EOlOlGlO, E0181A19, E0303P06, E0274F22, E0098H02, E0445L10, E0060K13, E0367N10, E0174N17, E0049M05, E0331I16, E0338G15, E0263K19, E0351N06, E0039I05, E0062M13 , E0351N06, E0308O12, E0393F21, and E0417A15.
Selection of subcloning and gun firing sequencing of the BAC clone. Filters from the RPCI-42 bovine library (http://bacpac.chori.org/mbovine42.htm) were hybridized with the PCR primers labeled with 32P specific for the SPP1 gene (Rediprime II Random Prime Labeling Kit, Amersham Biosciences). Three positive clones for SPPl were identified. The clones were separated by PCR exclusion for the presence of SPPI, PKD2, and ABCG2 genes. A clone H005K14 positive for all three genes was identified and selected for gun shot sequencing. Clone H005K14 was grown and its DNA was purified using the large structure kit (Qiagen, CA) following the manufacturer's instructions. To separate the insert from the genomic DNA of the BAC vector, the purified DNA was digested with Notl and applied to 0.8% SeaPalque low melting gavage gel (Cambrex, ME) as previously described (Kaname and Huxley, 2001) . The fragment of the isolated insert was sheared with a nebulizer. The fragments finished in blunting 1.6 to 5 Kbp were purified from agarose gel of low melting point of 8% and cloned in pCR Blunt-TOPO pCR vector 4 using the gun shot subcloning kit TOPO ® ( Invitrogen, CA) according to manufacturer's instructions. The individual transformed bacterial colonies were chosen robotically and stored in a module as a glycerol stock in 384-well plates. After the overnight growth of the glycerol stocks, the bacteria were inoculated into 96 well depth cultures and grown overnight cough. The plasmid DNA was purified with Qiagen 8000 and 9600 BioRobots (Qiagen, CA). Sequencing of the 5 'and 3' ends was performed using standard forward and reverse Mi 3 primers and the ABI BigDye termination chemistry in ABI 3700 capillary systems (Applied Biosystems, CA). All 384 and 96 well format plates were labeled with a bar code and a laboratory information management system (HTLims) were used to track the flow of the sample. The gun trigger sequences were tracked from the vector sequences and stored in a local Oracle database. To assemble the gun trigger sequences in the contigs, the Contig Express software was used (Vector NTI v 7.0 package, InforMax Inc.) Cloning of bovine ABCG2 and PKD2 genes. The BLASTN search for bovine dbEST using the sequence of these 15 exons of ABCG2 revealed 31 ESTs. Two ESTs indicated the alternative splicing of the first 5 'untranslated exons that suggest the existence of three different promoters for three transcripts of 16 exons of this gene (access GenBank BE480042 and CK838023). Twenty-three ESTs were assembled in a 2198 bp cDNA transcript of tentative consensus (TIGR tentative consensus TC264405) capable of encoding a 658 aa polypeptide (protein CAI38796.1) with a molecular mass of 73 IcDa. The alignment of the ABCG2 orthologs (partially shown in Fig. 4) indicated that the homology between the predicted bovine ABCG2 protein and its putative porcine ortholog (GenBank access NP_999175, 87% identity, 94% similarity) was superior to that of the murine and human orthologs (access GenBank AAQ92942, 84% identity, 91% similarity, AAH53730, 79% identity, 91% similarity, respectively). All portions of the sequence shared with orthologs that included the cytoplasmic ATP link cassette and six putative transmembrane domains typical of a medium transporter structure. The sequenced BAC contains 66.1 Kbp of the bovine ABCG2 gene. Following an intergenic region of 10.3 Kbp and encoded in the complementary strand, the last exon of the orthologous gene was observed for disease 2 of the polycystic kidney. Using BLASTN, 20 ESTs were found that coincided with the 31 ends of the assumed 941 bp cDNA transcript deposited with this BAC. The 5 'end of this transcript was predicted using orthology for human mAR. This transcript is capable of encoding a polypeptide of 970 aa (protein CAI38797.1) with the molecular mass of 110 kDa. The alignment of PKD2 orthologs indicated that the homology between the putative P D2 protein of bovine and its human ortholog (access GenBank NP_000288, 94% identity, 97% similarity) was higher than that of the murine orthologue (GenBank access NP_032887, 88% identity, 93% similarity). All orthologs shared sequence portions that included: a. ion transport domain that typically contains six transmembrane helices in whose last two helices flank a loop that determines the selectivity of the ion; b. The band EF; a calcium-binding portion associated with calcium sensors and calcium signal modulators. The PKD2 covered 58.7 Kbp of bovine BAC. Following an intergenic region (21 Kbp), in the same orientation, seven exons of the previously characterized bovine SPP1 mR were detected (access GenBank NM_174187, Kerr et al., 1991). The length of this gene was 7 Kb. No other gene was found in the upstream region at SPPl with a length of 9.7 Kbp.
Identification of polymorphism in genes within the critical region of the QTL HERC6. The orthologous region for the human intron 5 of the domain hect and gene RLD 6 (HERC6) was amplified by PCR with the PCR primers (# 705 and # 706) that were designed according to the sequence of a bovine EST (access of GenBank BE664068 ) which was very similar (86%) to human HECR6 (access from GenBank M_017912). Three variation sites were identified in this intron sequence and the polymorphism at position 151 (Table 1, Table 6) was the genotype.
PPMIK Phosphatase of the human protein IK (PPMIK) is a member of the PP2C family of the phosphatases of the Ser / Thr protein. The bovine PPMIK orthologous tracing the critical region of the QTL in BTA6 was cloned. Two splice variants PPMlK_vl and PPMlK_v2 were observed that were able to encode 372 and 324 amino acids, respectively. The orthologous protein in humans resembles the putative protein encoded by the first variant (access GenBank AAR06213 - 92% identity, 98% similarity). As in other members of the gene family, the second exon was larger and encoded most of the catalytic domains (Seroussi et al., 2001). It was identified that a di-nucleotide in this variation of the exon was able to encode a substitution of the amino acid (R26H) and was used as a genetic marker (Table 1, 6). Two other SNPs in the exon and 5 were identified (access GenBank AJ871967).
ABCG2. PCR primers were designed for the amplification of 15 exons encoding ABCG2 (# 615 to # 63.8). Three SNPs were scored in intron 3 (access GenBank AJ871176), and the SNP in position 29183, designated as ABCG2 (1) was genotyped (Table 1, Table 6). In exon 6 (position 33437), a SNP (G or T) was identified that was able to encode an amino acid substitution (D219Y). The two progenitors of Israeli Holstein cattle that were heterozygous for QTL were homozygous for 219D. The 219Y allele was detected in the genomic Hereford and Holstein cattle sequence (access GenBank BE480678). Within the translated region, a SNP (A or C) that was able to encode a substitution of the amino acid (Y581S) was revealed in exon 14 (position 62569 in AJ871176). This polymorphism, designated as ABCG2 (2) was assigned in genotypes (Table 1, Table 6).
P D2. The primers were designed by PCR for the amplification of the coding regions in the 15 exons of PKD2 (# 252 to # 261). The promoter and the first exons of PKD were cloned2, but no polymorphism was detected, although this segment included a highly repetitive GC rich region, and was therefore considered as a hot spot mutation (Stekrova et al., 2004). For PCR amplification in the exon 1 region, 0.5M of the GC-Melt additive (Clontech Laboratories, Inc.) was added. Using the primers (# 261 and # 262) a chain region upstream of this was amplified by PCR promoter of the gene, and a length variation within a stretch of the adenine residues that was used as a genetic marker was observed (Table 1, Table 6).
SPPl. The products amplified by PCR primers (# 121 to # 142) of secreted phosphoprotein 1 (SPP1) were sequenced, including 0.8 Kbp upstream to the initiation site in the promoter region, and all seven exons, and seven introns. The two SNPs detected in the intron 5 and the 7 exons of the 3 'untranslated region were designated SPP1 (1) and SPP1 (2), respectively (Table 1, 6). The three segregating progenitors and the 15 non-segregant Israelis for QTL, for the OPN3907 poly-T polymorphism at 1240 bp in chain upstream of the transcription initiation site SPP1 (Schnabel et al., 2005) using primers # 155 and # 156 .
IBSP. Bovine integrin that binds to the sialoprotein gene (IBSP) has been previously cloned (AccesoGenBank M_174084, Chenu et al., 1994). This sequence was used to design the PCR primers for the amplification of exon 7 (# 801 and # 802). We identified an SNP that was able to encode a substitution of the amino acid (T252A) and genotype (Table 1, 6).
LAP3. The gene 3 of bovine leucine amino peptidase (LAP3) has been partially cloned (AccesoGenBank S65367, Wallner et al., 1993). This sequence was used to design the PCR primers (# 400 and # 401) for the amplification of intron 12 and the adjacent exons. Three polymorphic sites were detected in intron 12 and a sense mutation in exon 12 (Table 1). Genotypes were assigned to the polymorphism in exon 12 (Table 6).
MED28. The bovine gene (tentative consensus TC274468) TIGR) is 91% similar to the human mediator of AR transcription of polymerase II, subunit of 28 homologs (yeast) (MED28, access GenBank NM_025205). This sequence was used to design the PCR primers for the amplification of exon 4 (# 500 and # 501). Four polymorphic sites were detected in this exon and genotypes were assigned at the site at position 1345 (Table 1).
MLRl. The human chromosomal region encoding the last exon of the MLR1 gene (MLR1) transcription factor also encodes a strand opposite to the last exon of the G chromosome condensation protein (HCAP-G). The orthologous genomic region is sequenced in the cattle. 93% identity was presented between the coding regions of the HCAP-G genes of bovine and human. Using primers # 500 and # 501, a repetitive base sequence of four polymorphs (TGAT) n was detected (Table 1, 6). This was scored as part of the last MLR1 exon, based on its orthologous position at the 3 'untranslated ends of the human gene. Bovine ESTs (GenBank CK831694 and C0883952) confirm the ortholog expression of bovine MLRl.
Procedures of the biopsy and extraction of the ARS ?. Biopsies were collected from the liver and breast tissues of a herd of Holstein cattle according to the University of Illinois Dairy Research Facility (http://cowry.agri.huji.ac.il/web/) as previously described (Drackley et al., 1991; Farr, 1996; Veenhuizen, 1991). Biopsies of mammary glands and liver were collected from eight cows in six time intervals related to the stage of parturition (-15 days, 1 d, 15 d, 30 d, 6 d, 12 d), and five cows in seven time intervals related to the stage of delivery (-65 d, -3 d, - 15 d, 1 d, 15 d, 3 d, 5 d), respectively during the dry period and the lactating period. The tissue samples were placed in TRIZOL and the RNA was extracted using RNase-free vessels immediately. Mammary and liver tissues (0.5 to 2 grams) were homogenized and centrifuged at 12,000 g for 15 min at 4o C. Chloroform (200 ul / ml) was added to the supernatants and the samples were centrifuged at 12,000 g for 15 min. 4 ° C. The phenol: chloroform acid (600 ul / ml) was added to the aqueous supernatant. The samples were vortexed and centrifuged at 12,000 g for 15 minutes at 4 ° C and the upper phase was discarded. Isopropanol (500 ul / ml) was added to the samples and following an overnight incubation at -2 ° C the supernatant was aspirated and washed with 75% ethanol (1 ml 75% ethanol / ml Trizol). The samples were centrifuged at 7,500 g for 5 min at 4 o C. The supernatant was aspirated. The tubes were air-dried at room temperature for 10 minutes. The RNA pellets were resuspended in a solution to store RNA (20-400 ul) of adequate volume. The concentration of RNA was 2-5 ug of the RNA buffer solution / ul.
Real-time quantitative PCR analysis for gene expression. Quantitative real-time PCR analysis was carried out for the following genes: SPP1, ABCG2, PKD2, LAP3, MED28, PPM1K, HERC6 and FAM13A1. Table 5 shows the list of primers designed for Q-PCR analysis. The 18S RNA gene was used as a control.
One μg of mRNA was transcribed in a total volume of 20 μ? using 200 U of Superscript II (Invitrogen), 500 ng of oligo dT primer (18), 4 μ? of buffer solution of the first 5X strand, 2 μ? of DTT 0.1M, 40 U of R asin and? Μ? of dNTPs 10 m. The specific primers were synthesized for all genes in the 3 'UTR non-coding region of the last exon (Table 5). All reactions were performed in an ABI PRISM 7700 sequence detection system using a 2X Syber Green PCR Mastermix (Applied Biosystems, Foster City, CA),? Μ? of product RT, 10 pmol of front and reverse primer in 25 μ? of the reaction volume. The conditions of the PCR thermal cycle were as follows: initial stage of denaturation 95 ° C, 10 min, followed by 40 cycles of denaturation for 15 seconds in seconds at 95 ° C, renaturation and extension for 60 seconds at 60 ° C.
Calculation of LD parameter values. The LD parameter values were calculated between each pair of markers as described by Hedrick (1987). The BM143 microsatellite had 13 alleles in the range in fragment length from 90 to 118 bp. The majority of allele frequencies were quite low, and the allelic frequency distribution was strongly bimodal. Thus, to estimate LD, BM 143 was converted to a "diallel" marker by assigning all alleles < 108 the value of 1, and all the alleles > 108 the value of 2. For individuals who were heterozygous for both markers, the calculation of the LD value requires knowing the phase, which is not the case. For these individuals both phases were considered to be equally likely, and the LD value is calculated accordingly. Thus, the presented LD values slightly underestimate the true values. The X 2 values for the independent association between each marker pair were also calculated.
Calculation of the probabilities of the genotype ABCG2 (2). The genotype probabilities for ABCG2 (2) were determined for the entire population of Israeli Holstein cattle milk, using the segregation analysis algorithm of Kerr and Kinghorn (1996). The number of animals analyzed by the segregation analysis algorithm was reduced to 44 4435 by four stages of "purging or purging" (Weller et al., 2003). In each stage, the animals that did not form genotypes were eliminated, and they were not listed as parents of the animals that remain in the data file. The debugging did not affect the segregation analysis, because these animals by definition do not include information regarding the allele frequencies. The algorithm requires an estimate of allele frequencies in the base population.
The initial estimate was derived from the frequencies of the 335 bulls that formed genotypes. After the application of the algorithm, this estimate was revised, based on the allelic frequencies of all the animals with unknown parents. The segregation analysis algorithm was run again with the updated allele frequencies of the base population until convergence was obtained for the allele frequencies of the base population at a frequency of 0.75 for allele A. Genotype probabilities for cows "Purged" then regenerated the probabilities of their parents' genotype, assuming a random distribution of alleles. For cows with one or two unknown parents, the allele frequencies of the base population were used for the unknown parent. Allele frequencies estimated as a function of the year of birth were calculated for the entire population of the cows Breeding programs for dairy cattle. In more developed countries, dairy cattle reproduction programs are based on the design of the "progeny test" (PT). The PT is the design of choice for moderate to large dairy cattle populations, including the U.S. Holstein Cattle, which includes more than 10,000,000 animals. This population consists of approximately 120,000 cows of which 90% are registered for milk. Approximately 20 bulls are used for general service. Each year, around 300 elite cows are selected as mothers of bulls. They mate with the two to four best local bulls and an equal number of external bulls, to produce approximately 50 calves for progeny testing. At the age of one year, the calves reach sexual maturity, and approximately 1000 semen samples are collected for each young bull. These bulls mate with the 30,000 first cows of the calf to produce about 5,000 daughters, or 100 daughters per young bull. The duration of gestation for cattle is nine months. So young bulls are approximately two years old when their daughters are born, and they have about four when their daughters have calves and begin their first lactation. At the end of the first lactations of their daughters, most of the young bulls are discarded. Only four to five are returned to general service, and a similar number of proven old parents are discarded. At this time, the selected bulls are approximately five years old.
Reproduction of dairy cattle in developing countries. The Bos genus includes five to seven species, of which Bos Taurus and Bos indicus are the most distributed and economically important. Bos Taurus is the main species of dairy cattle, and is usually found in temperate climates. Several crosses of tropical and subtropical cattle are the result of crosses between taurus and indicus, which cross freely. In the tropics, cows need at least some degree of tolerance for environmental stress due to poor nutrition, heat and the challenge of diseases to sustain relatively high production levels. Tropical reproductions adapt to these stress agents but have a low milk yield, while higher temperate climate reproductions withstand severe tropical conditions, to the point of not being able to sustain their numbers. Moreover, most of the tropical countries with developing countries, which lack systematic registration of lineage and milk on a large scale.
Methods and theory for marker-assisted selection (MAS) in dairy cattle. Considering the long generation interval, the high value of each individual, the very limited fertility of the females, and the fact that almost all economic aspects are expressed only in the females, the dairy cattle should be an almost ideal species for the application of MAS. As noted by eller (2001), the MAS can potentially increase the annual genetic gain by increasing the accuracy of the evaluation, increasing the intensity of the selection, decreasing the generation interval. The following breeding schemes for dairy cattle incorporating MAS have been proposed: 1. A standard progeny test system, with information on genetic markers used to increase the accuracy of parent evaluations in addition to the phenotypic information of the records of the daughters (Meuwissen and van Arendonk 1992). 2. An embryo transfer and multiple ovulation nucleus (MOET) reproduction scheme in which the marker information is used to select progenitors for the service in the MOET population, in addition to the phenotypic information on the sister stockings (Meuwissen and van Arendonk 1992). 3. Progeny test schemes, in which information about genetic markers is used to pre-screen young progenitors for entry into the progeny test (Kashi et al., 1990; Mackinnon and Georges 1998). 4. Selection of male parents without a progeny test, based on the records of half siblings or with a common father, and genetic markers (Spelman et al., 1999). 5. Selection of parents in a common father scheme, based on the records of half siblings or with a common father, and genetic markers (Spelman et al., 1999). 6. Use of genetic markers to reduce errors in the determination of paternity (Israel and Weller 2000). Spelman et al. (1999) considered three different reproduction schemes by deterministic stimulation: 1. A standard progeny test with the inclusion of QTL data. 2. The same scheme with the change that young bulls without progeny testing can also be used as progenitors of bulls based on QTL information. 3. A scheme in which young parents can be used both as male parents and as female parents in the general population, based on QTL information. They aed that only male genotypes were formed, but once the genotypes were formed, information about the QTL genotype and its effect was known without error. Then it was possible to carry out a completely deterministic analysis. The fraction of the genetic variance controlled by the known QTL was varied from zero to 100%. Even without MAS, a slight gain was obtained by allowing young parents to be used as male progenitors, and a genetic gain of 9% was obtained if the young parents were also used directly as parents of the parents and in the service in general. As noted previously, the genetic gain with MAS used only to increase the accuracy of the evaluations with young males for a standard progeny test scheme, because the accuracy of the evaluations in the males is already high. Thus, even if all the genetic variance is accounted for by QTL, the genetic gain is less than 25%. However, if the young parents are selected for the service in general based on the known QTL, the rate of genetic progress can be doubled. The maximum rate of genetic gain that can be obtained in scheme 3, the "all males" scheme, is 2.2 times the genetic gain rate in a standard progeny test. Theoretically, with half the genetic variance due to known QTL, the genetic gain rate obtained is greater than what is possible with reproduction schemes in the nucleus. The final scheme, with the use of genetic markers to reduce paternity errors, is the safest to produce gains, since it is not supported in the determination of the QTL genotype, which may be erroneous. eller et al. (2004) formed the genotype of 6,040 Israeli Holstein cattle cows from 181 Kibbutz herds for 104 microsatellites. The frequency of rejected fatherhood was 11.7%, and most errors were due to inseminator mistakes. The most advanced reproduction schemes already use genetic markers to confirm the paternity of young parents.
The current status of MAS in dairy cattle. Two MAS programs under way in dairy cattle have been reported to date in German and French Holstein cattle (Bennewitz et al 2004, Boichard et al 2002). Currently, the German program uses markers on three chromosomes. The MA-BLUP evaluations (Fernando and Grossman 1989) are calculated at the VIT Verification Center in Verden, and distributed to Holstein Cattle breeders, who can use these evaluations for the selection of bull mothers and the pre-selection of parents. for the progeny test. The MA-BLUP algorithm includes only equations for bulls and mothers of the bulls, and the dependent variable is the bull's DYD (Bennewitz et al., 2003). Balance is assumed in the ligature throughout the population. To close the gap between the families of grandparents analyzed in the design of the German granddaughters, and the current generation of bulls, genotypes of 3600 bulls were formed in 2002. Only the bulls and the mothers of the bulls formed genotypes, because the tissue samples were already collected for the paternity test. Thus, the additional costs due to MAS are low. Thus, even a very modest genetic gain can be economically justified. This scheme is similar to the "up-and-down" scheme of Mackinnon and Georges (1998) in that the evaluations of the children are used to determine which grandchildren are heterozygous for the QTL and its ligation phase, and then this information is used to select grandchildren, based on which haplotype is passed from their parents. It differs from the Mackinnon and Georges (1998) scheme in that grandchildren are pre-selected for the progeny test based on the MA-BLUP evaluations, which include the general information of the lineage, in addition to the genotypes. The French MAS program includes elements of both of the MAS designs, "up-down" and "down-up". Similar to the German program, genetic evaluations that include marker information were calculated by a variant of MA-BLUP, and only animals with genotypes and connecting ancestors without genotypes were included in the algorithm. The females that formed genotypes were characterized by their average performance based on the previously corrected records (with the appropriate weight), while the males were characterized by twice the deviation in performance of their daughters without genotypes. Twelve chromosomal segments, ranging in length from 5 to 30 cM are analyzed. Regions with putative QTL that affect milk production or composition are located in BTA 3, 6, 1, 14, 19, 20, and 26; the segments that affect resistance to mastitis are located in BTA 10, 15, and 21; and the chromosomal segments that affect fertility are located in BTA 1 and 7. Each region was found to affect one to four characteristics, and on average three regions were found with QTL in segregation for each characteristic. Each region is observed by 2 to 4 uniformly spaced microsatellites, and each animal included in the MAS program forms the genotype by at least 33 markers. The parents and mothers of the candidates for selection, all male AI ancestors, up to 60 AI boys of the candidates and the sampling daughters of the male parents and their mothers were formed into genotypes. The number of animals that formed genotypes was 8,000 in 2001, and it is intended to reach 10,000 per year, with equal proportions of candidates for selection and historical animals.
Table 1. Detection of polymorphism in the course of position cloning to QTL on BTA6 The most frequent allele is listed first. b In position 802. 0 Coding region of this gene starts in exon 2.
Table 2. Effects of polymorphisms on the reproduction values of the bulls for the quantitative characteristics with each marker analyzed separately. a For the effects ABCG2 (2) were calculated in relation to the allele Y581. This allele, denoted the allele + is associated with an increasing concentration of proteins. For all other markers, the effects were calculated in relation to the allele in association with LD with the allele + for ABCG2 (2). b This microsatellite was analyzed as a diallyl marker as described herein. Importance: *, p < 0.05; **, p < 0.01; ***, p < 0.001; p < 0.0001 Table 3: Effect of ABCG2 (2) on the reproduction values of the daughters in the heterozygous parents, and effects of QTL derived from the animal model analyzes. at 581S the allele "-" QTL was denoted, and Y581 the allele "+" QTL. b Importance of the calse effect is indicated in the row + / The effects are calculated in relation to the homozygote - / -. c Regarding the homozygote - / -. d Effects of substitution of alleles assuming additivity. Importance: *, p < 0.05; **, p < 0.01; ***, p < 0.001; p < 0.0001 Table 4: Variance components and substitution effects of the marker for the REML analysis of the parent evaluations. a Calculated as described in the materials and methods section.
Table 5. Primers for physical mapping and real-time PCR analysis (SEQ ID NOS: 1-24 in order of appearance). 1E0380G22 and E0199P19 in the set of continuous fragments ("contig") 8 42 and all the other BACs in contig 503 Gene Sequence Sequence Number of BAC clone BM143 BM143 F TET-ACCTGGGAAGCCTCCATATC E0199P19 BM143_R CTGCAGGCAGATTCTTTATCG SLIT2 SLIT2_3 'UTR_f GTCAGAATGGAGCTCAATGC E0380G22 SLIT2_3' UTR_r GATGTTTGTTTGAGGCCGGA MED28 MED28_3 'UTR_f TAAGACATTGGCAGCAGGTG E0060K13 ED28_3' UTR_r CTAGTGTTCGGGTGCCTTTC LAP3 LAP3_3 · UTR_f TGCCTTGATTTTTCATTTTATGC E0060K13 LAP3_3 'UTR_r CTGACAATCGCACAGCAACT IBSP IBSP_3' UTR_f GCAGCAACAGCACAGAGGTA E0393F21 IBSP_31 UTR_R TGGTGTGGGGTTGTAGGTTT SPP1 SPP1_3 'UTR_f CATTAAAGCAGGGTGGGAGA H0005K14; E0049M05 SPP1_3 'UTR_r ATGCTGTGATGGTTTGCATT PKD2 PKD2_3' UTR_f TGGGACCAACCATTTCACTT H0005K14; E0049 05 PKD2_3 'UTR_r AGCCACACGAAAAGACT ABCG2 ABCG2_3' UTR_f CCCCCAATTAAAAAGGGACT H0005K14; E0049M05 ABCG2_3 'UTR_r GAGGCAAGTGAAAAGAAGACAA PPM1K PPM1K_31 UTR_f TGCCTGGGGAAAATACAAGA E0331I16; E0412B12 PPM1K_3 'UTR_r GGGTCACCACTTACAGTTCACTT HERC6 HERC6_3' UTR_f GAAATTTCAGGGGGATT E0417A15 HERC6_3 'U R_r TTCATCAAGACTCGGTGCTG FAM13A1 13A1_3 FA' UTR f CATCCATCACCTCAGTGTGC E308O12 FAM13A1_3 'UTR r AAAGGCAGAGCTGCAGAAAC 18SrRNA 18S 18S r f GATCCATTGGAGGGCAAGTCT AACTGCAGCAACTTTAATATACGCTATT Table 6. Primers for SNP genotyping formation (SEQ ID NOS: 25 -59 respectively in order of appearance) Table 7: Primers for formation of sequences in the critical region of the QTL (SEQ ID NOS: 60-181 respectively in order of appearance) Table 8: Number of animals included in the analysis of the variance component for the ABCG2 polymorphism Table 9: Number of animals formed with genotypes by breed and allele frequencies of the ABCG2 gene with standard errors (SE). 1 Bos indicus breeds are in italics; the other races are Bos taurus 2 Cohen-Zinder et al. (2005) Table 10. Notation of alleles, polymorphisms and QTL status SEQUENCE btABCG2 exon la 1553 .. 1760 btABCG2 exon Ib 11688..12023 btABCG2 exon le 58161..58260 btABCG2 exon 2 84261..84479 The ABCG2 splice variants of the first exon and the exon are highlighted in bold.
AGGAGAGACT CCATCTTGAA GCCTGTCATC CGTCTTAAAG ACAGGATGTG AACTGGGCCG GAACCCTGCT TAAGAGTGAG GAAACAGTTG CTAGTGAAAA CCAGGTCTCC TGGAGACTTC ACTCCCTACA GATGGCAAAC GGAGATTGTA GTTGTGGTCA GGCTGCCCCT GTTAGATTAA TCATGGAGAC ATCCTCCCTT GATGTATAAT CATTGTTCCC CCCTCCCGGC CCCACCTCCC CCGTTAACCT TAATTGTTTG TTCTCCTAGC ACCTACTTGT AAAACTCAAT CATATACAAC AAAAAGATTG TTAACATGTA ACCAGTCACG TGTGTGTGTG TGTGTGTGTG TGTGTGTGTG TGTGTAAAAC TGGGCCTCTC AAAAACATCA GGGTCCTTGT TGGGAACTGA TTCCCCTTGG ACCTGCTGGC ATAATAAACT GTACTCCAGT CTTGAGTGTC CCCTGAGGTG TGTTTTGCAA CTCAGGATTC CACAACATTT CCAGAAGGAC ATCAGTGTTG ACCTAGACAG GTGAAGCAAA AATGTTTGGA GCCAACAGAG ATCTAACCAG TGAAGTCACT GAACCTTGTT CACAAATCAA GGGTAGATTC TTTCAAGGAC CAGGTGACTA GGAGGCAAGC GACCAAAGGC AGGACTGGTT ACATATTTCG TGACAGTGTT GGTCGCTCAG TCGTGTCCGA CTCTGTGCAA TCCCATGGGC TGTAGCCTTT CAGGCTCCTC TGTCCAAGGG ATTCTTCAAG CAAGAATACT GGAGTGGGTT GCCATACCCT CCGCCAGGGA ATCTTCCCCA CCCAGGGACT GAACCTAGGT CTCTCGCATT GTAGGCAGAT TCTTTACCAT CTGAGTCACC AGCTGGGTCC TGTGCAGCTG TACAGGTCGT ACCCCCGTAT CCGGAGGGGA AATACTTTCA AAGCAAACGC GGCAAGTTAA TGCAGAGCAC GGGAAAAAGT AGGGCGCCCA TTCACTGCAT CTCAAGGCCT TCCAGCACTG AACAAGTAGC ACTGTGGGTG GTGCCTGGCC CCAGGTGGTG ACTGAGGCTG CTGCCTCGGA TTCCCCAACC AGGTACACCC GGAGCAGCTC GCATCCTGGC TTCATAGGCA GAGACGAGAA TAGCGGTGTG GGGCGCTCTG CTCACTCTCA GGAAGGGGGC GAGAGGCTGC GCCCAGACCC TGTAACCCCC GCCCCGCGCC CCTCCATCCC CCGCCCGGAG CCCCTGTATC CCCGGCCCGG CGCCCCTCCG GCCCCTGCTC CACTGGTCTA GCGGCTGCGC CTCGGGAGGG CCTGGCGGAG CCCCGGACCT GCGCCAGAAA ACGGTCCGAA CAGCTAGCTG CCCTTCCGGT CCTCCTTTTC CGCTTTGTTT CTTCTCGGTT TCCATCCACC CTAAGTCCTT TTCTCCTCTC CTCTCCCCGC CCCGCGGTGT CAATCTCCCC GGATTGACAG AGAACGTAGC CTAAATACTA AAGCTGAGAG AATCGCGCGC GGAGGCGCTC GCTGGTCCCG CCTCCTGCCG GCTTTCTTTT CTCTGTGCGC CCCGGGTGGG CTTGGCGGAA CTGGCCTCTA CACCCCGACA TCCTCCATCG ACTGCCGGGG GCCGACTGTT TGGAAAGAGG ATGGGGCTGG TGGCGGCGGG GAAGCGCTCA TCTGCCCGGG AAAATAGCTG GAGAGGAGTG CGGGATTAGA GCTATGCCCC TGATAGTGTC CCCGCAACCA GCGAGACCCT GTAGTTCCTC GGTCCTGGAG GTATGTTCTG GGCAGCACAA CACAGCAACT GCTATGTATT AACTGTCTTT GCAGATAATA CTGAAGAGAT GAAAGGACTT GTCTGAGGTT TCAGACAAAT CCTCATCCCC AGGAACTGCC CTGTTCCTAG CTCTTGCTTA AATGGTGGGC ATGAGTGGCT ATGTGTGTCC AAACTGACAC ATTTTTGCTG TTTGGATGGC AGGATCCTGA AGAGAACCAT TCCTTAGCTA GTCAGAGACC AAAGTCTATA CTAAAGGAAG GATCAGCTCT CTAACTGTAT AATGGGAGGA GCTGGTTTTG AGAGATTGTG TCAGCTGGCA TGGCCATTTC TAGATAATAC ACACACTTTT GACTTTGGAG AGAGGAGATA CTTCCCCAGA GTGTGACAGG CAAATGGAGG GAACAGCTGC CTCTGCCGTG TTGTGTGTGT GTGTGTGTGT GTGTGTGTGT GTGTGTGTGT GTCCTCAGTC GCCTCTGACT CTTTAACACC CCATGGATTG TAGCCTACCA GGGTTCTCTG CCCATGGAAT TTTCCAGGCA AGGATACTGG CATGAGTTGC CATTTCCTTC TCCAGGGGAT CTTCCAGCCT AGGGATAGAA CCCTCATCTC CTGCGTCTCT TGCATTGGCA GGTGGATTCT TTACCACCGC ACCACCTGGG AAGCCGCCTC CACCCTATGA GAGTCTCAGT TCCAACCCAT GGCTCGTTTG ATAGGACTTC TGCACAGGCC TAAACTCCTG CAGGTAACAA AATACAAAAA GTTACTGCCT AAGGGTGCAG CTAGGGATTA AAACACAGCC CTATTACTGC AAATTTTTCC ACAACAGAAG TCAGGTAAGG TTAATAAGCA CTTATATATT AAGAATTAGG TGGGAAAATA TTTCAGAAGG AACTGAGAAT GCTGCAGTTG TTCATTGAAA GCCAGGAGGA ATAATCGGGA AATGTGTCAG GCTCCCTCTG TCCATTCTCC ACATGCTGAT CACCACACAC TCATGTTTGC ATTCTTTCAA TCTCACCTCC CAGATAATTT AAAACACTTT AGCATTGCAT AAAAAAAAAA AAAAAGCCCT TCCTTCCTGG TCTATTCCCT GCCTCTACTC CCTTGTCATT TTTTCTAACT TTCCTTCTTG AACTTTATCC CAGCCTGTGT ACGTTCTTCT CTCTCCCTGT AACACAATCC CACTTCTTTC CCAGGTAAAC TTCAAGTTCA GATGTCATGT CCCATCGGAT GTTTTATTCT GCCATTCCTT CAGTCTAAAT GTCCCTTCCA TTTAGTCCTC TGCCATCCAA TATTTACTTC TATTCTAACA CCTGTTACCC TGTGTCAGAA CTCTTTGTTT CCTTCCCTTT CTTCACCCTT AGGGTGAATT GTTTGAGGGC AGGGGCTAGG TCTCTTTCCT AAATAATCCT AACAGCACAG TAGGCATTTG GTAAAGTTTG GAATGCATGA ATGACATGCT TAAAATAGAG AAGTTATTAT CTCATTCCTG AACCTTATCT TAGTGCTTGA GTGTACACCG TTCCAAAATG ATGAATCATG GAAAGAATAA AAATGCACTG TGTTACTAAG AAATGAAGCC TTAAGGTTTC TAAAATTACA ACCAAAGTGG GCAGGTGGGC CCAGCACCAT TGTATGAAGA TCTTATTCAG TCAGTTCTAG CAAGCTAGGA TGGCATGGCT GAGGAAGTAC GGCAGTGGTA CTTGAAGTAA GAAACAATGA TAATGTAAGA ATATC CAAGT CTAAGGGTTT TTGTAGGTCC TGCAACGTCT TTACACTGTG ATATTTCCGT GATGCTAAAC ATAGGAACTA AAAAGCCTCT TGATGAGGGT GAAAGAGGAG AGTGAAAAAG CTGGCTTA AA ACTCAACATT CAGAAAACTA AGATCAAAAA CAAACAAAGA TCATTGAATC TGGTTCCATC ACTTCATGGC AGATTGATGG GGAAAAAGTG GAAACAGTGA CAGATTTTAT TTTCTTGGGC TCCAAAATCA CTGCATATGA TGACAGCAGT CATGAAATTA AAGGCACTTG CTCCTTGGAA GAAAAACGAT GGCAAATCTA GACAATATAT TCAAAAGCAG AGATATCACT TTGATGAGGG TAAGAGGAGG AAGGTGTGGC AGAGGATGAG ATGGCTGGAT GACATCACCA ACTTAATGGA CATGAGTTTG AACAAACTCC GGGAGATAAT GAAGGACAGG GAAGCCTGGA GTGCTGCAGT TAATGGGTCA CAGAGTCAGA CATGATTTAG CGACTGAACG ACAATAAAAC ATAATGAGAA GCTTGTCTAC TGCCAAAGCC TAAAACCAAG TTCATTGAAG AGAATCCCTG CCTCAAGGTT TCAATTTGGA AAGTCAGAGA ACAGTAGAAT TTGGTTTTCT AATAGTTAAC CTCTTACTTT CAAGGTCACA CAGTTTATTA GGTGTTAATC CAGAAATTGT TCCAAGCTGT ACCCCATGGG GCTTCCCCAG TGGCTCAGCG GGTAAAGACT CCTGCAATGC AGGAGACACA AGAGAGGGGG GTTCGATCCC TGAGTTGGGA AGATCCCCTG GAGGAGGGCA TGGCAACCCA CTCCAGTATT CTTGCCTGGA GAATCCGATG GACAGAGGAT CCCGGCGGTC TACGGTCCAT ATGGTCACAA AAGAGTCAGA CATGACTGAA GTGACTGAGT GTATACCCGT AGGTCACTGT GCAGTTTTTG AGGACAGGGC CTAGGTGGTT TTACTCAGTC ATGCACACAC ACAGTACCTG TTGCAGACCT GCCACAG TGG GTACTCAGCT TGCTGAATGA AGGAAGAAAT GAATAAATGT GCTCTACCAT AGGGGTGTAG ATGAGAGGGA AAGGCACTGT CATTTCTCCA AAGATGGAAG GCTTTAGAAT CTGGGGGAAA ATAAATATTT ACTTTGAAAA TAAACTTATC AAAGTAAAGG CAAAAAACTA TTTTAGATGT CACAAAGATC TATGTTAAGT TGCTGAATCA GTTGTTACTA TTTTAGAGGA TGATGGAAAC TTATCTTCTG AAATGTTGGC TTGTCTGCCT AAGAGGGGTC AAAGCAAAAT GGTCCAGTCT GGAGTTTCCT GAATCCTGAC CTCCTTACCT GAAAAACTGA GCAGTTATTT GGCCCAGTTA TTTAACAGAT GACTCAGTTT TGTCATTTGT AAAATGGGGA TGATTATACC ACATGGGTTG TTGAGAGACA TTAAATAGTT AATACACAAC CTATGAAGTA ATTTGTATCC CATTTTCTGC CACTATTTCC TATTTCTCTA GGTGTCATTT TGCCTTTCAC TGTGGCATAA AACATTTCTG TTTTTTCTCG GTCCACTTCT GTGCTTTTTT CCCTCTCACT ACCTTTCTGC TTTTTTCTTT TTTACTÁTCT CTCTCCCTAA CCAAATTCTT TTTTTTTTCCT TTGGCCATAT GAGGAATGTT AGTTCCCTGA CCAGGGATGC ATTCCTCTCC CTATGCAGTG GAAGCACAGG ATCTTAACCA CCAGATGGCC AGGAAAGTGC CAATTTCTTC TTAACGTTCT CATAGTTTTT CCTCACTCAC CTAAAAAAAT GACTGAGGGC TATGAACTTC AGTAAACTTA TAGAATAAGA AAGTTAATAA TGACTATTAA AACACTATTT TCTTTTTCCCC AAACTGATTT CTCATCTCTG CCGTGCTTAT GCATACTTTT TTTGTATTTG AAAATCAGTG AATACGTTCA GGCTAATTTA GCTCTGATTT TCTTCACTTA ATATAACTTT ATACTGAAAG GGTCAGGATA TGTCCTTCCC CAATATGCCA CTTTGGCATG AGGATTAATT TGAGCTGAAT GCAATTAAGA ATCAACAGAT ACAGAAAGAA GCCTTCTCAG CATTTCCCTT ATCTTATTAA AAAGCAGAAA CTTTTGAGAA ATGAGGCTGT CATAAATTCC CTCTTCAGGA TGGGCTTATT CCTAGGAGAG AGATAAAAGT AAATATACCG TAAATCTCTC TGGGAGTTTC ATGGCCATGA AGACAGAAAA GACCACTTGC ATTTTCACAA ACAAATATTA TATCAAACTT TATCTCCAGT TTATTCTCCT AAAAATCCTT TTGTCTTTCC TACAGAAACT CACTTGTTCT TTCCATAGAA GATTTTTCTG CATTTCCTTT CTTCCCCTAC TAAGTTAGGT ACATAAGCTT CTATCTTTAA CCAGTGAGCT ACTAGCTATT TCCGTATGAA TAAGCCCTTT TTTCCTCCTT TTGTCTTTTG TCAGCTTAAT TCAGAGGTCC CCAGGGAGGA AACCTAAGAG GGCAGAGCAA ACATTTTTCC TCCCATATGC CATGATCAGT GTAGACCACA CGGTTGTTAT TAATTTTTAT GACTGTGGTT CATATACCGC AGTTTGTCAC ATTCCTCTCT CATGGGGCAC ATTGATTGAT TCTGATTTTT TTACTCTTTA AATATATCCT TCCTTTATGA CACTTTCCCT TGCCTTCTCT ACTTCATAGA TATATACAAA CATACACATG TGTAATTATG TAAATATATA AAATTTGCTG CATTTGTTGT CTAAATCTTC AGTTTTTGAG TCATCAGGCA GTGCTTCCCT CTTGAGAGTC TCTCTTTATA GAGGTGATCA AGGCACCAGT CATAAACTAT TGTACCTAGA TTTCTTAAAC TCTAAATATT TATTAACAAC CATACCAATG TGGGAGGCAA TAAAGAGAGG TGGGGTTGGT TGGTTCAGTA AAAATTATTG CGTTGATTTG AGTCCCTCTT CTCTCCTAGA GTTTCTTGTG CTGCCGGTTC AGGACATAAA AAACATGTAT GAAGAATTTA CAAGAAAAAT CTGTCAGAAT TACTGCTTTT CTGCTGTGGT GTTTGGCTTT AAAATTTTTT AAAGCACCAT GGAAGCAGAT TTGGTGTTTC AAAGTTCTGC CACAAGAGTG ATTTTAAGTA ATGTTCATAG CCTCTGTTTA TATTATCGTA TGGTTTATAA TTATGACTGT AAGTCTCAGT TAAATGATTA CCATGTGAAC AGCACCATAC TGTGGGACTA CAAAACCTAA GATGTGGTCT TTAACTCTGG AGGACCTTAT AATTGCAAAG TGAGAAACAC AAACTATGAG TTCTGAGGTA CTTGTACATA GTAGTCATTG ACAGTCTTAA TAATAAAAGT ATGCAGCATA GGATTTTTGA CTCTATAAAC AATACTGTCT TGAGTTTGCT TCTAAACCTT AAAGAAAATT TGGAGCAACT TTTCCATACC CTGGAACAAA GGAATAGATC ATCATAAATT TGCATGGATG GATTCTGGAG AATTCTGAAG ACTCCATCAT AAACCAACAC AGGTTAGAAA ACGAAACAAG TTTTGCATAA TATCAAAGGT CCTTCCACCA TTTTCAAATA ACTGACCTAA GCACTGCTGT CTGTTACAGC CTCTCAGAGC ACTGAGGAAT GGTTAAAGTC CAGGGAAAAA CAAGACTGCA AAAATATTTG CCTGGGGACC ATCTTCTTGA ACTCCCCAC C TCGATAATTT GGATTAGCTT CCTCCCTATT CCATGCCATG GATTCTGATT AGAAAAAAGT CTTCTCTAGT TGAAGGACTT CATTGTTCTT TGAGTTAGAG GATGAGGCTG GCTGTTTGAA ACCTTTCTCA CTTTTCCTAT TCCAAAGTGT TCAGTATCTA CTCAAACAAA ATTGGGAATT AAACTCTATG TACATTTAAG GGATATACGT ATTTGTGAAA GATAAAGGAG GCCTCCAAGA ATTAGATAGG ATTTTTACTA CACCTCTTCA CCTGGACACA ATGCTTCCTT TATAAGAAAT AAGGGATAGT CAGCGGTTCT TTGCCTTTGT AAAGAAATAG CTAGGGATTT CACAGAAGTT CCTAGGAATG ATTAGCTTAT TCCCAGTTGC TTGGAAAATA GGTGATCCAG GACAAGATAA TATGCATTGT TAGATAGTGT GCCCAATAGG TGATCCAGGA CAAGATAATA TGCATTGTTA GATAGTGTGC CCAAGTCAAT AGAAGGGATT CCATTCAAGA AGCTGCCTTC CCGTATATTT TATCTTATTT AATAACTTTA AACCAAAGAT GTTCAAATCT TATTTCACAG AACCCAGTGA GTCCTTAAAC ATTTTGTTCT GACTTTTTGT TTGTGGATTG GTGGATATCT TTTATTTTAA AAATGCACAA ATATATTTTT GTGACAATTT GTGAATTGAT TAATCTATTT TATCAAGTTC CTACTGGTAT ACTAGGTACA ATCCTAGAAA CTAAGGCTCT GTCAATGAAC AAAGCCATAA ACATTCATAC CCCCATAGAG CTTATATTCT AATGGAATCA GAAATACAGA TATAATAAGT AAGGAAATTA CATAATATGT TAGAAGGTAA TAAGTGCTAG TAACAAAAAT AAGATATGGC AGATCAAG AA TGCTAGTAGG AGGAATTGCA ATTTTTAGTT GGTCAGGGTA GTCCTCATGA GAAGTTACCA TTTGAGGAAA AACTTGAAGG AAGTGAAAGA ATGAGCTAAA TAGATGAATA GGGGAAGAAT TGCCCAGAGC AGCTAGGGCA CTGGCCAGGA AGTGGGTCAG TGTGTGTATA TTTGAGCTAT AACGGAGATA TGTCTCGCTA TATTACAATT AGTAAAGGGG AACGTCAGAG TAGGGGTGGA AGATACATAT TGTAAAGGTG TTTGGCTTTT ACTCTTAAGA GAAATAGGAA AATAGACGAA TACATTGTGA GAAGTATTTG AACAATAGAG ATATGTATTT TCAAAACAGT ATCTCCACTT CCTAAACCTA TACTTCCCAG ACATTGCTGC CATTTGGGGT CATATCTTTC TAAAGGCTTT TCTCCATGAT TACATGCATA GATGGGTACA AATAGAAATA CACAATTTTG TTTCGTGAGG ATATGTGTGT GTGTCTCTGT CTACATGTGT GCATTTTAAC ATAAAAAAAT AAGGTCACTC AGTTGTGTCT GACTCTTTGC GACCCCATGG AATATACAGT CCATGGAATT CTCCAGGCCA GAATACTGGA GTGGGTAGCC ATTCCCTTCT CCAGGGGATC TTCCCAACCC AGGGACTGAA CCCAGATCTC ATGCATTGCA GGCGGATTCT TTACCAGCTG AGCCACCAGG GAAGCCCAGT GAACTTATAT TCACTGGGGA GGTAGGAGAC AGGGGACCTC TGGGTGGGAC AGTTTCCCAG GTGGTGCAGT GGTAAAGAAC CCACCTGCAA TGCAGGAGAC GCAGGACACG TGGATTCAAT CCCTGGGTCA GGAAGATCCC CTGGAGAAGG AAATGGCAGC CCATTCCAGT ATTCTTGCCT AGGAAA GC ZC ATGGAAAGAG GAGCCTGGCA GGCTGTAGTC CATGAGGTGA CAAAGAGTTG GCCACAAC G AGTGAGCACA CACACAGGGC CAGATATCAG GTGTTTGTCA AGCAGAGTAA AATTCAAGCT TTGTTCTTAC CCAGACACTT CAAGGACAAA GCTAGTGGCA AAAGCTGAGC TCTGCTAAAG TAAAGAGATA AGATGCCCGC TCCTGAGGTC AAGGAAGACT TCCCTGTCTA TACATGTACA GGAAGGCTTC TTGGGGGTCT AAAAAGGGAG GGGTCCCCAC CCCATAAGTG TGGACATGCA TCCATAGGCC TCTGCAGTGG GATCTATCTT AGAAAAATAT TGTGCTCCGC AAGGACTCTC TTGGAGAGGG TCCTAGGACC AATCAGATGT GAAGAGAGAA ACAAGATGAT TGGTTAAATA TATACAAAGA CCCGGAAGGA CCGCCCTATA TAAGGGATTG GTTAAATATA TACAAAGACC CGGAAGGACC GCCCTATATA AGGGATTTGC AGCACCTTCT TACTGTGCTC CTCTTCGCTC AGGATGCCTG CCCTCCTCTC CGGGTGTGTA TCTCTGCCTA GCTTCTGACT TCCTGCACTC CTCATGAGAG AGGATGCCCG GACCCTTTCT CTCTGGATGT GTATCTCTGC CCTGCTTTTG ACATAAATTA ACAATTTTCA GTGTGCTTTC TCATACATTG TGTTGTATCT CTAATAATAA ACTTTGCATG TGTTTTTACA GCTTTTGCCT TCTTGAAATA GTCTTGCTTT CAAATCAGGG AAAACCACAG GGCCATTTTG CTTCTAGCCT CTAGCCCCTG GCAATCTAAT GGCTAGGATT CCTAGTTTTC ATCCAGGTTA CCCAGGTTCA ATTCTTGGGC AGGGAACTAA GATCTCTCTT CAGGACC ACT CACTGCTCCT TCCTCCAAGA TCAATATTCT TGTGTTAATT AGCAACTTGG TTTTTATAAT TGACGTGTCT TGGAGACCTT TCTTTGTCAT GATAGTACAC ATATTTCTAT TTCATTCCTT TTTAACTATT ACATAATAGT CTATTGTACA CATATGCTAC ATTTTGTTTA ACCATACTTT TATTGGTAAA TGTGTGTGTG TGTGTGTGTG TTTGTGTGTG TGTGTGCTCA GTTGCTTGGT CGTGTCTGAC TCTTTGTGAC CCCATGGTCT GTAGCCCACC AGGCTCCTCT GTCCATGGCA TTTTCCCAGC AAAAATTCTG GAATATTTAA GTTCTAATTT GCCTCGTAGC TTCTTTCCTT TCCATGTTGA ATTACTATTG TCTTAATATT ACATTTAATA ACATAAAATT ACGTGTTGCA TGAAACACGG GAGGAAACTT AAAAATTAAA TTTGTGTTAC CTTCTCTCAG AAAAGCAATG TTTCTTAAAT TAGAATCATT TAGACTTACC TTAATGGAAA CAATGGCTTC ATTTACTTCT TCATCAAGGA CTTATGTAAT GTTTGTTGTT CTGGAACAAA TGGCATTATG AGAGTTTGAG CCCAATTATT CTGAGCTTTG CCTCCCTCGT GGCTCAGGTG TTAAAGAATC CAACTACAAT GCGGGAGACC CAGGTTCGAT CCCTGAGTCG GGAAGATCCC CTGGAGAAGG GAATGGCAAC CCACTCCAGT ATCCTTGCCT AGGAAATCCC ATGGACAGAG GAGCCTGGCA GGCTACAGTC CATGGGGTTG CAAAGAGTCA GACACAACTG AGTGACTAAC ACTTTGACAT TTCGACTTGC TATGAGTTCA CTCAGTCACC TTAACTGAGT TGACCATGGG TCTTTATCAG TAGGGAGTAA GGATCC ATTA TCCACGATCC GCAATCCATT GACTGCCTGA CCTGTGCTTA GGTATGCACC ACAGAGAGGA AAATTAGCAC TTGATTCCAA AGAGGACTTC TGGCAAGGTT GATTTAGTAA TCAGCATTTC AGGGATCTCT TAATATTGTT ATGTCAACTC TAAGGAATGC ATTATTGTTA CCGCAGGTTT ATATTGAGAA GGCTTGGATT AAAAATAAAA AATAAAAACT TGTCATGGCT GGTAAAGAAT GGAGCCAGAA GCTCTTAGTA TATGTCATAT TTTGTCACTT GACATGCTTC ATGTTTTCAG AATATGAAAT GCCTGCTTAA TACAGCCTTA ACTTCCTATT ATACTTCTGG ATTAGGAAAG AGAACATTAG AAGGATGGTG TGTTCCAAAT AAAACTTCTC TCTTCAAATC CCTAGTGGGC TTTTGCAATG CAACCTAACA CTGTCTGTGC TTGGTTTCTT TCACTTCCTT TCTGAATTAG TGTTATCTTC CTGCTTGCAC ACTTTTGCTA GAAAGCAGAG CTTGTAAAAG GAGACCACAT TATGTCAGAG GTAGCAGAAG ACAGGAAGTT TACACAGAAT AAAACTGTTT GCTCAAATTG CTTTAATTAG TCCTTATTAA AGTTGCCGTT AGTGTCAGAG ATGCTGTCGT CGGGATTCTA TTGCACAAAA AGGATATCTC TGACACGTGA ATTTTTCCTT TTCCCATCTC CTTGCCAGGA ACACCAGAAA AAGATCTCAG ACTGGTTAGA AGCATTAGGT TGTCAGTTTG AATCCGAGTG ATGGAGAAGG AACTGTGGTT AATAACCAGC TAACAGTGGA GAAAAAAGGA AGTCAATTAG ATATGAGAAC TGGACATTTT CCCAAGACTA GCTTGTTTGG AAAGCCTCAG TCTTTCTGGT AGTTG CAGGG GGCTGATAAG GTTCCTCTCT GGTACTTTCT CTTGCGCCTT GAAAGCTGGC AGGAAGGGAA GCTCCTGGAC TGTTAATAGA TGCGGCTCTT GCTTGAAGTT TCTATGAGAA AGCCGACAAG AGTCGAAATC TTCTCTGTAT CCCCACTGCC TCTCTACAGA GGTTTGGGCT GTTTTCCTTC CAACATCACA GATCATAACT GAGGTGAGTT GTCTGTTTTT GTTTTTCAAA TGTTCGTACT GAGTGGAGAG TCTTGATTCT TTTTCGGTAT GTTCTTTAAC GAGTGTGTCA TTTTAAAATG GTACTTCTCA AACTTGAATG TGCATATGAA CCTGAAGATC TTGTTTAAAA GCAGCAGAAT TCAGTGGATC TAGGGTGGCT TGAGATTCTG CATTTCTGAG AAGTGCCCAG ATGACCTCAG TGCTGCTGGC CCATGAAACA GAGTAATAAT GGCTTAAGAC CTTCTAGGTT TATTGCTCTG TAGGGCAAGC AGTTGGGAGA TGTTGGCAGA ATCAAGGTGT CTGGCTGAGC ACATGATTTG TGTAGAGCGC CTGGAAGGAA AATGAGACAC TGTTAGTGTC CAGATTGACT TGCTTTGATG GACTAGCTCA GAGTTTGGGG GGTTGTGTTA AATAGTTCCT AGATATGGTA AGCCATGTCA CCCCAAGTGA GACAGAATGT TGGTCTGCTC CTTAGATTGC ATGGACCACT TTGAGCAGAG CCAGAAATAT TTTTGCAGTT TGGGGAATAG TAGTCATATC ATGCCTTAAC TGGGATAACT AGTGGTCACT TGAATATTTC AGCTTCGATT GAAAATTATG CATCTAGAAA AATAACTGAT GTCGTCCTCC TCCCATTTGG AGGTTAAGGT TGTGAGGCAT ATACATCTAT GATATGATTT AAA GTCAATT TGAGCAAGGA ATATAATTGA TATGTTTTAT CATCTTGTGA GAGTGTTCCT CTTTAAATTG AATAGCTCCC TGCCCTAAAT GGTACGTGTT TATCTGAAAG TTGCTTTTAA TCCAAAAGTG CCAAGCCAAG AAGGAAAAAA ATAAATAATA GGAAGTGTGC CTTGCTGAGG GTAGAAAACA GTAGTGGGAG AAAAACAGGG AAAGAAAGGA AAGTGATGGC CGTGGAAGTC AAGTTTGCAA AATGAATAAA AGAAACCCCA GCCTGAAAAT AGGATTCTTT TTCCGACATG CATGGGAGTT TTTCTAGAGT GGTAGCTTGC GTCTTCCTCA GCTAGAGAAA TGTGCTTAAG ATAGAATAGG CAAATTAAAA TTTGTGTTGT TTTAAAGTAC ATGCTGAAAC TATTTGTCAT CGAGTCAAGG GTAGTCAGTG GAATCAAAGG TCAGTGGCAT GAACAGACCT GGTGAGGCCC AGTATGAATC CATTTAAACT ATCTCAGACA GAGGGGAATT GCTTCTGTTT GAAATAAGCT TCAGATAACT TTCCTTTCTA TTATGGAGTA TAACAGAGGA GTTACATACA AGTTTAACAA CCTATATGGC TACTGTTCTG ACCAATCAGA ACAGTAGCTA CTGTAAACAG CCCATATAAT GGGAAACCAC TTGTAGGCAG TAAGAAGTAC ATGGGGTTGA ACATCAGCCT AAGCTAGGTT TTCATGAACT TTTATTGGGG GGAGAAATTG TAAAGCTACA AATGAGTTCA GAGACATACA ACCTATAACA TATATTCAGA GTTCAGAAAC ATATATTCCT ACTAGCATCT GTCAGCACGT TAGCCCCATT CTCTCCAGTG AGGCCACTTC CCTGTCTTTC CAAGCTTTCA TTCTGGCTGT GTATCTCCTG CAACCTTCAC TAAAGAAAGT AGGGTTCTCT TAAGTCATTG TAGGTGACTC AAAAGTCCTA TCCATTCCCT CAGTAGAGGG AAAATGCCTA TACTCTTTTG TAAAGAGATA CTGCAGAAAA TGAAATGATC ACTACGCTAT CCTTCCATAC AAAGCATGGT CACATACTTT ACCTTGCTTG ATTTTTCACA ACTATCATGG GGATATGTCA TGTCAAGGGG ATTTTTGTTT TTACCTGTCA TGGAGGAAAA TGAAGTTCTT GTTAAGCGAT TTGTGAGGAG GCACACAGCC GGTTAGTGGG TGTATTGAAA TTAAACTCGC TTGTTTGCTC TAAGTTCAGG TTTATCCTGT ACTTTTCTTC ATCTTCCCAA GCATCCCCTT AAGAC CTATG ACAGCCCTTA TTGTTCTCTA CTAGAGTTCA TTGGCTTTCC CTGTCAAAAT TTGAAACCTT TGTGCCTTAA AAAGAGTCCT TTTTCTACTT GTTTTGTCAA AATTTTTAGT GTGTTTGTCA CAACCTTTAT ATCCATTAAA ACCTTTAGTT CCCAGGGGTA AACATTTTAG AGGAGGGCCT CTAAACTTTA TTTTGACTGA AAATTACCTG GGGAGTTTGC TAAAACTCAG ATTTCTGGGT CCTAACTTGA GAGATCTGAT TCAGTAGATC TAGGACTAGG CCTAAGAATT CACATACCTA AAAGCTGCCA GGTGATTTTA ACGCTACCAA CCAGAGAGCA TGCTTTGAGA CTACAGGCAT AGCTTCAGTC AGTATCTTGA AATAACACAT TTCTGGTTTA GATTCCACGT ATGTGATATC ATATGGTGTT TGTCTTTCTC TTTCTGACTT ATTTCACTTA GTATAATAAT CTCTAGGTTC ATCTATGTAG CTGCAGATGA CATTATTTCA TTCTTTTTTA TGGTTGAG TA GTAGTCCATG GTATATGTGT ACCACATCTT CTTTATGTCT TCATCTGGAC ACTTAGGTTG TTTCCATGTC TTGGCTATTG TGAATAGTGC TGCTAGGGGT GCATGTTTCT TTTTAGATTA TAGTTTTGTC TGAATATATG CCTAAGAGTG TCCGACTCTT TTTGACCCCA TGAACTGTAG CTCACCAGAT CCTCTGTCTG TGGGATTTCC CAGACAAGAA TACTGGAGTG GGTTACCATT TCCTTCTCCA GCAGATCTTC CTGACCCAGG GATCAAACCC TCACCTCTTA CATCTCTTGC ATTGGCAGGA AGGTTCTTTC CCACTAGCGC CACCTGGGAA GCTCCAATGG TGGGGGGTGT AAAAAAAAAT CAGATGATCA AGAGGATATA TTAGGAAATG TCAGGAAGCC TCCTTCTCCA GGTATCCCAT CAATGGGTCA ATATACAAAG TAGCCACAGC AGCATAGAAG AAAGTGTGAG CTAATAATAA AGTTTTCACT TCCCTAAGTG GCTGCTGTTC TTGTTGTTCA GTTGCTAAGT TGTGTCTGAC TCTTGGTGAC CCCATGGACT GTAGCCCACC AGGGCTCCTC TGTCCATGGG ATTTTCCAGG CAAGAATACT GGAGTGGGTA GCCATTCCCT TCTCCAGGGA TCTTCCCAAC CTAGGGATCA AACCCAGTTC TTCCACATTG CAGGCAGATT CTTTCCTGGC TGAGCCACCA GGGAAACCCA CAGCATTGGG TACATGCCTT AAACCAGCAG CCAGTAATAC AGAGCCAGAA CGTGTGGCTG TGGGGACCAC TGAGAGAAAT AATTCCTCCA TCCACACTGG CTGCCTAAGG TGCTTCTCTC ACATGCTAGA CATACTCCTG CCTCCATTCC CTTTGCCTAA ATGTTTTCCT CTGGTCT ATT TAAAATTGCA AAACCTTCCT TTACCTTCTA GACTACTGCT TCCTTCCCCA TGTGCCTCTC TCCAGGACTT CTCACCTCTA ACATACTAGA CTATCTAGAT TGAGTTACTG TTTATTATCT GTCTTCTTCC AAGACCAGGG TTCTGTTTCA TTCACTGTCC TATCCTCAAT ATCTAACGTT GTGCCTAAAA CATGCCTTGT TGGTGTTTAG TCGCTAAGTC GTATCCGACT CTTTTGTGAC TCCGTGGACT ATAGCCTGCC AGGCTCCTCT GTCCATGGGA TTTTGCAGGC AAGAATACTG GAGTTGACTA CCAATTCCTT CTCTAGGGGA TCTTTCTGAC CAGGGATTGA ACCCATGTCT CCTGCATTGG CAGGCGAGTT CTTACCACTG AGCCAACTGG GAAGCCTGTG CCTGAAÁCAT AGTAGGTAGA CCAACTACAT AAATACCATT AATGTTCTTG GAGAAGAGTA AACAAATGTC TCTAGTGTCT CTAGAGAAGT TCAAGGTAGG CGGAGATCAG CATGCTGGGA AAATCACCTA TGTGTATACT GAATTCACTG AGAGGTAAAA TAGAAGTAGT GTTTGTTAGA GACAGCAATA GTGTCTCAGT TACTGATAAA TGGGAAAAGA GGTCACAGAG TCCAAAGATA GCAGCAGCCA TGGAAAGTAG CCAGTGATGA AGTCTGGTGA CCTGAAACTC AAAGCTGAGA TTTGGAAGAA GTGAGTAGAT GATCCACTCT GGGATGTTCA CATTTTGCAG TGGTTTCTTC TCTCAAAATA AACAAGATCA GAATGTGAAA TTTTCCATCG TAACCTCAAG GAAAGCACTT TTGCTTCTGT AGTGACTTTT TATGCTTTAA TCACAAGAGG GCACCAGAGT CTAGCAAAAG ATCACTTTTT TCCTT CATCT AAAGCTGCGT GCGTGCTCTG TTGTTCAGTC GTGTCAGACA CTTTGCAACC CCATGGACTG TAGCCTGCCA GGCTCCTGTC CATGGGGATT CTTCAGGCAA GAATACTGGA GTGGGCTGCC ATTTCCTACT CAGGGGATCT TCCTGATCCA GGGATAGAAC CTGCATCTCC TGTGTCTCCT GCATTGGCAA GCGGATTCTT TACCACTGAG CCACCTGG3A ATACCCTATC TAAAGCTTTT TGTTTTTCTG TTGCTAAATC CGACTCTGCA ACCCCATGGA CTGCAGTAGG GCAGGCTCCT CTAACCTTCA CTATGTTCCA GAGTTTGCTT GAATTCATGT CCATTGAGTT GGTGATGCTA ACTATCTCAA CCTCTCGTCG CCTTCTGCTT TTGCCTTCAG TCTTTCCCAG CATCAGGGTC? T ?????? ?? TTAATGAAGT TGGCTCTTCA CATTAGGTGG CCTTTAATGG AGCTTTAGTT TCAGCATCAG TCCTTCCAAT GAATATTCAT TGAAGAAGGG GTGCAATTAA TAATTACTTG GAGCCATATG TGTAAACAGG GACTTTTCCT ATGCAAACTG GGACAAAAGC CCTGCACAAT ATGAGCATGA CCAATTTAAT TATGGGGTAG CTCTACACTA AGGGCTCTTA TTCTCAAAAT CACTACAAAT GCTTATGACA CACTAATAGA TTAGAAAGAA AAGTGACCAA ACTTGCTTTT ATCTCGAAGC AAAGATCAAG AAAGGCTTTC CCCTGTACCC TACTTCCCTA ATTATCTTTA TTGCCTATCC TATTTTTCTC CTTAGTGTGA TCTTAGTTTG ATTATACCCT CAAGTAAGAG AATTGTTTTA TCCAAAATTA TCTCAATTAT TTGAAAGTGG TCCAAAGTGT TCTCTAAATT CTCACAGTTC TTTTCTGCAT ATCTCTTATC TTCTATACTA TATATTAATT ATTTATATAC TTGTTTTATT CTTTTGAACA TGACTTACAT GCTGGGGATG TGAAAAAATA GGTTTTGAAA ATGGCTTTTT TTTTTTCCTT CTAGTTTTAT TGAGATACAA TTGATATAAC TTAGCACTGT GTAAGTTTGA AGTATACAGC ATAATGATTT GGTTGTACAT CATGAAGTGA TTATCACAAT AAGTTTAGTC AGTATCCATC ATCTCACTTA TGCAGAAAAT TAAAAGAGTC CTGTTATTAG CATAAATTCA AAGTATGGTT GGAAGGAGAT TGTGGTGAAT AACAAAAGAA GCTCCTATGA GTCTTATCAC TGAATAAATT ACGAGAGTTC TAGGGGACTT CCCTGGTGGT CCAGTGGTTA AGACTCGATA CTTCGAATGC AGAGGACACT TGTCAGGGAA TTAAGATCCC ATGCACCACG CAGTATAGCC AAAAACTTAA AAAAGTAAAG AGTTTTAGAA GCTGTGTCGG GAACCAAGGG CAAAGACCAA ATATGTATTT CTTACTGTAT TTTTTTATGT CGCTCTTGAA AACATACTAT CAGCTTATAC TAGCTAGCCA CCAGAGAATT TGAGGATGAG GGTAGTTGCC TGAGAAACCA ACCATGGGAT TACAGAGTTG AACTTTCAGT CTCAACCTCC AGGAGGATAG AAGGCTGAAA GTTGGGTTAA TCAGTAACTG TTGACAATTG ATTTAATCGA TCATGCCTAC GTAACGGAAC TTCCCTAAAA CCCCCTAATT TAAGGGAGAG TTCGGAGAGT TTCTGGATTG GTGTACACAT CAAGGGGCTG AGACGTGGGG GTGCAGCCAG AGACTGCATG AAACTCTACG CTGCTTCTTC TGTCTTGGCC CTATGGATCT CTTCTATTTG GCTGTTCCTG AGTTGTATCC TTTATAATAC ACCAGTAAGT AAACCGTTTT CCCAATTTCT GTGAGTTGTT CTAACAAATT ATCACACTTG AGGAGGGAAT GGTGGGAACA CCTGATTTGT AGCTGGAAAC CTGGGACTTG CAGCTGGTGA ACTGGGGCAG TTTTGTAGGA CTGATTCTTT TTTTTAAACT TTACAAATTG TGTTAGTTTT GCCAAATATC AAAATGAATC CACCACAGGT ATACATGTGT TCCCCATCCT GAACCCTCCT CCCTCCTCCC TCTCCATACC ATCCCTCTGG GTCGTCCCAG TGCACTAGCC CCAAGCATCC AGTATCGTGC ATCGAACCTG GACTGGCAAC TCGTTTCATA CATGATATTA TGCATGTTTC AATGCCATTC TCCCAAATCT TCCCACCCT C TCCCTCTGCA ACAGAGTCCA AAAAATATGG AACGCTTCAC AAATTTGCGT GTCATCCTTG TGCAGGGGCC ATGCTAATCT TCTCTGTATC GTTCCATTTT TAGTATATGT GCTGCTGAAG CGAGCACTGT AGGACTGATT CTTACTCTGT GTTCTGTTCA GTTCAGTTCA GTTCAGTTGC TCAGTCGTGT CCGACTCTTT GCGACCCCAT GGACTGCAGC ACGCCAGGCC TCCCTGTCCA TCACCAACTC CTGGAGTTTG CTCAAACTCA TGTCCATTGA GTCAGTGATG CCATCCAACC ATCTTATCCT CTGTTGTCCC CTTCTCCTCC CACCTTCAGT CTTTTCCAGC ATTAGGGTCT TTTCCAÁTGA GTCAGTTCTT TGCATCAGGT GGCCAAAGTA TTGCAGTTTC AGCTTTAACA TCAGTCCTTC CAATGAATAT TCAGGACTGA TCTCCTTTAG GATGGACTGG TTTGATCTCC TTGCAGTCCA AGGGACTCTC AGGAGTCTCC TCCAACACCA CAGTTCAAAA GCATCAATTC TTCAGCGCTC AGCTTTCTTT ATAGTCCAAC TCTCACATCT ATACATGACT ACTGGAAAAA CCAAAGCTTT GACTAGACAG ACCTTTGTTG GCAAAGTAAT GTCTCTGCTT TTTAATATGC TGTCTAGGTT GGTCATAACT TTCCTTCCAA GGAGTAAGTT TCTTTTAATT TCATGGCTGC TGTCACCAGC TGCAGTGATT TTCAAGCCCC TCAAAATAAA GTATATTGTT TCATCTATCT ACCATGAAGT GATGGGACTG GATCATGATC TTAGTTTTCT GAATGTTGAG CTATAAGCCA ACCATTTCCA CTCTCCTCTT TTACTTTCAT CAAGAGGCTT TTTATTTCTT CTTTGCTTTC TGCTATA AAG GTGGTGTCAT CTGCATATCT GAGGTTATTG ATATTTCTCC CAGCAATATT GATTCCAGCT TGTGCTTCAT CCAGCCTAGT ATTTTACTTG AAGTACTCTA CATATAAGTT AAGTAAGCCA GGGTGACAAT ATACAGCCTT GACATACACC TTTCCCAATT TGGAACCAGT CTGTTGTTCC ATGTCCAGTT CTGTTGCTTC CTGACCTGCA TACAGATTTC TCAGGAGGCA GGTGAGGTGG TCTAGTATTC CCATCTCTTT AAGAATGTTC CACAATTTGT TGTAATCCAT ACAGTCAAAG GCTTTAGAAT AGCCAATAAA GAAGAAATAG ATGTTTTTCT GGAACTGTCT TGCTTTTTCT ATGATCCAAC TAGACAGATG TTGGCAATTT GATCTCTGGT TCCTCTGCCT TTTCTAAATC CAGCTCGAAC ATCTGGAAGT TCTCGGTTTA TGTACTGTTG AAGCCTGGCT TGGAGAATTT TGAGCATTGC TTTGCTAGCG TGTAAGATGA GTGCGATTGT GTGGTAGTTT GAGCATTATT TGGCATTGCC TTTTTTGGGG ATTGGAATGA AAACTGACCT TTTCCAGTCC GTGCCCACTG CTGAGTTTTC CAAATTTGCT GGCATATTGA GTGCAGCACT TTCACAGCAT CATCTTTCAG GATTTGAAAT AGCTCAACTG GAATTTCATC ACCTCCACTA GCTTTCTTCA TAGTGATGCT TTCTAAGGCC CACTTGACTT CACATTCCAA GATGTCTGGC TCTAGGTGAG TGATCACACC ATCGTGATTA TCTGGGTCGT GAAGATCTTT TATGTATAGT TCTTCTGTGT ATTCTTACCA CCTCTTCTTA ATATCTTCTG CTTCTGTTAG GTCCATACCA TTTCTGTCCT TTATTGAGCC CATCTTTGCA TGAAATGTTC CCTTGGTATC TTTGATTTTC CTGAAGAGAT CTCTAGTCTT TCCCATTCTA TTGTTTTCCT CGATTTCTTT GCATTGATTG CTTAGGAAGG CTTTCTTATC TCTCCTTGCT ACTCTTTGGA ACTCTGCGAT CAGATGAATA TATCTTTCAT TTTCTCCTTT TCCTTTCACT CTCTTCTTT TCACAGCTAT TTGTAAGGCC TTGTCAGACT ACCATTTTGC CTTTTTGCAT TTGTTTTTCT TGGGGATGGT CTTGATCACT GCCTCCTGTA CAATGTCCAT AGTTCTGTCC ATAGTTCTTC AGTTCTCCGT GTCCCTCTGT CTACCAGATC TAATCCCTTG AATCTATTCA TCATCTCCAG TGTATGTACA TAAGGGATTT GATTTAGGTC ATACCTGAAT GGCTCAGTGG TTTTCCCTAC TTTCTTCAAT TTAAGTCTGA ATTTTGCAAT AAGTAACTCA TGATCTGAGC CACAGTCAGC TCCTGGTTTT GTTTTTGCTC ATTGTATAGA GGTTCTCCAT CTTCAGCTGC AAAGAATATA ATCAGTCTGA TTTTGGTATT GACCGTCTGG TGATTT CCAT GTGTAGAGTC ATCTCTTGTG TTTTGGAAGA GGGTGTTTAC CATGACAAGT GCATTCTCTT GGGATTATTC ATTCAAAATT GCACACAATA TGGCCTCCAT TTCAGGTATG CAGGGCTGGT TCAACATTTG AACTAAATTT TTGTAATCTG TCACATTGAC AGGCCACAGG AAAAAAAATA CGTGATCATA TCAAAAGATG ATAAAAAAAT TGCTAAAATG CAGTATGGAT TCATGATTAA GGACTCTTGT CAAACCAGGA ATAGAGGAGG ACTCCCTCAA CTTGGTAAAG AAATCTACAA AAAGCCTACA GTCAACTTCA TACTTCTGGT AAGAAAAGAG CTTTCTCACT AAGATCAGGA GCAAGGCAAG GATGATCTCT CTCACACTTT CAAGATCACA CTGGAAGTCC TAGCGATGCA ATAAGACAAG AAGTCATGGC ATTTAGGGAG GGATAAAACA GTTTTGGGTT GCAAATCACA TAATTGTCTA TGTAGAAAAT CCAAACAAAT AAACAATAGC AACAACAACA ACAACACAAT AAAAACTAGA ACTAGTAAAT GATATAGCAA GGCTGCAGAA CAATGTTAAT ATACAAAAGT CAACCACTTT CCTATATACT AGCGGTGAAC ATTAAAGACG TAGTACCATT TACGTTAGAT CCCCAAAAGT GAAATTGTTG TTGTTTTACT CTCAAAGTCG TGTCCAACTC TTGGAACCCT TGGACTTTAG CCCTCCAGGC TCCTCTGTCC ATCAGATTTT TCAGGGAAGA ATATTGAGGT AGGTTGCTAT TTCCTTCT CC AGGGTATCTT CCTGACCCAG GGTTCGAACC CACATCTCTT GCACCTCCTG TACTGGCAGG CAGATTCTTT ATCATGGTAC CACTTGGGAA TCTTTATAGA TTACCAAGAA ATACTTTGTT TTGGGGCCAG AAAGCCCTAA AGCAGCAGCT AGACCAAAAG AATTTCTGTT CCTGAAAAGA GAATATAACT GAAATAAGAT AATTACATAT TTCCTTAATC ACTTTGCAGA GCTTCTATTT TTCTATCATT TTCTTCTCTT CAAGTAGGAA AGGATTGTTT GTTTCTGAAA GGCCCAACAT ACTCTACCTA GAAAGAATTC AAGCAAGCCA GTCCTCTGCT GCAAGAATAA CAGGTATTGA TTATATTTCT CAGTGTACCA TTTGGGTACA AAGGÁTGATT TTGCTATAGA TGGTCAGGAA TCAGCAGTGT GAGCATGAAG TTGTTCAGCC ACAGTTGCCA CATGTATCAT GAGTCTGCAG TAGTTTTGTT ACATCTTCAG TACCTTTTAG GTTCTGGATC TGTTGGCCTC TTTGGCAGAA CAAGAAAGTG ACATTTTATT GTATTTGTTC TGCTGCCTAC AAATTAAGGG GGTGATTGAC AGTGTTTTGA AGGAATAGAG GACTTTGTTT GCTTTTGGTG AAAAACTTTT TATTCTCTCC ATAATAGAAT GAATAATTGC ATGGTTTTAG AGGATTAGGA TGCTGATAGG AATATTTGAT TTCATAATTT TAAGAGTAGT TGGTGCTATA TGGAAATAAG CTTGAAATCC AGATCTTAAG CTGCTATAAA ATTTGTCAGT TAAATACAGA ATATGTTTGT GATTTCATGG AACAGGAAGG CCAGGCTGGC CTAAACAGTG CTACTCAGCT TCTTAAGAGT GCTGCCAGTT CTTTGTTGTG GCTTTG TTTT CTTAAAGGTG CTTCCTCTTT GGCCAGGGGC TCTTCACCCT TTCCTGAAGC ACGTCTACCA GTTGGGACAC ATTAGGAAAT GGCCCCCAAA TCTGTTTCCT TCAACTTGCA CTGGCAGAGA ACCAGACAGC CTGTCCCCTT TCCTGAAACA CAATCACCAA AGTTGTTTGT GTCTTGGGCT CTTTTCTACA AAGTCTTGAA AAATCTTCCC GAGACCTCAG CAGATTGCAA TATACCAGTT TATCGCTGTG TGCATTATCC CTCTAGATAT GAGTTGCTTG ACTCTCTCTG AGCTTTGTTT GGCAAAACCA AGATTCTAAT ATTAAAATAC ATAAACATTA AACCTTTTGG GCGTGCATTC CAATTACATT TTGAGTTGCA AATGTTCTTT TCTCTCTTGG AAAAGTAGGG GTCTAAACTT TTCTTTTCAC ACTACCTTCT GATATACATG CTAATTCCAA CTCATTTGGT ATAAAAAGAA AATATGAAAA TATAAACAAT GCACAGATAC ATACTTGATT CTGAAAATTT ACTCCCCTCC TTCACTTTCA CAAACATACT CTTATCTTTC CTTTGGATGT GATAATCTAT CCCATCACTT CTTCCTTTAC AATGCTTAAG AAATATGACT TAGTTTAGCC CTTTATTACT TTATTTTGGG CTGTTTTCTA GCTACTGTAT TCTCTGCCAA CAATGCTCAC TCCTTTAATC CAACCTAAAC CCTCCTACAC CTTATCCCTA GTATAATCTT TATTCCAGAG CCACCAAACT ATTTCACCTA TCATTACTGT TGAAAAACTA TTCATTGTTC TCCCTGTGGA AAGAATCAAG TCCAAATTTT TGAGCCTGAG AAACATGGCA TCACAACCTG GGGCTTAGAG GCTGTTCCCC ACTCTTCTTT TAAAA AATA TTTATTTATT TGGCTGCGAG AGGTCTTAAT TGTGGCATGT GGCTTTCAGT TCCTTGACCA AGGATGGAAC TCGAGCCACC TGCCTTGGGA GCATGGAGTC TTAGCCACTG GACCACCAGA GAAGTCCTTC CCTCTCTTCT TTTTTAAAGA TCTGGGCTGC AATGCGAGAG AGTTAACATG CATCTCACTA TCATCTCTGT TATTTTCTTA TCATCTCACT TTCATCATCT TTTGGCACAC TCTTACTTCT CAGACCTTTC CCCATTCTTA CATCTTCAAA TCTAATGTAT TTTTCAAGGC CAAGATTTTT AAGACGÁGCT GCCTCCGTGA AAGCTTTTCT GACCCCTGTA GCTTGCAGCC ATCTCTTACT TTGAGATCTT AATGCTTAAT CTCACTTCCA TTAATTTGGC CACTTTTCAC TTACTTTCTC TTGTATGTCT TCAGAAGCAC TGTCTCATAT TATCACTTCA CTTTGGGATG CTTTTATCTT GTCCCCTCAA CTAAATCATT AGCTCCTTCA TTCATTTATT AGTATTTACT GTGTTTACTG CCGTGCTGTG CTTAGTCACT CAGTCATGTC TGACTCTTTG CAACCCCATG GACTCTAGCA GTGTCAGGCA TGATGCTCTA GTGGAGACTC CTGCCACACT CTTCATCACC CAATGGGGAA ATCTGTCAAA GGTTTTAAAG TATATTAAAA GGATAATTTT TATTAACTTA TCCTGGGTCT TTAACACCAT GGAGTTACCA GCTATTACAT GAGGCCAGTT GGACTCCCTA CCTACTGGTG CTTTTATAAA AGTTGTATTT TAATATCACC ATTAGAAGCA GATTCTGTAA GTGAGGTGGT GTAATGTGGT TAACTAGTAA GTGGTATAAA CAAGGCTGGA TCCTAGGCTC CTTTTTAA CC GGAATCTAAG TGACATGAAA CTGTGGTTGA TTTGAACAAA TGCTCTTCTT CCACTGAGAC CAGGACAAGC AGCCTGCTAT GGGCTGATGA GATATACTAA ATATGAACTA TTTTGATCCC CTCAAGGGAC TTTTGGGGAG GGGGGCTGAA AGACCTCTTC AAAAGTTTAC TCGAGTTTTA GAAATTAATA TTTGGCGATC AAAGTTGTAA ATTCAAACCT CTAGTTTTCC TTAAGTCTAT AAATTCAATT TACCAATGCT CTTGCTCTAT TTATAAGTCT AGCAGATTTT ATTATTTACT TCTAATAGAT CTTTCAATGG TGTTTGATCT AATTTATAAA CTTAGTTAAT TTAACACTTC CAAATACTTT GTATGTAGAG GAAAAATATT CAATTTCTCT AGTGTGTTGG GAGACCCCTA GACTACCGTC ACCTTCAGAT TCACTGGAAG GATTTATAGA ACTCAATGTA TAGGTCTACT CGTAGCTAAG ATTTATTACA GGAACATAGT AAAGATACAC AGATAGTAAG GGAAAGACAA AGGCCGAGTC TGGAGGACGC CATCTATAAG CTCTCTTATG CGTTTCTGCT CAGAATACAT GCTATTCCCC CAGCAACAGA AACTCTGCAA CATGTGTGCA GTATTTTTTA AATGTTAATT TTATTTTGGA GTATAGTTTA TTTACAATGT TTCATTTGTT TTATGTATGT GGGAAAATGA TTCAGTTACT CATGTACATA TAATCCATTC ATTTTAAGAT TTTTTTCCCA GGTAGGTTAT TTCAGAGTAT TGAGTAGAGT TCCCCATGCT GTGCAGTAGG TCCTTGTTCT GGTGTGCAGT ATTTTGGCCT GGGGAAACCA CTAGGGAAAA ACTAGAGCCC AAGGTTTTTC TTGGGAGCTG AGTATGT AGG CATTCATGCT CTGCCTAGCA TGAACCAGAA TTCCATACTC CCAGAAGGTG AGCAGGCATT CTGCATAAAC CATATTGCTT GCACAACCAG TTTAGGCAAA GTGAACCATC CTTATCÁGTT AACTGTTGCA TGAGAATACT CGGTGACTTA ACTTCCAAAT CCCAACCAAG GGCCAATCTT GAGAGCAGGC CTTTCTAAGG ATAGCAGACT CAGACCTGCT GTGTTACTTC TATTTTCTAA TTTAACAAAC TAAGTTTTCC CAATTGCTCA AATAATGAAT ATGAAGCAAA TAATTGAAAT TATAAATACG ATAAACTGTA GTTCTTTTAA ATATCCTATT ATTTTCTACA AACTTAGTAG GATTTCAACT TTAAATCAAA AGCCTAAATC ACTTATTTAA TTACATACTT GAAATTGGAC AGACAAGATT GATCTTATAC TCTAATGGGT CAAATTCTAT TAAATAATGT AAATATÁTAA AATTTCTTTT TTTATGTATA AACAAGACAC AAAAATTCTT TAATATCAAA GTATTAACAT AGATCTGATT ATCTTAAACA TTTCTATGAT TACTCCCAAT CCTTCCTAGA ATGAAAAATG CTTTAACACT AAGGAAACTA TATCACTCTT AACACTAAGC TAGTAAGGTA GCCTGACCTG GAACTGGAGA TTTCTGCAGA GGTTGACTCC TTGCCCTGAC CATGAATCGT AGTTGATTAG GTAACTTTAA AATGAGTTAT TATCATGTCC CTGAATTTAG GTTATATATT AGCTAATTCT TCTGATTGCT GACTGAAGTC TACAATTTAC CCTAGGTTAA GCATTGACTG GAAAAGGCTT TTTAAAAAAA AAAATTGTGG GAGAGAGAGA CCTTAATGTA ATTGTTATTT TGGTCTAAAT TTAA AGCTTT TTGAACTTAA AGGAATTCTT CATTCTTTCA TATTGTTGCT ATCTTTTAAG ACAACAGTTT TTTAGAATAT TTATTAGAAT ACTGAGAGTC AGTTCCTAGG CAGGTTGATA AGAAGTCCGG GAGGAGGAGA AAAGGGTCTG GGACTCTCAA GGAGAAAAGG GCAAATGTTT TTTTCTATAT GTCTTAGTCA ATATAACAAT GTATCATGCT CAAAAGACAT ATTTCTCCTT AATAAGAACC TTCTGACTAA TCTTTATCTT AAAATGTGTA TTATGGAAGT GGGTCTGGTA AGATCTTTCT ATTGTTAGTT CTAATCCTGT CATCTTAAAA TGTAAATTGT GGGAGTGGGT CTAGTAAGAT CTTTACAACC TTGAAACATT CTTTTGATTT ATTGAAAAAG TATATAACTC CCTTTTCTTA GACTAGCAAG TGGGGCACTC TCCATCACCC TTTTGATGTC TGTGTCAGAA GCTTTCTCTG TCCCTTTTTC ACTTTAATAA AACTCTGCTA CACAATGCTC TTGAGTGATC AAGCCCGGTC CCTGGTCCCA AAGCTAAATC ATCTTTGGAG ATCGTGAATC CGTCATCGTT CACCATGAGC TATCAATACT GGATATGTGT TATGGTTTTA CCTATGTAGT CACAACTTTC AAAGTAATTT TTCCCCTAAT TTTTTAATAT ATTAAAAAAA AGAAAACAGT TGTAGGTTCA CAGCAAAATT GAATGGAAGA TAGACAGATT TTCCATATAT CCTCTGCTCA CTACCCCAAA CGTACTCTCG TCCATTATCA ATAGCCCCCA CCAGAGTGGT TCATTTGTTC CAATCAGTGA ACCTACACGG ATTCATCGTC TCCCCAAGTC CATCGTTTAC ATTAGGGTTT ACTCTTGGTG GTGTACATTT TAT GTGTCCA TAGACTCTGA CAAACGCAGC CATCACTGTA GGGTCACACA GAAAGGTTGC CCTGCCCTAA AAATCCTCTG TGCTCCACAT TCTTCCCTGT CTCACTGCAC CTGGCAACCA CTGACTTTTT ACTGTCTGCA CACTTTTACC TTTCCCTGAG TGTCATGTAG TTGGAATCAT ACAGTATGTA GCCTTTACAT AGTGGCTTCT TTGACTTAGT AATATGCATT GAAGTTTCCT CCTTGTCTTT TCATGGTTTG ATAGCTCCTT TCTTTTTGAC ACTGAATAAT ATTTCATTGT CCAGTTGTAC CACAGTTTAT TTATCCGTTA ACCAATTGAA GGATATCTTG GTTGCTTCCA GGTTTTGACA GTTAATAACT ACATCTGCTC TAATCATCTG TGTTCGAGTT TTGGTGAGGA CTTAGCTTTT CAGCTCATTT GGGTAAATAC TGAGGAATGT GATTGCTAGA TCTGGTGGTA AGGGTATGTT TAATTTTATA AGAAACTGTG ACAGTCTTCC AAAGTGGCTG TATTGATGTG AATTTCCACC AGCAATGAAT GAAAGTTCCT GTACAGCATT TGATATTGTT TTAGAGTTTG ACTTTTTTTT TTTTTTTTGG CCACCTGATG TGAGCAGGAT CTTAGTTCCC TGACCAGGGA TTGAAACCAG TCCCTGGCAG TGAAAGAGCT GAGTCCCAAC CACTGGACTG CTAGAGAATG TGCTGGAGTT TGGCCTTTTT AATAGGTGTG TAACGGTATC TCATTCTTGT TTTAATTTGC ACTTCCATAA TGACATGATG TAGAACATCT CTTCATATGC TTATTTGCTG CCTGTGTAAA TATCCTCTTT GGTGAGATGT TTGTTCAGGT GTTTGGTCCA TTTTTTAATG TGGTTTGTTC TCTTTTTTGT TGTTGTTGT T GTTTTGTTGT TGTTTTGTTG TTGTTGTTGC TAAGTTATCT CTGACTCTTT TGCAACTCCA TGGACTATAG CCCGCCAGGC TCCTCTGTCC ATGGGGTTTC CCAGGCAAGA ATACTGGAGT GGGTTGCTAT GACCTTCTTC AGGGAATCTT CCTGACTTAG GGATCAAACC TGCATCTCCT GCATTACAAG TTTGTTGTCT TAGTATTGAG TTTTAAGAGT TCTTTAGTAA GATGCTCTTT TCCTATGGCC TCTTTCAAGA TTGTTTTCTT TGTCTTTGAT TTTCTGCAGT TTGAATATGA CATGTCCAGG TGTAGTTTAC TTGACATTTA TTCTCCCTGG TGTTCTCTGA GCTTCTTGTG GTTTGTGATG AATGGTTTTA AATGCCAATT TCTGTCCTCA ACAGTGATGG CAAACACATT TTTTTTTTGA TGTGTTTCTA TGTCTGAATT GGTTACCAAA TGATTAATTG ATGCTCAAGC AGCAATAATT AGTACTTGGT AGTATTGGGG AAGGGGAAAT TTCTTGAGTT CTTTTTACTG GTCTAATAAC TGAATTGACA CAAGACAGAT TAACAAGAGA ATAAAACAAT TTAATTTGTA TGCATGAAGG GTCTCTAGAA ATGGGACCGC CTGAAGCAAC TGAAGCAGGC TGTTGATATA TAAAGACCAA GAAATAACTA TTTGCAAAGA TTTAACAAAA CAATTGGGTT TATGCATGGC GTATCAGATT AATGAAGAAA TAACA AGTT TACACAGCTT TCTTAGCCTC AAATTCCCCA ACTCTCTTGA CAAGACTGCT TTCTATTCTC CTGGTATAGG GAGGGAACGT TCATGGGGGA GATTCATTTC CCACTGAAGG GAGAAAGAGG AGGGTCTGAG GTTTTTTAAA ATATTTTTTC CCACCAGC TG TTTTTCATGG AACTTTAATT CAGTGTAATC ATCATGCCAT TGAGGCATAT TCTGTGGTAG CCTGCCCTAG ATCCCAGTAC TAAACTGTAC TGAGGTAAGA ACAACTTAGT TAAGATGCTG GCTTCACTTT GCAGGCTCAG AAATTGGATC TTTTCACTGT GTACTTATGC TAGGTTGGAA CTCATAGTTG CTGATTCATG ACAGTTAAAC CAAGAAGCT GAGGTGATCA GCTTGAATCA GAATGATAAT TAATTGATTC TCTTAAGGGA CACTCCTTCC TATGACAGAA GTACTCAGGT CACCTATACA GTCACTTCTG GGTATGAGAG TAAAGATAAG TGTATACGCT TGAGAGATGT TTTATCCAAG TAATGGAAAA TGCTTGTGTC AGCTATCTCA ACCTATGACA GAGGAAAACA TCTTTAGGAA CTGGGTGTTT CATGTTGCCC TGCTCTAACG TTGAAAATGT AGTTAAATAT TCTCAAACTC TAATAATTGT GACTAGTAAC GATAAAGACA TGGCTTATCA TTTATCATCA GTTCAGTTCA GTCGCTCAGT CATGTCTGAC TCTTTGCAAC CCCATGAATC ACAGCATACC AGGCCTCCCT GTCCATCACC AACTCCCGGA GTTCATCCAA ACTCATGTGC ATCGAGTCGG TGATGCCATC CAGCCATCTC ATCCTCTGTC GTCCCCTTCT CCTCCTGCCC CCAATCCCTC CCAGGGTCTT TTCCAATGAG TCAACTCTTT GCATGAGGTG GCCAAAGTAC TGGAGTTTCA GCCTTAGCAT CAGTCCTTCC AATGAACACC CAGGACTGGT CTCCTTTAGA ATGGACTGGT TGGATCTCCT TGCAGTCCAA GGGACTCTCA AGAGCCTTCT TCAGCACCAC ATTTCAAAAG CATCAATT CT TCGACGCTCA GCTTTCTTCA CAGTCCAACT CTCACATCCA TACATGACCA CTGGAAAAAC CATAGCCTTG ACTAGATGGA CCTTTGTTGG CAAAGTAATG TCTCTGCTTT TTAATATGCA GTCTAGGTTG GTCATAACTT TCCTTCCAAG GAGTAAGCGT CTTTTAATTT CATGGCTGCA GTCACCATTT GCAGGGATTT TGGAGCCCAG AAAAATAAAG TCAGCCACTG TTTCCCCTGT TTCCCCATCT ATTTGCCATG AAGTGATGGG ACTGGATGCC ATGATCTTCG TTTTCTGAAT GTTGAGCTTT AAGCCAACTT TTTCACTCTC CTCTTTCCCT TTCATCAAGA GGCTTTTTAG TTCCTCTTCA CTTTCTGCCA TAAGGGTGGT GTCATCTGCA TATCTGAGGT TATTGGTATT TCTCCTGGCA ATCATAGAAG GTGATAAATC ATAGAAGATG TGATTTATCA TTTATCATAG AACATGATTC TTCTATGCCA GAAAATTGGC TAAAAACTTC ATCCTCACAA AATCTTCAGA GATAAAGATG ATTACACTTT GGTAGATTAG GAAGGTTAAA TGATTTATTC AAACTCATCC AAACAATTAA TAAAATCCAG AGACAGAATT TGAACGTAGT ATTCTCTGAG CCCTCCATAC ACTATCTTAG ACCAGTTTTA GTTTCTATTT ATTAATAGAA CAAACCCTTG TGTTAACACA TTAGTTTTTC TGACAGGTTA CTCTAATACT AGTTATCAGT GGTTCCTGTT TAGCTTTGGC AAGTTAATAA AGGTGACTGT GCGAAGCTTT CCATGAAATT GTATAACCTG GTATGAAAAT TAATAAGTAA AACCTCACTA AAATGAGGTT TTTCCAGTAG TCATGTATGG TTGTGAGAGT TGGAATA TAA AGAAAGCTGA GTGCCTGAGA ATTGATGGTT TTGAACTGTG GTGTTGGAGG AGACTCGTGA GAGTCTTTTG GACTGCAAGG AGATCCAACC TGTCCATCCT AAAGGAAATC AGCTGAATAT TCATTGGAAG GACTGACACT GAAGCTGAAA CTCCAATACT TTGGCCACCT GATGCGAAGA GCTGACTCAT CAGTAAAGAC CCTGATGCTG GGAAAGATTG AAGGTCGGAG GAGAAGGGGA TGACAGAGGA TGAGATGGTT GGATGGCATC ACTGACTCAA TGGACATGAA TTTGAGTAAA TTCCAGGAGT TGGTGGTAGA CAGGGAGGCC TGGCGTGTTG CAGTCCATGG GGTCACAAAG AGTCGGACAT AACTGAGTGG CTGAACTGAC TGACGCTAAA AATGAAGCTG GGAGGCCAGA AGGGGGAGCT TTCATGCAGG ACAACTCCAC ATCCATTACA GGAAGAAATG CCAATGATAG ACCCAAAAGA AGCATTAACA AAGACTCATC ATTTATAGTC TCCAAAAGGA AAAAGTATAC ATAGCATCTC CAGGAAAAGA TGTGTATCAT GCCTCCTAGA GGAAATCCAC TTCCTAGCAA CTCAGTCAGT GAGAAACCAT CATCACTCTG AACTCTCACT TTTCTCCAAG GGACTTTGAT TCAAAACAAC CTCTTGCAAC ATCCCCTCTT TTCTCCATGT TTCTTTTTTA AAATAATGTT TCTTTCCTTT GTTCATTGGG CTTGCCTATG GTTTCTGCCA TGAGTTGTTT GTCCCAAATT GTAATTCTCT GCTACACCCA GATAAACCCC TCCTTTTTTG CCAGGAAAGT AGTTGACTTT TATTTTTAAA ATCAGTAGTA GAATATTTTA AACAAATAAA AATATAGAGC ATATTGTAAT AAATGGGCT T CCCTGGTGGT TCAGTGGTAA AGAATCCGCC TGCAATGAAG GAGATAAGGA TGCGCCGGTT CTATCCCTGG GTCGGGAAGA TCCCCTGGAG GAAGGCATGG CAACCCACTC CGGTATTCTC TCCTGGAGAA TCCCATGGAC ATAGGAGCCT GGTGGGCTGC AGTCCACAGG TTCACAAAGA GTCGGACACA ACTGAAGTGA CTGAGCACAG CACACATAAA AATATGAGCA TACTGTAATA AATAGTTATG TACCTACCAT GAGGATTTAA TGCATTGACA TCTGTCTATT TTCTACAAAG AAATTCTTTA AAAATATAAA TCAAACAAGT CACTTTTCTT CTTGAAACAC TCCACTGGTT TTCTACATTT AAATAAAAGC TCAAAGACCC AGTGAGCCAC TAGGCCCTAC ACCATCTGCC TCCCCATCAG CCGTCACCCT GTCTCCTAAC ATTCTCTTTC CCATTACAGA TGCCCTAGCC TGTTTACCTT GCTGGTCCAT GGAGATGCCA AGCACTTCCA ATCTGAGGGC TTTGGGCCTA TTGCTCCCTC TGTAGCACCA TTCTGATCTC AGTGTGCTCT TTTGAGTTTA GTTGTATGAC TGTGGTATAA AACAGTCGTT ATATTGTCTC ATTCATCTTA CAATTTTATG ATTTTCTCTG ATTATGTAGA TGTTTGTCTC TCATGTTCAA AAAATCCAGA GGTAAGCATT CCAGAGACAG TATACCAATT TCCTGGTTTC AGGAACTCAC ATTCCTTCTA TCTTTTTACT TTGCTATCTG TGGTTTCTAT TCTGAGTCAT CTCACTGTCC ATGATAGTGA TAGCTATTAG GAATGCCAGT CCTGTTTGAA TTTCAGCCCA GAGGAAAGAG GAAGCAGGAA AGAGCATTCC AGGTTTCTAA GAAATGCT GG GTAAAGGAAG AAATGGAAAC CTGAGTTTTT TATTTTTTAA TGTTTTTTGA AGTTAAAACT TTGATGTCAG AAAAAAAAAA AAATCCCAAA ACTTTGTTGT CTAAGTAAAA TCTCATCTAC CTTCATGGGA GCCTCAGAGG ACAATAATAA AGTATTCTTT TAAACTTATT TCTAATCACC ATACTAGTAA AACTGTAGTT AAGCTTGATC TTTTTGTGCC ACCTGTGGCC CAGGAGAGTT TAGCTCCTTT TTGTTTGTTT TAGCAATAGA AACATTTTTA AAAATTAAAA ATGGATGCAC AACTTCAATA TTTTAAAAAT GTATTTTTAA ATGTTAAAAT TTATATATTT ACTTATTAGG AAGTTAGTAT AAGCAGTATT TTTGATGAGC ACAGAGATGT TGTGTAATTT TTTATAGTTG TAGAAAGTCT CTGAAATAAA TTTATTTCTA AATTTGGTTG TGTAGTATTG AGAAAAATCT GATTCAGAGA CTAGTAGTCA GAAATGGCTT CAGGTTTTGA AGTTTTGTTC ATCTTACAAT TTTATGATTT TCTCTGATTA AACAGAGATG AAAAGGGAAA ATTTATTCTG AGATACATAT AAAAATGACA CAAGTTAACA CATAGGCTTC CAGTGTGGTA GATAGTACAT GAGAAGGCAC AGGAAGTGTG TTTTTATACA ATTTCTTAAG TGTCTTAAAT GAATAGATAA ATACACATAT ATGTTTTCAA ACTGTGGTGC TAGAGAAGAC ACTTGAGAGT CCCTTGAACT GCAAGGAGAT CAAAACTAGT CAATCCTAAA GGAAATAAAC CCTGAATATT CATTGGAAGG ACTGATGCTG AAGCTGAAAC TCCAATACTT TGGCCATCTG ATGTGAAGAG CTGACTCATT GGAAAAGATC CTGATGC TAA AAAGATTGAA GGCAGGAGGA GAAGGGGCAA CAGAGGATGA GATGGTTATA TAGCATCACT GACCCAACGG ACATGAGTTT GAGCAAACTG TGGGAGATAG TGGAGGACAG AGGCACCTGG GGTGCTGCAG TCCATGGGGT CATAGAGTCG GTAACTTAGT GACTGAACAA CAACATATAT ATATATATAC ACAAAAATAT ATATAATATA TATGTAATGT ATATAATATA CTATATATAA TAATAAATAT ATAAAATGAG CATATTGTTG TTGTTGATTG GCTTGAAACT GCTCTAAAAC TGCTTTATTG AAATTTGGAT ACCACACATG TTAATTGTAC AATTCAATGA ATTTTCATAA ATTTATAGAG TTGTGTAACC ATTACTGATC TAATTTTAGA ACTTTTCTAT TACCTCAAAA AGCTCGCAAC AAACTTATGC TTACTGGTGC CAGTTGTACC CTCTCTGCTT CCTTCCCCTC TTTACCTGAG AGGAGTAGAT GGTCTGAGAG CTGGTGTCTT AATGCCTGTG TAAAAGTATC CATGATCTGT GTTCCTGTAA ACAGTGTCTG AACATAACTG TAGAACTTGT AGTCAAAGAT AAAAATTAAA AGTGATTTTG TTGTTGAGAG GCCTGTGAGC TGATTCATTG TAAGTACTGT GTAATAATGC ATAACTGGGA CTGAATTGTG TTATATGTCG AACTGGAATG TTCATATGTA TCAGAGGACA ATTCTTCTGA TGTCCAGAGT TTTCACTACA TAATGCTGTT TTGTTTTTTT GGCTGTGCTG GGTCTTTGTT GCTGCAAGGG CTTTTCTCAA GTTGTGGCAA GTAGGAGCCA CTTTCTAATT GCAGTGTGTG GGCTTCTCAT TATGGTGGCT TTTCTTGTTG CAGAGCATAG GCTCTA GGCC CGCGGGCTTC AGTGGTTGTG GCACATGAGC TGTAGAGCAC AGGCTCAGTA GCTGTGGTGC ACGGGCTCAG TTGCTCCGTG GCATGTGGGA TCTTCCCGGA CCAGGGATAG AATCCGTGTC TCCTGCATT3 GCAGGCAGAT TCTTTACCAC TGAGCCACCC GGGAAGCCCA ACGCTTTCTT GTTGACTGGC AAGTTGCAGA TGACATTCTC TGTGGCTTTG GATGCCTGCC AGAGGGAAGA CTTACAATTC CCAACAAATT TGAAGGCATG CTTGCTAGAT ACGATACTTG ACATTAAGTA AGCAGGTTCA CTATACACAG TGTGTAATCA AAGAACTATC TTTCACAAAC TCTTATCTTT GTTTCTGACA GAACACTTGC AGTTTCTACA AAACTGCTGT AAAAGTTGGC CTCAGTAAAA GTTGTTTATC TCTCAGTAAA AGTAGTAACA CTATACAGGA CTTCCCCCCA CCTGCTTTTG ACAGATTGAC TCCATGGGAT TTAAAACTTC CTTTTTTTCT TGAGTTGATA AGGTGACAAT GCTCTTTTGA AACAGATACA GGTGAGATAT ACCAGGTGGA CTAAGCAGGT GTGAAACAGG CCCTGGGGTA GGGTAGCTGA CCTTATTGAT AAAGTAGTGA CAAGGGACAG TCAGTTACAT CATAATGTAC TAAGGTATGT TACAGAAGGA AAGAAGTGAT ACAAAGGATG GGTTTGGGCA AAAGCCTGTG AGACTATAGA GACTTCTTCC TTGACTAGCA AATGAGGTCA CCCTGCAAGC TGTGCGGGCA AGACAGGAGT GGAGCTCACG TAGTTCTCTG GCTGACCCTG CTGCTGAAAC AGCAACCGCA GAGCAACTAA GCCCACTCAC CGCAACTACT GAGCCTGTGC TCTAGAGCCC AGGCGCCAC A ACTACTGCAC CTAGAGAGTA GCCCCTGCTC CTTCTGTAGC ACCAGTCTGT GATGATCCTC TGTTGGTTGT TGTCAGCTTC CAGTGGCTGG TCACCATGCT CATCATCTTC AAGCCCTCGT CTCCTTTGCA GATCTTCTTA AACTACCTCT GCCCTGTGCG TTCCTTAGGA GTTCCTGGGC CAAATGCCTT GTTGGTGTTG CAAGTTGTCT TTACTGCTTT ACGACCCATT TTGAACTTGA GTAAGAAAAT TGCTTGAATT TACTTTTTGT CTAACGTCTT TTCCCTAGTC CAAAATAAAT ATAAAATAAA CAGCAACTAA TAAAT CATTA GCAAAAAACA TAAAGTGAGA AATGTGCATT AAAATGACAT ATAACCACAT TTATTTAAGA ATGTATTCCA ATTTCAAACA GCAAATTTCA ACAGTGCAAA ACCACAGTTA CTTTTGCAAC AACCTAAGCA TATTAAAAAG CAGAGACATT ACTTGACCAA CAAAGGTCCA GCTAGTCAAG GCTATGGTTT TTCCAGTGGT CATGTATGGA TGCAAGAGTT GGACTGTGAA GAAAGCTGAG CGCCGAAGAA TTGATGCTTT TGAACTGTGG TGTTGGAGAA GACTCTTGAG AGTCCCTTGG ACTGCAAGAA GATCCAACCA ATCCATTCTG AAGGAGCTCA GCCCTGGGTG TTCTTTGGAA GGAATGATGC TAAAGCTGAA ACTCCAGTAC TTTGGCCACC TCATGCAAAG AGTTGACTCA TTGGAAAAGA CTCTGATGCT TGGAGGGATT GGGGGCAGGA GGAGAAGGGG ACGGCAGAGG ATGAGATAGC TGGATGGTAT CACCGACTCG ATGGACATGA GTTTGAGTAA ACTACGGGAG TTGGTGATGG ACAGGGAGGC CTGGTGTGCT GCCAGGG CAA ATCATGGGGT TATTGCGATT CATGGGGTCG CAAAGAGTCG GACATGACTG AGCGACTGAA CTGAACTGAA CTGAATGGTA TTGAGTTGTA AGGATTCTTT ATATATTTTG AATACAAATT GTTCCTCTAC TCCATACATT TTTTAAAAGG CATAGGTAAT ATTTGTGTTT AATTTCATTT ACAGAATGAA ACCAAAATGT ATAAATATTA TTTATGATGC GGGGGTATCA TTGAGGATTA ACAACCTCAA TCGTAGAGGT TGTTATGAGA TATACAGTTT GCAAATATTT TCTCTTAGTC TGTGACTCAT ATGTTCTTTT ???? '?????? TTTGGTGGCC AAAGTACTGG AGTTTCAGCT TCAACATCAG TCCTACCAAT GAACACCCAG GACTGATCTC CTTGCAGTCC AAGGGATTCT CAAGAGTTTC TCCAACACCA CAGTTCAAAA GCATCAATTC TTTGGTGCTC AGCTTTCTTT ATAGTCTCTC ACATCCATAC ATGACCACTG GAAAAACCAT AGCCTTGACT AGACGAACCT TTGTTGGCAA AGTAATGTCT CTGCTTTTTA ATATGCAGTC TAGGTTGGTC ATAACTTTCC TTCCAAGGAG TAAGCGTCTT TTAACTTCCT GGCTGCAACA CCATCTGCAG TGATTTTGGA GCCCAGAAAA ATAAAGTCAG CCACTGTTTC CCTTGTTTCC CCATCTATTT GCCATGAAGT GATGGGACCA GATGCCATGA TCTTCGTTTT CTGAATGTTG AGTTTTAAGC CAACTTTTTC AGTCTCCTCT TTCACTTTTA TCAAGAAGCT CTTTAGTTCT TCTTCACTTT CTGCCATAAG GGTGGTGTCA TCTGAAACTC CAATACTTTG GCTGACTCAT TTGAAAAGAC TCTGATGCTG GGAAAGACTG AGGGCAGGAG GGAAAGACTG AGGGCAGGAG GAAAAGGGGA CAGCAGAGGA TGAGATGGTT GGATGGCATC ACCGACTCAA TGGACATGGG TTTGAGTGAA CTCCAGGAGT TGGTGATGGA CAGGGAGGCC TGGCGTGCTG CGGTTCATGG GGTCGCAGAG TCAAGACACG ACTGAGCAAC TGAACTGAAC TGAACTGACT GAACTGAATG GCAAAAACGG TTTAAAAACA ATATTTAAAT AAAAGGTTTG TGAAGTCCTA AAGCCTGTTC TTGGCGTTCT AGGATTATTA TACCATAATT TGCAACCTAT TGCTAGGAAG TGTTTGAGTG GCATTTAAAC TCAGCAAGCT GAGTATCTCA TTTTTAGCAG AATCCCGGAC TGATGGAGTT GGAAAGGACC TAAAACTTAA GCAGAATTAA CACTTCTAAT TCTGTAAATA AACTCCTACA TGTTTGAATG ACTTAATTGC AATGCTGTAT GAAACATTTT ATGGAGCACT GGAGGCACAG CTGGATTTGA GGACAAACAA AAACACCAGG AGTCAGAAGT TCAGTTAAGG CAGGAGTACA AAAAAATCAA TGTTTCCTGA TAAGACTAGG GATTTATTTG CTGGCTCATG ATAAACAACA GGTTAAGCAT CAAAGAAGAG TAAGGAAGAA CTCTAAACTC TGTAGAAACC AGGCTTTAAA AATAGAAATT CACCTCAATG ACTGTTGTAA ATACTAACAA AGAAAAAGAA TTCATGCTGA TAAGGGAATT GTATTGTGTT CAGTATTTGA GGGTTAACTT TGTACATTTA CCTCAAACTA TGCCATGCCT CATTTGCATT TGTGATTTAT GTATATTTCT TTTTGTTTAC CTCTTTAAAC TTATTCATTC ATTTAACACT GAATTTATTG AGTACCTATT TAAAGCTAGA AACTAACCTT AAAAATTAAT TCTCACTCTT ATAAAGAAAA TACATAAGTA GCAGTTATAA AATTATGGGA GTAAGTACTC TAACATATTT TATAAGTAGG TATATTTTTG AGTATAAAAA TACCATGAAA AAAAAGTTGT TTTTTTTGCA AAGATCAATA AAGCTTTAAC TATATTGACT AAGGAAAAAC AGAAACCACT TAAAAGCAGA AATGAAAGTG GGGTCATTAC TATAAATTTT ATAGAAATAA AAATAATATA AAAGGATACT ATGAAGAATT GTTTGTCAAC AAATTGGGTA ACCTAGGTAA GGTGGACACA TTGCTAGAAA AATACAATCT GCCAAAACCA ACTCATGAAG AAATAGAAAA TCTGAACAGA CCTATAACTA GGAAGGAGAT TGAATCAGTA ATTAAAAACC TCCCGAACAA AGAAAAGCAA TGGACAAAAT GGCTTGACAG GTAGATTCTG CCAAATATTT AAATAACTAA CTCTTCCAAA AAAACCTGAA TCTTCCTAAT TCATCTGTGA GATCAACAGC CCCCTGATAC TAAAGCCACA CAGAGACACT CTAGAGAAAA CTAAATCACT ATCCCTTGTG AATATAGATG CAAAAGTTCT CAATATAATA CTCACAAGTT TAATTGAGCA CCATATTAAA TGGATTATAT GCCATGACCA GGTAGGATTT AACCCTGGAA TATGAGGATG GTTCAACATA GGAAAATCAA TGTAATACAC CATATTAACA TAATGAAGGG AAGAAATTAC ATGATCATCT TAATTGATGC AGAAAAAGCA TTTGACAAAA TTCAGTACCT TTTATGATTA AAAAAAAAAA AGAAACCTCA AACTAGAAGT AGAAGGATAC TTCCTTAACC TAAGGGCCAT ATATGAAAA A CCCATAGCTA ACATCTTACT CAATGGTGAA AGACAAAGCC TTTTCCCTAA AATTAGGAAT GAGACAAAGA TGCCTGCTTT TGTCACTTCT GTTCAGCAAA GGCTTCCCAG GTGACTCAAT GACAAAGAAT CCACCTGCCA AGCGGGAGAA GTGGGTTCAA TCCCTGGGTC CAATCCCTGG GTTGGGAAGA TCCCCTGGAG AAGGAAATGG CAACCCACTC CAGTGTTCTT GCCTGGAGAA TCTCAGGGAC AGCAGAGCCT GGTGGGCTGC CGTCTATGGG GGTCGCACAG AGTCGGACAC GATTGAAGCG ACTTAGCAGC AGCAGCAGCA GCAGCCAGTC TTTTTGCCTG GGAAATCCCA TGAACAGATG TGAAATTTTT TTTTCACTGA TTTTTTAAAA CTTCTGAATC GTTTGAATCA CTTGAAACGA GACGCATAAT TCTTATATTA AAAAAGAATT TTTAAATAAA TGAAGTTCCC AAAGGGTCAG TTAGCCAGTT TAACTTTCTA TGTTAAGGAT AGTTGTCAAA AAAGATACCC CACTAGATGA AGATTTCTCT TCCAACTCTG AAAATATGCT ATTAACATCA CACAAATCTT TTTTCAGTCT TGCAGTGGTT TCAAGTGAGA GCAGTGCATC CCCCGCCCCT CTCAGAGACG ATGTTTAGAG ATGTCTGCTA CCCTTTTTGG TGGTCATATG TCTGAGGGTT GCTATTGGCA TGTAGTGGTC ATAGGCCAAG GAGGGAAAGC ATACTGTAAA GTAAGCAAGT GTCATATTGA AGAAATCATT GCCAAATCTA TTCTTAGGAT GATTTTAGCT CTCAGGTTTA GTTCTTTTAT CCGTCTCGTT AGTTTTCTGT CTGTGGTGTA AAGAAAGTTT CCATATTCAT TCTTTTGCAC ATAGACTT AG TTTTCTCAAC ACCGTTTTTT AAAATTGAAA TATAATTGGT ATACAATATT ATTTAGTTTT AGGTGTACTA TATAGTGACT TGACATTTGC ATATATTATG AAATGATTGC CATGATAAGT CTAATAACCA TCTCTCATTC AAAATTATTA CAATATTGTT AACCATATAT ACTGTATATT ACATCCCCAT GGCTTATTTA TTTTATAACC TGATATCTGT ACCTGTCAGT CTCCTCCGTC TATTTCTTCC CCCACCCTCC ATTCTGGCAA CCACCCTTTG TTCTCTGAGT CTATGAGTCT TTTTTCATTT TTGTGTTTGT TTTTTAGATT ACACATATAC ATGAGAATAT ACAGTATTTG TCTTTCTCCA TCTAATTTAT TTCACTTAGC ATAACACCCT ATAGATCCAC TCATGTTGTT GCAAATGGCA AGTTTATTTT TATGACTGTG TAGTTTTCTA CTGAATACAT ATACCACATC TTCTTTATCC ATTCATCTTT TGATGGACAC TTAGGTTGCT TCCATATCTT GGCAATTGTA AATATTGCTG CTGTGAACAT TGGAGTTCAT GAATTTTTTT GAATTAATGT TTTTGGTTTT CTTTGGCGGG GAGGGGTGAG TATACCCAGG AGTGGAATTA TTGGGTCATA AAGTAGTTCT ATTTTCAGTT TTTTGATAAA CCTTTGTACT GTTTTCCACA GAAGCTGCAC CAATTTACAT TCTCACCAAC AGTGTGCAAA GCAAAGCTTC CCTTTTCTCC ACATTGGGTG ATAATTTTTA TCTGTCAATA TTTTAAATAT ATCACTCCAC CTTCTCTTGC TCTATAGTTT CTGCTGGGAT AGCTTAATGG GGGTATCTTT GTAGGTTACT ATCTTTTGTC CCCTGTGTGT GTGTTAGTCA CTTGGTC GTA TCTGACTCTG CAACCCCATG GACAGTAGCC ACCAGGTTCC TCTGTCCATG GAATTCTCTA GGCAAGAATA CTGGAGTGGG TTGCTGTTCA CATTTCCAGG GGATCTTCCT GACCCCAGGG ATTGAATCCA GGTCTCCTGC ACTGCAGGCA GATTCTTCAC CAACTGAGCC ACCAGGGAAT AGCTATCTTT AAAATTCTTT CTTTATTATT AAATTCTGTC TTGGAGAAGA TTCTTTTGCA TCAAGATAAT TAGGTATTCT GTTAACTTGG TAGATTTGTA TGTCCAGTTC CTTCCCCATC TTTGGGACAT TCTCAGCTAC TATTTCTTTA AATAAGCTTT CTGCTCCATT TTCTCTCTCT TCTCCTGGGA TACCCATTTT CTTTATGTTG CCTTCTCTAA TGGAGTTGGA TAGAGTTTCT TCAATTTCTT AAGATCTTGG TTCTTTCTCC CCTTCTGCTT AAATCACTTC TAGATTTCTA TCTCTGAGCT CACTAATTTT CTCTTCTTTG TGAGAAAATG GAATTTCCCA ATACTTCTAA TGCATTCTCC ATCTCATTTA TTGAGCTCTT TAGCTCAGCA GTTTGTTTGG TCCTTTTTTA AAGTTTCAAT CTCTTTGGTA AAGTATTGGT TCGTTCCTTA CTTTTATTCC TAGGCTCACT AAACTGCCTT CTGAGCTTTC TCATGCCCGT TGAGTTTTTC ATGATGGCTA TTTTTAATTC TTTGTCATTT GGATCACAAT CTTCCTTGAC TTCAAGTTTG GTCATTTTCT TTTTGTGATA CTGTGTGACT GGGTTTTTTC ACAGTGTTTG ATGAGTTGTT TCTCTGCTGG TGCATTTAAA GTAACAAGAA AGAAAAGAAA GAAAGAAAGA AAGTCGCTCA GTCGTGTCTG ACTCTTTGTG ACCCCA TGGA CTGTAGCCTA CCAGGCTCTT CTGTCCATGG GATTTTCCAG GCAAGAATAC TGAAGTGGGT TGCCATTTCC TTCTCCAGGA GATCTTCCCA ACCCAAGGAT TGAAACCCCG TCTCCCGCAT TGTAGGCAGA TGCTTTAACC TCTGGAAAGC CCCTGGTTTG AAGTAGCAAA CCCCTTTCTA ATTTAGATGA AGTTTTGTTT ACTTAGATTC TAACAATTCA ACAGATTGAT AATTAGAGGT CTTTCTTCTG TTTTTTAGTA GATGGTGCTA TAGCACAAGT TTTCAACTTT TCTTGCTGAG CTGCCTCTGA CAATATTTGA GAATTGGCAC TTTCCACCCT TCACTGCCTT TGCCAGAGGT GTCACAGGTG CCCTCCGTGG TCCCTGCTTG TGCCTCTGGG CTCATTGGTG CCCTGCTGAT GTTGGTGCCA TTGCTGTCAC TGTCATTGCT GCCAGGGGAA CTGGGATGAT GGGTGCCCCG CTGTGTCCGG GGTCACTTGG TTAGTCTCAG CAGGAGGGGT GGGTGGGAGA AGCTGGGGTC AGACAGGTGC CTCCACCACA GCTGGGGTTG TCAGGTTTGT AGGCACCACC ATGGGCAGGG GGATGAGGGT CACGGGCACC ACCATGGCTT GAAGGACCGG AGTCATGGGC CCTGCCACTA CTGCTGCCTG GTTCTGCCAT GACCAGGAAG CCATATGCAC TGCCTCCACA GCTGCTGCCT GGCTCTCTGG GACTGCAGGC TTAGCCATTT CAGAAGAGAA GCGGGGGTTG TAGGCACTGC CGCCACTGTT ACCCTAGTTC CACCTCCTCT GTGTGTTCCA AACCACCCAC CTTCAGGTAT ACAGATGTGT GGGTCTCTGC AGCATCCTGG TAGTTTGAAC AGAGGCAAGT TATGAATGTC TTACTAGTT G GAAATTGAGG GGGAGAAATA AAGCATCTTA CACTGCCATG ATGCTGATAT TCAGTTCAGT CGCTCAGTCG TGTCCGACTC TTTGCGACCC CATGAATCGC AGCACGCCAG GCCTCCCTGT CCATCACTAA CTCCCAGAGT TCAACCAGAC TCACGTCCAT TGAGTCAGTG ATGCCATCCA GCCATCTCAT CCTCTGTTGT CCCCTTCTCC TCCTGCCTCC AATCCCTCCC AGCATCAGAG TCTTTTCCAA TGAGTCAACT CTTCGCATGA GGTGGTCAAA GTACTGGAGT TTCAGCTTTA GCATCATTCC TTCCAAAGAA ATCCCAGGGC TGATCTCCTT CAGAATGGAC TGGTTGGATC TCCTTGCAGT CCAAGGGACT CTCAAGAGTC TTCTCCAACA CCACAGTTCA AAAGCATCAA TTCTTTGGCG CTCAGCCTTC TTCACAGTCC AACTCTCACA TCCATACATG ACCACAGGAA AAACCATAGC CTTGACTAGA CGAACCTTTG TTGGCAAAGT AATGTCTCTG CTTTTGAATA TGCTATCTAG GTTGGTCATA ACTTTCCTTC CAAGGAGTAA GTGTCTTTTA ATTTCATGGC TGCAGTCACC ATCTGCAGTG ATTTTGGAGC CCCCAAAAAT AAAGTCTGAC ACTGTTTCCA CTGTTTCCCC ATCTATTTCC CATGAAGTTA CTCTCCAGCA ATTTTTGAAA TCAGAAAGTG TGAGAACTCC ACTTTGTTCT TCATTTTCAA GATTACTTTG GGTATTTGGG ATTCTTTGAG ATTCATGTGA ATTTTAGGAT GAATTTTTCT ATTTCTGCAA AAACACACTG GAATTTAGAG AGTAATTGCA TTCAATCTGT GGATCATTTT GGGTAGTATT GTCATTTTAA CAATCTTAAA TCTCCAAT CC ATGAATACAT GATGTCTTTC CATTCATTTA TGTTTTCTTT AATTTATTGT ATTGTCTTGT ATTTAAATTA TTGTATTGCC TTGTAGTTTA CAGTGTACAA GTCTTTCACT TTGTTGGTTA AATTTATTTT ATTCTTTTTG AAGCTATTAT AAATGAAATT GTTTTCTTAA TTTCCTTTTC AGATTGTTCA TTGCTAGAGT ATAGAAAATC CACTGATTTT TATGTATTGA CTTTGTATGC TGAAGCTTTG ATGAATTTAT TAGCTCTAAG TTTTTTTGTG TGAAATCTTT AGCATTTTCT TCATAAAAAA TAATGTCACC TATTAACAGA AATTATTTTA TTTCCTTCAA GTCTGGTCGC CTCTCCTTTT CTTGCCTAAT TTGCTTTAGC TACAACTTCC AGTACCATGT TGAATATTGT TGTTGAAGTC GCTAAGTTTT GTCCAACTCT TTTGCAACTC TATGGACTAT AGCCCATCAG GATCAATTGG CAGCCCACCT GCCAAAGCAG GAGACATGGG TTTGATCCCT GATCTGGGAA GATCCCACAT GCCACAGAGT AACTAAGCCT ATGCACCACA ACAATTGAGC CTGTGCTCCA GAGCCTGGGA GCCACAACTA CTGAGCTCAG GTGCTTCAGT TATAGAAGCC CGTGTGCCAC AGAGCCTGTG CTCTGCGACA AGAGAAGCTG TGGCAATGAG AAGTCCACGT ACTGCAGCTA GAGAGTAGCC CCCACTTGCT ACAACTAGAG AAAAAGACCA GGCATCAAGG AAGGCCCAGC ACAGCCAAAA ATAAATAAAT AAATTAATTA AATTATTTTT TTTAAGTTGG TGAAAGATGA ATATTTGAGA TAAAATGAAA ATTACTAAGA TCCACATCTT CAGACATGAA AGAAAATATT TATGAAA TAA AATTATTTGT TGTCTGAAAT TTGTTTCAAA GTAATCTGTG GGAAAGGGGG AAAAAAGAGG AGTATCAGTG AAATGAAAAT TGACTACCAG TTGAGATTAG CATATAGTCA TTCATCATAC TATTCTTTCT ACTTGTGAAA TGCTTGGAAA TTTCTGTGTA TGTGTGTGTT AATCATTCAG TCATGTCCTA CTCTTTGAGA CTGTAGACTT CCAGGCTCCT CTGTCCATGG AATTCTCCAG GCAAGAATAC TGGAGTTGGT AGCCATTCCC TTCTGCAGGG GATCTTTCCG GCCCAGGGAT TGAACCTGGG TCTCCTACAT TGCAGGCAGA TTCTTTACTG TCTGAGCCAC TACAGTGGTA AGAAAAAGTG AAAAAGATGA CAGATACATT TGAGAATTTC TAGTTTCAGC AATATTGCAG AGTTAAGAGG CCCTGAAACT ATTCAGCTAC ATAATATCTA AAAATGCTTG ATAAAATATT AAAACCACTC TTATTTTTTA ACTTAAACTT TTTATTTTCC ATTGAGGTAT AGCCAATTAA CAATATAGTG ATAGCTTCAG GTAAACAGTG AAAGGACTCA GCCATATATA TACATGTATC CATTCTCCCC CAAACTCCCT TCCCATCCAG GCTGCCACAT AACACTGAGC AGAGTTCCAT GTGTATATAG TAGGTCGTTG TTGAAAATAT TGAAACCACT CTTAATTGAT TGGATGATTC CCACTAAGAT CAGAATGGAG TACAGACTAG GCAGGTAAAC TAAATTTTAG AGCCTTGGAT ACTCTGAGGC CTACAGTATT CTTTATTGAC ACTCTGAACT GCATTGCACA GAAGGGACAG AAACAAAGCC TGAAGTCACG TAGAAGGGAA GCATAGTACC TACATCTAAG AGAGGCATAC CCTCAC AACG GGCAAACTCA AGGTGAACCA TAAGAACACG TTTCCTTACT GGACTGGGCT ATGAATGGAA GTTAAAAAAA AAACCAACAA CATTTTCTTT GAGAACTTTT TCTTCTGGCT AGATGTCACA TAGTTTGGGA CTCAGTCCAC ATATTTTGCC TGATCCCAAA ACACAAGCCT ATAATTTAAA GAGTAGCAGG TTAGGTACTA TCCCCAGGTG CCTGAGAGAA GTAAAAATAG ACTTTTCCAG ATGAGCATAC CCTCAAGCAG GCC CAAAGA ATTCCTGGAG ACAGTCAACA AAAAGCTCAT AGTAAAAAGT ATAAAACAAA AATCAAGCAA GCCATAGATA GCAAACCCAG AACCATAGAG AGTTCAACTT TTATAATTAA TTATCATAAG TAAACTAAAA AAATAAGTCT GCTTGAAATG CTTTTAGATT AAAAAAGGAC TTTGAAAACA TGAGCAAAAA TAGGAGACTA ATGATTAGGC CAATTTGAAG AAGAACAAAA TATTACTCTT AGAAATTAAA AAAAATACTT ACTGAAATCC CATCCAGGCT GCCACATAAC ACTGAGCAGA GTTCCTGGAT TCAAATGGAT AGACAGTTAA AAGAAAGATT AATGGAAATA AAGAGCAACC CACCCCAGTA TTCTTGCCTG GGAAAGCCCA TGAACAGAGG AGCCTGGTGG GCTATAGTCC ATGGGGTCTC AAAGAGTCGG ACATGTACTT AGCTGTACTT TTTTTTTTAA TTTTGGGATT AACATGATTT ATTTCATTAT CAGTCTTACA AATTACTGAG GTTGGGTAAG GCCGGGATTG TAGCTTGAAT TTCACACTTT GGTTGAGGAA CAGTCTGTTA GTGAACAGAA GGCCGTGGAG GTGCCACAGT TCATCCAGCA GTGTTAGAGA CCTTCTCAG A AGCAACAGGT GAGACCAGGC ACATCACAGT CAGAGGTCCA CTCCAGTGGC TCTCAGGGTC CACTGCCTGC CCCCGCCCAC CCTGCTTTAT GGAGGCACGG AGGCCCCTAG AGGCCCCAGG GAGACATGAT GGGCTGAGGG GCTTCACCAT CAGGTGGTGT GTCTCTGCCT CAGCATTTCC ATCCATACCA CACATCACTT TCTCCCACTA TCTACACTCT TATTTATTTT TAATACTAGT GTATTTTTAA AAATATACTT TTATTTGGCT GCGACGGTCC TAGTTGCAGC ACATGGGATC TTCAGTCTTC ATTGAGGCAT GCAGGATCTT TAGTGGTGGC ATGTGGGATC TAGTTCCCCA ATCAGGGATC AAACCTGGAC CCCCTGCATT GGCACTGAGT TTTTGCACCA CCAGGGAAGT CCCACTCCAC CCTTTTATAA GTGGGCAGCC TCATCCCTGC CTGGGCTTCA AGCAGAGAGC CTGGTTCTGG TCCCCAACTT TTTGTCAGTG GAGTCCCCTT TATTGCGCCA AACTCCTTAC CACCATTACC TGTTCCTGGA CTCAAGACCT TCAACCCACA AGCTTGGTAA TTCTCACCAC TTTGGATTTC TTTCATGGAG ATATTCATCT TGGTTTTGCA ACTGCCTGGA TTTTCTTGTT TTTCTTCTTT TATTTGGATC CATTGTGACT GAGAAGGGTG AACAAATTTA TTTTACTTTC TCTCTCCAAA GAAATCTTAT AGCAGTTTTT GCATAATCCC ACTATGCTTC AGTTTCATCT TCAAGATAAA AATTTTAACA GAACCCACCT AAAGGCATTG TTGTAAAGAT CAAATGAGAT TTAGAAAAAA CTGCACAAAA CCTAAAGGCA CTTAGAACAC TGCCTGGCAA GTACCAAGTA CTCAATAA AC ATTAGCCACT ACTATTGGTA CTGGGGAAAG ATTGAGGCTA CCTTATATTT TCCAAATATA CATAATTTTA TTGTCTTTAT TCAACCCCGT GGCATAGGTA TTATCACCCT TAATTTGAAG TAAAGAAATT GAGGCACCCA AGGGTCAAAT AGCAAAAGCT GTAGAGATGA GATGAACCTT GGGTACATCT AGACTGGCTG TTGACTTTGT TATAAAATAG AATAATTAAT GTATATTTCT TGCTCTAATA TGGGTGATGA CATGGAGAAG ACTAAAATCT CATTCTGGAT GAAGTTATAA GCTTTGGCTC TGTTGACATC ATCTGTTATA ATAGATGGCA TGACAGCCAG AAATGAAAAA AGTCTAAGGC ATTATATAAT GAATGATGTG TCACTTAATG CTCATTACAC TTTAACTTCA GTTGCTCCCA CGAATGAATT CTTGTCTCTA CAGGCAATAA AATGTTATAG TAGTCAGTAA GGTATCATAG AAAAAGGGCA GTCTCAATAA ACCCTTCTCC ACTTTTACAA CATTCAGGTC AGGGTGGATA AGCCCCTGAA TTACATGAGA TAAACTCACT TTTATTATTC AGTCAATAAA TATTTATCAA GTATCTGTTG TGTTCAAGGC TCTGAGCAAG GCAACATTTA GGAAATACAC TGAGGTGGGA GACATACTTT CTACTTTCGT AATTCCCTTT AATGGCCCAC AAGACGTTCC AGCTTCTTTG TCTCTCCCAT TCAATGTTTT ATCTGTTACC AGGACTGTAA ATTCTTCCTT TATGGTGTTT CTTTCCTCAC AAATTTTTTT CCACCATAAA ACTCTAGTTC AGTCTATTTT TTTCATTCCC AGACTGTTCA CTGCTTTCCC ACATCCGCCA TCCATCCTAT ACGTAAACAG ATTACTC TTC CTAAACACCA CTTTGACAGT GTCATCCCTC TACACTAAAC TTTCAATGGT TTCTCACTCT CAAGATAAAT CTGCACTCTT GGTTTGGCCT TAGGGCCTCC ACATTTGGCC CCAGAAGATT CTCTTACATT TTTGTTAGTA TGTTTCTGAG AATACAGTGA TTGAGCTACT TTTTGGTGAA GAGCTTCCAT GAACAAATGC TGTATACGTG TTCTGCAATG ATGAAACCTA CTTAATCAGC TTGTTTTAAT CTAGCATCTC CTCGTCTTTC TTTTCCCCAT ATCACGTGTT CATAAAGTCT TTTGTTTAAG TAAACTTTTA AATTGCAGTA TAACATACAT ACAGAAAAAG CAAAGAAAAT CTTAAGTAAA CGATTTGGTG TATATTTAAA AAGTGAACAT ACCTGTATAT CTGCCACCCT AACCTCTTTC TCTATCTCTC TGTCTATATA TATGTGTATA TATACTTTTA TATTTGTTTA TTCTCAATAT CCCAGAAGTT TCCATTATGT TCTACCCTAG TTATTGTCCC TTCCAAAGAT AACTACTCAT CTCACTTTTA TCACTATATA TGAGTTTTGT TTATTTGGTT TTTTTTTTTT TGGCTTGTTT ATTTTTATTG AAATATAATT GACATATAAC AAATACACAT ACAAATATAT ATGCATACAT TTGATCTGAG TAACAGATAT ACAAGTGTGT TTACTTTGTA AATATACATC AAGCTGTTTA CTTAGATTTT CTGTACATTT TCTATATGTG TATTATACTT CAATTAAAAA GTTTAAAGAC TTTATAGATA TGTGAAATTT AGTTTGGTGA ACTGTCAACG TTTAAACTTT CAGTCTATTT TTCAAGGACA AATGTTACAT CTTCTGCCCC ACTTTCTAAC TCTGCAGATT AATTAT CTGT ACCTAATTAT ATACATTTTC CCCTCTACTA TGCTTATTTT TTAGGGCTTG ACTACCTCTG TGAACTTTAC AACCAAATGA ATTATTTGGT CTCTTGTCTC CTACATAAAG AAAATTATTA GAATCAAGGT GATCGGGCTT CACATCTGGC CTCAACACCT CCACCACACC CTGCTCTCTC ACCACTCCCC TTTCCCCCCC ATTATGCTGT CTCTCTGTAT TAATGCCAGC CTCTTTTCTC CATACCCATA AAAGACATTG ATAATTGGTT TTTGATATTT CTCTTCTTTC CAAGATGGTC ACTACCTTGG CAGAGTCTGT GTTTATTTAG ATGACCAAGC CATCACCCTA GCTTTTGTGT TCTTTGATCT CAACATAACC TTCAGTGTAG GCAGAATTCT AAAAATCCCC ATCTGGGAAC TGCTCTGAGG AATTCTGAAG TTGTGACTGA AGTTCCAAAT GAATTCACCC CAAAATAGTG AAATTATCTA GATGGCCTGA TGTAATCACA CAAGCCCTTT AAAAAGAGGG ATATAAAATC CGAGAGAAGT TTGAGGATGT GCTTTGAGAT GAGGAGTCAC ATGAGAAGGA ATGTGGGCAG CCTGAAGAAG ATGGTTGACT GTCAGCAAGG AAACACAGAC CTCAGTCCTA AAACTACAAA GAAATGGATT CTGCCAACAA TTGGTCCTTA GCAGATTCTT CAGATGGAAG TCTTCGGATA AGAATCCAGC TGACCGACTG GATTGAATGC ATGATAGCCT AAGCAGAGCC CAGCCTAGCC CACCTAGATT CCTGACCTCC AGTGAAATAA TAAATGAGTA TTGCTTTAAG ATGCTAAACC GATGCCAAGT TCTTACTCAG CACTAGAAGA CAGATATACC TTTCTTCCAT TTCCGTAATT CAACTGTCA T GTTCAAATCA TGAGACCTTG TCAAGCCTGG ATTGCTAATA CTATATTATA TGCTAATATT ATATTATATG CTAATATTAT TGCTAATAAT ATAATATTAT TATATTCAGT GACTTCACCC TCTGGTTTCA GCTCTTTAGC CTCCAAGTGA CCCTAATTTA GGTCCCCTCA CCACCTCTGT CTTCCTGCCT TCACTTTTCT GTGATGAÁTC ACTTAACCTG CTCAAACTCT TGCTCCATTT TTCTGTTGCC TTACCCACCT AGCAAAACCA CATCCTCAAA TTTATTCAGC CTTCTAACCT GCTCTAGCTT TACTTCTCTG TGATTGGGAA AGCCATGTCC ATTTGTAACT CTGATGTCAC CACATTTATA GAATCCAGTC TTAGGGGTCT TGGTGCTCGG CAATCTCTCT TTAGGTCCCT TGGAAGAAAA ACTTTTTGTC TACAATTTAG GTCTAGTGGT GGGGGGGGAT GAGCTGAAAG TTAATTGACA ACAGATTAAA GGAAAAAAGA TAAGGTCCTG GGGTTTATAG ACCAGTTTAA TAGGGGAAAG TGGGATGGGG AGAAAGGGAT TCTATGGGAA AACAAAGGAC TTTTAAGAAA GACAAGTAGG CGTTTAGGGA AAGAAGCAAA GATATTTCTT TCAATTTTCT CTCTTTTCCC TAATTAAAAC ATTTATCTAC ACATCTTGAC TCCCTTCCCT TTGGTCACAA CTTAAAAAAT ATATAATATT TGCTTTTCTT TTCTAATTCC TCTGAATTCT AGATCCATTC TGTTTTCTAA GTTACCTGAT TAACCACCTT TTCCTCTTTA TGGCTTGTCT TCCTGGCATG CACACCTATT CTGGCCTAAT TTAAACCAAA CAAGAAATAT TTTCTCAGAG CCCCAAGATA GGCTTTAGAT ATACTGC TTT CTCTCACCTT TCTTTTATAG TGAGACTTTT GGAAAGTGTT GTTTATACCC TGTTTCTATT TAGAGACTAA CTGTTCTCTC ACTGAATTGA TCGAAGGCCC CTGGTAGCTG ATAAGCAGAG CCATGGTGGG GGTCATGGTG CATACAGCCT CTTGCACTGG TTTTTATTTG CTTCAACTTA AGTAGTAGTG AAAATAAATA TACTGGAAGC CAATACAGAT ATTATATTCC CAAATGCCCC CAGGGCTATA ATAAGCCCTG CCTGACACCT GACATCTCAC ACGCTAGTAA AGTAATGCTC AAAATTCTCC AAGCCAGGCT TCAACAATAC GTCAACTGTG AACTTCCAGA TGTTCAAGCT AGTTTTAGAA AAGGCAGAGA AACCAGAGAT CAAATTGCCC AACATCCATT GGATCATCGA AAAAGCAAGA GAGTTCCAGA AAAACTGCTG CTGCTGCTGC TGCTGCTGCT AAGTCGCTTC AGTCGTGTCC GACTCTGTGC GACCCCATAG ACGGCAGCCC ACCAGGCTCC GCCATCCCTG GGATTCTCCA GGTGAGAACA CTGGAGTAGG TTGCCATTTC CTTCTCCAAT GCATGAAAGT GAAAAGTGAA AGTGAAGTCG CTCAGTTGTG TCCGACTCTT CGCGATCCCA TGGACTGCAG CCTGCCAGGC TCCTCTGTCC CTGGGATTTT CCAGGCAAGA ATACTGGAGT GGGTTGCCAT TGCCTTCTCT GAGAAGAACA TCTACTTCTG CTTTATTGAC TATGCCAAAG CCTTTGACTG TGTGGATCAC AATAAACTGT GGAAAATTCT GAAAGAGATG GGAATACCAG ACCACCTGAC CTGCCTCTTG AGAAATCTGT ATGCAGGTCA GGAAGCAACA GTTAGAACTG GACATGGAAC AACAGA CTGG TTCCAAATAG GAAAAGGAGT ATGTCAAGAC TGTATATTGT CACCCTGCTT ATTTAACTTA TATGCAGÁGT ACATCATGAG AAATGCTGGG CTGGATGAAG CACAAGCTGA AATCAGGATT GCTGGGAGAA ATATCAATAA CCTCAGATAT GCAGATGACA CCACCCTTAT GGCAGAAAGT GAAGAACTAA AGAGCCTCTT AATGAAAGTG AAGGAGGAGA GTGAAAAAGA TGGCTTAAAG CTCAGCATTC AGAAAATTAA GATCATGGCA TCCAGTCCCA TCACTTCATG GCGAATAGAT GGGGAAACAG TGGAAACAGC GGCAGACTTT ATTTTTTGTG GGCTCCAAAA TCACTGCAGA TGGTGACTGC AGCCATGAAA TTAAAAGATG CTTACTCCTT GGAAGAAATG TTATGACCAA CCTAGACTGT GTATTAAAAA GCAGAGACAT AAGCAGGAGG AGCGGCGGGC AGGAGGCTGC AGGATGGTGA AGCTGACGGC GGAGCTGATC GAGCAGGCGG CGCAGTACAC TAACGCGGTG CGGGACCGAG AGCTGGACCT GCGGGGGTAT AAAATTCCTG TCATTGAAAA TCTCGGTGCC ACCTTAGACC AATTTGATGC CATTGATTTT TCCAACAATG AAATCAGGAA ACTGGATGGT TTTCCTTTGT TGAGAAGACT AAAAACATTA TTAGTGAACA ACAATAGAAT ATGCCGTATA GGTGAGGGGC TTGATCAGGC TCTGCCTTGT CTGACAGAAC TCATTCTCAC CAATAACAGT CTTGTGGAAC TGGGTGATCT GGACCCTCTG GCATCTCTCA AGTCACTGAC TTATCTGAGT ATTCTAAGGA ACCCTGTAAC CAATAAGAAG CATTACAGAC TCTGTGATTT ATAAAGTTCC ACAA GTCAGA GTACTGGATT TCCAGAAAGT GAAACTAAAA GAGCGTCAGG AAGCAGAGAA AATGTTCAAG GGCAAACAGG GTGCATAACT TGCAAAGGAT ATTGCCAGGA GCAAAACTTT CAATCCAGGT GCTGGTTTGC CGACTGACAA AAAGAAAGGT GGGCCATCCC CAGGGGACGT GGAAGCCATC AAGAATGCTA TAGCAAATGC GTCAACTTTG GCTGAAGTGG AGCGGCTGAA GGGCTTGCTG CAGTCCGGTC AGACACCTGG CAGAGAACGC AGAGCAGGCC CCACTGATGA TGGTGAAGAG GAGATGGAAG AAGACACCGT TGCAAATGGG TCCTGAGCAG GGCGGCCTCA GCACCTCAGG ATGTGTAACA GTCCACCTCG GACAGGTCCT GCCTTGTGTC AGCAAAGTAG AGTTCATCAA CATTGTTGAA ATGCTCAAAA CTGCTGCTTG TAATTTTGTA ATACAGATTT TGAAATCTAA AACCCAGTTT TCTACCAGTA GTACAAATAA AGGACACTCG CTATGCTGCG GGTTGTGCGT CACTGGGGCG TGTGCAGTGA GGTATGGATA TGGAGAGTTG GAAATGCAGC AGGGCGGCTC TGTGGGCAGG CTTCACAGTC CTCTTGAAAT GTTTAGATTT TTAAATTCAT AATAAAACTT AGATTATCTG TGTGCTGCTA CTGGTTGTTA GAATTTGCGA TATGGGCTGC ATTTTTTTCT TCATGAAGGC TCACAAACAT CATTAAAGAC AGCCAGGCCC CAGGGCTTTG CAAGAAAAAA AAAAAAAGCA GAGACATCAC TTTGCCAACA AAGATCCGTC TATTTTCCAG TAGTCATGTA TAGATGTGAG AGTTATTTTC TTTATAGAAA GCTGAGTGCT TAAGAATTGA TGCTTTTGAA CTGTGGTGT T GGAGAAGACT CTTGAGAGTC CCTTGGACTT CAAGGAGATC CAACCAGTCC ATCCTAAAGG AGATCAGTCC TGAATGTTCA TTGGAAGGAC TGATGTTGAA GCTGAAACTC CAATACCTTG GCTACCTGAT GTGAAGAACT GACTTATTTG AGAAGACCCT GATGCTGGGA AAGATTGAAG GTGGGAGGAG AAGGGGATGA CAGAGGATGA TATGGTTGGA TGGCATCACT GACTCAATGG ATATGAATTT GAGTAAATTC CAGGAGTTGG TGGTAGACAG GGAGGCCTGG TGTGTTGCAG TCCATGGGGT AATTAAGAGT CGGACAGGAC TGAGCGACTG AACTGAGCTG ACACCTGAAT TTGCTAAGGG GGAATTGTGT TCACCACTTA GAGAACACAT AAGGAATGGG CCAAGTCCTT ACCACTTCCT TGCAATTGGT AGCCAGGCAA GCAGACAGAG AGAGCTCAÁG GGGGCTGGGA GAGGTTTGGA GGATATTAAG AATTCTATGA GAAGGATGAA GAGAGCTTCT AATAGGTCCA TATAAGAGCT TTGATAATAG GGTTGCCTGA TTGATGGCAT TATAGGCCCA GGAAGCTTGT TCCTTTAATG AGAAGACTTT GTTTTTGATT TTTACTTTCT TGCCATTCTG TATAATAAAT CATACCCTTT ATACTTTGTC AACATTAAGT TAATTTATTA ACTTTATTAA TAAAGTTTAT CAACATTACA TTTATCAACA TTAAGTTGAT ATCAACTCAT CTGTTGCTGA CATTCCATCA AGCACTGATA CCCCTGTGAA AGCCATACAA GCAAACACCC TTCACTGGTG TGATGATTGG AAAGGAGTAT TAGGCTCCCT CCCTGCCCCC ACTGCAAAAT CTTCCAGTTA TTTTTAGAGT TTTCAAA AGG GTGGCTCAAG TGATTTTATG AATAAGACCA TTGGCTTCCT TCCTGAAGGC ATTTTTTCTG AAACATCTAG CTATGCCTAT GTGCACTGCC TACAGAAACG CATGGTGACA CCTAGGCCCT TCTAGTGCTC ATTTAAGATC GCCAATGATA CCACTCTAAT GGCCAAAAGC AAAGAGGAAT TAAAGAGCCT CTTGATGAAG GTGAAAGAGG AGAGGGAAAA AGCCGGCTTA AAATTTAAAA TTCAAAAAAC TAAGATCATG GTATCCAGTA CCATCACTTC GTGGCAAATA GATTGGGAAA AAATGTAAAC CGTGACAGAT TTTATTTTCT TGGGCTCCAA AATCATTGTG AATGGTGACT GCAGCCATGA AATTAAAAGA AATGTGCTCC TTGGAAGAAA AGCTATGACA AACCTAGACA GCATATTAAA AAGCAGAGAT ATCACTTTGT GAACAAAGGT CCATATAGTC AAAGCTATGG TTTTTCCAAT AGTCTGATGC TGGGAAAGAT TGAGGGCAGG AGGAGAAGGG GGAGACAGAG GATGAGATGG CTGGATGGCA GCACCGACTG AGACATGAGT TTGGGCAAAC TCCAGGAGAT AGTGAAAGAC TGGGAAGCCT GATGTGCTGT AGTTGCATAG GGATGCAAGG AGTCAGATAC GGCTTAGCTA CTGAACAACA ATGATATGTG TATCAAAGGT GTGAACTCCA GTTGACCTCA TAGCTTTCAG TTGGGAAATC TTGACTTTGA TAAGTCTATG ATTTGACTGT AAGGCATGTA AAACATGACT ATGACTTCAA GGGCAGAGGC AAATGGGACT GAGCACAAAG CACTCTTAAA TTGTTGGGAG ACTGAATCTG GGACCAACTT TTTGTGGGAA ATTTAGCTAT ATGTATTAAA AACTTT TAAA TGAGCATACC TTTTGCCTCA GCAATTCCCT GTCTGGAATT TACCTGAGTG TGTGTGTAAT GACAGAGCTT ATAAAGATAT TTTGTGAATA ATAGGAAGAT TGGTTAAAGT ACATAACAAA CACTGAATAC CATGTGCCCA TTAAATATAA AGTTGTAGAA AGATTTTGAA TGACAGGGAA CCATGTTGCA AAATAGCAGT TTTACAAAAT ATTAATAGTA ATAGCTACCA TCTAGTGTGT GTGCGCGCTC AGTTGTGTCT GACTCTCCAC AAAGCCCACC AGGCTTCTCT GTTCATAGAA TTTTCTAGGC AAGAGTACTG GCATGGGTTG CTGTTTCCTA CTCCAGGGGA GCTTGCTGAA CCAGGGATTG AACCTTGGTC TCTTGCCTCT CCTGCATTCA GTTCAGTCGC TCAGTCGTGT CCGACTCTTT GCAACCCCAT GGACTGCAGC ACTCCAGGCC TCCCTGTCCA TCACCAACTC CCGGAGTTTA CTCAAACTCA TGTCCATTGA GTTGGTGATG CCATCCAACC ATCCCATCCT CTGTCGTCCC CTTCTCCTCC CACCTTCAAT CTTTCCCAGC AACAGGGTCT TTTCAAACGA GTCAGCTCTT CGTATTAGGT GGCCAAAGTA TTGGAGTTTC AGCTTCAACA TCAGTCCTTC CAATGAACAC TCAGGACTGA TTTCCTTTAG GATGGACTCC TGCATTGGCC AGCAGATTCT TTATCACTGA GCTACCTAGG AAGCCCCAGC ATCTATTAAG TGCTATCTAA TGACATTACA TACATTATCA GTGCTTTATA CACATTGTCT CATTTAATGT AACTATCCTG AGAGACCCTT TCCCCTGATT ACCGATAACT ACTTAAAGGC TAAGGAACTA GTTCAGGTCT CCAGGGTTTG Agaga GCCAG AATTCAGACA CAGACTATCT GACTCCAGAG ATAATGATGT CCATCCCCGT ACTCTGTATA CAAGCCCATT TTTGTTTTTT AAGAAAATAT GTATGCAGAG AAAGAGACTA AAAGCAGATG GTATGTGGCT GGTGGGTATA GATGATTTTC ATCTATTTCT TGATATGTCA TAAGAGAGGA ACAAAAAGCT TAGTTACATG GAAATGAAAA AGTGTTAGAT TAAGAACACA TCTAGGGACT TCCCTAATTG TTTAGTGGTT AAGACTCCAT GCTCCCACTG CAGGAAGCAT TGGTTTGATC CCTGCCCGGA GCTAAGATCT TCATTGGCTG AAACAGTGGG TACTGTGGGG TCAAAGAAAA AAGAGAACAC ATTCAGTAGT TGTCCCAATA ACCAGGCACT ATAAATACTG GGCAGTTATT CTGTTCAAAG AGGGTGAGCA GAGGGCAGTG GTCTGAGAAA CTGAGTCACC CATTTATCCT CCTAACTTTT GACCTTGTGC AAGATGGCCT CATTTGGACC AGGTGGGTCA TCTTAAAATT AGGAAGGTAG TCTTTAGGTT CCTCCCTCCC TAATATTCTA TTACCTAAAA TACCCAAACA CTAAATGAGA AAACAGGGCA TTTGAAAATA GTTGGTTTTG TTCAGTCACT AAGTCGTGTC TGACTCTTTC TGACTCCATG GACTATAGCC AGCCAGGCTC CTCTGTCCAT GGGATTCTCC AGCAAGAAGA CTGAGTGGGT TGCTATTTCC TTCACCAGGG GCTCTTTCTG ACCCAGGGAT CAAACCTGTG CCTCCTGCTT GCAGGTGGAT TCTTTACTAC TAAGAGCAGC AGCAGCAGCA GGCAAATTCT TTACCACTGA GCCACCTGTG AAGCTTAGCC CAAAGTAAAA TGTTAACTTA GAACTTAAA A CGACTCATTT CTATAATGCA ATGCAATTAT GAAATGCTGG CTTCAATCTT AAATTTTCGA ACAGAATTTG ATGGCAATGA TCCGCTTGAG AAAGCATTAG GAAGAGGTTA TGTACTCTTT TCCTGAATCT GCACACTCTT ACAGCTTTTC TACACGATCG GAGTATTGAA TAGATGCATG TATCACAGGA TTGTGAGGAA CATATTTAAA CTATTCACTG AATATTTTCA TTCAAAAAGT TTTGTTTCCC CCTCCGAACA CCCTTAGATT CAGTTCCTGA TTTTATTGGC CCTGGGAAGC AGGGACCTTA TTTCTCAGAA GCTCATTCAT TAGAGACCGC CTACTTGCCC CGGGGGTGGA CAATGTGTGT GACAGGAAAA AACCTCGGTG CCAGGGTCCC CGGGTATTTA GGGGCGTGGG ACACTGGCAG TGGCCAAATC CGCCCAGGTC AGACCAGGTA TTGATCCCCC CGGGTAGCAT TTTGTGGTTG GTCTCCAGGG GTACTCCCCA CTGTCTATTT CATACCAGCC CGGGAAGCAG GATTTGTAGC GTTGTCGCCG CAAGCCCAGG GATATAGTCA TTTCCCTGAC CTCTTCCCGG CGGCCGGGTG ACGGTCAGGT CCAGTACCTG GCTGGGTCCT CTAATGACAC TTGCGTGCTC TCAGCCCAGA CGCCGGGCGC TTATCGCAGC CAGGCAGGCA GCGCCACGCC TTTCACGGGC CCTCGGGCAT CGACCCTGAG GGAACAGGGG CGTGAGGGTG GGGCCGCTGC CGGGCGCTGT CCCGGTCAGC AGTCTAAAGC TTGCGAAGTG AGGCTGAAGT CGGTGCTGCC TGCGCTCGCT CGTCGGCCCT CGACCGCCGG CTCGCCGCCC GCTCTCTCCG ACGTGACGGT AACCCGGGGC CAGTGCCT TC CCAGGTCAGC CGCTGCGCCG GTGAGTGCGG GGTGCTAGGG GGGCGCGTGG GCGCGGTGGG TGGGCTGCCG CCGGGGGTCG TGGGCGTCGG TCGGGGAAAG TCGCCCCCGG CCGGGCTTTG CCTCCAGCGC GGGCTGTGTC CTGAATCCCA CGCCGTTACC GGGCGAATCC CGAGCGAGCG GGAGTTTCCG GCGGTCTGAT AGGGACTGGG GAGACGCTGG AAGGAGGAAA GGAGC CAGAG AGTTTTCGTA AAAGCTTTTC ATCATTTAGG AAGCACTGTA CGGATGCCTG ATGTCATTGT TAAGTAGGAG ATGCTTCCGT AGGGTATATT TGGAAGGTCC AGCTGACTCA GCGTTTTATA TAAATGATTG TTAGTGCTCT GCCTCTGAGC ACAACAGCTC CTGAGATTGA AGCCCTCGGT TAAAACTGAA CCGCTAACTG TGAGTAAATT GTGAAAACCG TTTGGAATAT ATGGCATAAA AGGTCCGTGG CTATTGTGTG TGCATTTGGT AGGCAATAGA AAACTGTACA ATTGAAATGA CTAGGTTTTA ATTATTCCCT CTCAGTTTTA TTTGAAAGTG AGTATGAAAC AGACTGAAAA TTTAGACTCC CCTAAATTTG GACCTCCACC CCGCCTCCAG AAAACAGCTC CTTGGTGCAA CCGATTTCGT GTCTGGTAGC ATGGGGTCAC ACAGAGTCGG ACACGACTGA AGCGACTTAG CAGCAGCAGC AGCAGTGTGT TTTAGCCGGT TGGTAAAACT CTTCCCTTTC CCCAAATGTA TGATATTGGA TAGATAAAAG TTATTGAGTA TGGAGGTAGC AGAGAAACTT GTTAATATTG GTACCTTTAA AGGGATTAAC CGATATATTC TATGCCCATT TCTTCTCCCT GGGACATAAA GTTTGT CCAC AACTTTGGTT GGTGTGCTAA AGCATTATTG AGCTGCCTTT TGTAATTTTT CTGTGGATAG TTGACTCAAT GATTAACTTC AAAAAATTAA CCAGCTTATT AAAAATACTT GTTAAAAATG CTACTAAAGT TAGAATACAG AAAAATACAT AACCAAAAAA GTTAGATTGT AAATCTAGCA AACAGTTAAA AAAAATACCC ATAATGTTGC TTTGTTTCAT TTTCTCACTC AGTGGTAGAA ATATAAAAGC TCATTCCACT TTCACGAAAA AAAAAAAAGA TTTATAGTAA CAAATGTTCA TTGGTCATCT TTGTTCTGGA CCCTGAACAT TTAGCTAGAG CCCCCTGAGG TGCTGTTGCA TCAAAATGAT ATTAAAATAC ACTTACCAAA ATCAATTTCT ACATTTAGTT GTGTTAAGTG TTCATGAGCT TTTGAGGCAA GCCTAAGTAT TACAAATGGA AAGAGAAÁTG CACCAAGAAA AGAGTCACTG TGGGGGAGTA CATTTGAATG TATGTGGACA GCAAATTAAA GTTATATCTT GGAAGCTAGA ATAAAAATGG ACCAATCAGT CACACAATTC AGTGAGGÁCA AAGGCAGGAA ATATACATGA GCTCCTTAGA GAAGCTTTTC CTGGCACCTA CTTCTGAGAG AAATGTCTAA TATCACAGAA GGCTGCAGAT GAGACTGAAG TATAGCGGTG GAAGAGTCTC CTGGGTGCCC ACCCATAGTA CATGCGGTCG TGCATTTTCT AGGACTGCTT GCTGTAGTTG TCATTCTCCT TACCATAAGT ATTATGAGAA ACACTCGTAG GATGCTAAGC CTCTATGGTT CCACATGCTG TGGTTTGATA GTTTGGGAAT AAATCTGGAT TTTATAGAGG GGTAGGTAGA TCA CCTCATGTTT GATACTG TTTCTCTCAG GCATTTCTGA CAGAAGTTTG GTGTCAGTTG AAGGTTATAT CAAGTGAGAA GTTTTATTCT ATGTTGCTTA CTGGGGTTAG AGGTTAAGGT TGAGGCTCTT TTAGTGAAAC TTAAAGAACC TGAATGATCA TCCTTGATAC AGGGTATATA GGTCTGTGCT ATGCTGTGCT TAGTCGCTCA GTCGTGTCTG ACTCTTTGCG ACCTCATGGA CTGTAGGCTG CCAGGCTCTT CTGTCCTTGG AGATTCTTCA GGCAAGAATA CCTGAGTGGG TTTCCATGCC CTCCTCCAGG GGGTCTTCCC AACCCAGGAT CAAAC CAATG TCTCCCTCTT TGCAGTTGGA TTCTTTACCG TCTGAACCAC CAGAGAAGCC CAAGAATACC GGAGTGGGTA ACCTATCCCT TCTCTGGGAA CCCTATTCCG ACCCAGGAAT CAACCAGGGT CTCCTGCATT GCAGGTGGAT TCTTTACCAG CTGAGCTACC AGGGAAGCCC GTATAGGTCT ACAGTAAGCT AAAGTTTATC CTTTTAAAAA ATCAGTTCTG AGTTCAGAAT GTGAACCAAT AATGATGGAG TATCTAGATG AATTTGGCTT TATAGTTTTT TTTTCCCCCC AACATTAGTT TATGAGATCT AATTCACATA TCATACAGTT CATGCCTATT TAAAGTGTAC AGTCTCTGCA GTCTTCACAT TTTCATCATT CTCGCCCCTA AAAACCAGTT AACACTCACT CCTCCTTCTC ACCATAATCC CTTAATCTCT GTAGTTTTTT GGAAACCAGT GTTCTGCTTC ACAAGGAGAC CATTAGAAAG TGGACATCTA ATTTTTGAGC CACATACTTA GCTTGTTTAT AGAAATAAGT AAAATATTCA GAGAATCGTA ACAATGAAAG TTAGTGGT GT TCTGTTGTTT AAAATGAGGT GGGTGGGTGT GGGTGAAGCA GAAGTGCTGC CCACATCCCA ATTCCAGTGA AGAAGTTTTG TTTTTGGCAA GAAGGGTAGA ATGAAATCTT AAAACTCCAT TGAAAATGCT GATTACTAGC TCAGTCCCTT TGCAGCTGAA AAGACCTGTT ACTCTTTAGA GCAATGGTTG GCTGGGAATT ACTGCTTAGA TGGAGGTAGC AGTAGGTAGT TCTCTGTCAT TTAACGGGAT TTAAGTTCTT ACCTGGAAGC ATAAAAAGGA AAGTCTCTAG AAAGCAGCAA GCCCTGTTAG CTCCCTCTGA AAACACTTGA GCTGAGTGTC TTACAAGGAA AAAGGAAAGA TTGCCTGAGG GGTACCCAAA CTTCAGATGT TTTGCACAGG AGACCTGTCT CTTCTCTTCT GGTCCTGCTG CATGGGCAGT TCTACGCTGA CCACACCCTG ACTTCACCCT GAAGTGAAGT GAAGTGAAGT GAAGTCACTC AGTTGTGTCT GACTCTTTGT GACCCCACGG ACTGTAGCCT ATCAGGTTCC TCCCTCCATG GGATTCTCCA GGCAAGAGTA CTGGAGTGGG TTGCCATTTC CTTCTCCAGG GGATCTTCCC AACCCAGGGA TTGAACCCGG GTCTCCCGCA TTCCAGGCAG ACGCTTTAAC CTCTGAGCCA CCAGGGAAGC CCTGGACTTC ACCCTAGAGG AGTGAAAAGA AGGGATGCAA AAGGTACAGG GAACACAGGA TCCTTAGAAA GGGAAAATAA AGTATTTCAT TTTACAACTT TTCCTCCACC ATCCCATATT ATTTTGAAAT GCCATATGAG AGTTGGACCA TAAAGAAGGA TGAGCGCTGA AGAATTGATG CTTTCAAACT GTGGTGTTGG ACAAGACTCT TGAGAGT CCC TTGGACTGCA AGGAGATCAA ACCAGTCAAT CCTAAAGGAA ATCAACCCTG CATGTTCATT GGAAGGACTG ATGCCGAAGC TGAAGTTCCA ATTCTTTGGC CACCTGATGT GAAGAACCGA CTCACTGGAA AAAACCCTGA TGCTGGGAAA GATTGAAGGC AGCAGGAGAA GGGGACGACA GAGGATTAGA TGGTTGGATG GCATCACCAT CTCAATGGAC AAGAGTTTGA GCAAGCTCTG GGAGTTGGTG ATGGACAAGG AAGACTGATG TGCTACAGTC CATTGGATCA CAAAGAGTCA GACATGACTG AGCAACTGAA CAGAATTGAA ATTAAAAAAA TTTTGAGAAG CTGAAGCAGT AGCTATATTT TCCATCCACA TTTTTCTCCA GTACTTTGGC CACCTGATGT GAAGAACGAA CTCACTGGAA AAGACCCTGA TGCTGGGAAA GATTGAGGGC AGGAGGAGAA GGGGGTGACA GATGAGATGG CTGGATGGCA TCATCGATTC AGTGAATGTG AGTTTGAGCA AGTTCTTGGA GACAGTGAAG GACCAGGAAG CCTGGTGGGT TGCAGCCCAT GGGGTCACAA AGACTTGGAC ATGACTGTGA CTGAACAGCA ACAACAAAGA TAAGATGAGC AGGTCTTCAG AATTAATAAA CGGAAATGGC CATTAACTGG TGAATGCTTG CTGTCTGCAG GTGGTTTTTA TATTTATTCT CATTTTTTGG TCACACCAAG CCTTTCAGGG AAGTATTGGA GTTTCGTACT TACAGAGGAG GAGGCAGAGA ATTGTACAGG GTTATTTATT GCTGGGACAA AGTACTTTAT TAAAGATCAC CAACCCTTTC TTTTTTTTTT TTTAAACAGC CTGGTCATTT GTTTCACATT TTCTTTCCAT GTTCAC AGAG CAGCTCAGTT CATTGTAAAG GCATGCAGGG ACAGTGAAAA GAGCCTGTGA GAGCAGGGAG GCCCAGACCT ACCTAACTTG GGTCTAGTCA CTGTGCCATG AAATCTCTTC ATCTTTGTGG ACCAGTTTCT TCGTGGGACT AAAGAATATA GGAATTTGAG CAAGAGAGGT CTGATTTTAT TTAAGGAGTC CAGAAGTAGA ATATGAGTTA GTAGAAATTG CCTGAATAGT AGTGTTAGGT ATGCTGAGAA TTCTTAGTAT TCTTACCTGA TCCTACAATA AAGGATTCTG CAAACCATCT ACTTTGATTT AGAATCTTTC TGATCCATTT CTCCTTTTCA TAACATAGGG AGACTGTTAC ATGTCTTTCT AGAATATATC ATATGATACT AATAGTTACC CCAAGTAAAC ATATGTACTT GAGAAACCTA AAGTAGTAGG CTAACTGTAG TAAAAACCCA ATAGTATCAT TTCAGTTATC TCTTCAATCT AATAGTACTG TTATTATCAT GCCAGACCAT TCACTGCTTC CTCTGGAATC TAAGCTATGA GTATAATCCA TTTGACATGT GCAATGTTGT TTTATACCCA GCTATTACTA GCAACCTAGG GCCAGGTGAC TCATTACATT GCTACAGTGT ATGTGCTGAT TAGCTCTTTC CTCGAGCTAC AAGCTATTCC TTGTGTTCTG ATTTCATACT TAGATATATA CCTGCCCTCT CCCCCAGTGA GATATGTTCT ATCTAGCCTC CTAGAAGTAC TCCTTACCCA GAAGTAAATT CAAGTGGTTT AAATTTTTCA ACAAAAATAA AATTGCTATT CTCTCCCTCT ATAATATGAG AAACTAGAAA AAGAGCTCTT TGGTGCATTA GTCTTCATAA AACAATGCTT TTCCAAATAT ATTACKS GCTGT GGCTGGGTTG CATCGGTCTT GATAAGGAAG TTTTAAAGAA CAAAGATGGC AGTTTAAGTT TAATATTACA CTAGCATTAT AAACATTAAA AAATATTGGG GTTATTTTTT TTTAATTTTT AATTTTGAAA TCATTTTTAG ACTTACTTAA ATGTTGTAGA AAATGGTACA GAGAGTTCCT ATAACATCTT ATGTAACTAT AGTACCACTG TTAAAACTAA ACTATAAACT TATTTGGATT TCATCAGCTT TCCACTATCT TTTTTTCTAT TCAGGATCCA GCCTCAGAGC TCACATTGCA TCTGATTTTT GTATATCCTT AATTTCCTTC AAACTATGAC AGCTCTTCAA CCTTCTATTG TTTTCCCTGA TCTTGACACT TATAATGAAT ACTGTTCAGT TATTTTGTAG AATGTCTTGC AATTAATACT GGATATTTTC TCATGATTAG ATTGAAGTTA TGCATTTTAG GAAGAAATTG GAGAAGGAAA TGGCAACCCA CTCCAGTATT CTTGCCTGGA AAATCCCATG GATGGAGAAG CCTGGCAGGC TACTGTCCAT GGGGTGGCAA AGAGTCAGAC AGGACTGAGC AACTTCACTT TCACTAGAAG TAATCCCAGT GCATCATATC AGGGGTACAT GATGTCTTAT TACTGATGTA AACTGATGTA AACTTTGGTT AAGAGCCGTT TGTCAGGTCC CTGATGGTTA TCATTTTTTC CCTTTGTATT TAATATATAT CATGGGAGAG AAACTTGGGC CTTGCAAATA CCCTGTTTCT CCTTAAGTCC TTATTCACTG GTTTTAGTCC ATTGGTGGAA CTGGATGCAC ATGGTACTGT GTTGTTCTAA CAGTGATTTA AAGATTGTTT CTCATTACTT CTCTTTATTA ATGAGAATTT TATAAGGAA G AGCTGTTCCT TCATTTTTTT ATTCAACTGT ATGAATATAG ACTCATGGAT ATTTATTTTA TTGTATAGGT TATAATTGAA TACAGTCATT ATTTAATTGC TGATCAAATG GTTCCACCAT TGGCCACTGG GAGCTCTTCT TTCAGGTTGG CCACTGTGCC CTTTTGATGT ACCACCTCCC CATCCTCCCT TTTGAAAAAG CATTTCCTTG CTTTCTGGTA TCATGAAATG CTCCAGGCTG ATTTTTCTAT TTTCCATGCC CCGACCCTTG CATCAACCAT TTTTCCAAGG CACTCTGGTT CCTTGTTTTA GAGGCTGTTA TTATCAGAAA CCAAGATCTG GGTACTAGGT GTGTTACTGA AGTTGCTTTG AACTTTTTAA GTTTCATAGA TTTGTGACCT AGCAAATGCA TCTCTATAGG AGGAGTAATG CCTTAAATTT CAAAGACTCT AGAGAC CATA GTTGCCAATT TGCATTCAGT CTCTTATGGG AAAGAAATAC AATTGGAAGG GCTAGAATTT TAAAAGTTCC CAGTTTTTCT CAAATGAAGA CCTGTAAGTG TTTATAAAAC AAATAGAATA AACACATTAA TTTTTATTTA CTCAGGCTCT GATAAGAAAT TAGCTTGTTA CTTACTGAAT GTATGTGAAG GGGAGATATG CATAGATCAT ATCTTTCAGA AATGCAAAAT GTCTTTAAAT GAATTGTGAG ATCCTGGCCT CTACTTCCCC ACACAAAAAA GACTTCTGGG TAAGTCTTTG AGCCTACTTT CTCATTCTGA AAAGAAAGGT TTTAGGCAAG ATTTTCATTT CTCTTGACTC TTAGTGGGCT CAGAGGACCC TTTAATATCC AGAAAATTTG GACCCTTTTT CTATATTTTA GGTATAATTT AGTGTGTGTT TATTGGT TCA CTGGTTAAAA AGATTCAGTT TAATTTCATA TCTAATTTAT GTTAATCATG CCAGCTTACT TTTAACACTG AAATTTACTC AGTTAAACTT TATTTTAATC TAAGACAGTC CGGACCACGT ACAGAAGTCT TTTCTAAGAG TTCCATTTCC ACAAACCTTC TTTAACTTTC TTTTTACTGA TAGGTTTTGT CCTATGCTTT TCCTTTCTCT CTCTCTAGGA TAAAATTACT TTCTTTTCCC TCAACAAATT GTATTTTCAT TTCTTATACC TTTTTTCCTT TCATGCAAGA TGTTTTCCTT ACCAATTTTA GTTGTCTCAA TTACATACAT TAACCAGAAT TCTAACTTTT TAAAAACCTC AATTTCTAGT GAAAACTAAG AAGTATGCAG TTATAAACTG TTTTCAATT ATTATTCTGT AGATTGTCAA AATCACAAAT ACTGTTTATG ATTTCTAAAA AATGTGTGGT TTTTTAATGA AAATTTTTCA ATGTGATATT TTTATTAGTA GACCTAAATA TCTTCTCTGT AAAAAGGCAG CCTATGTTGA GTAATTAATG TTTCAGTATC TTATTTTATT TGGGAATGAT CTAGATATTT AAACGGAAAA GAACATGGCA ACCCACTCCA GTATTCTTGC TTAGAGAATC CCATGGACAG AGGAGCCTGG TGGGCTGCTG TCCATGAGGT TGCACAGAGT CGGACACAAC TGAAGCAACT TAGCATGCAT GCATGCACTG GAGAAGGAAA TGGCAACCCA CTCCAGTGTT CTTGCCTGGA GAATCCCAGG GATGGAGGAG CCTGGTGGGC TGCTGTCTGT GGGGTCACAC AGTCGGACAC GATTGAAGCA ACTTAGCAGC AGCAGCAGCA GATATTTCAT AATTTCCATC ATTTCATTTA ATTTAGC AAA ACTATAAATA TTAAGTCATC TAAAATCTAG AGAAATTATT TTTAAGTAGA CAAACCGTAA GACATAATTA TTCTTAAAGA ATTTACCTCA AAATTGTTAC TCTGTTTATA TCTGTTGAAT TATAGTTATG TTTAGATTAC CATGAAAACT AATGAGACAT TACACAAAAT AAGCCATCAT TTCAAGATTT TTTTTTTTGA AAATTTTATA ACAGAGACAG TATGACCTAT TTAACTTTTG GTAAACCTAG GTGCAATAAA AGTAAGAATG GTCTGTATTC ATTAAACCAA CAAATTTAAA CTTTAAAACT GATTCAGTTC AGTTCAATTC GGTCGCTCAG TCGTGTCTGA CTCTTTGTGA CCCCATGAAT CGCAGCACGC CAGGCCTCCC TGTCCATCAC CAACTCCCGG AGTTCACTCA GACTCATGTC CATCGAGTCA GTCATGCCAT CCAGCCATCT CATCCTCTGT CGTCCCCTTC TCCTCCTGCC CCCAATCCCT CCCAGCATCA GAGTCTTTTC CAGTGAGTCA ACTCTTCACA TGAGGTGGCC AAAGTACTGG AGTTTCAGCT TTAGCATCAT TCCTTCCAAA GAAATCCCAG GGCTGATTGC CTTCAGAATG GACTGGTTGG ATCTCCTTGC AGTCCAAGGG ACTCTCAAGA GTCTTCTCCA ACACCATAGT TCAAAACCAT CAATTCTTCG GCACTCAGCT TTCTTCACAG TCCAACTCTC ACATCCATAC ATGACCACTG GAAAAACTAT AGCCTTGACT AGACGGACCT TTGTTAGCAA AGTAATGTCT TTGCTTTTCA ATATGCTATC TAGGTTGATC ATAACTTTGC TTCCAAGGAG TAAGCATCTT TTAATTTCAT GGCTGCAGTC ACCATCTGCA GTGATTTTGG AGCCCC AAAA AAGAAAGCCT GACACTGTTT CCACTGTTTC CCCATCTATT TCCCATGAAG TGATGGGACC AGATGCCATG ATCTTTGTTT TCTGAATGTT AAGTTTTAAG TCAACTATTT CACTCTCCTC TTTCACCTTC ATCAAGAGGC TTTTGAGTTC CTCTTCGCTT TCTGCCATAA GGGTGGTGTC ATCTGCATAT CTGAGATTAT TGATATTTCT CCCGGCAATC TTGATCCCAG CTTGTGCTTC TTCCAGCCCA ACATTTCTCA TGATGTACTC TGCATATAAG TTAAATAAGC AGGGTGACAA TGTACAGCTT TGACGTACTC CTTTTTCTAT TTGAAACCAG TCTGTTGTTC CATGTCCAGT TCTAACTGTT GCTTCCTGAC CTGCATACAC ATTTCTCAAG AGGCAAAACT GATTATTAGT ATAATATTGA CTATTTCCCA GATCACAAGA ACTTGAAATT TATTTGGGTT GGCTTTCTTT TAAGTAACTT AATTAAAAAA CTTTTTTTTT TTTCCAAGAT TTTTTATTTT TAATTTTTTG GCCAAGCCCT GCAGCATGTG GGATCTTAAT TTGCTGACCA GGGATCATCC TAGGCCCCTT GTCAGTGAGC ACGTAGAGTC CTAACCACTG GACTGCCAGG CAATTTGCAG GCTAGTTTTT TATTATATTT TTAAAATATC AATTTGTAAG TGATTACTTT GTCAACAAAG GTCCGTCTAG TCAAGGCTAT GGTTTTTCCA GTAGTCGTGT ATGGATATGA AAGTTGGACT ATAAAGAAAG CTGATCACAG AGGAATTGAT GCTTTTGAAC TATGGTGTTG GAGAAGACTC TTGAGAGTCC CTTGGACTGC AAGAGTTCCA ACCAGTCCAT CCTAAAGGAG ATCAGTCCTG GGTGTTCATT GGAAGGACT G ATGCTAAAGC TGAAACCCCA ATACTTTGGC CACCTGATGC GAAGAGCTGA CTTGTTGGAA AAGACCCCCT GATGCTGGGA AAGATTGAAG GTGGGAGGAG AAGTGGACGA CAGAGGATGA GATGGTTGGA TGGCATCATG GACTCAATGG ACATGAGTTT GGCTAAACTA CGGAAGTTGG TGATGGACAG GGAGGCCTGG CATGCTGCGG TCCATGGGGT TGCAAAGAGT CAGACACGAC TAAGCACATG AACTGAACTT TTACATCAGT TAAATACAGC TTTTTTATAT GTGTAATTTT GATAATATTA TCTGGAGTTA GGAACATATC ATATGTATAA TGTACACATA GAAATATAAA AAGACATAAC TAGAGACCTC ATAGCTTCAT TTGAAAACTT AGTTATGTAT CAGTTATTGC ATTATAAATT TACTAGTTTA TAAATAACAA TTTGAATAAG TTAAATATAT TTGCTCAGAT GACTAAAGCT TTTCACTGTT TGTGAAGAAT ATTTTAAAGT TTGTATTTGT CCTTGATAAA TCCTGAAGGA GGCTGTGAAT TAGATATGAT GAGGGATGCT TTCTAGCAGT TTGAGTTCAG AAAAGCCTGT TTCTCTCTCT TTCTCTCTTT CTTTTTTTTT TGGTGCAGGT TCTACCTGAT TGAGCTAATT CATAAGCTCA GTCTTAGGTC CTTGTGGGAT GTACTTATGT TTCTGATATG TAGAGATTTG TAAGACAAGA CAGTTGCTTT TAATTCCTCA GAGAACTGGT CTGTCACCTA TATGGTATTG AAAGATTGAT TTGCCCAACT ACATTTTCTT TATTTGCTTC TTTATATCAG TAAAAAGATT TCCAACTACA GTGAAAATCA AGAGTTATAT GTTCTAGAAC TTTAGGGTTC AGTTTATC CT GCTTTCCAAA CTTTGCACAA GCTATTCAAT AAAGGCCCTC TTTTTTGAGT ATACAAATTA AACCCAGAGC AGTTCACTCT AGGGGCTAAA AGTCTTCATT ATTTTTATTA ACTCCTGAAT ATTAGCCCCC AGTTTTATTT CATATTGTGT GGGCTCAGGT AACCCTATTG ATTTTCCTTA GTGTGTTTAA TCAATGTTGC CTGAGGGGCA GATTTATAAG CCCTATCTTA CACCAGGCAA GGGTGACCTA AGTTTATTCC ATAATATAAT TGGCAGAAGA GATTTAACCA TCTTATATAA AGCCCATTTA AACATACCAA CTTTTATAAA CATTCATCTC AATTCTCTCA GCTCTTATAT CTGTAATTTT AACCTCCATT AAGTCCCCAT CAACCTGTCT TGGTCTTACA CAGAGTCCCA GAAACGTTTC TTTTTATCTC CCTGACCACG TTATCTATCT TTATATAAAA GGCTTTGGGT TTCCCAGCCG AGGGGTTGAG CCAAGGGACT CAGGCCTTTC ATTGATATTT TAACTTGATT AATTGGCCTA ACTGTTGCCC CAAGCAATTG AATTTTCTAG CAGCCTTTTA AATATGTATA TGTTTTGCTG TGCTTAATTT TGCTCAGTGT GTCTGACTCT TTGCGACCCC ATGGAGTGTA GCCCACCAGG CTCCTCTGGC CATGGGGGAT TCTCCAGGCC AGAATACTGG AGTGGGTTGC CAGGCCCTCC TCCAGGGTAT CTTCCTAACC CAGGGATCGA ACCCAGGTCT CCTGCATCAT AGGCAGATTC TTTACTGTCT GAGCCACCAG GGAAGCCCAA ACTGGGGTAA ATAGAGTGGA CTTGTTTGGG GTTCTTTAAT GATGGAGACC GATAGGGAGT CCCTTTGGCC ATCCAACCTT AGCATTG TAT CAAAATGTTT GTTTTGATAC ATGTATTTAT TGGTTTATTT ATCCCATTTC TTAACCATCT AAAGATTTTT ACTGTTTTGG AACAAGTCTC TTTAAAATTT CTTCCTTGTT GGGAAGATGT CTCTAGACTT TCTCTGCAGT TTTTTCTTAT TCCTGTTAAT CAACCTAACT TAACAATCTA ATGCTTTTAT TAGCATCTGT AAGACCCGTT GAGGGGAAAT TGACCACAAA TTTAGTTTCC CAAACTTTTT TGTTGTTGCT TTTTGTTCGT TTAAACTAAG GGAGTTATTA AGGTTAGCCA TTATATTTTT TTGTATCCAC TTTCTACTTT GGTCTTTTCA TAGGTGCCAG TAATCCAGCT GTTAATAGTG AGAGTTCTCT AAAAATTTCC CAGTTTAGAA GTTTCTTCAA TTTTAATCTC CATTGTCTGG CCATTGCCAG AGCTCTCATA ACACAGGGAG GAAAAAAAAG TCTTAAGATC AGGTAAAACA TTTATATCTC AAAGACACAG TGGGAGAAAT GCTAGTTCCT CCTTTGAAAA GTTTTTTGTT CCTTTAAGGT CAGAATTCCG AGAAGATGTT TTATCAAGCT GGCTTTTTCT AGCTGCACAC ATGCACACAA AAATTAACTT TGGAGTGTTA AAAGAACCCA CATTTGGTCC TTTTTAAGGT GAGGTTTCCT TTAATTCCCA ACAAAGCAGG TACTTGTAGG AATAAATTCT GTTCATACAT AATAAAGTCT TCCCAGCGTC TCTCAACTGT GGTAATCCAG TTTTCAACTG AGCAAAATCT TTCCCTTGTC AGTTCATCTG GGATAACCCA GGTACCTCTT CTTGAAATTA AGTTCAAGGA AAATCTCCTC CAGCGAGGAT TTTATTCACC ATCAAATAÁA ACTAAGGATA ATCAG CCAAT AGTGGAGATC CAGGACCCAG AAGAGATTTA CCTAAATTCA TATGGACTCT GAGGAGGTGG CTAGGCACAA GAGGTCTTTG CTGGTACCAA GGCTCCAGAT TCTTGTAGCG TTCGGGTGAG GGAGAGAAGT CTGCTCTGGG TCCCTTTGTT GCTAACTAAA GCGGTCGACT GAAGAAAAAC GCATAACCTA AAAGTTGCAA GTTAAGTTTT ATTTGAGGAT CTTACTGAGG ACTGTGGTTC AGGAGACAGC CTCTCAGATC ACTCTGAGGA ACTGCTCCAA ACACAAAAGA ATAAGGGAGT AGCCAGGGTA TTTAGGAAAT TTTGCTGAAA CGAAAAACAA CAACAGGAAA AACCAAACCA TGTAGTCAAA CATCAAAGAT AGTCACAAAA AATAGACATT ACTAGTTAAT GATTTTAGTA CTTTTCTGTA TGAGAAGATA CAAGACT CTG GGCTCATTGT AATTATTCCT TAGATATGCA TCTTAACTTA TCTAGGGCCA GTGCCCAGAA CACACAATGC TTCCTTTTTT TCTCTATCCT AATTTCTCCT CAGCTGTACC TGGGGGGTTT GGGGAATGCG ACTGCAGTGG CTAATGGCTT GATCCTTGTT TACTGGAATA AGAGGCAACA TTCTTTGTTT ACTAGAATGG CAGGCAACAT TCCCTGTCCA CGTCCACGTC TGTCAGTTTC CTCTTAAATG TAAATGAGTG TGAATGTAAA TGTAAAATGA ATATAAAATG TAAATGAGTT TCCATGGACC TGAAGCTGGA CCATTACTAT ACTTGCCCTT GTTTTCCCTT AATTGGGCAA ATTTGGGGGA GGTTGAGAGT GAGATTGCTT TGAAATGGGG CAAACAGTAG AGAGTCATTA TAAAACTCCC ATTGGCTGTG ACCTTGCTGT GGGAATAG GT GCCTTTTGCT TGTTGGAATG CTGGATCTTC CTTGCTCTAC CAGCCCCACT CTTTTGTGTA TAAAGGCTGC ACACCAAGGG TAACCGGCAT CCTAAGATAT ATATCTGAAT ACACTCTTCC TTAGAAACCA GATAATGTTT TTACATACAG TTTCAGAGTG CTTGTTTTGT GTCTGGTGTT GTATTTAAGA GGCTTCCCTG GTGGCTCAGA TGGTAAAGAA TATGCCTGTA GTGCAGGACC TAGAGGACAG TGTCCACATC TTGGCTCTTG AATGACTACA GTAGCCTCTA TGTAGTCTCC CTGCTCTGCT CCTGTCTCCA GCACCCCCAC CCCCACCCCC AAGTCAGAGT GATCTTTTTA AACATAATTA GATTATGTTA TTCCTCCACC GAGAAGCCAA GCAAAGTTCT TATAGTGGCC TGAGGTATGG ACACTGCCAG AATTGACCTG AACCTCTGAC TTCATATCCT ATGCTCTCCC TCCCTCTGCT TCAGTCCCCT TGGCCGTGCT CTTCCTCAGG CTAGCACTTG ATCTTGGCAT CACAACTCCA GAGAGCCACC CTCAGGTTTC TGCTCAAAGA CCTCATTGGG AAGGCCTTCC CTGACTTCAT TTCCTCCTTC ACTTTTATTT TTTTCTCTTT AGCACTGCTG ACTCTGACGT TTTTCATCAA AAGGAAAAAG GAATAGGAGT TAGGGACATA CCCCCATGCA GTCAAAAATC CATTATAACT TTTGACTCCT CCAAAACTTA ACACATATTT TATATGTTAT ATGCATATCT ACATATATTT TATCATTGAT GACATATCTA ACTTTCTTGG TTTTTTTCAA TATTTCAAAT TTTTTCAAAT TGTTGCAAAT CTTGAAAAAA AAAATCTCCC AATATATTTA TTGAAAAGAA ATCCACA ATA TAAGTGGACC TGCACAGTTC AAATCTGTTT GTTCAAGGTA TGGCCAAACG CAAGTTCATA TGCTCGACAC ACAGTAAGGC CAAACTGAAA CACTGGAGTT TGGAACAGAG AAAGGTTTAT TGCAAGGACC AAGGAAAGAG AATGGGTGGC TGTACTCAAA AGATGTGAAC TCCCTGATGG TTTTCAGGAA AGTGTTTTTA TAGGCAAAAT TTGGGGTGAG GGCTGCAGGG TGTGTGACTT CTGATTGGTT GGTGATGAGT TAGCATGGTG GTGTTTCAGA AATCTTGTGC TCAGCCTGAA GTTACTGTTG TCCATCCTGG TGGGGGCCTT ACTTCCTATA GAAAAACTCA AAGATATTGT AATGTATATC CCTTGAGGGG GAACCAGGAC CCTGCTCCTT GGCTGTCCTA TAGTTTCTTG ACTGCCTTTC CTTGGTTTCT GCATTCCTTC ACTCTTCTAA TTAGCAACCA TTTGAATCTG CCCTTTGAAA CTCAGGGAAG GTCTGAGAAA CTGAAATTTT TTCCCTGCAA ACAAGAAATG GGATACAGAG AGACTTTTGT ATGCAAGAGG GCCACACAGG GTCCTGCCAG GTTTCAAGGG TCAGTTATAG TTGCATTAGG TACACTTGTA TCTATTTAAA GAGAGGATTA GGATTAAATG GAGGGACCTC CCTGGTGGTC AAGTGATTAA AACTCTGCCT TCTAATGTAG GGGGTGTGAG TTCAGTCCCT GGTCAGGGAA CTAAGAACCC AGATGTCTCA GGGTGCGGCC AAAAAGTAAA AAAATAGTAA TAATAAAAAA ATTTTTTTTA AAGATTAAAT TAAAAAAGGG ACAGGAAACA GATCTATGGT TGTCATGGGC TGGGGTGGGA GAGGGAATTT CTTTGGGATG ATAGAAATGG TCTTTG TCCT ACTTTTCATG ATTACATGTC TGTATACACC TTCAAAGTCC AAAAACTGTA CTTAAAGAGG ATGTTTGATG GTCTACAACA CTGTTTACTA TTGACACGTT TTGAATAAAC ATGACAAAAA ACAGAGATTA GGCTGAACCA TGAGTAGAGT TGGTGTTATG TTGGAAGGAA TGTTATATGT ACCAAAACGT TCCCCCTCTT GTTTGTTATC TATTCCTTTT TCCTCTGTGT TTTGTGTGTG TTAGTCACTC AGTTGTGCCC GACTCTTTGT GACCCCGTGT ACTGTAGCCC ACCAGGCTCC TCTGTCCGTG GGATTCTCCA GACAAGACTA TCAGAGTGGG TTGTCATTTC TTCACTAGGG GATTTTCCTA ACACAGGGAT CAAACCCGGG TCTTTACCAT CTGAGCCATA AGTCACCAAT TCTCCGTGGA TCCCTCACTG GTCTTACTGC GTATCTCCTC AGTGCAGGAA GGACGGGGAT CTGTAGAATG AGGGAGGAGA TGGCTGAGGG GACCTGTGGA GCTTCCAAAG TCAAGTCTTA GCTCCCTACA GGGCATACGT CACTCTCTGA TGAACTTTGC TGCCTCTCCA GCCTAATTTT CTTACTGCCC TTTCCCCAAA GCTGAACTTT AATATAATGA ACTTACCAAC TAAAAAAAGT CACAACCTAA AAGTTGAGGG TTATGCTGCA TTTGGTGGGA ATTTTTAGGA CTTCAGGACC GGGAGGCAAC ATTTCAAGTA GCCTTGAGAG AACTGCTCTG AGGAGGCAGG GTGGAGGAGT CAGGTTATAT AGACCTTGGC AACGAAGGAC AGGTAGTCTG AACATCAAAA GTATTTTTGT GAATTAAAGA AAACCAGCTA TCTCAAGTTA AGGAATTTAG CACTTTTCTG TATATGGCAA GATGC AAGCC TCTGAGCTCA CTGAAGTCTT TCCTTTCCTA TGTATCTCAG CTATCTGGGG CCAGTATCTT GTGGTTTTTC ACATCCTGAG TTCTCCTGGG CTCCCCATAG GGAGTGGCTG CAGCCTGAAG GCTGTCAGAT CTTGCTGGTG TTCTTCTCCT TCCTGGGTGC CCTGGAGGGC TGGGATCACT GGTGACTGTG ACCTCATTGT TTACTGATAT GGCAGGAAGT ACTCCATTTC TCAAACAGCA TGCATTTCCC AAAGCAATCT CTTTCAGTTT AATGATTTTG CTTTCCTTTA CTAGGTCAAC TTTCTTTTCT CTTCTCTCCT TCCTATATAA CTGGTTAGTC TCCTTTAATA 3GCCACTTCT AACCACTGTG ACCCCCACCC CCACCCGCCC TGCCCCAAGC CATGTATTCC CTGAGAGATG AATCTGGTCT TAATCCCTCA AGTAATTTTG AAGCTCTAGG CAAAGGGGTA GGGAAGGACA TTCCTGGCTG GAAATTCTGC TTTGAAACAG GATAATTATA TTTTCTCTCA ACTCCACCTG GGTTAATACA GTGAGTTTTT AGGGGGTATT CATTAAGCTT TGTCCTTACC TTCCACAAAG TCCAGGTGAA ATCTTTGGTG GTATTTGTGT CCTTTCTAAT TTGTACATAT AGTTTACTAA TCCTGGCAGA ATTTAACTTC TGTAGATGAC CTCTCTAAAT AGGGTGGTTA GTGACTTCCT CTTGTTTGTG CTCACAATAT CTTTATGAAG CTACTTTGCT TAATACAGGG GTGTGGCATA TTGTAATTTA GTCTTTCATT CAGCGGGAAT AATTGAGAAT ATGATATGAG TGACCCCAAA GGATACAAGG GCTTCCCTGG TGGCTCAGAG GTTAAAGCGT CTGCCTGGAA TGCAGTAGAC CCGAGTTCGA TACCTGGGTC GGGAAGATCC CCTGGAGAAG GAAATGGCAA CCCACTCTAG TACTCTTGCT TGGAGAATCC CATGGAGGGA GGAGCCTGGT AGGCTACAGT CCATGAGGTC ACAAAGAGTC GGACACAACT GACCAACTTC ACTTTACTTA AAGGATACAA AATTGATGGA CATTAGGTCC CTGCTCTTAC AACAGACATG TGGGCAAATT TTTAGTTTGC AAATGCATAT ATGGCTTTCT GAAATGGCAG GTTTGCAATA AAGTCCAAAG GAGATAACTT TAAAATATCA TGATTTTACT TATAATTTGG GAGATAGCTG AAGGCCAAAA GGGCATGAGA AGAATGTTCC TGCACTGTGA GCTAGGGCTA GAAAAAACAT TTTAATGATA ATTTGCTTGA TGAGCTGTGA TCCAAATACT GGTCATACAT TGTTAGATAA AGCTTTGTGA CTATTATTAG AAAGCTTTGG AGGGTGGCTG GAAGGTCTAT AGTTCATTTA AATTTATTAT TTTTCTTTCA TCAGCCCACC TTCAGTATTT GAAATTCGGA ATAAAGTAGT CTGAAATTTA CCATGAAAAT GCTATGAGAT TTGTTATTGT TAGGGAACCA TTAATTGCCC ACTTTGGCCG GGCATGATAA TAATTGCTTG CCTGAGTTGT CTCACAATAG GAGGTCCTGG TAAAGAAGGA GGTACTACCT CCAAAAAGTA ACAGGAAAGA GTTCAGATCA GATCAGTCGC TCAGTCGTGT CCGACTCTTT GTGACCCCAT GAATTGCAGC ACGCCAGGCC TCCCTGTCCA TCACCAACTC CCGGAGTTCA CTCAGACTCA TGTCCATCGA ATCAGTGATG CCATCCAGCC ATCTCATCCT CTGTTGTCCC CTTCTCCTCT TGCCCCCAAT CCCTCCCAG C ATCAGAGTCT TTTCCAATGA GTCAACTCTT CACATGAGGT GGCCAAAGTA CTGGAGTTTC AGCTTTAGCA TCATTCCTTC CAAAGAAATC CTAGGGCTGA TCTCCTTTAG AACAGACTGG TTGGATCTTC TTGCAGTCCA AGGGACTCTC AAGAGTCTTC TCCGACACCA CAGTTCAAAA GCATCAGTTC TTCGGCGCTC AGCCTTCTTC ACAGTCCAAT TCTCACATCC ATACATGACC ACAGGAAAAA CCATAGCCTT GACTAGACGA ACCTTTGTTA GCAAAGTAAT GTCTCTGCTT TTGAATATGC TATCTAGGTT GGTCATAACT TTCCTTCCAA GGAATAAGCA TCTTTTAATT TCATGGCTGC AGTCACCATC TGCAGTGATT TTGGAGCGAG CCCAGAAAAA TAAAATCTGA CACTGTTTCC ACTGTTTCCC CGTCTATTTC CCATGAAGTG ATGGGACCGG ATGCCGTGAT CTTCGTTTTC TGAATGTTGA GCTTTAAGCC AACTTTTTCA CTCTCCACTT CACCTTCAGG AAAGAGTTCA GGAGGGGCCA AAAGGAGAAG GGAGGAGTCA ATATATCCTA TCAACCTCCC AGAATCCTTC TCGCTGAAAT CCATCTTGGC TGAGAGATGT ATGCACCACC AGGGAGGACC CTGAGTCAGA ATGATTGGCC AGAGACAACC TGGAAACCAA CCCCATTACC ATAAACGCGG AGACTCTGAG CCATGTGGTG GAGCAGTTCT CCTGGGTTCC CTTCCCCTGC TGCTCTCCGC TGAGGCACCC CTCTCTAATA AAGTCTTTTG CTTTGTCAGT TCGTGTGTCT CCTTGGACCA TTCATTTCTT AGAGCTCACT CTTGGGCCCT ATAAGGGGGT CCCCTTCCTG TACTCAGTAG TAAAAAAT GT TTTGATAAAA TGTGAATTCT GTTTGGGGAC CAGATACTTT AGGGATTCAT CTTGTTTGTT TTACTTGAGG AAAGTGATTT AATTCAATTT AGCTATTGTT CAAAAGACAG TTCTAAAATA ATGGAAGCAT TGCCTTTTTT CAGCCATTGT ATATATGATC ATTTTATAGA TTTGTTATTC TTAACCTGAA ACATATAGCA CTGTCCTATT TTTGAAATAA ATATATCTCT TTCTCTCTCT TTAGTCGCTA AGTCGTGTCC AACTCTTGAG ACCCCATGGA CTGTAGCCTG CCAGGCTCCT CTGTCCATGG GATTCTCCGG GCAATAACAC TGGAGTGGGT TGCCATTTCC TTCTCTAGGG GATCTTCCCA ACCCAGGAAT CGAACCCAGG TCTCCTGCAT TGCAGGCAGA GTCTTTACTG ACTGAGCTAT AAATATAGTA TAGTTTTATG GTATTTTGAA ATCTAAGAAT GAATTTGATA ATAGCATATA GCAAGTATTA TTTTTTTTTT TTTTGATGCA GGATGAATAT GGGAGTGCTT GGGGTGTCCT CATAGTGTTC AAGTATATGT GTCTTTTATG GGGTTATAAA ATTGACTGTT TATAAAGTAA CCCAAGAATG AGAAAATACA TTTTTAAAAA GTAAGCACTT TAGACCTGTG TTGTCCTATA TGGTAACTAT TAACCACGTG TGGCTATTTA AGTATAAGTG AGTAAGTTAA ATAACATAAA ATATTCACCA GCTATATTTC AAGTGCTGAG TAGCAGCCAT ATGTGTCTGG TGGACAGCAC TATTTTATTA TCCCTATGCG TATTAATAAA GAACATGGAA AGGAGCACAG GCACTTTTCC ATCTGACCTC TGATTATCTT GAACTCAAGA GAATCACTTC TTGGGCCTCA TTTACAG CCT TTTTACACAT AAGAAACCAG ATTACCATCT ATGAGATCAG TGGTTGTGTA ACTTGTGAGA ATGAAGGGAA TTGGTAATTT TATTTTGTGT GTGTGTGTGG GGGGGGGGGT GGGGGCGGGG GCCTGTGCTG CTAAGCATGA AGGATCTTAA TTCCCTAACC AGGGATTGAA TCCATGCCTC CTGCAGTGGA AGCACAAAGT CCTAACCACT GTACCATCAG GGAATTCCAG GGAGTTGGTA ATTTTTATCT TGTCAAGTTA TATATCTCTT AGCTGGTGCT CCCTAATCTC CACTATTTTA AACATATCCT CAGCACTCAG TCCTTGATAA ATCCTTCTCT TAGCTATAGA GGAGGGGAGA AAAAAGTTTT CATTACCAGG CCCATTCCTG TGTCTCACTG TTAGCGTGTC TCACTGTTTT TCTGCAGTAG CCTCCTAACG CCCTTGCTTC CACACTTGTC TCACAGTAGC AGCTACAGTG ATTTTTAAAA AACAGTTAAG ATCATGAGCC TTTCCTGCTT GAACGGCCTC AGCGGCTTCT CTTGGACTAT ACAGACCTTC CGCAATGGTA TTTCTTCCTG TCTGTCTGTC TGACCTCGTT CTTTGTGCCG CCCTCCCCAG ATCACTCTGC TGCAGCGCTG TGGGGGCCTT GAGTGCCAGA TCGTTTCCTT GACCTGAAGA CATCAGCCCT CTGACTCCAA CGCTGCAGTG CCGATGTCAA CACTGGATGT TTGCTCCAGG GTGGAACTGT TAGATGAGAG ATGATGTGAA AACCCATTGA TGGATAGAGG ACTCTTTAAA CTTCAGGGAT TTATTGTGGA AGTTACAGCT CAGATTTTGA GTTCCTTTTC TAACAATGTT CAAAACTATC CAGCTTCTAT TTCTGTTTGT TCATAAGTTT TGTAGCAGT C ACCTGACAGT GACCCAAGAA GCCTAATTCC TTGTCAGGGT AGCGAGGTCT GGGCG CACA GTAAATAGCT GAAGAAGGTG TGTTTACCCA GCATGTCCTC TTGGCTATGA GGCAGAGTGT CACTTTTGCT ATTATTATCC CTAGGGGAAA AAAAAGTAAG AAGAAGGCCT GAACTCTTGA CCTGAGGCTG CTCTGGCTTC TACCAGCAGG TGCAATATTT CCAGCTATGG ACAGCTGTCT GGCTGAGGAC TTTAGAACTG AACTCTACTT TTATTACCTG TGTGCAATTT CTATTGACTT ATGTACTCTG TTTATAGTAG ACTGTCTGAT TAAGAGTATG ATAAAGAGTA AGATAGAGAA AAATGGTATT TAAGCGAGTC CTATATTATT GAATTCTGCA ATAGGGAGCA GAATTATATA TGGTTGAGTG TGTGGGCTTC AAAGGCAGCA GGCCTATTTT GGCTTTTTTT TTTTCAATTA ACTAATTTAT TTTAATTGGA GGATAATTAC TTTATAGTAT TATGATGGCT TTTTTCATAT ATCAACCTGA ATCGGCTACA GGTATATGTG TCGCCCCCAT CCTGATCCCT CCTCCCACCT CCCTCCCCAC CCTATCCCTC TGGGTTGTCC CAGAGCACTG GCTTTGGGTG CCTGGCTTCA TGCGTTGAAC TTGCACTGGT CATCTGTTTT ACATATGGTA ATGTACTTGC TTCAATGCTA TTCTCTTAAA TCATCCCACT CTTGCCTTCT CCCACTGAGT CTAAAAGTCC ATTCAAAAGT GGTAGTTTTA ATGCAAGTTA TCATTCTTAT AATAGATATA CCAGTGTCTA TGGAAGAAGA CTTTCCAAAA AAGTAAAAAT GTACCTCATT AGTTAGAAAA CAAGAAGAAG AGAGGAAAGG TGACAAAG GT AGACACAGGT AGAAAAGAGA TAGCTGGGAA GGGGGAAAGA ATCTCGTTAT TCAAAGCCGC TCAGTCATGT ATGGAAGACT GTTCCAGCTG GTGAAAAGAT AATCAGGCCG GTTAACAGGG CAGGCTGGTT CAGGCGAGTT GTATGAAGCC ATTTGGATGC TGCTTTTATT TTTCAAGTCT TTGAAGTGGG TCTCAGATTC AGAAAACGAT TTAGCACATG CTCTGGAAGC TGAACTAAAC TGGAAGCAAG GAAGCAGCAA CAAGGGGGGA AGTTGATTTT TGTCATAGGG AAATCTAGAT GTGGTGTATA TATATATATC TGTAGGGAAA GATTAATGTT TACTTAGAGA CAGTTACTTT CAGTGATTCC TCTATAAACC CAGGATACTG GGATAAACCC AGTATCTGGA TAAACCCAGT ATACTGTATA CAGTATACCC AGGATACTGT ATAAACTGGA GACTTGAGTA CTTGAGGTTA ATATGGTGCT GAGATGTGTG TTTTTAAAAT TTTGTTATCA TTCCTATAAG TTTTTTGTTT CATCTTAGAG TAATATATTG TTTCATATTG GTGTTAGAAA TAAGTTTGGT TTTTGGTATA ATGTGCTTCA GCTGGATGGT GTACTTCAGT TATGCCTGCT CATCTCTTGA TTTGTGACAC ATGAATTACT AAGACCCTGT ACTAAGCATC TCCTATTCCT AAGCACCTCC TAGCAATGTG AATTACTAAC TTAATCCTAT CACAGTGAAG ACGAACTCAG TATGCACATA CTTCTAGAAT TGTGATTGTA TTTATCTGTT CTCTATCTTG GATGGATGGA TGGGTATGGA TGATCTTTCT TGGGTACTAT AGTTCCAGTT GGTGCCTTTT ATTAACAGAA AATCTCACAA AGATTTTGTA TTAATGT TTG TCTTGAGCCA ATGGCCTATT TAAATTTAGG TGGGATGTTA TTTGATTCTC TTAATGAGCC TTGTGGAATA GGAAATGACA ACCCACTTTG GTATTCTTGA CTGGAAAATT CTATGGGCAG AGGAGCCTGG CAGGCTACAT TCCACGGGTC GCAAAGAGTT GGACAGACTG ACCACACACA CACACACACA CACACACACA CACAGAGCCT TGGGAGATTG TTAGAAAGTG TCCTTACGCA CACACGCACA CACACACACA GCCTTGGGAG AGTGTTAGAA AGTGTCCTTG GAGCCTGAAC ATCAAATGGG GAATGGCAAG AGAAGCAATT GCTCGTGTCA GGCTAGTATA GTTTGGCTTT TGAAGACATG GGGGATGGCT TAAGAAGTTT ACAAAGTCGA TATGCAAGGT CTCTATAGTT ATTTGCACCT TGAGCCTTCT CTTTCACTGC TTTCAGAGAG TAGGGCTTGA GCTAGTTATT ACCATTCATT GTGCTCACAG ATTAAAACTA GGCTCTTTTA ATTTTCTGGG TGCCAGTCTA TAAGTGGTTT CCTACTTTTG CAGTTTCCAA AGTGGAATAT GTTTTAAATG TGATAACAAT AGAGCAGTTT CCGGCTATAG GAAGAATTAC AGATTATTTT GATTTGGGGG AAGTTCTACT ATGATATGCT CAGGTGTGTG TGGTTTTCTT ATGCATATCC TGTCTTGGTG TTCCTGGAGC TCCTTCAGTC TGTGGCTTGA TACCTTCAGT TTTGGAAAÁT GTTTGGCCAA TATTTCTTCA AACACTGATT CTGCTTCATT TTTATTTTCT CTTTTTCAGG TCTCCAGTTA CTTGTATGCC AGATCTTTTT CATCACATTT CATATGTTTC TTAGCTCTTT TATGTAGTTA AAAAAAAAAA AGCTA CTTCT TCATTCTCTT CAGTCTGAAG TTTTTTGTTT CTTTTCCATG CTGATAATTT TCATACACTC TTCAATCTGG ATGTTTTCCA CATGGAAGTC TGTCAGTTCA CTAATTCTTT CCCAGTCTGT ATCTAAACTG CTATTAAACT CATCTACTGA TTTTTTAAAA ACTATTGATT AGTTCTTTGG TGATAGCCTA TCTTTTCATT TATTTTCTTA GACATATTAC TCAGTTATTT TAACGCAGAT GTCTGATGAC TCCAACGTGC AATACTTATG GGTCTACTTC TATTTTCTTG TTTTGGAACA TTAGGTCTTA TTTTCTGGCG TGCTTGGTAA TTTTTTATTG AAAATTTGGA TGATGATGAC TTTGGAATAG ATTTAAATTT CTTTTAGCAA AATATGAGTG GATCACATTG CTTGAGTAAA GGCTGGTCTG CTTCTAGGTT GCTCATATTT CCAGGTCATA GCCCTACTGG TACGATCTCA AAAACTTGGG GTTTTCAACT GGTAAACTCA CAGCTCCAAA CTTTGTCTCC CTGTTAATGA GCTGCTACTG CTGCTAAGTC ACGTCAGTTG TGTCTGACTC TGCGACCCCA TAGACGGCAG CCCACCAGGC TCCTCCATCC CTGGGATTCT CCAGGCAAGA ACACTGGAGT GGGCTGCCAT TTCCTTCTCC AATGCATGAA AGTGGAAAGT GAAAGTGAAG TCGCTCAGTC GTGTCTGACT CTTAGTGATC CCATGGACTG CAGCCTACCA GGCTCCTCCA TCCATGGGAG TTTCCAGGCA AGAGTACTGG AGTGGGTGGC CAGTGCCTTC TCCGCCTATT AATGAGATGC TACTTAAATA TATTCATTCA GCTTTTGAGC AGCTCTTTCT GCCTGGTTTT TCTGGGTTTT GCCCCATGTA TGTGTAATTT GCCTCAAGAA TGCTGGGCAT GGAATGCTTC ATCTTTTCTC TTTTCCAGAA TTTTAGATAC TTAAGTCCTG GCTGCTTTGG TTACACCCAT CAGAAAACAT TCTTCAAAGA GCTGCATCTT GTATTTTGTC TGCTTCTACA GTTGTCCTTA GGAGGATGAT TGGTTTGGAC AAGCTACTCT ACAGTAGCCA GAGAGAAAGT TCTTCATTGA TTACTTTGAT TTTTAAGAAT TAAAACCAAG TTTATGGAAG TTTCATTTTT CAAAGCTATT GCACAAGCTG TTAAGTTCAC CTTAAGATCC TACTCTAAAT CCTTATAAAG GGGCCTTTTC TAACTTGTTA AATGAAATAT TTTAAACTTC ATTTATAAAT TTAATACTCA CTTGTTGTTT TAAATTCTTT AACTACTTAA CTCTTGGTTT GATCTTCTCA ATCATTTTTA TACATAATTC TAAACCTTCC TAGAATTTAT ATGTTGTCCA TTAAGAAAAT GAGTTTATCA TTCCAAACAA TTTTGGAGTT TGTCTTCTTA GTTGATTAAA GGAACATAGC AACCAGAGAT GTAAAGTCAG GAGCTTTAAA TTCAAAGAAA TGTCTCTTGT CACTGACTGC TTGGCCACCC CCCTTTTTGT AATATCTATG TCATACACTC AAATAAGAAT GGAGTGATGG TGATCATGTA GCCTGTCCCT GATCTTGAGT CATATTAATA ATATATTTTT TAAGTCAGCT CTAACTCCCA TTTATCTTTT GCTGTTTCAT GAGTTTTGAG TAATTTTCAT ACTCTCCCTA TTTACTTGTT AGATGTTTAA TTGACATCTA ATTGGAGTTT ATATATTCGG AGTTGTGTCT GCCTCCCTAA TGTAGGTTCC AAGCTTGTTA TTGTTGTTGT GATATGGCCT ATTCATTGG A AATGGAGCTG CTTATTGCAT TGAAGTTTAA AATGGACTTG TTTTAAAATT TTAAAAATAC ATTTAATTGT ATTAAATATA GCCAAACTAT TTTTACTTAA ACATGTTATC AATATAAAAT GACCAATAAG GCATTTTACA TTAAACTTTT TTTGATCTCT AAAATTTTTA ACAAATTGAA ATAATTGACA TAATAACATT AGTTTCAGGT GTACAACATA ATGACATAAT ATTTGTATAT TTTGTGAAGT GATCACCAAA ATAAACCTAC TTAATATCCA TCACACACAA AAGTCACACA TTTTTTTCTT CTTATGGTGA GGACTTTTAA GATCTCTCTT GGCTACTTTC AAATATACAA TACAGTATTA TTACCTATAG TTACTGTGCC ACACATTATA TCCCCAGGTC TTATTTATTT TATAACTGGA AGTTTGTACC AAAGCAGTTT TGTTTTAAGT GTATTGTTAA CTACTGTTTA CAGTCTCATT TACCTGGACT ATCAACTTAT TGTTGCTTTT CCCTCCACAG GAAGGCGGAA ATGCTCAAAA TGTCTTCCAA TAGTTACGAG GTTTCTATCC CAATGTCAAA AAAACTCAAC GGCATTCCAG AGACAACCTC TAAGGACCTG CAGACATTAA CTGAAGGAGC TGTGTTAAGT TTTCATAACA TCTGCTATCG AGTAAAAGTG AAGACTGGCT TTCTACTTTG TCGGAAAACA ATTGAGAAAG AAATACTAGC AAATATCAAG (SEQ ID NO: 182) PUBLICATIONS CITED These are incorporated as reference to the degree that they relate to the materials or methods described here. Ashwell, M.S. et al. (2004), Dairy Sci. 87: 468-475. Bennewitz et al. (2003). Session Gl .9, 54st Ann. Meet. Europ. Ass. Anim. Prod. Rome, Italy. Bennewitz et al., (2004). J. Anim. Breed. Genet 121: 307-318. Boichard et al., (2002). Proc. 7th World Cong. Genet Appl. Livest. Prod. Montpellier, France. 33: 19-22. Chenu, C, et al. (1994), J. Bone Miner. Res. 9: 417-421.
Cohen, M. , et al. (2004). Genomics 84: 374-383. Cohen, M., et al. (2004) 29th Int. Conf. AnI Gen., ISAG, Tokyo, Japan. F015 Drackley, J.K., et al. (1991) J. Dairy Sci. 74: 4254-4264. Ejendeal, K.F. and Hrycyna, CA. (2002). Review Curr. Protein Pept. Sci. 3: 503-511. Everts-van der Wind, et al. (2004). Genome Res. 14: 1424-1437. Farr, V.C., et al. (1996) J Dairy Sci 79: 543-549. Fernando R. L. and Grossman M. (1989). Genet Sel. Evol. 21. -467-477. Georges, M. , et al. (1995) Genetics 139: 907-920. Glazier, A.M., et al. (2002) Science 298: 2345-2349.
Gottesman,?.? , et al. (2002) Nat. Rev. Cancer 2: 48-58. Grisart, B., et al. (2002) Genome Res. 12: 222-231. Grisart, B., et al. (2004) jProc. Nati Acad. Sci 101: 2398-403. Hedrick, P.W. et al. (1987) Genetics 117: 331-341. Israel, C. et al. (1998) J. Dairy Sci. 81: 1653-1662. Israel and Weller (2000). J. Dairy Sci. 83: 181-187. Jonker, J.W. et al. (2005) Nat Med. 11 (2): 127-129. Kashi et al., (1990). Anim. Prod. 51: 63-74. Kaupe, B., et al. (2004) Anim. Genet 71: 182-187. Kerr, J.M. , et al. (1991) Gene 108: 237-243. Kerr, RJ. et al. (1996) J. Anim. Breed. Genet 113: 457-46. Kaname, T. et al. (2001) BioTechniques 31: 273-278. Kuhn, C. et al. (1999) Anim. Genet 30: 333-340. Litman, T. et al. (2000). J. Cell Sci. 113: 2011-2021. Mackay, T.F. et al. (2001) Ann. Rev. Genet. 35: 303-339. Mackinnon and Georges (1998). Livest. Prod. Sci. 54: 229-250. Meuwissen and Arendonk (1992). J. Dairy Sci. 75: 1651-1659. Nadesalingam, J. et al. (2001) Mamm. Genome 12: 27-31. Nauli, S.M., et al. (2003) Nat. Genet. 33: 129-137. Nemir, M., et al. (2000) J. Biol. Chem. 275: 969-976.
Olsen, H.G., et al. (2C02) J. Dairy Sci. 85: 3124-3130. Olsen, H.G., et al. (2C05). Genetics 169: 275-283. Ron, M., et al. (2001) Genetics 159: 727-735. Schmitz, G., et al. (2001) J of lipid Res. 49: 1513-1520. Schnabel, R.D., et al. (2005) Plant & Animal Genomes XIII conf., San Diego, CA, USA. P532 Seroussi, E., et al. (2001) J. Mol. Biol. 312: 439-451.
Seroussi, E. , et al. (2002) J. of Biolnformatics 18: 1137-1138. Spelman, RJ. , et al. (1996) Genetics 144: 1799-1808. Spelman et al. (1999). J. Dairy Sci. 82: 2514-2516. Stekrova, J., et al. (2004) Nephrol Dial Transplant. 19: 1116-1122. Su, A.I., et al. (2002) Proc. Nati Acad. Sci. 99: 4465-4470. Thompson, J. D., et al. (1994) Comput. Ap l. Biosci. 10: 1929. Veenhuizen, JJ., Et al. (1991) J Dairy Sci 74: 4238-4253. Velmala, RJ. , et al. (1999) Anim. Genet 30: 136-143. Wallner, B.P., et al. (1993) Biochemistry 32: 9296-9301 Warren, W., Smith, et al. (2000) Mamm. Genome 11: 662-663. Wayne, M.L, et al. (2002) Proc. Nati Acad. Sci. 99: 14903-14906. Weichenhan, D , et al. (2001) Mammalian Genome 12: 590-594. Weikard, R., et al. (2004) 29th Int. Conf. Am. Gen., ISAG, Tokyo, Japan. D060 Weller, J.I., et al. (2001). Quantitative Trait Loci Analysis in Animáis. CABI Publishing. London. 287 pp. Weller, J.I., et al. (2002) Genetics 162: 841-849. Weller, J.I., et al. (2003) J. Dairy Sci. 86: 2219-2227.
Weller, J.I., et al. (2004) J. Dairy Sci. 87: 1519-1527.
Wiener, P., et al. (2000) Anim. Genet 31: 385-395. Winter, A., et al. (2002) Proc. Nati Acad. Sci. 99: 9300-9305. Zhang, Q., et al. (1998) Genetics 149: 1959-1973. http: // genome. ucsc. edu / goldenPath / hgTracks. html; Human Genome Browser Gateway http: // nce. ads uga edu / ~ ignacy / oldprograms .html; Threshold model programs http://cowry.agri.huji.ac.il/web/; biopsy procedures. It is noted that in relation to this date, the best known method for carrying out the aforementioned invention is that which is clear from the present description of the invention.

Claims (20)

  1. CLAIMS Having described the invention as above, the content of the following claims is claimed as property. An isolated polynucleotide comprising a coding region of the ABCG2 gene, characterized in that the coding region comprises an antisense mutation Y581S.
  2. 2. The isolated polynucleotide according to claim 1, characterized in that it comprises a coding sequence: ATGCTCAAAA TGTCTTCCAA TAGTTACGAG GTTTCTATCC CAATGTCAAA AAAACTCAAC GGCATTCCAG AGACAACCTC TAAGGACCTG CAGACATTAA CTGAAGGAGC TGTGTTAAGT TTTCATAACA TCTGCTATCG AGTAAAAGTG AAGACTGGCT TTCTACTTTG TCGGAAAACA ATTGAGAAAG AAATACTAGC AAATATCAAT GGAGTCATGA AACCTGGCCT CAATGCCATT CTGGGACCCA CAGGTGGAGG CAAATCTTCG TTGTTAGATA TCTTAGCTGC AAGGAAGGAT CCACATGGAT TATCTGGAGA TGTTTTGATC AATGGAGCAC CTCGACCTGC CAATTTTAAA TGTAACTCAG GTTATGTGGT ACAAGATGAT GTTGTGATGG GAACTCTGAC AGTGAGAGAA AACTTACAGT TCTCAGCAGC CCTTCGGCTT CCAACAACTA TGACAAGTTA CGAAAAAAAT GAACGGATTA ACAAGGTTAT TCAAGAGTTA GGTCTGGATA AAGTGGCAGA TTCCAAGGTT GGAACTCAGT TTATCCGTGG TGTGTCTGGA GGAGAAAGAA AAAGGACTAG TATTGCAATG GAGCTTATTA CTGATCCATC CATCTTGTTC CTGGATGAGC CCACAACTGG CTTAGATTCA AGCACAGCAA ATGCTGTCCT TTTGCTCCTG AAGAGGATGT CTAAACAAGG ACGGACAATC ATCTTCTCCA TTCATCAGCC TCGTTATTCC ATCTTCAAGT TGTTTGATAG CCTCACCTTG TTGG CCTCGG GAAGACTCAT GTTCCACGGG CCTGCTCAGG AGGCCTTGGG GTACTTTGGA GCCATAGGTT TCCGCTGTGA GCCCTATAAT AACCCTGCAG ACTTCTTCCT GGACATCATT AATGGAGATT CTTCTGCTGT GGTGTTAAAT AGAGAAGACA TAGGTGATGA AGCTAACGAG ACCGAAGAGC CTTCCAAAAA AGATACTCCA CTCATAGAAA AATTAGCTGA GTTTTATGTC AACTCCTCCT TCTTCAAGGA AACAAAAGTT GAATTAGATA AATTCTCAGG GGATCAGAGA AGGAAGAAGC TTCCATCCTA CAAGGAGGTC ACTTATGCCA CCTCCTTCTG TCATCAGCTC AAATGGATTT CCAGGCGTTC ATTCAAAAAT TTACTGGGTA ATCCCCAGGC TTCTATAGCT CAGCTAATTG TGACAGTCTT CCTGGGACTG GTTATAGGTG CCATTTTCTA TGATCTAAAA AATGATCCTG CAGGAATCCA GAACAGAGCC GGGGTGCTCT TCTTCCTGAC GACCAACCAG TGTTTCAGCA GTGTGTCAGC CGTGGAGCTC CTGGTGGTGG AGAAGAAGCT GTTTATACAT GAATATATCA GTGGATACTA TAGAGTGTCA TCTTACTTCT TTGGAAAACT GTTATCTGAT TTACTCCCCA TGAGGATGTT ACCAAGTATT ATATTTACTT GTATAACATA CTTCTTGTTA GGACTGAAGC CAAAGGTGGA GGCCTTCTTC ATCATGATGC TTACCCTGAT GATGGTGGCT TATTCAGCTA GTTCCATGGC ACTGGCTATA GCAGCAGGTC AGAGTGTGGT ATCTATAGCA ACTCTGCTCA TGACCATCTC TTTTGTGTTT ATGATGATAT TTTCAGGGCT GTTGGTAAAT CTCAAAACCG TCGTGCCTTG GTTGTCATGG CTTCAATACT TGAGCATTCC TCGATACGGC TATGCGGCTT TGCAGCATAA TGAATTTTTG GGACAAAACT TCTGCCCAGG ACTCAATGTA ACAACAAACA ATACGTGTAG CTATGCCATA TGTACTGGCG AAGAATTTCT GACCAACCAG GGCATCGATA TCTCACCTTG GGGCCTGTGG AAGAATCACG TAGCCTTGGC ATGCATGATT GTTATCTTCC TTACAATTGC CTACCTGAAA TTGTTATTCC TTAAAAAATT TTCTTAA (SEQ ID NO: 183).
  3. 3. The isolated polynucleotide according to claim 2, characterized in that the coding sequence at the nucleotide position 1742 comprises a single nucleotide polymorphism, wherein an adenine is replaced by a cytosine, resulting in the antisense mutation Y581S.
  4. 4. The isolated polynucleotide according to claim 3, characterized in that the single nucleotide polymorphism is present in a fragment comprising a nucleotide sequence CGGC TA / CTGCGG (SEQ ID NO: 184).
  5. 5. An isolated protein ABCG2 characterized in that it comprises an amino acid sequence: MLKMSSNSYE VSIPMSKKLN GIPETTSKDL QTLTEGAVLS FHNICYRVKV KTGFLLCRKTIEKEILANIN GVMKPGLNAI LGPTGGGKSS LLDILAARKD PHGLSGDVLI NGAPRPANF CNSGYWQDD W GTLTVRE NLQFSAALRL PTTMTSYEKN ERINKVIQEL GLDKVADSKVGTQFIRGVSG GERKRTSIAM ELITDPSILF LDEPTTGLDS STANAVLLLL KRMSKQGRT11FSIHQPRYS IFKLFDSLTL LASGRLMFHG PAQEALGYFG AIGFRCEPYN NPADFFLDIINGDSSAWLN REDIGDEANE TEEPSKKDTP LIEKLAEFYV NSSFF V ET ELDKFSGDQR RKKLPSY EV TYATSFCHQL KWISRRSFKN LLGNPQASIA QLIVTVFLGL VIGAIFYDLKNDPAGIQNRA GVLFFLTTNQ CFSSVSAVEL LWEKKLFIH EYISGYYRVS SYFFGKLLSDLLPMRMLPSI IFTCITYFLL GLKP VEAFF IMMLTLMMVA YSASSMALAI AAGQSWSIATLLMTISFVF MMIFSGLLVN LKTWPWLSW LQYLSIPRYG YAALQHNEFL GQNFCPGL VTT NTCSYAI CTGEEFLTNQ GIDISPWGL KNHVALACMI VIFLTIAYLK LLFLKKFS (SEQ ID NOs 185).
  6. 6. The ABCG2 protein according to claim 5, characterized because it is recombinant.
  7. 7. The AECG2 protein according to claim 5, characterized in that the amino acid at position 581 is serine.
  8. 8. The use of the isolated polynucleotide according to claim 1 as a marker for predicting increased milk production.
  9. 9. A splice variant ABCG2 gene characterized in that it comprises a first exon sequence selected from: Exon the: CGGGTGGG CTTGGCGGAA CTGGCCTCTA CACCCCGACA TCCTCCATCG ACTGCCGGGG GCCGACTGTT TGGAAAGAGG ATGGGGCTGG TGGCGGCGGG GAAGCGCTCA TCTGCCCGGG AAAATAGCTG GAGAGGAGTG CGGGATTAGA GCTATGCCCC TGATAGTGTC CCCGCAACCA GCGAGACCCT GTAGTTCCTC GGTCCTGGAG (SEQ ID NOs 186) exon Ib: GTG ATGGAGAAGG AACTGTGGTT AATAACCAGC TAACAGTGGA GAAAAAAGGA AGTCAATTAG ATATGAGAAC TGGACATTTT CCCAAGACTA GCTTGTTTGG AAAGCCTCAG TCTTTCTGGT AGTTGCAGGG GGCTGATAAG GTTCCTCTCT GGTACTTTCT CTTGCGCCTT GAAAGCTGGC AGGAAGGGAA GCTCCTGGAC TGTTAATAGA TGCGGCTCTT GCTTGAAGTT TCTATGAGAA AGCCGACAAG AGTCGAAATC TTCTCTGTAT CCCCACTGCC TCTCTACAGA GGTTTGGGCT GTTTTCCTTC CAACATCACA GATCATAACT GAG (SEQ ID NOs 187); and Exon: TGCGCTCGCT CGTCGGCCCT CGACCGCCGG CTCGCCGCCC GCTCTCTCCG ACGTGACGGT AACCCGGGGC CAGTGCCTTC CCAGGTCAGC CGCTGCGCCG (SEQ ID NOs 188) 10.
  10. A method for determining whether a mammal comprises an ABCG2 gene having an Y581S antisense mutation that affects the production or composition of milk, characterized because it comprises (a) obtaining a sample of the mammal; and (b) determining in a polynucleotide obtained from the sample, the presence or absence of the antisense mutation.
  11. The method according to claim 10, characterized in that the antisense mutation is detected using a primer selected from the group consisting of oligonucleotides comprising ACGTTGGATGAATC CAAAACCGTCGTGCC (SEQ ID NO; 40); ACGTTGGATGCGGTGACAGATAAGGAGAAC (SEQ ID NOs 41); and GAGCATTCCTCGATACGGCT (SEQ ID NOs 42).
  12. The method according to claim 10, characterized in that the antisense mutation is detected by determining a single nucleotide polymorphism at position 1742 of the coding sequence according to claim 2.
  13. 13. The method according to claim 12, characterized in that the antisense mutation is detected when conducting a polymerase chain reaction.
  14. 14. The method according to claim 12, characterized in that the antisense mutation is detected when performing a mass spectrometric analysis.
  15. 15. The use of an antisense mutation in ABCG2 comprising Y581S in cattle reproduction.
  16. 16. The use of an antisense mutation in ABCG2 comprising Y581S in cattle selection.
  17. 17. A kit, characterized in that it comprises reagents for detecting the presence of a Y581S antisense mutation in an ABCG2 bovine gene.
  18. 18. The kit according to claim 17, further characterized in that it comprises primers selected from the group consisting of oligonucleotides comprising ACGTTGGATGAATCTCAAAACCGTCGTGCC (SEQ IDs MOs 40); ACGTTGGATGCGGTGACAGATAAGGAGAAC (SEQ ID NO; 41); and GAGCATTCCTCGATACGGCT (SEQ ID NO; 42).
  19. 19. A method for increasing milk production, the method characterized in that it comprises (a) expressing a polynucleotide according to claim 2 in a transgenic cattle, wherein the polynucleotide comprises a cytosine at position 1742 instead of an adenine; and (b) determine that milk production increases.
  20. 20. An ABCG2 promoter, characterized in that it comprises a polynucleotide sequence: AGGAGAGACT CCATCTTGAA GCCTGTCATC CGTCTTAAAG ACAGGATGTG AACTGGGCCG GAACCCTGCT TAAGAGTGAG GAAACAGTTG CTAGTGAAAA CCAGGTCTCC TGGAGACTTC ACTCCCTACA GATGGCAAAC GGAGATTGTA GTTGTGGTCA GGCTGCCCCT GTTAGATTAA TCATGGAGAC ATCCTCCCTT GATGTATAAT CATTGTTCCC CCCTCCCGGC CCCACCTCCC CCGTTAACCT TAATTGTTTG TTCTCCTAGC ACCTACTTGT AAAACTCAAT CATATACAAC AAAAAGATTG TTAACATGTA ACCAGTCACG TGTGTGTGTG TGTGTGTGTG TGTGTGTGTG TGTGTAAAAC TGGGCCTCTC AAAAACATCA GGGTCCTTGT TGGGAACTGA TTCCCCTTGG ACCTGCTGGC ATAATAAACT GTACTCCAGT CTTGAGTGTC CCCTGAGGTG TGTTTTGCAA CTCAGGATTC CACAACATTT CCAGAAGGAC ATCAGTGTTG ACCTAGACAG GTGAAGCAAA AATGTTTGGA GCCAACAGAG ATCTAACCAG TGAAGTCACT GAACCTTGTT CACAAATCAA GGGTAGATTC TTTCAAGGAC CAGGTGACTA GGAGGCAAGC GACCAAAGGC AGGACTGGTT ACATATTTCG TGACAGTGTT GGTCGCTCAG TCGTGTCCGA CTCTGTGCAA TCCCATGGGC TGTAGCCTTT CAGGCTCCTC TGTCCAAGGG ATTCTTCAAG CAAGAATACT GGAGTGGGTT GCCATACCCT CCGCCAGGGA ATCTTCCCCA CCCAGGGACT GAACCTAGGT CTCTCGCATT GTAGGCAGAT TCTTTACCAT CTGAGTCACC AGCTGOGTCC TGTGCAGCTG TACAGGTCGT ACCCCCGTAT CCGGAGGCGA AATACTTTCA AAGCAAACGC GGCAAGTTAA TGCAGAGCAC GGGAAAAAGT AGGGCGCCCA TTCACT3CAT C CAAGGCC TCCAGCACTG AACAAGTAGC ACTGTGGGTG GTGCCTGGCC CCAGGTGGTG ACTGAGGCTG CTGCCTCGGA TTCCCCAACC AGGTACACCC GGAGCAGCTC GCATCCTGGC TTCATAGGCA GAGACGAGAA TAGCGGTGTG GGGCGCTCTG CTCACTCTCA GGAAGGGGGC GAGAGGCTGC GCCCAGACCC TGTAACCCCC GCCCCGCGCC CCTCCATCCC CCGCCCGGAG CCCCTG ATC CCCGGCCCGG CGCCCCTCCG GCOOCIGCIC CACKXJTCEA 003G IO03C Td333fiG33 CCTOSCGGftG CCOCQGACCT GOGCC¾GW. AUUCiJLCO-AA CñGCiaGCTG CCCTTCCGGT CCKX- HTC CGCflMTl 'CTTCTOQGTT? A-KTCCACC CTAAGTOJiT TrCTCCTCTC CTCTCCCCGC GCCGC3 JD3T (^ TCCCC GGATIGACftG AGAACGTAGC CTAAATACIA AftQCTGAGRG AATCG XSO-C TC G3fc3GCQ GC1XX? ICCCG CXTItCTGCOS GCITTCmT CTCICTG GC cc or functional fragments thereof loe.
MXMX/A/2007/015787A 2005-06-28 2007-12-11 Bovine abcg2 gene missense mutations and uses thereof MX2007015787A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60/694,430 2005-06-28
US60/696,294 2005-07-01

Publications (1)

Publication Number Publication Date
MX2007015787A true MX2007015787A (en) 2008-10-03

Family

ID=

Similar Documents

Publication Publication Date Title
KR102291355B1 (en) Identification of patients in need of pd-l1 inhibitor cotherapy
WO2001012659A2 (en) Human dna sequences
CN107223159A (en) The detection of DNA from particular cell types and correlation technique
KR20180093902A (en) Detection of fetal chromosomal anomalies using differentially methylated diene regions between fetuses and pregnant women
US20020106655A1 (en) Human GPCR proteins
JP2001245666A (en) New polypeptide
CA2458202A1 (en) Estrogen receptor alpha variants and methods of detection thereof
CN114080454A (en) Randomized configurational targeted integration of nucleic acids
US7803919B2 (en) Bovine ABCG2 gene missense mutations and uses thereof
JP2002017376A (en) Secretory protein or membrane protein
MX2007015787A (en) Bovine abcg2 gene missense mutations and uses thereof
WO1999037809A1 (en) Asthma related genes
CA2400915A1 (en) Estrogen receptor alpha variants and methods of detection thereof
KR101804678B1 (en) Screening markers for BIS inhibitors, screening kits containing the same, and screening methods for BIS inhibitors using the same
JP2002330787A (en) Chemical substance
CA2426405A1 (en) Estrogen receptor alpha variants and methods of detection thereof
US20040138416A1 (en) G-protein coupled receptors
US6830900B2 (en) Isolated human glutamate receptor DNA
US20020119518A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
US20030013156A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
US20040229317A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
CA2480771A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and used thereof
US20030077773A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
US20020028773A1 (en) Isolated human transporter proteins, nucleic acid molecules encoding human transporter proteins, and uses thereof
CA2422508A1 (en) Atp-binding cassette protein