MD954Z - Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof - Google Patents
Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof Download PDFInfo
- Publication number
- MD954Z MD954Z MDS20140131A MDS20140131A MD954Z MD 954 Z MD954 Z MD 954Z MD S20140131 A MDS20140131 A MD S20140131A MD S20140131 A MDS20140131 A MD S20140131A MD 954 Z MD954 Z MD 954Z
- Authority
- MD
- Moldova
- Prior art keywords
- time constant
- coaxial
- microcable
- microcables
- parallel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000004804 winding Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000009417 prefabrication Methods 0.000 claims abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000003111 delayed effect Effects 0.000 abstract 3
- 241001440813 Tipasa Species 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 108010074506 Transfer Factor Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Изобретение относится к электронике, а именно к методам подгонки электрических параметров изделий типав процессе их изготовления, и может быть использовано в областях конструирования приборов точных измерений, вычислительной техники и в изготовлении фазосдвигающих элементов и элементов для избирательных цепей.Метод подгонки электрических параметров изделий типав процессе их изготовления включает выбор в качестве электрического параметра заданной постоянной времени τ0 приизготовлении изделия типаиз более двух коаксиальных микропроводов n, предварительное изготовление изделия из n-1 микропроводов, соединенных параллельно, которое составляет постоянную времени τn-1, термическую обработку предварительно изготовленного изделия, измерение его реального значения постоянной времени τr, определение необходимого значения постоянной времени τх отложенного коаксиального микропровода, намотку отложенного коаксиального микропровода с постоянной времени τх на предварительно изготовленное изделие, одновременное измерение постоянной времени отложенного микропровода намотанного до достижения постоянной времени значения τх и параллельное его соединение с n-1 микропроводами, образуя изделие типас заданной постоянной времени τ0= τr+τx.The invention relates to electronics, and in particular to methods of adjusting the electrical parameters of products in the manufacturing process, and can be used in the field of designing precision measurement devices, computer technology and in the manufacture of phase-shifting elements and elements for selective circuits. A method for fitting electrical parameters of products in their process of manufacture includes the choice of a given time constant τ0 as an electrical parameter in the manufacture of an article of type from more than two coaxial micro gadgets n, prefabrication of the product from n-1 microwires connected in parallel, which is a time constant τn-1, heat treatment of the prefabricated product, measurement of its real value of the time constant τr, determination of the necessary value of the time constant τx of the delayed coaxial microwire, winding of the delayed coaxial microwires with a time constant τx to a prefabricated product, simultaneous measurement of the time constant of a delayed microwire to us tannogo until a time constant τh values and parallel to its connection to the n-1 microwires forming product Tipasa predetermined constant time τ0 = τr + τx.
Description
Invenţia se referă la electronică, şi anume la metodele de ajustare a parametrilor electrici ai pieselor de tip în procesul de confecţionare a lor, şi poate fi utilizată în domeniile construcţiei aparatelor de precizie, tehnicii de calcul şi la confecţionarea elementelor de defazaj şi elementelor pentru circuite selective. The invention relates to electronics, namely to methods of adjusting the electrical parameters of type parts in the process of their manufacture, and can be used in the fields of precision apparatus construction, computing technology and in the manufacture of phase-shifting elements and elements for selective circuits.
Este cunoscut procedeul de confecţionare a pieselor bobinate din microconductor coaxial, care constă în debobinarea surplusului de microsârmă de pe piesa ce se confecţionează cu măsurarea continuă a parametrului electric al microsârmei debobinate, folosind-o ca produs auxiliar, care se introduce împreună cu piesa de confecţionat în schema de măsurare, spre exemplu, în punte. Debobinarea se întrerupe în momentul obţinerii egalităţii rezistenţei produsului auxiliar cu rezistenţa prescrisă pentru segmentul de sârmă, care urma a fi debobinat [1]. The process of manufacturing coiled parts from coaxial microconductor is known, which consists in unwinding the surplus microwire from the part being manufactured with continuous measurement of the electrical parameter of the unwound microwire, using it as an auxiliary product, which is introduced together with the part to be manufactured into the measurement scheme, for example, in the bridge. Unwinding is interrupted when the resistance of the auxiliary product is equal to the prescribed resistance for the wire segment, which was to be unwound [1].
