KR970049451A - Strain booth multiplier - Google Patents

Strain booth multiplier Download PDF

Info

Publication number
KR970049451A
KR970049451A KR1019950062109A KR19950062109A KR970049451A KR 970049451 A KR970049451 A KR 970049451A KR 1019950062109 A KR1019950062109 A KR 1019950062109A KR 19950062109 A KR19950062109 A KR 19950062109A KR 970049451 A KR970049451 A KR 970049451A
Authority
KR
South Korea
Prior art keywords
output
signals
adder
multiplier
booth multiplier
Prior art date
Application number
KR1019950062109A
Other languages
Korean (ko)
Other versions
KR0172308B1 (en
Inventor
김성식
Original Assignee
김주용
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업 주식회사 filed Critical 김주용
Priority to KR1019950062109A priority Critical patent/KR0172308B1/en
Publication of KR970049451A publication Critical patent/KR970049451A/en
Application granted granted Critical
Publication of KR0172308B1 publication Critical patent/KR0172308B1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5332Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by skipping over strings of zeroes or ones, e.g. using the Booth Algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5306Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
    • G06F7/5312Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products using carry save adders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

본 발명은 DSP(Digital Signal Processor)나 코프로세서(Coprocessor)에 필수적으로 사용되는 변형 부스 곱셈기(Modified Booth Multiplier)에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified booth multiplier, which is essentially used for a digital signal processor (DSP) or a coprocessor.

본 발명은 기존의 부스 곱셈기를 구성하는 2보수기와 콘디션널 쉬프터 및 제로기 대신에 비교적 간단한 구조인 2보수기와 멀티플렉서를 사용하여 설계 면적을 줄이고 처리 속도를 향상시킨다.The present invention reduces the design area and improves the processing speed by using a two-complementer and a multiplexer having a relatively simple structure instead of a two-complementer and a conditional shifter and a zero-constructor constituting a conventional booth multiplier.

Description

변형 부스 곱셈기Strain booth multiplier

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음As this is a public information case, the full text was not included.

제2도는 본 발명에 의한 변형 부스 곱셈기의 구성도.2 is a block diagram of a modified bus multiplier according to the present invention.

제3도는 제2도의 연산부의 세부 구성도.3 is a detailed configuration diagram of the calculation unit of FIG.

Claims (8)

승수(X)와 '0'을 3비트로 나누어 피승수(Y)를 2보수로 만들 것인지, 쉬프트시킬 것인지, 또는 '0'으로 만들 것인지 결정하는 다수의 3비트 부스 인코더(21,22,23,24), 피승수(Y)를 2보수로 만들어 피승수 2보수(/Y)를 출력하는 2보수기(20), 상기 다수의 3비트 부스 인코더(21,22,23,24)로 부터 각각 출력되는 2보수 신호(twoc)에 따라 상기 피승수(Y)와 상기 2보수기(20)로 부터 출력되는 피승수 2보수(/Y) 중에서 하나를 선택하는 다수의 제1멀티플렉서(31,32,33,34), 상기 다수의 제1멀티플렉서(31,32,33,34)로 부터 각각 출력되는 신호를 상기 다수의 3비트 부스 인코더(21,22,23,24)로 부터 각각 출력되는 쉬프트 신호(Shift)와 제로신호(Zero)에 따라 연산하여 출력하는 다수의 연산부(41,42,43,44), 및 상기 다수의 연산부(41,42,43,44)로 부터 각각 출력되는 신호들을 가산하여 최종 곱셈값을 출력하는 가산부(50)를 포함하여 구성되는 것을 특징으로 하는 변형 부스 곱셈기.Multiple three-bit booth encoders 21, 22, 23, 24 that determine whether to multiply multiplier (X) and '0' by three bits to make the multiplier (Y) two complementary, shifted, or zero ), The two complementors 20 for outputting the multiples of complements (/ Y) by making the multiplicand (Y) two complementary, and the two complementary outputs respectively from the plurality of 3-bit booth encoders (21, 22, 23, 24). A plurality of first multiplexers 31, 32, 33, 34 for selecting one of the multiplicands Y and the multiplicand two's complement (/ Y) output from the second complementer 20 according to the signal twoc; Shift signals (Shift) and zero signals respectively output from the plurality of first multiplexers (31, 32, 33, 34) from the plurality of three-bit bus encoder (21, 22, 23, 24) The final multiplication value is output by adding the signals output from the plurality of calculation units 41, 42, 43, 44 and the plurality of calculation units 41, 42, 43, 44 that calculate and output according to (Zero). Deformation booth multiplier, characterized in that it comprises an adder (50). 제1항에 있어서, 상기 3비트 부스 인코더는 승수(X)가 8비트인 경우 4개로 이루어지는 것을 특징으로 하는 변형 부스 곱셈기.2. The modified booth multiplier according to claim 1, wherein the three-bit booth encoder consists of four multipliers (X) of eight bits. 제2항에 있어서, 상기 제1멀티플렉서는 4개로 이루어지는 것을 특징으로 하는 변형 부스 곱셈기.3. The modified booth multiplier according to claim 2, wherein the first multiplexer consists of four. 제3항에 있어서, 상기 연산부는 4개로 이루어지는 것을 특징으로 하는 변형 부스 곱셈기.4. The modified booth multiplier according to claim 3, wherein the calculation unit is composed of four. 제4항에 있어서, 상기 연산부는 상기 3비트 부스 인코더로 부터 출력되는 쉬프트 신호(Shift)에 따라 상기 제1멀티플렉서로 부터 출력되는 신호와 '0'을 입력으로 하여 각각 쉬프트시키는 다수의 제2멀티플렉서(61,62,63,64,65,66,67,68,69), 및 상기 3비트 부스 인코더로 부터 출력되는 제로신호(Zero)와 다수의 제2멀티플렉서(61,62,63,64,65,66,67,68,69)로 부터 각각 출력되는 신호를 논리곱하여 상기 가산부(50)로 출력하는 다수의 앤드 게이트(71,72,73,74,75,76,77,78,79)를 포함하여 구성되는 것을 특징으로 하는 변형 부스 곱셈기.5. The plurality of second multiplexers of claim 4, wherein the operation unit shifts the signals output from the first multiplexer and '0', respectively, according to a shift signal Shift output from the 3-bit bus encoder. (61, 62, 63, 64, 65, 66, 67, 68, 69), and zero signal (Zero) output from the 3-bit bus encoder and a plurality of second multiplexers (61, 62, 63, 64, A plurality of AND gates 71, 72, 73, 74, 75, 76, 77, 78, 79 which logically multiply the signals output from the 65, 66, 67, 68, 69 and output them to the adder 50 A modified booth multiplier characterized in that it comprises a). 제5항에 있어서, 상기 제2멀티플렉서는 피승수(Y)가 8비트인 경우 9개로 이루어지는 것을 특징으로 하는 변형 부스 곱셈기.6. The modified booth multiplier according to claim 5, wherein the second multiplexer consists of nine multipliers (Y) of eight bits. 제6항에 있어서, 상기 앤드 게이트는 9개로 이루어지는 것을 특징으로 하는 변형 부스 곱셈기.7. The modified booth multiplier according to claim 6, wherein the end gate is nine pieces. 제4항에 있어서, 상기 가산부(50)는 상기 4개의 연산부(41,42,43,44)중에서 3개의 연산부(41,42,43)로 부터 각각 출력되는 신호들을 가산하여 2개의 신호를 출력하는 제1가산 어레이(Adder Array)(51), 상기 4개의 연산부(41,42,43,44) 중에서 나머지 하나의 연산부(44)로 부터 출력되는 신호와 상기 제1가산 어레이(51)로 부터 출력되는 2개의 신호들을 가산하여 2개의 신호를 출력하는 제2가산 어레이(52), 및 상기 제2가산 어레이(52)로 부터 출력되는 2개의 신호들을 가산하여 최종 곱셈값을 출력하는 2입력 가산기(53)를 포함하여 구성되는 것을 특징으로 하는 변형 부스 곱셈기.5. The apparatus of claim 4, wherein the adder 50 adds signals output from the three calculators 41, 42, 43, respectively, of the four calculators 41, 42, 43, 44 to add two signals. The first adder array 51 to be output, the signal output from the other operator 44 among the four calculators 41, 42, 43, and 44 and the first adder array 51. A second addition array 52 that adds two signals output from the second adder to output two signals, and a second input that adds two signals output from the second adder array 52 to output a final multiplication value. Modified booth multiplier characterized in that it comprises an adder (53). ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019950062109A 1995-12-28 1995-12-28 Modified booth multiplier KR0172308B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950062109A KR0172308B1 (en) 1995-12-28 1995-12-28 Modified booth multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950062109A KR0172308B1 (en) 1995-12-28 1995-12-28 Modified booth multiplier

Publications (2)

Publication Number Publication Date
KR970049451A true KR970049451A (en) 1997-07-29
KR0172308B1 KR0172308B1 (en) 1999-03-30

Family

ID=19446116

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950062109A KR0172308B1 (en) 1995-12-28 1995-12-28 Modified booth multiplier

Country Status (1)

Country Link
KR (1) KR0172308B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602889B1 (en) * 2014-04-29 2016-03-14 연세대학교 산학협력단 Booth algorithm encoder and multiplier

Also Published As

Publication number Publication date
KR0172308B1 (en) 1999-03-30

Similar Documents

Publication Publication Date Title
Srinivas et al. A fast VLSI adder architecture
US6609143B1 (en) Method and apparatus for arithmetic operation
JPH0612229A (en) Multiplication and accumulation circuit
US4868777A (en) High speed multiplier utilizing signed-digit and carry-save operands
KR960002061A (en) Arithmetic Device for Floating Point
JPH0431412B2 (en)
Kaivani et al. Floating-point butterfly architecture based on binary signed-digit representation
US4878192A (en) Arithmetic processor and divider using redundant signed digit arithmetic
WO2000059112A2 (en) Multiplier circuit
Rajashekhara et al. Fast multiplier design using redundant signed-digit numbers
US5870322A (en) Multiplier to selectively perform unsigned magnitude multiplication or signed magnitude multiplication
KR970049451A (en) Strain booth multiplier
US5097434A (en) Hybrid signed-digit/logarithmic number system processor
KR100329914B1 (en) Dissipation device
US4866657A (en) Adder circuitry utilizing redundant signed digit operands
JP3579087B2 (en) Arithmetic unit and microprocessor
JP2700876B2 (en) Parallel multiplier
EP0520298A2 (en) Arithmetic circuit
Sunder A fast multiplier based on the modified Booth algorithm
RU2753184C1 (en) Parametrizable single-stroke binary multiplier with fixed dot in direct and auxiliary code
JPH04172526A (en) Floating point divider
JPS60112141A (en) Multiplier circuit
RU205198U1 (en) A PARAMETRIZABLE SINGLE-STROKE BINARY MULTIPLIER WITH A FIXED DOT IN A DIRECT AND AUXILIARY CODE
KR0136486B1 (en) Modified booth multiplier
KR0136488B1 (en) Parallel multiplier

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050923

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee