LU502854B1 - A hyperspectral image band selection method and system based on nearest neighbor subspace division - Google Patents
A hyperspectral image band selection method and system based on nearest neighbor subspace division Download PDFInfo
- Publication number
- LU502854B1 LU502854B1 LU502854A LU502854A LU502854B1 LU 502854 B1 LU502854 B1 LU 502854B1 LU 502854 A LU502854 A LU 502854A LU 502854 A LU502854 A LU 502854A LU 502854 B1 LU502854 B1 LU 502854B1
- Authority
- LU
- Luxembourg
- Prior art keywords
- denotes
- bands
- band
- subspace
- hyperspectral image
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/194—Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24147—Distances to closest patterns, e.g. nearest neighbour classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110174636.8A CN113075129B (zh) | 2021-02-07 | 2021-02-07 | 一种基于近邻子空间划分高光谱影像波段选择方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
LU502854B1 true LU502854B1 (en) | 2023-01-30 |
Family
ID=76609942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LU502854A LU502854B1 (en) | 2021-02-07 | 2021-12-07 | A hyperspectral image band selection method and system based on nearest neighbor subspace division |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN113075129B (zh) |
LU (1) | LU502854B1 (zh) |
WO (1) | WO2022166363A1 (zh) |
ZA (1) | ZA202207737B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113075129B (zh) * | 2021-02-07 | 2023-03-31 | 浙江师范大学 | 一种基于近邻子空间划分高光谱影像波段选择方法及系统 |
CN113486876A (zh) * | 2021-09-08 | 2021-10-08 | 中国地质大学(武汉) | 一种高光谱影像波段选择方法、装置及系统 |
CN117435940B (zh) * | 2023-12-20 | 2024-03-05 | 龙建路桥股份有限公司 | 一种面向冬季混凝土养护过程中光谱检测方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101131734A (zh) * | 2007-06-25 | 2008-02-27 | 北京航空航天大学 | 适用于高光谱遥感图像的自动波段选择方法 |
KR100963797B1 (ko) * | 2008-02-27 | 2010-06-17 | 아주대학교산학협력단 | 복잡성이 감소된 고분광 프로세싱에 기반을 둔 실시간 타겟검출 방법 |
CN103065293A (zh) * | 2012-12-31 | 2013-04-24 | 中国科学院东北地理与农业生态研究所 | 相关性加权的遥感影像融合方法及该融合方法的融合效果评价方法 |
CN103886334A (zh) * | 2014-04-08 | 2014-06-25 | 河海大学 | 一种多指标融合的高光谱遥感影像降维方法 |
CN104122210B (zh) * | 2014-07-02 | 2017-01-25 | 中国林业科学研究院林业研究所 | 一种基于最佳指数‑相关系数法的高光谱波段提取方法 |
CN104751179B (zh) * | 2015-04-01 | 2018-02-06 | 河海大学 | 一种基于博弈论的多目标高光谱遥感影像波段选择方法 |
CN107124612B (zh) * | 2017-04-26 | 2019-06-14 | 东北大学 | 基于分布式压缩感知的高光谱图像压缩方法 |
CN108154094B (zh) * | 2017-12-14 | 2020-04-24 | 浙江工业大学 | 基于子区间划分的高光谱图像非监督波段选择方法 |
WO2019183136A1 (en) * | 2018-03-20 | 2019-09-26 | SafetySpect, Inc. | Apparatus and method for multimode analytical sensing of items such as food |
CN110751142B (zh) * | 2019-09-25 | 2022-07-26 | 河海大学 | 一种改进型的高光谱遥感影像波段选择方法 |
CN113075129B (zh) * | 2021-02-07 | 2023-03-31 | 浙江师范大学 | 一种基于近邻子空间划分高光谱影像波段选择方法及系统 |
-
2021
- 2021-02-07 CN CN202110174636.8A patent/CN113075129B/zh active Active
- 2021-12-07 LU LU502854A patent/LU502854B1/en active IP Right Grant
- 2021-12-07 WO PCT/CN2021/135928 patent/WO2022166363A1/zh active Application Filing
-
2022
- 2022-07-12 ZA ZA2022/07737A patent/ZA202207737B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN113075129B (zh) | 2023-03-31 |
ZA202207737B (en) | 2022-07-27 |
CN113075129A (zh) | 2021-07-06 |
WO2022166363A1 (zh) | 2022-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
LU502854B1 (en) | A hyperspectral image band selection method and system based on nearest neighbor subspace division | |
Wang et al. | Hyperspectral band selection via adaptive subspace partition strategy | |
Dang et al. | Local outlier detection with interpretation | |
CN106778680B (zh) | 一种基于关键波段提取的高光谱图像波段选择方法及装置 | |
Tian et al. | Striking the right balance: Recall loss for semantic segmentation | |
CN103403704A (zh) | 用于查找最近邻的方法和设备 | |
Mondal et al. | Video shot boundary detection using multiscale geometric analysis of nsct and least squares support vector machine | |
CN109871768B (zh) | 基于共享最近邻的高光谱最优波段选择方法 | |
Duin et al. | Mode seeking clustering by KNN and mean shift evaluated | |
CN113269201A (zh) | 一种基于潜在特征融合的高光谱影像波段选择方法及系统 | |
CN104820840A (zh) | 基于字典和波段重组的最近邻高光谱图像分类方法 | |
Dang et al. | Outlier detection with space transformation and spectral analysis | |
CN114663770A (zh) | 一种基于集成聚类波段选择的高光谱图像分类方法及系统 | |
CN108257148B (zh) | 特定对象的目标建议窗口生成方法及其在目标跟踪的应用 | |
Datta et al. | Clustering based band selection for hyperspectral images | |
Lin et al. | Real-time hyperspectral anomaly detection using collaborative superpixel representation with boundary refinement | |
CN111027609A (zh) | 一种图像数据加权分类方法和系统 | |
Le Bris et al. | A random forest class memberships based wrapper band selection criterion: Application to hyperspectral | |
Habermann et al. | Unsupervised hyperspectral band selection using clustering and single-layer neural network | |
Saeidi et al. | Deep learning based on parallel CNNs for pedestrian detection | |
Jain et al. | An unsupervised band selection method for hyperspectral images using mutual information based dependence index | |
Moon et al. | Image patch analysis and clustering of sunspots: A dimensionality reduction approach | |
Demidova et al. | Improving the accuracy of the SVM classification using the Parzen classifier | |
Gu et al. | Spatial-spectral multiple kernel learning for hyperspectral image classification | |
Borhani et al. | Hyperspectral image classification based on non-uniform spatial-spectral kernels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Effective date: 20230130 |