Dezavantajul acestui procedeu constă în aceea că la debobinarea conductorului, pe lângă modificarea constantei de timp a piesei, care se confecţionează, datorită neomogenităţii constantei liniare de timp a conductorului se modifică şi raportul dintre componenta activă şi cea reactivă a constantei de timp atât a piesei ce se confecţionează, cât şi a produsului suplimentar format de către sârma debobinată şi, respectiv, modificarea raportului dintre componenta activă şi cea reactivă a constantei de timp a piesei care se confecţionează, şi a produsului suplimentar, format de către sârma debobinată, precum şi continuitatea învelişului coaxial al sârmei fac imposibilă confecţionarea unor astfel de piese bobinate cu o precizie suficientă pentru uzul practic. The disadvantage of this process is that when unwinding the conductor, in addition to changing the time constant of the part being manufactured, due to the inhomogeneity of the linear time constant of the conductor, the ratio between the active and reactive components of the time constant of both the part being manufactured and the additional product formed by the unwound wire also changes, and, respectively, the change in the ratio between the active and reactive components of the time constant of the part being manufactured and the additional product formed by the unwound wire, as well as the continuity of the coaxial coating of the wire, make it impossible to manufacture such wound parts with sufficient precision for practical use.
Cea mai apropiată soluţie este procedeul de ajustare a parametrului electric al pieselor de tip confecţionate dintr-un singur microcablu coaxial, care prevede introducerea piesei ce se confecţionează în circuitul electric de măsurare, determinarea frecvenţei f1, a tensiunii la care defazajul între vectorul curentului în învelişul coaxial al microsârmei piesei ce se confecţionează, la care mărimea parametrului electric este mai mare decât valoarea sa nominală, şi vectorul tensiunii dintre învelişul coaxial şi firul acestei microsârme este egal cu 180°, după care se prestabileşte frecvenţa f2 a tensiunii la care defazajul între vectorul curentului în învelişul coaxial al microsârmei piesei ce se confecţionează, la care mărimea parametrului electric este egală cu valoarea sa nominală prescrisă, şi vectorul tensiunii dintre învelişul coaxial şi firul acestei microsârme este egal cu 180°, după care tensiunile de frecvenţă f1, respectiv f2 se transformă într-o tensiune de frecvenţă fx, unde frecvenţa fx este egală cu raportul dintre produsul celor două frecvenţe f1 x f2 şi diferenţa dintre ele f2 - f1. La învelişul coaxial al microsârmei piesei ce se confecţionează se aduce tensiunea de frecvenţa fx, după care se începe debobinarea microsârmei, comparând în mod neîntrerupt faza vectorului curentului în învelişul coaxial al microsârmei ce se debobinează cu faza vectorului tensiunii dintre firul acestei microsârme şi învelişul coaxial al acesteia, totodată debobinarea de pe piesa ce se confecţionează se execută până când mărimea parametrului electric al piesei corespunde unei diferenţe de 180° între fazele comparate la microsârma debobinată, iar tensiunea de frecvenţă fx este adusă concomitent şi continuu pe începutul firului şi al învelişului microsârmei piesei ce se confecţionează [2]. The closest solution is the procedure for adjusting the electrical parameter of the type parts made of a single coaxial microcable, which provides for the introduction of the part being made into the electrical measurement circuit, the determination of the frequency f1, of the voltage at which the phase shift between the current vector in the coaxial sheath of the microwire of the part being made, at which the magnitude of the electrical parameter is greater than its nominal value, and the voltage vector between the coaxial sheath and the wire of this microwire is equal to 180°, after which the frequency f2 of the voltage at which the phase shift between the current vector in the coaxial sheath of the microwire of the part being made, at which the magnitude of the electrical parameter is equal to its prescribed nominal value, is pre-established, after which the frequency voltages f1, respectively f2 are transformed into a voltage of frequency fx, where the frequency fx is equal to the ratio of the product of the two frequencies f1 x f2 and the difference between them f2 - f1. The voltage of frequency fx is applied to the coaxial coating of the microwire of the part being manufactured, after which the unwinding of the microwire begins, continuously comparing the phase of the current vector in the coaxial coating of the microwire being unwound with the phase of the voltage vector between the wire of this microwire and its coaxial coating, at the same time, the unwinding on the part being manufactured is performed until the magnitude of the electrical parameter of the part corresponds to a 180° difference between the compared phases in the unwound microwire, and the voltage of frequency fx is applied simultaneously and continuously to the beginning of the wire and the microwire coating of the part being manufactured [2].
Dezavantajul acestui procedeu constă în complicitatea tehnologiei de ajustare a constantei de timp. The disadvantage of this process lies in the complexity of the time constant adjustment technology.
Problema pe care o rezolvă prezenta invenţie constă în simplificarea tehnologiei de ajustare a constantei de timp a pieselor confecţionate din mai multe microcabluri coaxiale, unite în paralel, la o precizie înaltă. The problem solved by the present invention consists in simplifying the technology for adjusting the time constant of parts made of several coaxial microcables, joined in parallel, to a high precision.
Metoda, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că include selectarea în calitate de parametru electric a unei constante de timp prestabilite τ0 la confecţionarea piesei de tip din mai mult de două microcabluri coaxiale n; prefabricarea piesei din n-1 microcabluri, unite în paralel, care constituie o constantă de timp: The method, according to the invention, eliminates the disadvantages mentioned above by including the selection as an electrical parameter of a predetermined time constant τ0 when making the type part from more than two coaxial microcables n; prefabrication of the part from n-1 microcables, connected in parallel, which constitute a time constant:
τn-1 = , τn-1 = ,
unde: where:
= rl, = cl, = rΔl, = cΔl, = rl, = cl, = rΔl, = cΔl,
şi corespunzător: and accordingly:
şi reprezintă respectiv constanta de timp nominală şi surplusul acesteia impus al n-1 microcabluri, unite în paralel, and represent respectively the nominal time constant and its imposed surplus of n-1 microcables, connected in parallel,
, şi l reprezintă respectiv rezistenţa şi capacitatea integre ale unui microcablu cu lungimea l din n-1 microcabluri, unite în paralel, , and l represent respectively the integral resistance and capacitance of a microcable with length l of n-1 microcables, connected in parallel,
şi reprezintă respectiv rezistenţa şi capacitatea integre ale unui microcablu cu lungimea Δl, and represent respectively the integral resistance and capacitance of a microcable with length Δl,
r şi C reprezintă respectiv rezistenţa şi capacitatea liniară a n-1 microcabluri; r and C represent the linear resistance and capacitance of n-1 microcables, respectively;
prelucrarea termică a piesei prefabricate; măsurarea valorii constantei reale de timp τr a acesteia; determinarea valorii necesare a constantei de timp τx a microcablului coaxial rezervat prin relaţia: thermal processing of the prefabricated part; measuring the value of its real time constant τr; determining the required value of the time constant τx of the reserved coaxial microcable through the relationship:
= ; = ;
bobinarea microcablului coaxial rezervat cu constanta de timp τx pe piesa prefabricată; măsurarea concomitentă a constantei de timp a microcablului rezervat bobinat până la atingerea constantei de timp a valorii τx şi unirea în paralel a acestuia cu cele n-1 microcabluri, formând o piesă de tip cu o constantă de timp prestabilită τ0= τr+τx. winding the reserved coaxial microcable with the time constant τx on the prefabricated part; simultaneous measurement of the time constant of the wound reserved microcable until the time constant of the value τx is reached and its parallel joining with the n-1 microcables, forming a type part with a predetermined time constant τ0= τr+τx.
Invenţia se explică prin desenele din fig. 1-6, care reprezintă: The invention is explained by the drawings in Fig. 1-6, which represent:
- fig. 1, structura microcablului coaxial; - Fig. 1, structure of the coaxial microcable;
- fig. 2, schema electrică echivalentă de măsurare a constantei de timp τr a piesei prelucrate termic; - Fig. 2, equivalent electrical diagram for measuring the time constant τr of the thermally processed part;
- fig. 3, schema funcţională de bobinare a microcablului coaxial rezervat n; - Fig. 3, functional winding diagram of the reserved coaxial microcable n;
- fig. 4, schema electrică echivalentă de măsurare a constantei de timp τx a microcablului rezervat pe parcursul bobinării lui pe piesa cu constanta de timp τr; - Fig. 4, equivalent electrical diagram for measuring the time constant τx of the reserved microcable during its winding on the part with the time constant τr;
- fig. 5, schema electrică echivalentă de măsurare a constantei de timp τx a microcablului rezervat pe parcursul bobinării lui pe piesa cu constanta de timp τr; - Fig. 5, equivalent electrical diagram for measuring the time constant τx of the reserved microcable during its winding on the part with the time constant τr;
- fig. 6, vederea generală a piesei confecţionate din n microcabluri coaxiale, unite în paralel. - Fig. 6, general view of the part made of n coaxial microcables, joined in parallel.
Metoda se realizează prin schema funcţională de bobinare a microcablului coaxial rezervat n (fig. 3) şi schemele electrice echivalente de măsurare a constantei de timp τx a microcablului rezervat pe parcursul bobinării lui pe piesa cu constanta de timp τr (fig. 4, 5), care includ un generator 1 de tensiune armonică u(t) şi frecvenţa fx=1,78/τx, un electrod 7 pentru unirea microcablului rezervat 6 (fig. 3) debobinat de pe bobina debitoare 8 şi bobinat pe piesa 3, un mecanism de rotire 9 a piesei 3 şi un fir conductor flexibil 10, care prin contactul alunecător e (fig. 3, 4, 5) uneşte sectorul metalizat 11 al carcasei 12 şi respectiv învelişul coaxial al firului rezervat cu indicatorul 5, precum şi două segmente 13 şi 14 respectiv, unde pe rezistenţa R (fig. 4) a învelişului coaxial al segmentului 13 (fig. 3) se creează o cădere de tensiune de frecvenţa fx, care ulterior se utilizează ca semnal de măsurare a constantei τx şi la o rezistenţă NRNX (fig. 4, 5) a învelişului coaxial al segmentului 14 (fig. 3), care pe parcursul măsurării constantei τx se utilizează ca rezistenţă de referinţă NRNX a filtrului opreşte bandă 15 (fig. 5), format din cantitatea de microcablu rezervat 6 bobinat pe piesa 3 cu constanta de timp τr şi rezistenţa 16 de valoarea RNX = NRX. The method is carried out by the functional scheme of winding the reserved coaxial microcable n (fig. 3) and the equivalent electrical schemes for measuring the time constant τx of the reserved microcable during its winding on the part with the time constant τr (fig. 4, 5), which include a generator 1 of harmonic voltage u(t) and frequency fx=1.78/τx, an electrode 7 for joining the reserved microcable 6 (fig. 3) unwound from the feeder coil 8 and wound on the part 3, a rotation mechanism 9 of the part 3 and a flexible conductive wire 10, which through the sliding contact e (fig. 3, 4, 5) joins the metallized sector 11 of the housing 12 and respectively the coaxial sheath of the reserved wire with the indicator 5, as well as two segments 13 and 14 respectively, where on the resistance R (fig. 4) of the coaxial sheath of the segment 13 (fig. 3) a voltage drop of frequency fx is created, which is subsequently used as a signal for measuring the constant τx and at a resistance NRNX (fig. 4, 5) of the coaxial sheath of segment 14 (fig. 3), which during the measurement of the constant τx is used as a reference resistance NRNX of the band-stop filter 15 (fig. 5), formed by the amount of reserved microcable 6 wound on piece 3 with time constant τr and resistance 16 of value RNX = NRX.
Porţiunea de microfir conductor al segmentului 14 de microcablu are o rezistenţă R2 la care rezistenţa învelişului lui coaxial este egală cu rezistenţa RNX. Această parte de microfir cu învelişul său coaxial formează o capacitate C2-NX. The conductive microwire portion of the microcable segment 14 has a resistance R2 at which the resistance of its coaxial sheath is equal to the resistance RNX. This portion of microwire with its coaxial sheath forms a capacitance C2-NX.
Porţiunea de microfir conductor al segmentului 13 de microcablu are o rezistenţă R1, care cu învelişul său coaxial formează o capacitate С1-X (fig. 4, 5). The conductive microwire portion of microcable segment 13 has a resistance R1, which with its coaxial sheath forms a capacitance С1-X (fig. 4, 5).
Metoda se realizează în modul următor. The method is carried out in the following way.
Este cunoscut că piesele confecţionate din microcablu coaxial turnat cu scopul de a micşora tensiunile mecanice, ce pot apărea în urma bobinării microcablului, se supun unei prelucrări termice majorând stabilitatea parametrilor electrici ai piesei la variaţia temperaturii, îmbătrânire, etc. În acelaşi timp, prelucrarea lor termică provoacă micşorarea constantei ei de timp cu aproximativ 1...2%. Din această cauză piesele, confecţionate din microcablu coaxial, se confecţionează cu un surplus de parametri de aproximativ 1...2% de la valoarea lor nominală prestabilită. It is known that parts made of molded coaxial microcable in order to reduce mechanical stresses that may occur as a result of winding the microcable are subjected to heat treatment, increasing the stability of the electrical parameters of the part to temperature variations, aging, etc. At the same time, their heat treatment causes a decrease in its time constant by approximately 1...2%. For this reason, parts made of coaxial microcable are manufactured with a surplus of parameters of approximately 1...2% from their preset nominal value.
Conform tehnologiei de confecţionare a piesei 3, după prelucrarea ei termică se măsoară valoarea reală a constantei de timp τr. Măsurarea constantei τr se efectuează în modul următor: se montează filtrul opreşte bandă hibrid (fig. 2). Prin schimbarea frecvenţei de semnal al generatorului 1 aplicat la intrarea filtrului opreşte bandă şi schimbarea rezistenţei 4, tensiunea la ieşirea filtrului se aduce la valoarea de 0 V, în timp ce tensiunea u(t) la intrarea filtrului este de ordinul a câţiva volţi. Valoarea de 0 V la ieşirea filtrului, când semnalul la intrarea lui este diferit de 0, are loc atunci când vectorul tensiunii Uies.τr (fig. 2) de la ieşirea piesei 3 se găseşte în contrafază cu vectorul tensiunii UNRr(n-1) ce cade pe rezistenţa 4 şi este egal cu valoarea vectorului Uies.τr. According to the manufacturing technology of the part 3, after its thermal processing, the real value of the time constant τr is measured. The measurement of the constant τr is carried out in the following way: the hybrid band-stop filter is mounted (Fig. 2). By changing the signal frequency of the generator 1 applied to the input of the band-stop filter and changing the resistor 4, the voltage at the filter output is brought to the value of 0 V, while the voltage u(t) at the filter input is of the order of a few volts. The value of 0 V at the filter output, when the signal at its input is different from 0, occurs when the voltage vector Uies.τr (Fig. 2) at the output of the part 3 is in antiphase with the voltage vector UNRr(n-1) falling on the resistor 4 and is equal to the value of the vector Uies.τr.
Se ştie că coeficientul de transfer al filtrului opreşte bandă este: It is known that the transfer coefficient of the band-stop filter is:
M = (1) M = (1)
La frecvenţa de rejecţie a filtrului f = f0, numită de asemenea frecvenţă de rezonanţă, factorul de transfer M al filtrului devine nul, când numărătorul relaţiei (1) este egal cu zero: At the filter's rejection frequency f = f0, also called the resonant frequency, the filter's transfer factor M becomes zero, when the numerator of relation (1) is equal to zero:
1+ = 0, (2) 1+ = 0, (2)
unde: where:
= = ; = = ;
l reprezintă lungimea unui singur microcablu bobinat pe carcasa 12; l represents the length of a single microcable wound on the housing 12;
r şi с - respectiv rezistenţa şi capacitatea pe o unitate de lungime a microcablului coaxial. r and с - respectively the resistance and capacitance per unit length of the coaxial microcable.
După divizarea părţii imaginare de cea reală a relaţiei (2) şi anumite transformări obţinem: After dividing the imaginary and real parts of relation (2) and making certain transformations, we obtain:
(a) (a)
(b) (3) (b) (3)
Relaţia (3 b) coincide cu relaţia cunoscută din teoria liniilor lungi de tip , când defazajul dintre curentul de intrare Iin şi tensiunea de ieşire Uieş a liniei în regim de gol ( << Rs) este de 180°, adică <IinUies.în gol = 180° , unde Rs este rezistenţa de sarcină externă. Relation (3 b) coincides with the known relation from the theory of long lines of type , when the phase shift between the input current Iin and the output voltage Uieş of the line in no-load mode ( << Rs) is 180°, i.e. <IinUies.in no-load = 180° , where Rs is the external load resistance.
Deoarece piesa confecţionată poate fi privită ca o linie lungă cu parametrii (rezistenţa r şi capacitatea с pe o unitate de lungime) distribuiţi, iar curentul ce trece prin rezistenţa 4 este curent de intrare în piesa confecţionată, teoria liniei lungi pe deplin poate fi aplicată în analiza schemei din fig. 2. Since the fabricated part can be viewed as a long line with the parameters (resistance r and capacitance с per unit length) distributed, and the current passing through the resistor 4 is the input current into the fabricated part, the long line theory can be fully applied in the analysis of the scheme in Fig. 2.
Soluţia relaţiei (3 b) în raport cu mărimea r este: The solution of relation (3 b) in relation to the quantity r is:
, (4) , (4)
unde: , (5) where: , (5)
iar k = 1, 2, 3, ... and k = 1, 2, 3, ...
Prima valoare a mărimii (când k = 1), la care <IinUies.în gol = 180°, este de 2,365, iar constanta de timp a piesei şi frecvenţa la această valoare se găsesc în relaţia: The first value of the quantity (when k = 1), at which <IinUies.in hollow = 180°, is 2.365, and the time constant of the part and the frequency at this value are found in the relationship:
= const, (6) = const, (6)
unde: (7) where: (7)
În cazul măsurării constantei de timp τr, în relaţia (7) constanta de timp τ se înlocuieşte cu constanta de timp τr, ce permite să se considere că constanta de timp τr = 1,78/f'. In the case of measuring the time constant τr, in relation (7) the time constant τ is replaced by the time constant τr, which allows us to consider that the time constant τr = 1.78/f'.
În continuare din relaţia: Further from the relationship:
se calculează constanta de timp τx a cantităţii de microcablu rezervat, care este necesar de bobinat pe piesa deja confecţionată din (n-1) microcabluri, care fiind unit în paralel cu microcablurile (n-1), constituie constanta de timp prestabilită τ0= τr+τx. the time constant τx of the amount of reserved microcable, which is necessary to wind on the piece already made of (n-1) microcables, which being joined in parallel with the (n-1) microcables, constitutes the predetermined time constant τ0= τr+τx is calculated.
Pentru a depune cantitatea de microcablu rezervat la constanta τ = τx se foloseşte schema funcţională arătată în fig. 3, unde capătul de microcablu rezervat, tras de pe bobina debitoare 8 se curăţă de cămaşa coaxială şi izolaţie, se trece prin contactul 7, cu care formează un contact alunecător, şi galvanic se uneşte la contactul a, care prin intermediul contactului e este conectat la una din intrările indicatorului 5. Pe generatorul 1 se fixează frecvenţa fx =1,78/τx la tensiunea de semnal măsurător de volţi sau zeci de volţi, după care prin rotirea piesei 3 de către mecanismul 9 se începe depunerea, prin bobinare, a microcablului rezervat pe piesa 3. Cantitatea de microcablu rezervat, bobinat pe piesa 3 cu constanta τx împreună cu rezistenţa RNX a învelişului coaxial al secţiunii de microcablu 14 formează un nou filtru 15, şi la intrarea filtrului 15 prin intermediul bobinei 8, capacităţii С1-X şi al rezistenţelor R1 şi R2 se aplică un semnal cules de pe rezistenţa R de tensiunea UR(t) şi frecvenţa fx (fig. 5), iar la ieşirea filtrului 15 prin intermediul contactelor alunecătoare f, e şi 7 este unit indicatorul 5. To deposit the amount of microcable reserved at the constant τ = τx, the functional diagram shown in fig. 3, where the end of the reserved microcable, pulled from the feeder coil 8, is cleaned of the coaxial jacket and insulation, passed through contact 7, with which it forms a sliding contact, and galvanically joins contact a, which through contact e is connected to one of the inputs of the indicator 5. On the generator 1, the frequency fx = 1.78/τx is set at the measuring signal voltage of volts or tens of volts, after which, by rotating the part 3 by the mechanism 9, the deposition, by winding, of the reserved microcable on the part 3 begins. The amount of reserved microcable, wound on the part 3 with the constant τx together with the resistance RNX of the coaxial sheath of the microcable section 14 forms a new filter 15, and at the input of the filter 15 through the coil 8, the capacitance С1-X and the resistors R1 and R2 a signal collected from the resistance R of the voltage UR(t) and the frequency fx (fig. 5), and at the output of the filter 15 through the sliding contacts f, e and 7 the indicator 5 is connected.
Pe parcursul bobinării cu ajutorul indicatorului 5 în continuu se controlează defazajul între vectorul tensiunii Ufc-îc între microfirul conductor şi cămaşa microfirului coaxial rezervat bobinat (fig. 4, 5) al capătului de microfir conductor şi vectorul de curent Iîc ce trece prin rezistenţa RNX. La atingerea valorii defazajului de 180° între cei doi vectori numiţi, bobinarea se stopează, ceea ce vorbeşte despre faptul că constanta de timp a cantităţii de microcablu rezervat depus pe piesa 3 a atins valoarea τx calculată, la care, ca şi în cazul măsurării constantei τr, are loc egalitatea: During the winding, using the indicator 5, the phase shift between the voltage vector Ufc-îc between the conductive microwire and the jacket of the wound reserved coaxial microwire (Fig. 4, 5) of the conductive microwire end and the current vector Iîc passing through the resistor RNX is continuously controlled. When the phase shift value of 180° between the two named vectors is reached, the winding stops, which indicates that the time constant of the amount of reserved microwire deposited on the piece 3 has reached the calculated value τx, at which, as in the case of measuring the constant τr, the equality occurs:
, ,
unde τx =1,78/fx . where τx =1.78/fx .
În continuare microcablul la contactul 7 se taie, iar capătul tăiat se curăţă de cămaşa coaxială şi izolaţie şi se lipeşte la contactul b al piesei 3, obţinând în final o piesă confecţionată din (n-1) + l = n microcabluri cu o constantă de timp prestabilită τ0= τr+τx cu precizie şi stabilitate termică înalte şi o tehnologie comparativ simplă. Next, the microcable at contact 7 is cut, and the cut end is cleaned of the coaxial jacket and insulation and soldered to contact b of part 3, finally obtaining a part made of (n-1) + l = n microcables with a preset time constant τ0= τr+τx with high precision and thermal stability and a comparatively simple technology.
1. SU 606173 1978.05.05 1. SU 606173 1978.05.05
2. RO 81043 1981.11.30 2. RO 81043 1981.11.30
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20140131A MD954Z (en) | 2014-10-09 | 2014-10-09 | Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20140131A MD954Z (en) | 2014-10-09 | 2014-10-09 | Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD954Y MD954Y (en) | 2015-09-30 |
| MD954Z true MD954Z (en) | 2016-06-30 |
Family
ID=54207236
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20140131A MD954Z (en) | 2014-10-09 | 2014-10-09 | Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD954Z (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU606173A1 (en) * | 1976-02-18 | 1978-05-05 | Кишиневский политехнический институт им.С.Лазо | Method of manufacturing wound articles from coaxial cable |
| RO81043A (en) * | 1979-01-08 | 1984-11-25 | Kishinevsky Politekhnichesky Institut Imeni S.Lazo,Su | PROCESS AND INSTALLATION FOR PRODUCING COAXIAL MICROCONDUCTOR WINDED PARTS |
| MD3353G2 (en) * | 2004-09-09 | 2008-02-29 | Технический университет Молдовы | Process for manufacturing wound articles of coaxial cable |
-
2014
- 2014-10-09 MD MDS20140131A patent/MD954Z/en not_active IP Right Cessation
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU606173A1 (en) * | 1976-02-18 | 1978-05-05 | Кишиневский политехнический институт им.С.Лазо | Method of manufacturing wound articles from coaxial cable |
| RO81043A (en) * | 1979-01-08 | 1984-11-25 | Kishinevsky Politekhnichesky Institut Imeni S.Lazo,Su | PROCESS AND INSTALLATION FOR PRODUCING COAXIAL MICROCONDUCTOR WINDED PARTS |
| MD3353G2 (en) * | 2004-09-09 | 2008-02-29 | Технический университет Молдовы | Process for manufacturing wound articles of coaxial cable |
Also Published As
| Publication number | Publication date |
|---|---|
| MD954Y (en) | 2015-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9823275B2 (en) | Electrical signal measurement | |
| JP4995993B2 (en) | Clamp sensor | |
| JP2009124878A (en) | Power transmission device, power transmission device and power reception device of power transmission device | |
| JP2009041925A (en) | Clamp sensor | |
| MD954Z (en) | Method for adjusting the electrical parameters of the articles of the type R̅C̅-̅0̅ in the manufacturing process thereof | |
| JP2018527703A (en) | Inductors and inductor assemblies | |
| CN106154013B (en) | A kind of compound Rogowski coil integrating resistor and its manufacturing method | |
| RU166007U1 (en) | HIGH VOLTAGE MEASURING VOLTAGE CONVERTER | |
| Craven et al. | Optimizing the secondary coil of a Tesla transformer to improve spectral purity | |
| CN108226601A (en) | Rogowski current sensor with active capacitor compensation | |
| RU166006U1 (en) | HIGH VOLTAGE MEASURING VOLTAGE CONVERTER | |
| CN106796840B (en) | High quality coil | |
| CN105409325B (en) | Four-wire braided resistance heater and device including such a resistance heater | |
| Ogawa et al. | Influence of transport current distribution on AC transport current loss measurement in an assembled conductor | |
| Schurr et al. | Linear frequency dependence in AC resistance measurement | |
| JP5411396B2 (en) | Measuring circuit for measuring by shunt | |
| Sanoh et al. | A calibration method for a commercial coaxial shunt at high pulse current | |
| MD682Z (en) | Method for manufacture of a reeled article with R̅C̅ type structure | |
| CN102768349A (en) | Method for implementing constant current common-grounded measurement | |
| Lynch et al. | Measurement of eddy-current conductivity | |
| CN106526272B (en) | Precise shunt | |
| Colin et al. | Impact of the temperature on winding impedance measurements for transportation applications | |
| RU2301426C1 (en) | Device for determination of input impedances of electric circuits | |
| SU588565A1 (en) | Method of manufacturing wound articles | |
| US11075591B2 (en) | Device for integrating electric conductors into low-frequency electric tank circuits |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG9Y | Short term patent issued | ||
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |