MA50311A1 - Système de réfrigération basé sur l’effet magnétocalorique anisotrope - Google Patents
Système de réfrigération basé sur l’effet magnétocalorique anisotropeInfo
- Publication number
- MA50311A1 MA50311A1 MA50311A MA50311A MA50311A1 MA 50311 A1 MA50311 A1 MA 50311A1 MA 50311 A MA50311 A MA 50311A MA 50311 A MA50311 A MA 50311A MA 50311 A1 MA50311 A1 MA 50311A1
- Authority
- MA
- Morocco
- Prior art keywords
- regenerator
- magnetocaloric
- magnetic field
- rotating
- anisotropic
- Prior art date
Links
- 230000000694 effects Effects 0.000 title abstract 3
- 238000005057 refrigeration Methods 0.000 title abstract 2
- 239000002826 coolant Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 abstract 1
- 238000005265 energy consumption Methods 0.000 abstract 1
- 239000013529 heat transfer fluid Substances 0.000 abstract 1
- 230000005415 magnetization Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N15/00—Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
- H10N15/20—Thermomagnetic devices using thermal change of the magnetic permeability, e.g. working above and below the Curie point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0021—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0022—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Hard Magnetic Materials (AREA)
Abstract
L’invention consiste à proposer un nouveau système de réfrigération magnétique opérant sur la base de l’effet magnétocalorique (emc) rotatif ou anisotrope. Dans ce système, le régénérateur (réfrigérant) est constitué de monocristaux magnétocaloriques orientés ou de matériaux magnétocaloriques texturés. Les effets thermiques nécessaires sont générés en faisant tourner le régénérateur (ou l'aimant) dans un champ magnétique fixe ce qui permet de rendre le réfrigérateur magnétique plus simple, compact et plus efficace. Dans ce cas, seulement une simple source de champ magnétique est nécessaire ce qui contraste avec les dispositifs magnétocaloriques rotatifs conventionnels. De plus, cette nouvelle architecture nous permet de bien maitriser les échanges thermiques entre le fluide caloporteur (eau, gaz) et le régénérateur en simplifiant drastiquement la conception du cycle thermodynamique de fonctionnement (cycle amr). Dans le but de réduire encore plus la consommation d'énergie associée aux mouvements de rotation du régénérateur (ou l’aimant), les efforts magnétiques en jeu peuvent être balancés (compensées) en divisant le régénérateur en deux blocs séparés. Les axes d’aimantation faciles des deux blocs sont initialement orientés suivant et perpendiculairement au champ magnétique appliqué, respectivement
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MA50311A MA50311A1 (fr) | 2020-07-15 | 2020-07-15 | Système de réfrigération basé sur l’effet magnétocalorique anisotrope |
PCT/MA2020/050011 WO2022015128A1 (fr) | 2020-07-15 | 2020-12-16 | Système de réfrigération basé sur l'effet magnétocalorique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MA50311A MA50311A1 (fr) | 2020-07-15 | 2020-07-15 | Système de réfrigération basé sur l’effet magnétocalorique anisotrope |
Publications (1)
Publication Number | Publication Date |
---|---|
MA50311A1 true MA50311A1 (fr) | 2022-01-31 |
Family
ID=74347661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
MA50311A MA50311A1 (fr) | 2020-07-15 | 2020-07-15 | Système de réfrigération basé sur l’effet magnétocalorique anisotrope |
Country Status (2)
Country | Link |
---|---|
MA (1) | MA50311A1 (fr) |
WO (1) | WO2022015128A1 (fr) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6676772B2 (en) * | 2001-03-27 | 2004-01-13 | Kabushiki Kaisha Toshiba | Magnetic material |
DE112008000146T5 (de) * | 2008-05-16 | 2010-02-11 | Vacuumschmelze Gmbh & Co. Kg | Gegenstand zum magnetischen Wärmeaustausch und Verfahren zur Herstellung eines Gegenstandes zum magnetischen Wärmeaustausch |
CN101979722A (zh) * | 2010-11-29 | 2011-02-23 | 哈尔滨工业大学 | 具有低磁场巨磁热效应DyTiO3单晶材料及其制备方法 |
US10451321B2 (en) * | 2016-09-02 | 2019-10-22 | General Engineering & Research, L.L.C. | Solid state cooling device |
-
2020
- 2020-07-15 MA MA50311A patent/MA50311A1/fr unknown
- 2020-12-16 WO PCT/MA2020/050011 patent/WO2022015128A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022015128A1 (fr) | 2022-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10288327B2 (en) | Use of unidirectional flow modes of magnetic cooling systems | |
JP2569059B2 (ja) | 磁気冷凍装置および方法 | |
US8104293B2 (en) | Magneto-caloric cooling device and method of operation | |
ES2284683T3 (es) | Aparato de refrigeracion magnetica de sustrato rotativo. | |
CN105571190B (zh) | 一种机械振动隔离的无液氦消耗极低温制冷系统 | |
ES2292845T3 (es) | Refrigerador magnetico de imanes rotativos. | |
Vasile et al. | Innovative design of a magnetocaloric system | |
US4112699A (en) | Heat transfer system using thermally-operated, heat-conducting valves | |
DE69410281D1 (de) | Supraleitender rotor | |
US20100146989A1 (en) | Continuously rotary magnetic refrigerator or heat pump | |
Gonca et al. | Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines | |
US7243507B2 (en) | Cryogenic computer system with parallel multiple cooling temperatures | |
MA50311A1 (fr) | Système de réfrigération basé sur l’effet magnétocalorique anisotrope | |
Popescu et al. | A critical review of pulse tube cryogenerator research | |
Zhu et al. | The ecological optimisation of a generalised irreversible Carnot engine for a generalised heat transfer law | |
GB1246161A (en) | Generation of energy in a gas cycle | |
Fang et al. | Exergy analysis of ice storage air-conditioning system with heat pipe during charging period | |
WO2014101288A1 (fr) | Moteur à différence de température à piston | |
Zhu et al. | The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law | |
Hakuraku | Thermodynamic simulation of a rotating Ericsson‐cycle magnetic refrigerator without a regenerator | |
CN116294285A (zh) | 一种极低温制冷系统及其制冷方法 | |
Dongli et al. | Performance study on ST/JT hybrid cryocoolers working at liquid helium temperature | |
Steyert | Magnetic refrigerators for use at room temperature and below | |
Ling | A study on the new separate heat pipe refrigerator and heat pump | |
RU105009U1 (ru) | Магнитная тепловая машина |