LT6795B - Laser therapy fiber optic probe - Google Patents

Laser therapy fiber optic probe Download PDF

Info

Publication number
LT6795B
LT6795B LT2019036A LT2019036A LT6795B LT 6795 B LT6795 B LT 6795B LT 2019036 A LT2019036 A LT 2019036A LT 2019036 A LT2019036 A LT 2019036A LT 6795 B LT6795 B LT 6795B
Authority
LT
Lithuania
Prior art keywords
diffuser
nozzle
light
fiber optic
laser
Prior art date
Application number
LT2019036A
Other languages
Lithuanian (lt)
Other versions
LT2019036A (en
Inventor
Igoris Butylkinas
Paulius Butylkinas
Original Assignee
UAB "Fama Bona"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UAB "Fama Bona" filed Critical UAB "Fama Bona"
Priority to LT2019036A priority Critical patent/LT6795B/en
Priority to CN202010547001.3A priority patent/CN112107801A/en
Priority to DE102020207582.4A priority patent/DE102020207582A1/en
Publication of LT2019036A publication Critical patent/LT2019036A/en
Publication of LT6795B publication Critical patent/LT6795B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00136Coatings on the energy applicator with polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • A61B2018/00327Ear, nose or throat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00333Breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00529Liver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00541Lung or bronchi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • A61B2018/2222Fibre material or composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2244Features of optical fibre cables, e.g. claddings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)

Abstract

The invention relates to the field of medical technique, namely, physiotherapeutic devices for the treatment of tumors with an invasive laser irradiation device. The probe consists of a fiber optic cable 1 with a fiber optic 2 inside, with a polymeric coating 3 on the outside, with a plug connector 4 at the proximal end of the cable 1, a laser light diffuser at the distal end of the cable 1. The laser light diffuser 5 consists of a quartz glass or a light-conducting polymer body 6 with light-emitting roughness 7 in the body 6 and/or inside and/or on the surface and with a polymeric protective coating 8. The form of diffuser 5 is cylinder its length is from 0.2 to 10 cm and the diameter is from 0.02 to 0.2 cm. The nozzle expands the laser light across its surface at an angle of 360 °. Its light penetration in the biological tissue from the diffusers surface with a light wave length ? = 670-680 nm, is up to 2 cm, and when ? = 790-830 nm, is up to 5 cm. The advantage of the probe and its diffuse nozzle is miniature dimensions.

Description

Išradimas priklauso medicinos technikos sričiai, būtent, fizioterapiniams prietaisams, skirtiems auglių terapijai invaziniu lazeriniu ar optiniu švitinimo prietaisu.The invention belongs to the field of medical technology, namely to physiotherapy devices for the treatment of tumors with an invasive laser or optical irradiation device.

Lazerinės terapijos šviesolaidinis zondas (toliau LTŠZ) yra būtinoji lazerinės terapijos prietaiso dalis, kuri lazerio optinių spindulių srautą perduoda į auglį.A laser therapy fiber optic probe (LTSC) is an essential part of a laser therapy device that transmits a stream of laser optical radiation to a tumor.

LTŠZ konstruojami pagal jų paskirtį: neinvaziniam ir/ar invaziniam auglių švitinimui. LTŠZ forma parenkama pagal auglio lokaciją, terapijos metodiką, optimalius švitinimo srauto bangų ilgius ir intensyvumą, švitinimo trukmę, pagalbinių fotovaistų naudojimo būdą ir kitus parametrus. Invazinės terapijos atveju LTŠZ į auglį įveda per ar kateterį, ar kaniulę, ar adatą. Lazeris per į auglį įvestą LTŠZ skleidžia spindulius, kurie naikina navikinio darinio ląsteles.LTZZs are constructed according to their purpose: non-invasive and / or invasive tumor irradiation. The form of LTŠZ is selected according to the location of the tumor, the methodology of therapy, the optimal wavelengths and intensities of the irradiation stream, the duration of irradiation, the method of use of auxiliary photopharmaceuticals and other parameters. In the case of invasive therapy, the LTZZ is inserted into the tumor through either a catheter, a cannula, or a needle. The laser emits rays through the LTZZ inserted into the tumor, which destroys the cells of the tumor.

Žinomi įvairūs nechirurginiai neinvaziniai auglių terapijos prietaisai, kuriais ar elektra, ar aukšto dažnio elektromagnetinėmis, ar ultragarso bangomis, ar infraraudonaisiais, ar utravioletiniais, ar rentgeno, ar radiaciniais spinduliais ardo auglį, tačiau tokios terapijos panaudojimas kartais yra ribotas dėl mažo teigiamo poveikio arba dėl per didelio neigiamo, pavyzdžiui, švitinimo poveikio.Various non-surgical non-invasive tumor therapy devices are known which, either electrically, high-frequency electromagnetic, ultrasonic, infrared, ultraviolet, X-ray, or radiation, destroy the tumor, but the use of such therapies is sometimes limited by too little or no beneficial effect. significant adverse effects such as irradiation.

Prieš švitinimą lazeriu į paciento kraujotakos sistemą ar tiesiai į auglį įveda fotosensibilizatorių, kuris kaupiasi navikiniame darinyje ir padeda lengviau aptikti vėžio paveiktas ląsteles. Dozuotas laipsniškas švitinimas lazerio spinduliais nepažeidžia sveikų audinių, bet selektyviai naikina navikus. Auglį švitinant LTŠZ, ląstelėse esantis deguonis keičiasi iš neutralios į sužadintą būseną, kuri citotoksiškai veikia auglio ląsteles.Prior to laser irradiation, a photosensitizer is introduced into the patient's circulatory system or directly into the tumor, which accumulates in the tumor and helps to detect cells affected by the cancer. Dosing gradual laser irradiation does not damage healthy tissues, but selectively destroys tumors. When a tumor is irradiated with LTZZ, the oxygen in the cells changes from a neutral to an excited state that acts cytotoxically on the tumor cells.

Žinomas „Magnetolazerinės terapijos prietaisas“ (LT4113; A61N2/00; A61N5/06), kurį sudaro lazeris su LTŠZ, turinčiu keičiamus antgalius, skirtingai dozuojančius lazerio spinduliuotę. Šio prietaiso trūkumas yra tai, kad antgaliai yra didelių išmatavimų ir netinka invaziniam navikų gydymui.A known "magnetic laser therapy device" (LT4113; A61N2 / 00; A61N5 / 06), which consists of a laser with LTZZ, with interchangeable tips that differentiate the laser radiation. The disadvantage of this device is that the tips are large in size and not suitable for invasive tumor treatment.

Žinomas „Šviesolaidinio zondo difuzorinis antgalis“ (US5269777; A61N5/06), skirtas naudoti lazerinės terapijos prietaisuose invaziniam navikų švitinimui. Difuzorinis antgalis turi silikoninę dalį su reikiamomis šviesos sklaidos savybėmis, prijungtą prie optinio pluošto galo, išorinį optinio pluošto ir silikoninio difuzoriaus antgalio apvalkalą, užtikrinantį reikiamą standumą ir lankstumą. Antgalis yra cilindrinės formos ir turi vienodą spinduliavimo pasiskirstymą per visą jo ilgį. Šio LTŠZ zondo ir jo antgalio trūkumas yra tai, kad jo išorinis diametras yra didelis, todėl jam įvesti j gydomą auglį reikia naudoti didesnių vidinių ir išorinių diametrų kateterius.A known "fiber optic probe diffuser tip" (US5269777; A61N5 / 06) for use in laser therapy devices for invasive tumor irradiation. The diffuser nozzle has a silicone part with the required light scattering properties, connected to the end of the optical fiber, an outer sheath of the optical fiber and the silicone diffuser nozzle, which provides the required rigidity and flexibility. The nozzle is cylindrical in shape and has a uniform distribution of radiation throughout its length. The disadvantage of this LTZZ probe and its tip is that it has a large outer diameter, so catheters of larger inner and outer diameters must be used to insert it into the tumor being treated.

Artimiausias žinomas patentuojamam išradimui techninis sprendimas yra “Fotodinaminės terapijos šviesos difuzorius“ (US6366719; A61B18/22; A61N5/06), kuris šviesą spinduliuoja per cilindrinį paviršių. Difuzorius, arba šviesą skleidžiantis antgalis, suformuotas iš optinio pluošto, kuris perduoda optinę spinduliuotę iš šviesos skleidimo prietaiso į švitinimo vietą ar kūną. Optinis pluoštas kabelio viduje padengtas apsauginiu apvalkalu. Optinio pluošto galas švitinimo difuzoriuje šlifuotas taip, kad šviesa sklistų vienodai per šlifuotą dalį, sudarydama cilindrinį išsklaidytos šviesos srautą, aplink, pavyzdžiui, „kulkos formos“ difuzorių. Šio LTŠZ ir jo antgalio (difuzoriaus) trūkumas yra tai, kad aprašomas šviesos difuzoriaus gamybos būdas, tačiau neaiškūs jo išmatavimai ir galimybės įvesti j gydomąjį kūną.The closest known technical solution to the patented invention is a "Photodynamic therapy light diffuser" (US6366719; A61B18 / 22; A61N5 / 06) which emits light through a cylindrical surface. A diffuser, or light emitting nozzle, formed of an optical fiber that transmits optical radiation from a light emitting device to an irradiation site or body. The optical fiber is covered with a protective sheath inside the cable. The end of the optical fiber in the irradiation diffuser is ground so that the light propagates evenly through the ground part, forming a cylindrical flow of scattered light around, for example, a "bullet-shaped" diffuser. The disadvantage of this LTŠZ and its nozzle (diffuser) is that the method of manufacturing the light diffuser is described, but its dimensions and possibilities to introduce it into the therapeutic body are unclear.

Išradimo tikslas - lazerinei terapijai skirtas optimalių gabaritų, t.y., kaip galima plonesnio išorinio diametro difuzinės invazinės lazerinės terapijos šviesolaidinis zondas (LTŠZ).The object of the invention is to provide a fiber-optic probe for diffuse invasive laser therapy (LTZZ) of optimal size, i.e. as thin as possible, for laser therapy.

Patentuojamą LTŠZ sudaro šviesolaidinis kabelis 1 su šviesolaidžiu 2 viduje, su polimerine danga 3 išorėje, su jungimo kištuku 4 proksimaliniame kabelio gale ir su lazerinės šviesos skleidimo antgaliu (difuzoriumi) 5 distaliniame kabelio gale, kurio lazerinės šviesos skleidimo antgalį (difuzorių) 5 sudaro kvarcinio stiklo ar šviesai laidaus polimero korpusas 6 su šviesą sklaidančiais struktūros nelygumais (šiurkštumais) 7 korpuso 6 ir/ar viduje, ir/ar paviršiuje ir su apsaugine danga 8 arba be jos. Antgalis (difuzorius) 5 yra cilindro formos, kurio ilgis yra nuo 0,2 iki 10 cm, geriausiai nuo 0,5 iki 3 cm, o diametras yra nuo 0,02 iki 0,2 cm, ir kuris lazerio šviesą išskleidžia per visą jo paviršių, būtent, ilgį ir perimetrą 360° kampu. Jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.The patented LTŠZ consists of a fiber optic cable 1 with a fiber optic 2 inside, with a polymer coating 3 on the outside, with a connecting plug 4 at the proximal end of the cable and with a laser light diffuser 5 at the distal end of the cable, the laser light diffuser 5 or a light-transmitting polymer housing 6 with light-scattering structural irregularities (roughness) 7 inside and / or on the surface 6 and / or on the surface and with or without a protective coating 8. The nozzle (diffuser) 5 is in the form of a cylinder with a length of 0.2 to 10 cm, preferably 0.5 to 3 cm and a diameter of 0.02 to 0.2 cm, which emits laser light throughout its length. surface, namely length and perimeter at an angle of 360 °. Its light transmittance in biological tissue from the surface of the nozzle (diffuser) is up to 2 cm at light wavelength λ = 670 - 680 nm and up to 5 cm at λ = 790 - 830 nm.

Kai patentuojamo LTŠZ šviesos skleidimo antgalis (difuzorius) 5 yra nuo 2 iki 5 cm ilgio, šviesolaidis 2 iš polimerinio optinio pluošto, šviesos sklaidos kampas 360°, pralaidumo efektyvumas ne mažesnis kaip 80%, antgalio (difuzoriaus) 5 diametras 0,05 cm; zondo ilgis nuo jungimo kištuko 4 iki šviesos skleidimo antgalio 5 galo yra 30 + 15 cm, lazerio spindulio galingumas 400 mW, tada jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.When the light emitting nozzle (diffuser) 5 of the patented LTŠZ is from 2 to 5 cm long, the optical fiber 2 is made of polymer optical fiber, the light scattering angle is 360 °, the transmittance efficiency is at least 80%, the diameter of the nozzle (diffuser) 5 is 0.05 cm; the length of the probe from the connection plug 4 to the end of the light scattering nozzle 5 is 30 + 15 cm, the power of the laser beam is 400 mW, then its light penetration in the biological tissue from the surface of the nozzle (diffuser) at light wavelength λ = 670 - 680 nm is up to 2 cm, and when λ = 790 - 830 nm, is up to 5 cm.

Kai patentuojamo LTŠZ šviesos skleidimo antgalis (difuzorius) 5 yra nuo 0,5 iki 3 cm ilgio, šviesolaidis 2 iš kvarcinio stiklo, šviesos sklaidos kampas 360°, pralaidumo efektyvumas ne mažesnis kaip 80%, antgalio (difuzoriaus) 5 diametras 0,1 + 0,02 cm, ilgis nuo jungimo kištuko 4 iki šviesos skleidimo antgalio 5 galo yra 25 + 10 cm, lazerio spindulio galingumas 1600 mW, tada jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.When the patented LTŠZ light scattering nozzle (diffuser) 5 is from 0.5 to 3 cm long, fiber optic 2 made of quartz glass, light scattering angle 360 °, transmittance efficiency not less than 80%, nozzle (diffuser) 5 diameter 0.1 + 0.02 cm, the length from the connection plug 4 to the end of the light scattering nozzle 5 is 25 + 10 cm, the power of the laser beam is 1600 mW, then its light transmission in the biological tissue from the surface of the nozzle (diffuser) when the light wavelength λ = 670 - 680 nm, is up to 2 cm, and when λ = 790 - 830 nm, is up to 5 cm.

Patentuojamo LTŠZ su polimeriniu šviesolaidžiu 2 ir su polimeriniu antgaliu (difuzoriumi) 5 lazerio spindulio maksimalus galingumas yra iki 500 mW; o zondo su kvarciniu šviesolaidžiu 2 ir su kvarciniu antgaliu (difuzoriumi) 5 - iki 2000 mW.The maximum power of the patented LTŠZ with a laser fiber 2 and with a polymer nozzle (diffuser) 5 laser beam is up to 500 mW; and a probe with quartz fiber 2 and with a quartz nozzle (diffuser) 5 - up to 2000 mW.

Patentuojamas LTŠZ yra sterilus ir tinka naudojimui 2 metus nuo jo pagaminimo datos.The patented LTŠZ is sterile and is suitable for use for 2 years from the date of its manufacture.

Išradimas iliustruojamas brėžiniu Fig. 1 - LTŠZ principinė schema.The invention is illustrated in FIG. 1 - Schematic diagram of LTŠZ.

LTŠZ sudaro:LTŠZ consists of:

šviesolaidinis kabelis 1;fiber optic cable 1;

šviesolaidis 2;fiber optic 2;

polimerinė danga 3;polymeric coating 3;

jungimo kištukas 4;connection plug 4;

šviesos skleidimo antgalis (difuzorius) 5;light scattering nozzle (diffuser) 5;

šviesai laidžios medžiagos antgalio korpusas 6;a tip housing 6 of light-transmitting material;

šviesą sklaidantys struktūros nelygumai (šiurkštumai) 7;light scattering structural irregularities (roughness) 7;

polimerinė apsauginė danga 8.polymer protective coating 8.

LTŠZ įveda ir jis veikia taip:LTŠZ introduces and it works as follows:

ligoniui į veną suleidžia fotosensibilizatorių;inject a photosensitizer intravenously into the patient;

praėjus 2-4 valandoms po fotosensibilizitariaus suleidimo, ultragarso aparatu išmatuoja auglį ir nustato tikslią jo lokalizaciją, t.y., jo plotą ir gylį paviršiaus atžvilgiu;2-4 hours after the insensitivity of the photosensitizer, the ultrasound device measures the tumor and determines its exact location, i.e., its area and depth relative to the surface;

atžymėjus auglio lokalizaciją, atlieka vietinę ploto, j kurį bus įvedamas kateteris, nejautrą;after localization of the tumor, perform local anesthesia of the area where the catheter will be inserted;

į auglį įveda kateterį ar plastikinę kaniulę, kurios vidinis skersmuo apie 1,2 karto didesnis už LTŠZ išorinį diametrą;insert a catheter or plastic cannula into the tumor, the inner diameter of which is about 1.2 times larger than the outer diameter of the LTŠZ;

per kateterį ar kaniulę į auglį įveda LTŠZ antgalį (difuzorių) taip, kad šviesą skleidžiantis antgalis (difuzorius) 5 būtų kuo arčiau ar pačiame auglio viduryje;insert the LTZZ nozzle (diffuser) into the tumor through a catheter or cannula so that the light emitting nozzle (diffuser) 5 is as close as possible or in the very middle of the tumor;

kitą LTŠZ galą per jungimo kištuką 4 prijungia prie prietaiso, generuojančio skirtingų bangos ilgių lazerio spindulius;the other end of the LTZZ is connected via a connection plug 4 to a device generating laser beams of different wavelengths;

nustato švitinimo bangos ilgį, intensyvumą (galingumą) mW, trukmę minutėmis ir įjungia lazerį;determines the irradiance wavelength, intensity (power) in mW, duration in minutes and turns on the laser;

lazerio spindulys kabelyje 1 esančiu šviesolaidžiu 2 patenka j lazerinės šviesos skleidimo antgalį (difuzorių) 5, kuriame per korpuse 6 esančius nelygumus ir šiurkštumus 7 yra išsklaidomas per visą antgalio (difuzoriaus) ilgį 360° kampu. Pasibaigus nustatytai švitinimo trukmei, švitinimo procedūra nutraukiama;the laser beam enters the laser light scattering nozzle (diffuser) 5 by means of the optical fiber 2 in the cable 1, in which the irregularities and roughness 7 in the housing 6 are scattered along the entire length of the nozzle (diffuser) at an angle of 360 °. At the end of the prescribed irradiation period, the irradiation procedure is terminated;

gydytojo sprendimu gali būti naudojami ne vienas, o keli kateteriai/kaniulės su įvestais LTŠZ.at the discretion of the physician, more than one catheter / cannula with inserted LTZZ may be used.

LTŠZ su polimeriniu šviesolaidžiu 2 ir su polimeriniu antgaliu (difuzoriumi) lazerio spindulio galingumas gali būti ne didesnis kaip 500 mW; o LTŠZ su kvarciniu šviesolaidžiu 2 ir su kvarciniu antgaliu (difuzoriumi) - ne didesnis kaip 2000 mW.LTZZ with polymer fiber optic 2 and with polymer nozzle (diffuser) the power of the laser beam may not exceed 500 mW; o LTŠZ with quartz fiber 2 and with quartz nozzle (diffuser) - not more than 2000 mW.

Švitinimo procedūros trukmė 20 + 10 minučių.The duration of the irradiation procedure is 20 + 10 minutes.

Procedūra gydytojo sprendimu gali būti kartojama kelias dienas iš eiles priklausomai nuo pasirinkto fotosensibilizatoriaus skilimo laiko ir auglio terapijos eigos.The procedure may be repeated for several consecutive days at the discretion of the physician, depending on the degradation time of the selected photosensitizer and the course of tumor therapy.

Baigus procedūrą, LTŠZ pašalinamas ir utilizuojamas nustatyta tvarka.At the end of the procedure, the LTŠZ is removed and utilized in accordance with the established procedure.

Naudojant patentuojamą LTŠZ pasiekiamas efektyvesnis, tolygus ir didesnis auglio apšvitos plotas. Visam auglio plotui apšvitinti galima naudoti mažiau LTŠZ.By using the patented LTŠZ, a more efficient, even and larger area of tumor exposure is achieved. Fewer LTZZs can be used to irradiate the entire tumor area.

LTŠZ galima naudoti auglių gydymui plaučiuose, kepenyse, krūtyse, o taip pat neinvazinei nosies, gerklės, ausų, lytinių organų auglių terapijai. Gydymas skaitomas sėkmingu, kai auglių išmatavimai po švitinimo seanso sumažėja.LTŠZ can be used for the treatment of tumors in the lungs, liver, breasts, as well as for non-invasive therapy of tumors of the nose, throat, ears, genitals. Treatment is considered successful when the tumor size decreases after an irradiation session.

Šiame patentuojamo LTŠZ aprašyme minimi lazerio bangų ilgiai gali būti kiti, nes tai nekeičia išradimo esmės.The laser wavelengths mentioned in this patented LTŠZ may be different, as this does not change the essence of the invention.

Naudojant patentuojamą mažų išmatavimų LTŠZ greičiau sugyja kateterio dūrių vietos, galima naudoti keletą LTŠZ vienu metu ir taip sutrumpinti invazinių gydymo procedūrų skaičių ir trukmę. Patentuojamas LTŠZ išbandytas gydant ligonius ir gauti teigiami rezultatai.By using a patented small-scale LTZZ to heal catheter punctures faster, multiple LTZZs can be used simultaneously, reducing the number and duration of invasive treatments. The patented LTŠZ has been tested in the treatment of patients and obtained positive results.

Claims (5)

ApibrėžtisDefinition 1. Lazerinės terapijos šviesolaidinis zondas, kurį sudaro šviesolaidinis kabelis su prijungimo prie lazerinės šviesos prietaiso (lazerio) jungikliu viename kabelio gale ir su lazerinės šviesos skleidimo antgaliu (difuzoriumi) distaliniame kabelio gale, bes i s k i r i a n t i s tuo, kad lazerinės terapijos šviesolaidinį zondą sudaro šviesolaidinis kabelis 1 su šviesolaidžiu 2 viduje, su polimerine danga 3 išorėje, jungimo kištuku 4 proksimaliniame kabelio gale, lazerinės šviesos skleidimo antgaliu (difuzoriumi) 5 distaliniame kabelio gale ir kurio lazerinės šviesos skleidimo antgalį (difuzorių) 5 sudaro kvarcinio stiklo ar šviesai laidaus polimero korpusas 6 su šviesą sklaidančiais struktūros nelygumais (šiurkštumais) 7 korpuso 6 ir/ar viduje, ir/ar paviršiuje ir su polimerine apsaugine danga 8 arba be jos, be to, antgalis (difuzorius) 5 yra cilindro formos, kurio ilgis nuo 0,2 iki 10 cm, geriausiai nuo 0,5 iki 3 cm, o diametras yra nuo 0,02 iki 0,2 cm, ir kuris lazerio šviesą išskleidžia per visą jo paviršių, būtent, ilgį ir perimetrą 360° kampu, ir jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.A laser therapy fiber optic probe comprising a fiber optic cable with a switch for connection to a laser light device (laser) at one end of the cable and with a laser light scattering tip (diffuser) at the distal end of the cable, characterized in that the laser therapy fiber optic cable comprises 1 fiber optic cable. with fiber optic 2 inside, with polymer coating 3 on the outside, connection plug 4 at the proximal end of the cable, laser light scattering tip (diffuser) 5 at the distal end of the cable and having a laser light scattering tip (diffuser) 5 formed by a quartz glass or light transmitting polymer housing 6 scattering structural roughness (roughness) 7 inside and / or on the surface 6 and / or on the surface and with or without a polymeric protective coating 8, and the nozzle (diffuser) 5 is cylindrical in shape with a length of 0.2 to 10 cm, preferably 0.5 to 3 cm and a diameter of 0.02 to 0.2 cm, and which emits laser light over its entire surface, namely its length and perimeter at an angle of 360 °, and its light transmission in the biological tissue from the surface of the nozzle (diffuser) up to 2 cm when the wavelength of light is λ = 670 - 680 nm and λ = 790 - 830 nm, is up to 5 cm. 2. Lazerinės terapijos šviesolaidinis zondas pagal 1 punktą, b e s i s k i r i a n t i s tuo, kad šviesos skleidimo antgalis (difuzorius) 5 yra nuo 2 iki 5 cm ilgio, šviesolaidis 2 yra iš polimerinio optinio pluošto, šviesos sklaidos kampas yra 360°, pralaidumo efektyvumas ne mažesnis kaip 80%, antgalio (difuzoriaus) 5 diametras 0,05 cm; zondo ilgis nuo jungimo kištuko 4 iki šviesos skleidimo antgalio 5 galo yra 30 + 15 cm ir, kai lazerio spindulio galingumas 400 mW, jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.2. Laser therapy fiber optic probe according to claim 1, characterized in that the light scattering nozzle (diffuser) 5 is 2 to 5 cm long, the fiber optic 2 is made of polymeric optical fiber, the light scattering angle is 360 °, the transmittance efficiency is at least 80 %, nozzle (diffuser) 5 diameter 0.05 cm; the length of the probe from the coupling plug 4 to the end of the light scattering nozzle 5 is 30 + 15 cm and, when the laser beam power is 400 mW, its light transmission in the biological tissue from the surface of the nozzle (diffuser) at light wavelength λ = 670 - 680 nm is up to 2 cm and when λ = 790 - 830 nm is up to 5 cm. 3. Lazerinės terapijos šviesolaidinis zondas pagal 1 punktą, b e s i s k i r i a n t i s tuo, kad šviesos skleidimo antgalis (difuzorius) 5 yra nuo 0,5 iki 3 cm ilgio, šviesolaidis 2 yra iš kvarcinio stiklo, šviesos sklaidos kampas yra 360°, pralaidumo efektyvumas ne mažesnis kaip 80%, antgalio (difuzoriaus) 5 diametras 0,1 + 0,02 cm, ilgis nuo jungimo kištuko 4 iki šviesos skleidimo antgalio 5 galo yra 25 + 10 cm ir, kai lazerio spindulio galingumas 1600 mW, jo šviesos skvarbą biologiniame audinyje nuo antgalio (difuzoriaus) paviršiaus, kai šviesos bangų ilgis λ = 670 - 680 nm, yra iki 2 cm, o kai λ = 790 - 830 nm, yra iki 5 cm.3. Laser therapy fiber optic probe according to claim 1, characterized in that the light scattering nozzle (diffuser) 5 is from 0.5 to 3 cm in length, the fiber optic 2 is made of quartz glass, the light scattering angle is 360 °, the transmittance efficiency is not less than 80%, the diameter of the nozzle (diffuser) 5 is 0.1 + 0.02 cm, the length from the connection plug 4 to the end of the light scattering nozzle 5 is 25 + 10 cm and, when the power of the laser beam is 1600 mW, its light transmission in biological tissue from the nozzle (diffuser) surface is up to 2 cm for light wavelengths λ = 670 - 680 nm and up to 5 cm for λ = 790 - 830 nm. 4. Lazerinės terapijos šviesolaidinis zondas pagal 1-3 punktus, b e s i s k i r i antis tuo, kad zondo su polimeriniu šviesolaidžiu 2 ir su polimeriniu antgaliu (difuzoriumi) 5 lazerio spindulio maksimalus galingumas yra iki 500 mW; o zondo su kvarciniu šviesolaidžiu 2 ir su kvarciniu antgaliu (difuzoriumi) 5 - iki 2000 mW;Laser therapy fiber optic probe according to Claims 1 to 3, characterized in that the maximum power of the laser beam of the probe with polymer fiber 2 and with polymer diffuser 5 is up to 500 mW; o probe with quartz fiber 2 and with quartz nozzle (diffuser) 5 - up to 2000 mW; 5. Lazerinės terapijos šviesolaidinis zondas pagal 1-4 punktus, b e s i s k i r i antis tuo, kad yra sterilus ir tinka naudojimui 2 metus nuo jo pagaminimo datos.Laser therapy fiber optic probe according to claims 1-4, characterized in that it is sterile and suitable for use for 2 years from the date of its manufacture.
LT2019036A 2019-06-19 2019-06-19 Laser therapy fiber optic probe LT6795B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
LT2019036A LT6795B (en) 2019-06-19 2019-06-19 Laser therapy fiber optic probe
CN202010547001.3A CN112107801A (en) 2019-06-19 2020-06-16 Optical fiber probe for laser therapy
DE102020207582.4A DE102020207582A1 (en) 2019-06-19 2020-06-18 Laser therapy fiber optic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LT2019036A LT6795B (en) 2019-06-19 2019-06-19 Laser therapy fiber optic probe

Publications (2)

Publication Number Publication Date
LT2019036A LT2019036A (en) 2020-12-28
LT6795B true LT6795B (en) 2021-01-25

Family

ID=73654417

Family Applications (1)

Application Number Title Priority Date Filing Date
LT2019036A LT6795B (en) 2019-06-19 2019-06-19 Laser therapy fiber optic probe

Country Status (3)

Country Link
CN (1) CN112107801A (en)
DE (1) DE102020207582A1 (en)
LT (1) LT6795B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213711A1 (en) * 2022-05-04 2023-11-09 Koninklijke Philips N.V. Photo stimulation therapy of tissue and associated devices, systems, and methods
CN116755190B (en) * 2023-06-21 2024-04-19 青岛镭视光电科技有限公司 Side-transmitting optical fiber and laser medical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269777A (en) 1990-11-01 1993-12-14 Pdt Systems, Inc. Diffusion tip for optical fibers
LT4113B (en) 1995-05-23 1997-02-25 Rimantas Mykolas Kanapenas Magnetic laser apparatus applicable to therapy
US6366719B1 (en) 2000-08-17 2002-04-02 Miravant Systems, Inc. Photodynamic therapy light diffuser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269777A (en) 1990-11-01 1993-12-14 Pdt Systems, Inc. Diffusion tip for optical fibers
LT4113B (en) 1995-05-23 1997-02-25 Rimantas Mykolas Kanapenas Magnetic laser apparatus applicable to therapy
US6366719B1 (en) 2000-08-17 2002-04-02 Miravant Systems, Inc. Photodynamic therapy light diffuser

Also Published As

Publication number Publication date
LT2019036A (en) 2020-12-28
DE102020207582A1 (en) 2020-12-24
CN112107801A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
JP3648555B2 (en) Improved phototherapy device for irradiating a columnar environment
US6416531B2 (en) Application of light at plural treatment sites within a tumor to increase the efficacy of light therapy
US9149651B2 (en) Non-invasive vascular treatment systems, devices, and methods of using the same
US6048359A (en) Spatial orientation and light sources and method of using same for medical diagnosis and photodynamic therapy
US8257347B2 (en) Vein treatment device and method
US6366719B1 (en) Photodynamic therapy light diffuser
EP1824562B1 (en) Device for photodynamic therapy of the nasopharyngeal cavity
US20100097822A1 (en) Light diffusing device
EP1973598A2 (en) Method and apparatus for light-activated drug therapy
US11813368B2 (en) Anti-microbial blue light systems and methods
Star Light delivery and light dosimetry for photodynamic therapy
LT6795B (en) Laser therapy fiber optic probe
CN108136195A (en) The method for carrying out biological tissue's thermotherapy using the energy source of pulse
WO2016017349A1 (en) Laser medical treatment device
Lilge et al. Thin cylindrical diffusers in multimode Ge‐doped silica fibers
KR101924492B1 (en) Medical light irradiation and monitoring equipment
Whitehurst et al. Optimization of multifiber light delivery for the photodynamic therapy of localized prostate cancer
AU2005305606B2 (en) Device and method for photodynamic therapy of the nasopharyngeal cavity
RU72412U1 (en) DEVICE FOR TREATMENT OF INFLAMMATORY PROCESSES IN ANATOMIC CHANNELS AND CAVITIES (OPTIONS)
KR20230114435A (en) cancer cell proliferation inhibition module using LED and ultrasound
CN117462854A (en) Photodynamic therapy system and method for tumor
Bown Scientists and clinicians create a bright future for photodynamic therapy (PDT)

Legal Events

Date Code Title Description
BB1A Patent application published

Effective date: 20201201

FG9A Patent granted

Effective date: 20210125

MM9A Lapsed patents

Effective date: 20230619