KR970011652B1 - Test method of lithography process margin of semiconductor - Google Patents

Test method of lithography process margin of semiconductor Download PDF

Info

Publication number
KR970011652B1
KR970011652B1 KR1019940001938A KR19940001938A KR970011652B1 KR 970011652 B1 KR970011652 B1 KR 970011652B1 KR 1019940001938 A KR1019940001938 A KR 1019940001938A KR 19940001938 A KR19940001938 A KR 19940001938A KR 970011652 B1 KR970011652 B1 KR 970011652B1
Authority
KR
South Korea
Prior art keywords
exposure
defects
focus
semiconductor wafer
semiconductor
Prior art date
Application number
KR1019940001938A
Other languages
Korean (ko)
Other versions
KR950025941A (en
Inventor
배상만
Original Assignee
현대전자산업 주식회사
김주용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대전자산업 주식회사, 김주용 filed Critical 현대전자산업 주식회사
Priority to KR1019940001938A priority Critical patent/KR970011652B1/en
Publication of KR950025941A publication Critical patent/KR950025941A/en
Application granted granted Critical
Publication of KR970011652B1 publication Critical patent/KR970011652B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The process margin testing method for lithography checks the distribution of process defects with a process defect testing device after progressing the exposure as changing the focus and the exposure energy during the exposure process for each die for semiconductor wafer respected to X-Y axis. As a result, the method chooses exposure energy of a die at the center for the best processing condition among the dies with distributing a number of process defects on a semiconductor wafer(20) below the limit.

Description

반도체소자의 리소그래피 공정마진 검사방법Lithography Process Margin Inspection Method for Semiconductor Devices

제1도는 종래 기술에 따른 리소그래피 공정마진 검사방법을 진행하기 위하여 노광에너지 및 포커스를 X-Y축로 변화시켜 노광한 반도체 웨이퍼의 평면도.1 is a plan view of a semiconductor wafer exposed by changing exposure energy and focus to an X-Y axis in order to proceed with a lithography process margin inspection method according to the prior art.

제2도는 제1도의 각 다이들의 노광에너지에 따른 DICD 또는 FICD를 도시한 그래프.FIG. 2 is a graph showing DICD or FICD according to the exposure energy of each die of FIG.

제3도는 본 발명에 따른 리소그래피 공정마진 검사방법을 진행하기 위하여 노광에너지 및 포커스를 X-Y축으로 변화시켜 노광한 후 공정 결함의 분포를 나타낸 반도체 웨이퍼의 평면도.3 is a plan view of a semiconductor wafer showing the distribution of process defects after exposure by changing the exposure energy and focus to the X-Y axis in order to proceed with the lithography process margin inspection method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10, 20 : 반도체 웨이퍼,12, 22 : 다이10, 20: semiconductor wafer, 12, 22: die

본 발명은 반도체소자의 리소그래피 공정마진 검사방법에 관한 것으로서, 특히 반도체 소자의 제조공정이 갖는 제조능력을 공정 결함 검사장치로 손쉽게 평가하여 제품생산 능력을 평가하고 반도체소자의 각 공정마진을 쉽게 평가하여 반도체 소자의 제품 규격화 품질을 신속하게 검사할 수 있는 반도체소자의 리소그래피 공정마진 검사방법에 관한 것이다.The present invention relates to a lithography process margin inspection method of a semiconductor device, and in particular, to evaluate the manufacturing capability of the semiconductor device manufacturing process with a process defect inspection device to evaluate product production capacity and to easily evaluate each process margin of the semiconductor device. The present invention relates to a lithography process margin inspection method of a semiconductor device capable of quickly inspecting the product standardization quality of the semiconductor device.

일반적으로 새로운 반도체라인을 설립하거나, 새 장비 도입에 따른 반도체 소자의 제조능력자지수를 평가하기 위해서는 여러가지 평가 방법에 따른 평가와 장기간의 평가시일이 요구된다. 즉, 현재의 공정 생산 라인에서 새로 구입한 장비로 임의의 특정 반도체 소자를 생산하고자 할때, 이 반도체소자의 각 공정단계들은 공정능력 및 공정스텝의 독특한 마진 혹은 공정 지수를 가지게 되며, 이들 공정마진 및 지수를 평가하기 위해서 다양한 변수를 측정하여야 한다.In general, in order to establish a new semiconductor line or to evaluate the manufacturing capability index of the semiconductor device according to the introduction of new equipment, evaluation according to various evaluation methods and a long evaluation time are required. In other words, when you want to produce any specific semiconductor device with newly purchased equipment in the current process production line, each process step of the semiconductor device has a unique margin or process index of process capacity and process step, and these process margins Various variables should be measured to assess the and index.

종래 반도체소자의 리소그래피 공정마진 검사방법은 소정의 패턴을 형성한 뒤에 패턴 싸이즈 측정 등과 같은 많은 종류의 검사가 필요하며, 예를 들어 리소그래피 공정에서는 포커스 마진인 초점심도(Depth of Focos ; DOF) 및 노광크기(Exposure Latitude ; 이하 EL이라 칭함) 등을 측정하여야 하며, 특히, 축소노광장치의 투영렌즈(projection lens)의 필드 유니포미티(Uniformity)나 렌즈 수차(Aberration) 등을 측정한다.The lithography process margin inspection method of a conventional semiconductor device requires many kinds of inspections such as pattern size measurement after forming a predetermined pattern. For example, in the lithography process, the depth of focus and DOF are the focus margins. An exposure latitude (hereinafter referred to as EL) may be measured, and in particular, field uniformity or lens aberration of a projection lens of the reduction exposure apparatus is measured.

종래 전자 빔 시스템인 주사전자 현미경(SEM)측정장치에 의한 공정 마진 체크방법을 제1도 및 제2도를 참조하여 살펴보면 다음과 같다.A process margin checking method using a scanning electron microscope (SEM) measuring apparatus, which is a conventional electron beam system, will be described with reference to FIGS. 1 and 2.

제1도에 도시되어 있는 반도체 웨이퍼(Wafer ; 10)는 축소노광 장치를 사용한 각 다이(12)에 대한 노광공정시 가로방향(X축)으로는 노광 에너지를 변화시키고, 세로방향(Y축)으로는 포커스를 변화시켜 노광공정을 진행한 반도체 웨이퍼(10)이다.The semiconductor wafer Wafer 10 shown in FIG. 1 changes the exposure energy in the horizontal direction (X axis) during the exposure process for each die 12 using the reduced exposure apparatus, and in the vertical direction (Y axis). In this case, the semiconductor wafer 10 is subjected to an exposure process by changing the focus.

상기의 반도체 웨이퍼(10)에 형성되어 있는 각 다이(12)내의 0.5㎛ 크기의 라인/스페이스(이하 L/S라 칭함)를 측정하여 임의의 동일 에너지축(E1, E2, E3…)을 기준으로 세로축(Y축)의 포커스(Focus) 변화에 따른, 현상후 임계크기(development inspection critical dimention ; 이하 DICD라 칭함) 혹은 공정후 임계크기(final inspectioin critical dimention ; 이하 FICD라 칭함)를 계산하여 X축에 대응시키면, 제2도에 도시되어 있는 바와 같은 그래프를 얻을 수 있다.0.5 μm-sized lines / spaces (hereinafter referred to as L / S) in each die 12 formed on the semiconductor wafer 10 are measured, and the same energy axis E 1 , E 2 , E 3 . Development inspection critical dimention (hereinafter referred to as DICD) or final inspectioin critical dimention (hereinafter referred to as FICD) according to the change in the focus of the vertical axis (Y-axis). By calculating and corresponding to the X axis, a graph as shown in FIG. 2 can be obtained.

제2도의 그래프에서 각각의 에너지에 대한 DICD(혹은 FICD)와 포커스의 그래프는 포물선 형상이 되며, 상기 포물선들의 꼭지점이 최상의 포커스가 되고, DICD나 FICD가 가장 적은 포물선, 여기에서는 E2의 꼭지점이 최적 포커스가 된다.The graph of DICD (or FICD) and focus for each energy in the graph of FIG. The focus is on.

따라서, 제2도에서 상기 반도체 웨이퍼(10)에서 측정된 CD에서 L/S 0.5㎛의 패턴의 공정마진을 알 수 있으며, CD 간격인 스팩의 범위가 공정조건이 공정마진을 의미한다.Accordingly, in FIG. 2, the process margin of the pattern of L / S 0.5 μm in the CD measured by the semiconductor wafer 10 can be seen, and the range of the specification of the CD interval means the process margin.

상술한 바와 같은 종래의 반도체 소자의 리소그래피 공정마진 검사방법은 많은 량의 CD값 측정 및 제2도와 같은 분석그래프가 필요하여, 소요되는 시간은 측정 목적에 따라 약간의 차이는 있으나, 보통 DICD 혹은 FICD 측정과 측정 데이타 분석까지 수시간씩이 소요된다.The lithography process margin inspection method of the conventional semiconductor device as described above requires a large amount of CD value measurement and an analysis graph such as FIG. 2, but the time required varies slightly depending on the measurement purpose, but is usually DICD or FICD. It takes several hours to complete the measurement and analysis of the measurement data.

이러한 측정방법은 측정을 정확하게 할 수 있는 이점이 있다. 그러나, 기존에 공정 지수들의 능력을 평가해 보았거나, 비슷한 수준으로 평가될 것이라고 예상되어 정확도가 큰 문제가 되지 않는 평가에 있어서는 이들 평가방법은 시간 및 노력이 많이 소요되는 문제점이 있다.This measurement method has the advantage of making accurate measurements. However, in evaluating the capability of the process indices in the past, or expected to be evaluated at a similar level, the evaluation method has a problem that it takes a lot of time and effort.

또한 이러한 방법은 현장에서 쉽게 측정할 수 없을 뿐만 아니라, 별도로 CD-SEM 장비를 사용하여야 하므로 제조경비가 상승하는 문제점이 있다.In addition, this method is not only easy to measure in the field, there is a problem that the manufacturing cost increases because it must use a separate CD-SEM equipment.

본 발명은 상기와 같은 문제점들을 해결하기 위한 것으로서, 본 발명의 목적은 반도체 웨이퍼의 각 다이에 대한 노광공정시 디포커스(deforcus) 및 노광에너지를 각각 X-Y축으로 변화시키며 노광한 후, 통상의 반도체 소자 제조공정시 발생하는 공정결함(Defect)를 검사하는 공정결합 검사장치를 사용하여 공정결함수를 측정하고 이를 공정마진의 크기와 환산 대치하여 공정능력지수 및 마진을 측정하여 정확도는 낮지만, 공정마진의 전체적인 윤곽을 빨리 검사하여 반도체소자의 리소그래피 공정마진 검사에 따른 노력 및 시간을 절감할 수 있는 리소그래피 공정마진 검사방법을 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to change the defocus and exposure energy to the XY axis, respectively, during the exposure process for each die of the semiconductor wafer, and then expose a conventional semiconductor. Process defects are measured using a process coupling inspection device that inspects process defects that occur during device manufacturing processes, and the process capability index and margin are measured by replacing them with the size of process margins. It is to provide a lithography process margin inspection method that can quickly check the overall outline of the margin to reduce the effort and time according to the lithography process margin inspection of the semiconductor device.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 반도체소자의 리소그래피 공정마진 검사방법의 특징은, 각각의 다이에 대한 노광공정시 노광에너지 및 포커스를 X-Y축으로 변화시켜 노광공정이 진행된 반도체 웨이퍼를 공정결함 검사장치를 사용하여 결함의 분포를 조사하고, 공정결함이 소정의 갯수보다 작은 다이들 중에서 가장 공정결함이 적은 조건을 용이하게 얻음에 있다.A feature of the lithography process margin inspection method of a semiconductor device according to the present invention for achieving the above object is to change the exposure energy and focus to the XY axis during the exposure process for each die to process the semiconductor wafer subjected to the exposure process The defect inspection apparatus is used to investigate the distribution of defects, and among the dies whose process defects are smaller than a predetermined number, it is easy to obtain a condition with the least process defects.

이하, 본 발명에 따른 반도체 소자의 리소그래피 공정마진 검사방법에 관하여 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, a lithography process margin inspection method of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 웨이퍼의 공정 진행 조건에 따라, 공정결함 발생 빈도가 차이가 나며, 공정결함의 발생은 보통 비정상적인 경우 많은 결함을 발생되는 성질을 이용하여 공정결함 검사장치를 사용한다.According to the present invention, the process defect occurrence frequency varies according to the process conditions of the wafer, and the process defect inspection apparatus is used by using a property of generating a large number of defects when the process defect is usually abnormal.

축소 노광장치로 반도체 웨이퍼(20)에서 각각의 다이(22)에 대한 노광공정시 X축으로 에너지를 E1, E2, E3…와 같이 변화시키며, Y축으로 포커스를 변화시켜 노광공정을 진행한 후, 공정결함 검사장치를 사용하여 공정결함을 측정하면, 제3도에 도시되어 있는 바와 같은 공정 결함분포도(Defect Map)를 약 20분간 가량이면 얻을 수 있다.In the exposure process for the respective dies 22 in the semiconductor wafer 20 with the reduction exposure apparatus, energy is transferred to the X-axis at E1, E2, E3... After the exposure process is performed by changing the focus on the Y axis, and then measuring the process defect using a process defect inspection device, the process defect distribution map as shown in FIG. 3 is weakened. It takes about 20 minutes.

여기서 0.0㎛ 포커스를 벗어난 디포커스(defocus)의 조건으로 패턴을 형성한 다이들내의 결함수는 최적 포커스 노광에너지에 비해 매우 많은 수로 나타나므로 최적 포커스 및 노광에너지, 여기서는 E2 및 0.0㎛가 최적 조건임을 육안으로 확인할 수 있다.Here, the defects in the dies formed with the pattern under the defocus condition of 0.0 µm out of focus appear to be very large compared to the optimal focus exposure energy, so that the optimum focus and exposure energy, E2 and 0.0 µm are optimal conditions. It can be checked with the naked eye.

이러한 내용을 표준화하면, 컴퓨터에 의한 공정 자동화가 가능하며, 이를 살펴보면 다음과 같다.By standardizing these contents, computer-based process automation is possible.

먼저, 포커스 크기(Focus Latitude ; 이하 FL이라 칭함)를 얻기 위해서 임의 고정 노광에너지, 예를 들어 E2에서 디포커스(Defocus)가 변화하여도 공정 결함수가 통상의 갯수만큼 나타나다 어느 디포커스 지점에서 많은 수의 결함이 검출된다. 이와 같은 디포커스 변화에 따라 공정 결함수가 심하게 변화하지 않는 공정조건의 다이(22)를 FL로 설정하여 정한다.First, in order to obtain the focus size (hereinafter referred to as FL), the number of process defects appears as a normal number even when the defocus is changed at an arbitrary fixed exposure energy, for example, E 2 . A number of defects are detected. The die 22 of the process condition in which the number of process defects does not change significantly according to such defocus change is determined by setting FL.

즉, 컴퓨터에 결함의 출현 비율에 따른 임의의 기준 결함수를 정하면 기준 결함수 이내의 다이의 갯수인 공정 마진의 크기를 알 수 있으므로 그 크기의 중앙점을 최적의 공정 조건으로 판단한다. EL도 FL측정과 마찬가지로 개략적인 마진을 판단할 수 있으므로 공정마진 검사의 자동화가 가능하다.In other words, if a predetermined number of reference defects is determined in accordance with the appearance ratio of defects in the computer, the size of the process margin, which is the number of dies within the reference defect number, can be known. EL, like FL measurement, can be used to determine the approximate margin, allowing automated process margin inspection.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 리소그래피 공정마진 검사방법은, 반도체 웨이퍼에서 각각의 다이에 대한 노광공정시 노광에너지 및 포커스를 각각 X-Y축으로 하여 변화시켜가며 노광을 진행한 후, 공정결함 검사장치로 공정결함의 분포를 확인하고, 공정결함이 가장 작은 최적의 공정 조건을 측정 선택하였으므로, 공정 마진의 평가가 용이하고, 손쉽게 반도체 제조공정을 빨리 셋업(Set up)할 수 있는 이점이 있다. 또한 공정결함 검사장치를 이용한 새로운 반도체 제조공정의 임의의 공정 조건에서 결함수의 파악이 가능하여 제품의 생산 단가를 절감할 수 있으며, 기존의 공정결함 검사장치, 예를 들어 패턴 비교방식 및 패턴대 데이타 비교방식 결합검사장치에 공정결함 검출 기능을 첨가하여 용이하게 공정마진을 검사할 수 있는 이점이 있다.As described above, in the lithography process margin inspection method of a semiconductor device according to the present invention, after exposing while changing the exposure energy and focus on the XY axis in the exposure process for each die in the semiconductor wafer, The defect inspection system confirms the distribution of process defects and measures and selects the optimal process conditions with the smallest process defects. This makes it easy to evaluate process margins and easily set up semiconductor manufacturing processes quickly. have. In addition, it is possible to grasp the number of defects under any process conditions of the new semiconductor manufacturing process using the process defect inspection device, thereby reducing the production cost of the product. Data comparison method The process defect detection function can be added to the combined inspection device to easily inspect the process margin.

Claims (1)

반도체 웨이퍼내의 각각의 다이를 순차적으로 노광할 때. 노광에너지 및 포커스를 각각 X-Y축으로 변화시켜 노광하는 공정과, 상기 반도체 웨이퍼의 다이들의 공정결함의 분포를 검사하는 공정과, 상기 반도체 웨이퍼에서 공정결함의 수가 소정 기준치 이하로 분포하는 다이들 중에서 중앙 부분에 위치하는 다이의 노광에너지 및 포커스를 최적 공정조건으로 선택하는 공정을 포함하는 반도체소자의 리소그래피 공정마진 검사방법.When each die in the semiconductor wafer is sequentially exposed. A process of exposing the exposure energy and focus to the XY-axis, respectively, exposing the process defects of the dies of the semiconductor wafer, and inspecting the process defects of the dies of the semiconductor wafer; A lithographic process margin inspection method of a semiconductor device comprising the step of selecting the exposure energy and focus of a die located in a portion as optimum process conditions.
KR1019940001938A 1994-02-03 1994-02-03 Test method of lithography process margin of semiconductor KR970011652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940001938A KR970011652B1 (en) 1994-02-03 1994-02-03 Test method of lithography process margin of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940001938A KR970011652B1 (en) 1994-02-03 1994-02-03 Test method of lithography process margin of semiconductor

Publications (2)

Publication Number Publication Date
KR950025941A KR950025941A (en) 1995-09-18
KR970011652B1 true KR970011652B1 (en) 1997-07-12

Family

ID=19376686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940001938A KR970011652B1 (en) 1994-02-03 1994-02-03 Test method of lithography process margin of semiconductor

Country Status (1)

Country Link
KR (1) KR970011652B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493133B1 (en) * 2009-07-01 2015-02-12 가부시키가이샤 니콘 Exposure condition evaluation method and exposure condition evaluatin apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493133B1 (en) * 2009-07-01 2015-02-12 가부시키가이샤 니콘 Exposure condition evaluation method and exposure condition evaluatin apparatus

Also Published As

Publication number Publication date
KR950025941A (en) 1995-09-18

Similar Documents

Publication Publication Date Title
US6784446B1 (en) Reticle defect printability verification by resist latent image comparison
US7135344B2 (en) Design-based monitoring
US8755045B2 (en) Detecting method for forming semiconductor device
US9201022B2 (en) Extraction of systematic defects
US5886909A (en) Defect diagnosis using simulation for IC yield improvement
US6023328A (en) Photomask inspection method and apparatus
WO2005073806A1 (en) Method and system for controlling the quality of a reticle
US20200372630A1 (en) Computer Assisted Weak Pattern Detection and Quantification System
KR101104665B1 (en) Substrate inspection system, substrate inspection method and substrate inspection apparatus
US6546125B1 (en) Photolithography monitoring using a golden image
US6972576B1 (en) Electrical critical dimension measurement and defect detection for reticle fabrication
KR101385753B1 (en) Method for inspecting critical dimension uniformity at the high speed measurement
KR970011652B1 (en) Test method of lithography process margin of semiconductor
KR20080002044A (en) Method of setting an inspection area
KR0120551B1 (en) Test method of photo process margin of semiconductor device
US20060212245A1 (en) Real-time mathematical model for wafer spin defect detection and for misalignment analyses
US7664614B2 (en) Method of inspecting photomask defect
US7424144B2 (en) Method for checking periodic structures on lithography masks
KR100268779B1 (en) Pattern defect inspection method
KR0165319B1 (en) Testing method of processing margin in photo lithography process
US20040165763A1 (en) Method for inspection of periodic grating structures on lithography masks
JPH11126736A (en) Apparatus and system for managing manufacture of semiconductor device
JP5359981B2 (en) Substrate inspection system and substrate inspection method
KR0127661B1 (en) Automatic exposure method using the reticle for semiconductor fabrication
Reynolds Preliminary evaluation of the KLA/Micrion 808 one step clear and opaque defect repair system

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100920

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee