MA50311A1 - Refrigeration system based on the anisotropic magnetocaloric effect - Google Patents

Refrigeration system based on the anisotropic magnetocaloric effect

Info

Publication number
MA50311A1
MA50311A1 MA50311A MA50311A MA50311A1 MA 50311 A1 MA50311 A1 MA 50311A1 MA 50311 A MA50311 A MA 50311A MA 50311 A MA50311 A MA 50311A MA 50311 A1 MA50311 A1 MA 50311A1
Authority
MA
Morocco
Prior art keywords
regenerator
magnetocaloric
magnetic field
rotating
anisotropic
Prior art date
Application number
MA50311A
Other languages
French (fr)
Inventor
Balli Mohamed
Original Assignee
Univ Internationale De Rabat Uir
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Internationale De Rabat Uir filed Critical Univ Internationale De Rabat Uir
Priority to MA50311A priority Critical patent/MA50311A1/en
Priority to PCT/MA2020/050011 priority patent/WO2022015128A1/en
Publication of MA50311A1 publication Critical patent/MA50311A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/20Thermomagnetic devices using thermal change of the magnetic permeability, e.g. working above and below the Curie point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

L’invention consiste à proposer un nouveau système de réfrigération magnétique opérant sur la base de l’effet magnétocalorique (emc) rotatif ou anisotrope. Dans ce système, le régénérateur (réfrigérant) est constitué de monocristaux magnétocaloriques orientés ou de matériaux magnétocaloriques texturés. Les effets thermiques nécessaires sont générés en faisant tourner le régénérateur (ou l'aimant) dans un champ magnétique fixe ce qui permet de rendre le réfrigérateur magnétique plus simple, compact et plus efficace. Dans ce cas, seulement une simple source de champ magnétique est nécessaire ce qui contraste avec les dispositifs magnétocaloriques rotatifs conventionnels. De plus, cette nouvelle architecture nous permet de bien maitriser les échanges thermiques entre le fluide caloporteur (eau, gaz) et le régénérateur en simplifiant drastiquement la conception du cycle thermodynamique de fonctionnement (cycle amr). Dans le but de réduire encore plus la consommation d'énergie associée aux mouvements de rotation du régénérateur (ou l’aimant), les efforts magnétiques en jeu peuvent être balancés (compensées) en divisant le régénérateur en deux blocs séparés. Les axes d’aimantation faciles des deux blocs sont initialement orientés suivant et perpendiculairement au champ magnétique appliqué, respectivementThe invention consists in proposing a new magnetic refrigeration system operating on the basis of the rotating or anisotropic magnetocaloric (emc) effect. In this system, the regenerator (coolant) is made of oriented magnetocaloric single crystals or textured magnetocaloric materials. The necessary thermal effects are generated by rotating the regenerator (or magnet) in a fixed magnetic field, which makes the magnetic refrigerator simpler, more compact and more efficient. In this case, only a simple magnetic field source is needed, which contrasts with conventional rotating magnetocaloric devices. In addition, this new architecture allows us to properly control the heat exchange between the heat transfer fluid (water, gas) and the regenerator by drastically simplifying the design of the thermodynamic operating cycle (amr cycle). In order to further reduce the energy consumption associated with the rotational movements of the regenerator (or the magnet), the magnetic forces involved can be balanced (compensated) by dividing the regenerator into two separate blocks. The easy magnetization axes of the two blocks are initially oriented following and perpendicular to the applied magnetic field, respectively

MA50311A 2020-07-15 2020-07-15 Refrigeration system based on the anisotropic magnetocaloric effect MA50311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MA50311A MA50311A1 (en) 2020-07-15 2020-07-15 Refrigeration system based on the anisotropic magnetocaloric effect
PCT/MA2020/050011 WO2022015128A1 (en) 2020-07-15 2020-12-16 Refrigeration system based on the magnetocaloric effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MA50311A MA50311A1 (en) 2020-07-15 2020-07-15 Refrigeration system based on the anisotropic magnetocaloric effect

Publications (1)

Publication Number Publication Date
MA50311A1 true MA50311A1 (en) 2022-01-31

Family

ID=74347661

Family Applications (1)

Application Number Title Priority Date Filing Date
MA50311A MA50311A1 (en) 2020-07-15 2020-07-15 Refrigeration system based on the anisotropic magnetocaloric effect

Country Status (2)

Country Link
MA (1) MA50311A1 (en)
WO (1) WO2022015128A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676772B2 (en) * 2001-03-27 2004-01-13 Kabushiki Kaisha Toshiba Magnetic material
US20120043066A9 (en) * 2008-05-16 2012-02-23 Vacuumschmelze Gmbh & Co. Kg Article for Magnetic Heat Exchange and Method for Manufacturing an Article for Magnetic Heat Exchange
CN101979722A (en) * 2010-11-29 2011-02-23 哈尔滨工业大学 DyTiO3 single crystal material with low-magnetic-field giant magnetocaloric effect and preparation method thereof
US10451321B2 (en) * 2016-09-02 2019-10-22 General Engineering & Research, L.L.C. Solid state cooling device

Also Published As

Publication number Publication date
WO2022015128A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US10288327B2 (en) Use of unidirectional flow modes of magnetic cooling systems
JP2569059B2 (en) Magnetic refrigeration apparatus and method
ES2284683T3 (en) ROTATE SUBSTRATE MAGNETIC COOLING DEVICE.
CN105571190B (en) A kind of mechanical oscillation isolation consumes extremely low temp, refrigerating system without liquid helium
ES2292845T3 (en) MAGNETIC REFRIGERATOR OF ROTATING MAGNETS.
US20080314048A1 (en) Cooling device and method of operation
Vasile et al. Innovative design of a magnetocaloric system
ATE166190T1 (en) SUPERCONDUCTING ROTOR
CA2611992A1 (en) Continuously rotary magnetic refrigerator or heat pump
Gonca et al. Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines
US7243507B2 (en) Cryogenic computer system with parallel multiple cooling temperatures
MA50311A1 (en) Refrigeration system based on the anisotropic magnetocaloric effect
Zhu et al. The ecological optimisation of a generalised irreversible Carnot engine for a generalised heat transfer law
Popescu et al. A critical review of pulse tube cryogenerator research
Fang et al. Exergy analysis of ice storage air-conditioning system with heat pipe during charging period
Zhu et al. The ecological optimization of a generalized irreversible Carnot heat pump for a generalized heat transfer law
Hakuraku Thermodynamic simulation of a rotating Ericsson‐cycle magnetic refrigerator without a regenerator
CN116294285A (en) Very low temperature refrigerating system and refrigerating method thereof
Dongli et al. Performance study on ST/JT hybrid cryocoolers working at liquid helium temperature
WO2014101288A1 (en) Piston temperature difference engine
Nemogne et al. Thermo-ecological analysis and optimization of a three-heat-reservoir absorption heat pump with two internal irreversibilities and external irreversibility
Steyert Magnetic refrigerators for use at room temperature and below
Ling A study on the new separate heat pipe refrigerator and heat pump
RU2029203C1 (en) Magnetocalorific refrigerator
JP2019100269A (en) Intake air cooling system