KR970006609B1 - Semiconductor photodiode and method of the same - Google Patents

Semiconductor photodiode and method of the same Download PDF

Info

Publication number
KR970006609B1
KR970006609B1 KR1019930029970A KR930029970A KR970006609B1 KR 970006609 B1 KR970006609 B1 KR 970006609B1 KR 1019930029970 A KR1019930029970 A KR 1019930029970A KR 930029970 A KR930029970 A KR 930029970A KR 970006609 B1 KR970006609 B1 KR 970006609B1
Authority
KR
South Korea
Prior art keywords
film
silicon
light receiving
base
light
Prior art date
Application number
KR1019930029970A
Other languages
Korean (ko)
Other versions
KR950021803A (en
Inventor
정욱진
권영규
김광일
배영호
이광철
Original Assignee
조말수
포항종합제철주식회사
백덕현
재단법인산업과학기술연구소
장문현
주식회사포스콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조말수, 포항종합제철주식회사, 백덕현, 재단법인산업과학기술연구소, 장문현, 주식회사포스콘 filed Critical 조말수
Priority to KR1019930029970A priority Critical patent/KR970006609B1/en
Publication of KR950021803A publication Critical patent/KR950021803A/en
Application granted granted Critical
Publication of KR970006609B1 publication Critical patent/KR970006609B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

A technique related to a light receiving device is described that can fabricate the light receiving device by making crystal selectively grown on silicon on insulator(SOI). The light receiving device comprises a bipolar transistor and light receiving diode. The bipolar transistor includes a SOI substrate formed over one side of a silicon substrate 5 by the processes for a first oxide layer 7 and SO layer 8, collector 10 formed over the SOI substrate, a base 11a formed over the collector 10, and an emitter formed over the base 11a. The light receiving diode includes a silicon epitaxial layer 9 formed over the other side thereof and electrically connected thereto, and an original infrared lays sensing layer 11b formed over the silicon epitaxial 9. Thereby, it is possible to improve the efficiency in light receiving.

Description

반도체 수광소자 및 그 제조방법Semiconductor light receiving device and manufacturing method

제1도는 본 발명이 반도체 수광소자의 등가회로도.1 is an equivalent circuit diagram of a semiconductor light receiving device according to the present invention.

제2a도 내지 제2h도는 본 발명의 반도체 수광소자의 제조공정도.2A to 2H are manufacturing process diagrams of a semiconductor light receiving element of the present invention.

제3도는 본 발명의 반도체 수광소자의 수직단면도.3 is a vertical sectional view of a semiconductor light receiving element of the present invention.

* 도면의 주요부분에 대한 부호의 설명.* Explanation of symbols for the main parts of the drawings.

1 : 베이스전극 2 : 콜렉터전극1 Base electrode 2 Collector electrode

3 : 에미터전극 4 : 부하저항3: emitter electrode 4: load resistance

5 : 실리콘기판 6 : P확산영역5: silicon substrate 6: P diffusion region

7: 제1산화막 8 : SOI(Silicon on Insulator)7: first oxide film 8: silicon on insulator (SOI)

9 : 실리콘에피층 10 : 콜렉터9: silicon epi layer 10: collector

11a : 베이스 11b : 원적외선 광감지막11a: base 11b: far infrared ray photosensitive film

12 : 제2산화막 13 : 수광다이오드제2전극12. Second Oxide Film 13: Light-Emitting Diode Second Electrode

14 : 수광다이오드제1전극 15 : 에미터14 light receiving diode first electrode 15 emitter

16 : 광흡수막 17 : 보호막16: light absorption film 17: protective film

19, 20, 21, 22, 23 : 개구부 D1: 수광다이오드19, 20, 21, 22, 23: opening part D 1 : light receiving diode

Q1: 이종접합바이폴라트랜지스터Q 1 : Heterojunction Bipolar Transistor

본 발명은 반도체집적회로 제조공정을 이용하여 SOI반도체기판위에 선택결정성장방법으로 제조된 반도체 수광소자 및 그 제조방법에 관한 것으로, 특히 실리콘-게르마늄을 사용하여 원적외선 감지소자를 제조하고 초고속, 고전류이득 특성을 갖는 이종접합 바이폴라 트랜지스터를 동시에 집적화함으로서 이종집합 바이폴라 트랜지스터의 증폭기능에 의한 수광효율을 증가시키기 위한 반도체 수광소자 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device manufactured by a selective crystal growth method on an SOI semiconductor substrate using a semiconductor integrated circuit fabrication process, and to a method of manufacturing the same. In particular, a far infrared ray sensing device is fabricated using silicon-germanium and ultrafast, high current gain The present invention relates to a semiconductor light-receiving device for increasing the light receiving efficiency due to the amplifier function of a hetero-junction bipolar transistor by simultaneously integrating heterojunction bipolar transistors having characteristics and a method of manufacturing the same.

현재 개발되어지고 있는 반도체 수광소자는 화합물 반도체 특히 원적외선 감지 이미지센서 제조를 위하여 HgCdTe의 재료를 많이 사용하여 왔다. 이 재료를 사용하여 반도체센서를 제조하는 것은 재료자체의 불완전성 때문에 많은 노하우와 긴 개발시간을 요구하고 있으며, 선진 몇개국에서만 실현하고 있는 실정이다. 또한 소재가 매우 유독한 특성을 가지고 있고 많은 연구비가 투자되어야 한다. 이러한 연구에도 불구하고 HgCdTe는 소재의 불완전성 때문에 반도체 집적회로 제조공정에 의한 대량생산이 곤란하여 이종(Hybride)형태로 이미지센서를 제조하고 있으며 생산성 또한 매우 취약하다고 할 수 있다. 그리고 실리콘 계열에 소재를 이용한 적외선 센서로는 PtSi/Si구조에서 쇼트키(Schottky)접촉을 이용하는 경우이다. 이 경우는 광 흡수 파장 대역의 수광특성이 재료 자체적으로 원적외선 감지에는 크게 미치지 못하는 단점을 가지고 있다. 이 밖에도 IrSi/Si 쇼트키접촉방법도 있지만. 광흡수파장대역을 크게 증가시키기 못하였다. 이외에도 Ⅲ-Ⅴ족 화합물로 제조한 MQW(Multi Quantum Well)구조를 이용하여 원적외선 감지소자로 응용하는 연구결과도 있다.Currently developed semiconductor light-receiving device has been using a lot of HgCdTe material for the manufacture of compound semiconductor, especially far-infrared sensing image sensor. The manufacture of semiconductor sensors using this material requires a lot of know-how and long development time due to the imperfection of the material itself. In addition, the material has very toxic properties and a large amount of research costs must be invested. Despite these studies, HgCdTe is difficult to mass-produce by semiconductor integrated circuit manufacturing process due to the imperfection of materials. Therefore, HgCdTe manufactures image sensor in hybrid form and its productivity is very weak. In addition, an infrared sensor using a material based on silicon is a case of using Schottky contact in a PtSi / Si structure. In this case, the light-receiving characteristics of the light absorption wavelength band have a disadvantage that the material itself is far less than the detection of far infrared rays. There is also an IrSi / Si Schottky contact method. The light absorption wavelength band could not be increased significantly. In addition, there is a research result of applying as a far-infrared sensing device using MQW (Multi Quantum Well) structure made of III-V compound.

따라서 본 발명의 목적은 원적외선을 감지하기 위한 수광소자로서 반도체 집적회로 제조공정을 이용하면서, 기존의 화합물반도체(HgCdTe)에서 얻어낼 수 있는 원적외선 흡수파장영역과 유사한 수광특성을 구현할 수 있는 실리콘-게르미늄을 사용함으로서, 화합물반도체보다 생산성이 우수한 실리콘 집적회로 제조공정으로 원적외선 감지소자를 제조하고 또한 초고속, 고전류이득 특성을 갖는 이종접합 바이폴라 트랜지스트를 동시에 집적화함으로서 이종 접합바이폴라 트랜지스트의 증폭기능에 의한 수광효율을 증가시키기 위한 반도체 수광소자를 제공하는데 있다.Therefore, an object of the present invention is to use a silicon integrated circuit manufacturing process as a light receiving element for detecting far infrared rays, and silicon-ger which can realize light receiving characteristics similar to the far-infrared absorption wavelength region obtained from the conventional compound semiconductor (HgCdTe). By using aluminum, it is possible to manufacture far-infrared ray sensing element by silicon integrated circuit manufacturing process which is more productive than compound semiconductor and simultaneously integrate heterojunction bipolar transistor with ultra-fast and high current gain characteristics by amplifier function of heterojunction bipolar transistor. The present invention provides a semiconductor light receiving device for increasing light receiving efficiency.

본 발명의 또 다른 목적은 반도체 수광소자의 제조방법을 제공하는데 있다.Still another object of the present invention is to provide a method of manufacturing a semiconductor light receiving device.

상기 목적을 달성하기 위하여 본 발명은, 실리콘 기판의 일측 상부에 제1산화막과 SOI막을 연속 순차공정으로 형성된 SOI기판과, 상기 SOI기판 상부에 형성된 콜렉터와, 상기 콜렉터 상부에 형성된 베이스와, 상기 베이스 상부에 형성된 에미터로 이루어진 이종접합 바이폴라트랜지스터와; 상기 실리콘 기판의 타측 상부에 형성되어 상기 실리콘 기판과 전기적으로 결합되는 실리콘 에피층과, 상기 실리콘 에피층 상부에 형성된 원적외선 광감지막으로 이루어진 수광다이오드를 포함하고 있는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a SOI substrate formed by successive sequential processes of forming a first oxide film and an SOI film on one side of a silicon substrate, a collector formed on the SOI substrate, a base formed on the collector, and the base. A heterojunction bipolar transistor composed of an emitter formed thereon; And a light emitting diode formed on the other side of the silicon substrate, the silicon epitaxial layer electrically coupled to the silicon substrate, and a far-infrared photosensitive film formed on the silicon epitaxial layer.

상기의 다른 목적을 달성하기 위하여 본 발명은, 실리콘 기판 상부에 제1산화막과 SOI막을 연속 순차적인 공정으로 SOI기판을 형성하는 공정과, 상기 SOI기판 상부에 제2산화막을 성장시킨 후 상기 SOI기판과 제2산화막을 선택식각하여 수광영역을 형성하는 공정과, 제2산화막은 제외되고 실리콘 상부에서만 실리콘이 에피성장하는 선택에피성장기술을 이용하여 선택적으로 실리콘 에피층을 형성하는 공정과, 상기 제2산화막을 부분식각하고 선택에피성장기술로 이종접합 바이폴라트랜지스터의 콜렉터를 형성하는 공정과, 실리콘과 물리적 결정학적 변수가 다른 이종접합소재로서 실리콘-게르마늄 또는 실리콘-카바이드로 에피성장하여 베이스 및 수광다이오드의 원적외선 광감지막을 형성하는 공정과 성장된 실리콘-게르마늄 에피층에서 다음 열처리 공정도중 게르마늄의 이탈을 방지하기 위한 보호막을 실리콘 산화막 또는 질화막으로 증착하는 공정과, 수광다이오드의 제2전극을 형성하기 위하여 SOI기판과 제2산화막을 선택적으로 식각한 후 저항성 접촉을 위하여 P형 불순물을 확산한 다음 P-폴리실리콘을 증착하는 공정과, 이종접합트랜지스터의 베이스상부에 있는 제2산화막을 선택적으로 식각하고 에미터를 형성하는 공정과, 상기 에미터를 형성한후 산화막을 증착하고 금속전극을 형성하는 공정을 포함하고 있는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a process for forming an SOI substrate on a silicon substrate by a continuous sequential process of a first oxide film and an SOI film, and growing a second oxide film on the SOI substrate and then growing the SOI substrate. And forming a light receiving region by selectively etching the second oxide film, and selectively forming a silicon epitaxial layer using a selective epitaxial growth technique in which silicon is epitaxially grown only on the silicon except the second oxide film. Partially etched oxide and forming collector of heterojunction bipolar transistor with selective epitaxial growth technology, and heterojunction material with different physical crystallographic parameters from silicon and epitaxial growth with silicon-germanium or silicon-carbide Process of forming a far-infrared photosensitive film of silicon and the next heat treatment process in grown silicon-germanium epi layer P-type impurities for resistive contact after a process of depositing a protective film to prevent the separation of germanium with a silicon oxide film or a nitride film, and selectively etching the SOI substrate and the second oxide film to form a second electrode of the light emitting diode. Diffusing and then depositing P-polysilicon, selectively etching the second oxide layer on the base of the heterojunction transistor and forming an emitter, depositing the oxide layer after forming the emitter It is characterized by including the process of forming an electrode.

이하, 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다. 제1도는 본 발명의 반도체 수광소자의 등가회로도로써, 이종접합트랜지스터(Q1)의 베이스-콜렉터간에 역방향으로 바이어스된 수광바이오드(D1)를 접속하여 수광다이오드에 빛이 조사되면 광전류 Id가 이종접합트랜지스터(Q1)의 베이스에 인가되고 이종접합트랜지스터(Q1)의 콜렉터에는 광전류 Id의 h(이중접합트랜지스터 증폭률)배가 흐르게 된다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention. FIG. 1 is an equivalent circuit diagram of a semiconductor light receiving device according to the present invention. When light is irradiated to a light emitting diode by connecting a light receiving diode D 1 reversely biased between a base-collector of a heterojunction transistor Q 1 , the photocurrent Id is is applied to the base of the hetero-junction transistor (Q 1), the collector of the hetero-junction transistor (Q 1) has to flow times h (double junction transistor amplification factor) of the photo current Id.

제2도는 반도체 수광소자의 제조공정도로서, 제2a도를 참조하면 P/P구조를 갖는 실리콘 기판(5)상부에 제1산화막(7)과 N-SOI막(8)을 연속 순차적인 공정으로 SOI기판(7,8)을 형성하고, 상기 SOI기판(7,8)상부에 제2산화막(12)을 수백 A정도 열 산화법으로 성장시킨 후 수광영역(18)의 선택에피성장을 위하여 산진식각(Photo-lithogrphy)공정 및 반도체 식각공정을 실시한다.FIG. 2 is a manufacturing process diagram of a semiconductor light-receiving element. Referring to FIG. 2A, a SOI is sequentially formed by sequentially depositing a first oxide film 7 and an N-SOI film 8 on a silicon substrate 5 having a P / P structure. After the substrates 7 and 8 are formed, the second oxide film 12 is grown on the SOI substrates 7 and 8 by several hundred A, and then thermally etched to select epitaxial growth of the light receiving region 18. Photo-lithogrphy process and semiconductor etching process are performed.

제2b도를 참조하면 제2산화막(12)은 제외되고 실리콘 상부에서만 실리콘이 에피성장하는 선택 에피성정 기술을 사용하여 선택적으로 수광영역(18)에 실리콘 에피층(9)을 성장시킨다.Referring to FIG. 2B, the silicon epitaxial layer 9 is selectively grown in the light receiving region 18 by using a selective epitaxial technique in which silicon is epitaxially grown only on the silicon, except for the second oxide layer 12.

제2c도를 참조하면 이종접합 바이폴라트랜지스터 제조를 위한 영역(10,11a,11b)을 에피성장하기 위하여, 실리콘 산화막을 부분식각하고 난 후 선택 에피성정공정을 실시한다. 여기서 영역(10)은 이종접합 바이폴라트랜지스터의 콜렉터로서 항복전압과 전류밀도를 고려한 저농도의 N-실리콘이다. 영역(11a,11b)은 이종접합 바이폴라트랜지스터의 베이스와 이종접합 수광소자의 원적외선 광감지막으로써 광반송자(hole)를 절대 온도 77K이하에서 효과적으로 감지하기 위한 소재로 실리콘-게르마늄(SiGe)을 사용하였으며, 불순물은 P형 불순물(붕소)을 10-10개/㎤정도의 고농도로 하였고 두께는 수백A내외로 하였다. 따라서 이종접합 바이폴라트랜지스터는 베이스의 농도 및 두께에 의해 결성되는 전류이득 및 동작속도를 효과적으로 향상시킬 수 있으며, 수광특성에는 고농도의 P형 불순물에 의해 페르미준위(Fermi-level)가 가전자대로 접근함으로서 이종접합 다이오우드에서의 가전자대 에너지장벽이 높이를 원적외선을 감지하기에 효과적인 범위로 접근시킬 수 있다. 이와 같은 공정특성은 전자소자와 광소자들이 동시에 집적화할 때 이종접합과 고농도의 불순물 첨가공정에서는 상대적인 오염을 최소화 할 수 있는 장점을 갖는다. 제2c도의 실리콘-게르마늄 성장공정은 전자소자와 광소자에서 각각 실시할 수도 있고 동시에 실시할 수도 있다.Referring to FIG. 2C, in order to epitaxially grow regions 10, 11a and 11b for heterojunction bipolar transistor fabrication, a selective epitaxial process is performed after the silicon oxide film is partially etched. Here, the region 10 is a collector of a heterojunction bipolar transistor, and has a low concentration of N-silicon in consideration of the breakdown voltage and the current density. The regions 11a and 11b are far-infrared photosensitive films of the heterojunction bipolar transistor base and the heterojunction light receiving element, which use silicon-germanium (SiGe) as a material for effectively detecting the phototransmitter at an absolute temperature of 77K or lower. Impurities were made of P-type impurities (boron) at a high concentration of about 10-10 particles / cm 3 and their thickness was about several hundred A. Therefore, the heterojunction bipolar transistor can effectively improve the current gain and operation speed formed by the concentration and thickness of the base, and the Fermi-level approaches the valence band by the high concentration of P-type impurities. The valence band energy barrier in the heterojunction diode can approach the height to an effective range for detecting far infrared rays. Such process characteristics have the advantage of minimizing relative contamination in heterojunctions and high concentration impurity addition processes when electronic devices and optical devices are integrated at the same time. The silicon-germanium growth process of FIG. 2C may be performed at the same time as the electronic device and the optical device.

제2d도를 참조하면 성장된 실리콘-게르마늄 에피층에서 다음 열처리 도중 게르마늄의 이탈을 방지하기 위한 보호막을 실리콘 산화막(SiO2)또는 집화막(Si3N4)으로 증착하는 공정으로써, 실리콘 산화막을 수백 A정도 증착한 후 질화막을 증착한 이중구조의 보호막을 사용할 수도 있다. 이와 같은 보호막은 반도체 수광소장에서 광 공진기(Optical Resonance)역할을 알 수 있다. 제2e도를 참조하면 수광다이오드의 전극을 형성하기 위하여 SOI기판(7,8)과 제2산화막(12)을 선택적으로 식각한 후 전극의 저항성 접촉물 위하여 고농도로 붕소를 황산한 다음 수광다이오드 제2전극(13)은 P-폴리실리콘으로 증착하는 것이다.Referring to FIG. 2D, a silicon oxide film is formed by depositing a protective film on the grown silicon-germanium epitaxial layer as a silicon oxide film (SiO 2 ) or a collection film (Si 3 N 4 ) to prevent the release of germanium during the next heat treatment. After depositing several hundred A, a double layer protective film in which a nitride film is deposited may be used. Such a protective film may be known as an optical resonance in the semiconductor light receiving field. Referring to FIG. 2E, the SOI substrates 7 and 8 and the second oxide film 12 are selectively etched to form electrodes of the light receiving diode, and then boron sulfate is concentrated at a high concentration for resistive contact of the electrodes. The second electrode 13 is deposited by P-polysilicon.

제2f도를 참조하면 이종접합 바이폴라트랜지스터의 에미터(15)를 형성하는 공정으로써, 베이스(11a)상부에 있는 보호막(17)을 선택적으로 식각하고 P-실리콘 또는 P-폴리실리콘을 사용하여 에미터(15)를 형성한다.Referring to FIG. 2F, a process of forming the emitter 15 of the heterojunction bipolar transistor, in which the protective film 17 on the base 11a is selectively etched, and P-silicon or P-polysilicon is used. Form the rotor 15.

제2g도를 참조하면 상기 에미터(15)를 형성한 후 산화막을 수백A정도 증착하고 반도체 패턴형성공정으로 금속전극형성을 위한 부분을 식각한다.Referring to FIG. 2G, after forming the emitter 15, an oxide film is deposited several hundred A, and a portion for forming a metal electrode is etched by a semiconductor pattern forming process.

제2h도를 참조하면 금속전극형성공정으로써, 이 공정에서 수광다이오드의 광 흡수율을 증가시키기 위하여 광반사막으로의 역할을 수행할 수 있도록 금속(알루미늄)을 수광다이오드 전영역에 도포한다.Referring to FIG. 2h, as a metal electrode forming process, metal (aluminum) is applied to the entire photodiode area so as to act as a light reflection film in order to increase the light absorption of the photodiode.

제3도는 본 발명의 반도체 수광소자의 수직단면도로써, 빛이 광흡수막(16)에 조사되면 실리콘판(5)상에는 전자, 정공 쌍(pair)이 발생하고, 실리콘기판(5)에 공핍증의 발생이 조절되도록 수광다이오드 전극에 바이어스를 걸어주면 수광다이오드의 원적외선 광감지막(11b)에서 광 반송자가 감지되고, 상기 광 반송자는 수광 다이오드 제1전극(14)을 통해 이종접합트랜지스터의 베이스(11a)에 인가되어 증폭되므로써 수광특성이 향상된다.3 is a vertical cross-sectional view of the semiconductor light-receiving element of the present invention. When light is irradiated onto the light absorption film 16, electrons and hole pairs are generated on the silicon plate 5, and depletion of the silicon substrate 5 is performed. When the bias is applied to the photodiode electrode to control the generation of light, the photocarrier is sensed at the far-infrared photosensitive film 11b of the photodiode, and the photocarrier is connected to the base of the heterojunction transistor through the photodiode first electrode 14. The light receiving characteristic is improved by being applied to and amplified in 11a).

이상과 같은 반도체 집접회로 제조공정으로 제조된 반도체 수광소자의 제조방법은 다음과 같은 효과를 가진다. 수광소자(수광다이오드)와 구동소자(이중접합트랜지스터)를 실리콘소재를 이용하여 제조함으로써 대량생산 및 생산성을 높일 수 있으며, 실리콘-게르미늄/실리콘에 의한 이종접합구조를 수광소자와 구동소자에 함께 적용함으로서 재소공정의 편의성을 향상시킨다. 또한 이중접합구조에 의한 구동소자의 높은 동작속도 및 고전류이특을 수광소자에 응용함으로서 수광효율 및 동작특성을 향상시킬 수 있으며, SOI기판구조에 의한 소자분리를 효과적으로 실시함으로서 수광소자간의 간섭에 의한 잡음을 최소화하여 2차원 이미지센서에의 적용기여도가 클 것으로 예측된다. 그리고 수광소자의 이종접합구조에서 실리콘-게르마늄을 실리콘-카바드로 대체함으로써 X-ray, 방사선을 감지하는 수광소자를 제조할 수 있으며 SOI구조에 의한 내방사선효과를 갖는 수광소자를 제조할 수 있다.The method of manufacturing a semiconductor light-receiving device manufactured by the above-described semiconductor integrated circuit manufacturing process has the following effects. By manufacturing light-receiving elements (light-emitting diodes) and driving elements (double junction transistors) using silicon materials, mass production and productivity can be improved, and heterojunction structures made of silicon-germanium / silicon are combined with light-receiving elements and driving elements Application improves the convenience of the burning process. In addition, it is possible to improve the light receiving efficiency and operation characteristics by applying the high operating speed and high current of the drive element by the double junction structure to the light receiving element, and the noise caused by the interference between the light receiving elements by effectively separating the elements by the SOI substrate structure. It is expected that the contribution to the two-dimensional image sensor will be large by minimizing. In addition, by replacing silicon-germanium with silicon-carbide in the heterojunction structure of the light-receiving device, it is possible to manufacture a light-receiving device for detecting X-ray and radiation, and to manufacture a light-receiving device having a radiation resistance effect by SOI structure.

Claims (9)

실리콘기판(5)의 일측 상부에 제1산화막(7)과 SOI막(8)을 연속순차공정으로 형성된 SOI기판(7,8)과, 상기 SOI기판(7,8)상부에 형성된 콜렉터(10)와, 상기 콜렉터(10)상부에 형성된 베이스(11a)와, 상기 베이스(11a)상부에 형성된 에미터(15)로 이루어진 이중접합 바이폴라트랜지스터와; 상기 실리콘기판(5)의 타측상부에 형성되어 상기 실리콘기판(5)과 전기적으로 결합되는 실리콘 에피층(9)과, 상기 실리콘 에피층(9)상부에 형성된 원적외선 감지막(11b)으로 이루어진 수광다이오드를 포함하고 있는 것을 특징으로 하는 반도체수광소자.SOI substrates 7 and 8 in which the first oxide film 7 and the SOI film 8 are formed in a continuous sequential process on one side of the silicon substrate 5, and the collector 10 formed on the SOI substrates 7 and 8. A double junction bipolar transistor comprising a base 11a formed on the collector 10 and an emitter 15 formed on the base 11a; The light receiving device includes a silicon epitaxial layer 9 formed on the other side of the silicon substrate 5 and electrically coupled to the silicon substrate 5, and a far infrared ray sensing film 11b formed on the silicon epitaxial layer 9. A semiconductor light receiving element comprising a diode. 제1항에 있어서, 수광다이오드와 전기적으로 결합된 실리콘기판(5)과 수광다이오드의 제2전극(13)사이에 확산영역(6)을 구비하는 것을 특징으로 하는 반도체 수광소자.2. A semiconductor light receiving element according to claim 1, wherein a diffusion region (6) is provided between the silicon substrate (5) electrically coupled with the light receiving diode and the second electrode (13) of the light receiving diode. 제1항에 있어서, 상기 이종접합 바이폴라트랜지스트의 SOI막(8a)과, 베이스(11a) 및 에미터(15)를 덮고 있는 제2산화막(12)에 제1, 2, 3 개구부(19,20,21)를 형성하여 콜렉터(10)와 베이스(11a) 및 에미터(15)의 접촉구멍으로 작용할 수 있도록 한 것을 특징으로 하는 반도체 수광소자.The first, second, and third openings 19, according to claim 1, wherein the SOI film 8a of the heterojunction bipolar transistor and the second oxide film 12 covering the base 11a and the emitter 15 are formed. A semiconductor light receiving element characterized in that it forms 20, 21 to act as a contact hole between the collector (10), the base (11a), and the emitter (15). 제1항에 있어서, 이종접합 바이폴라트랜지스터의 베이스(11a)와 수광다이오드의 원적외선 광감지막(11b)을 덮고 있는 제2산화막(12)과 보호막(17)에 제4, 5 개구부(22,23)를 형성하여 베이스와 수광다이오드를 전기적으로 연결하기 위한 접촉구멍으로서 역할하도록 한 것을 특징으로 하는 반도체 수광소자.The fourth and fifth openings 22 and 23 of claim 1, wherein the second oxide film 12 and the protective film 17 cover the base 11a of the heterojunction bipolar transistor and the far-infrared light sensing film 11b of the light-emitting diode. And a) to serve as a contact hole for electrically connecting the base and the photodiode to the base. 제4항에 있어서, 상기의 이종접합 바이폴라트랜지스터의 베이스(11a)와 수광다이오드의 원적외선 광감지막(11b)을 전기적으로 연결하는 수광다이오드 제1전극이 광반사막으로 역할하도록 수광다이오드 전면을 덮고 있는 것을 특징으로 하는 반도체 수광소자.5. The light receiving diode of claim 4, wherein the first light receiving diode electrically connecting the base 11a of the heterojunction bipolar transistor and the far-infrared light sensing film 11b of the light receiving diode serves as a light reflection film. A semiconductor light receiving element, characterized in that. 실리콘기판(5) 상부에 제1산화막(7)과 SOI막(8)을 연속순차적인 공정으로 SOI기판(7,8)을 형성하는 공정과, 상기 SOI기판(7,8)상부에 제2산화막(12)을 성장시킨 후 상기 SOI기판(7,8)과 제2산화막(12)을 선택 식각하여 수광영역(18)을 형성하는 공정과, 제2산화막(12)은 제외되고 실리콘 상부에서만 실리콘이 에피성장하는 선택 에피성장기술을 이용하여 선택적으로 실리콘 에피층(9)을 형성하는 공정과, 상기 제2산화막(12)의 부분식각하고 선택에피성장기술로 이종접합 바이폴라트랜지스터의 콜렉터(10)를 형성하는 공정과, 실리콘과 물리적 결정학적 변수가 다른 이종접합소재로서 실리콘-게르마늄 또는 실리콘-카바이드로 에피성장하여 베이스(11a) 및 수광다이오드의 원적외선 광감지막(11b)을 형성하는 공정과, 성장된 실리콘-게르마늄에피층에서 다음 열처리공정도중 게르마늄의 이탈을 방지하기 위한 보호막(17)을 실리콘 산화막 또는 질화막으로 증착하는 공정과, 수광다이오드의 제2전극(13)을 형성하기 위하여 SOI기판(7,8)과 제2산화막(12)을 선택적으로 식각한 후 저항성 접촉을 위하여 P형 불순물을 확산한 다음 P-폴리실리콘을 증착하는 공정과, 이종접합트랜지스터의 베이스(11a)상부에 있는 제2산화막(12)을 선택적으로 식각하고 에미터(15)를 형성하는 공정과 상기 에미터(15)를 형성한 후 산화막을 증착하고 금속전극을 형성하는 공정을 포함하고 있는 것을 특징으로 하는 반도체 수광소자의 제조방법.Forming the SOI substrates 7 and 8 on the silicon substrate 5 in a sequential process by forming the first oxide film 7 and the SOI film 8 on the silicon substrate 5, and a second portion on the SOI substrates 7 and 8; Growing the oxide film 12 and then selectively etching the SOI substrates 7 and 8 and the second oxide film 12 to form a light receiving region 18, except for the second oxide film 12, A process of selectively forming a silicon epitaxial layer 9 using a selective epitaxial growth technique in which silicon is epitaxially grown, and partially etching the second oxide film 12 and a collector of a heterojunction bipolar transistor with a selective epitaxial growth technique (10). ) And a process of epitaxial growth of silicon germanium or silicon carbide as a heterojunction material having a different physical crystallographic parameter from silicon to form a far-infrared photosensitive film 11b of the base 11a and the photodiode. Heat treatment process in grown silicon-germanium epi layer A process of depositing a protective film 17 for preventing the separation of germanium into a silicon oxide film or a nitride film, and an SOI substrate 7 and 8 and a second oxide film 12 to form a second electrode 13 of a light emitting diode. Is selectively etched and then the P-type impurities are diffused for resistive contact and then P-polysilicon is deposited, and the second oxide film 12 on the base 11a of the heterojunction transistor is selectively etched and etched. And forming a metal electrode after forming the emitter (15) and depositing an oxide film. 제6항에 있어서, 이종접합트랜지스터의 SOI막(8)과 베이스(11a) 그리고 한차례 실리콘 선택에피성장을 실시한 수광영역(18)을 제외한 나머지 영역을 제2산화막(12)으로 보호한 후 선택에피성장법을 사용하여 실리콘 및 이종접합소재를 연속적으로 에피성장을 사용하여 이종접합트랜지스터의 콜렉터(10)와 베이스(11a)를 형성하고 동시에 수광다이오드의 원적외선 광감지막(11b)을 형성한 후, 에미터(15)를 제외한 나머지 영역을 절연막으로 보호한 후 에미터(15)에서 실리콘을 선택에피성장하는 것을 특징으로 하는 반도체 수광소자의 제조방법.7. The selective epitaxial layer of claim 6, wherein the second epitaxial layer 12 protects the remaining region except for the SOI film 8 and the base 11a of the heterojunction transistor and the light receiving region 18 where the silicon selective epitaxial growth has been performed once. After growing the silicon and the heterojunction material by using the growth method, the collector 10 and the base 11a of the heterojunction transistor are formed by using epitaxial growth, and at the same time, the far-infrared light sensing film 11b of the light-receiving diode is formed. A method for manufacturing a semiconductor light-receiving element, wherein silicon is selectively grown on the emitter 15 after protecting the remaining region except the emitter 15 with an insulating film. 제7항에 있어서, 베이스(11a)와 수광다이오드의 원적외선 광감지막(11b)을 형성하기 위하여, 단결정으로 성장된 이종접합소재를 사용할 때 이종접합트랜지스터의 전류이득 및 주파수 특성 동작속도에 중요한 변수가 되는 베이스(11a)의 불순물 농도 및 막두께와 수광다이오드의 광감지특성에서 광흡수파장 영역 및 광 흡수 효율과 밀접한 관련성을 가지고 있는 원적외선 광감지막(11b)의 불순물농도 및 막두께를 일치시킴으로서 제조공정을 단순화하는 것을 특징으로 하는 반도체수광소자의 제조방법.8. An important parameter for the current gain and frequency characteristic operation speed of a heterojunction transistor when using a heterojunction material grown from a single crystal to form the base 11a and the far-infrared ray photosensitive film 11b of the light receiving diode. By matching the impurity concentration and the film thickness of the far-infrared light sensing film 11b closely related to the light absorption wavelength region and the light absorption efficiency in the impurity concentration and the film thickness of the base 11a to be the light sensing characteristics of the photodiode. A method for manufacturing a semiconductor light receiving device, characterized in that the manufacturing process is simplified. 제6항에 있어서, 수광다이오드의 제1전극(14)과 원적외선 광감지막(11b) 사이에 있는 보호막(17)이 광공진막으로 사용될 수 있도록 실리콘산화막 그리고 질화막으로 둘러싸는 공정과 실리콘기판(5) 뒷면에서 효과적으로 광을 흡수하도록 광흡수막(16)을 제조하는 것을 특징으로 하는 반도체 수광소자 제조방법.7. The process according to claim 6, wherein the protective film 17 between the first electrode 14 of the light receiving diode and the far-infrared light sensing film 11b is surrounded by a silicon oxide film and a nitride film so as to be used as a light resonance film. 5) A method for manufacturing a semiconductor light-receiving element, comprising manufacturing a light absorption film 16 to effectively absorb light from the back side.
KR1019930029970A 1993-12-27 1993-12-27 Semiconductor photodiode and method of the same KR970006609B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930029970A KR970006609B1 (en) 1993-12-27 1993-12-27 Semiconductor photodiode and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930029970A KR970006609B1 (en) 1993-12-27 1993-12-27 Semiconductor photodiode and method of the same

Publications (2)

Publication Number Publication Date
KR950021803A KR950021803A (en) 1995-07-26
KR970006609B1 true KR970006609B1 (en) 1997-04-29

Family

ID=19372979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930029970A KR970006609B1 (en) 1993-12-27 1993-12-27 Semiconductor photodiode and method of the same

Country Status (1)

Country Link
KR (1) KR970006609B1 (en)

Also Published As

Publication number Publication date
KR950021803A (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US8354324B2 (en) Mesa heterojunction phototransistor and method for making same
JP4829255B2 (en) Photosensitive element with high blue sensitivity, method for manufacturing the photosensitive element, and method for driving the photosensitive element
EP0390521B1 (en) Bipolar transistor and photoelectric converting apparatus using the bipolar transistor
JPH01205564A (en) Optical semiconductor device and its manufacture
JP2008103742A (en) Infrared sensor ic
JPH0395942A (en) Method of forming junction with fewdefects in semiconductor material
US3703408A (en) Photosensitive semiconductor device
US5994162A (en) Integrated circuit-compatible photo detector device and fabrication process
JP3108528B2 (en) Optical position detection semiconductor device
US3700980A (en) Schottky barrier phototransistor
KR970006609B1 (en) Semiconductor photodiode and method of the same
US4524374A (en) Device for detecting infrared rays
JP4138853B2 (en) Infrared sensor IC
CN110896115B (en) Phototransistor, infrared detector and method for manufacturing phototransistor
JP2915058B2 (en) Semiconductor device and photoelectric conversion device using the same
JPS59106154A (en) Semiconductor device
JPH04151874A (en) Semiconductor device
JP2657119B2 (en) Optical semiconductor device
CN116404064A (en) SiC top collector region ultraviolet photoelectric transistor integrated with temperature measuring unit and manufacturing method
JPH0555538A (en) Semiconductor light receiving device
JPH0391969A (en) Semiconductor photodetector
JP2603346B2 (en) Semiconductor device and photoelectric conversion device
JP2758611B2 (en) Bipolar transistor element
JP2580281B2 (en) Bipolar transistor element
JPH11177119A (en) Photodiode and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000404

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee