KR970001450B1 - Matter for removing fluorine ion from water - Google Patents

Matter for removing fluorine ion from water Download PDF

Info

Publication number
KR970001450B1
KR970001450B1 KR1019940002849A KR19940002849A KR970001450B1 KR 970001450 B1 KR970001450 B1 KR 970001450B1 KR 1019940002849 A KR1019940002849 A KR 1019940002849A KR 19940002849 A KR19940002849 A KR 19940002849A KR 970001450 B1 KR970001450 B1 KR 970001450B1
Authority
KR
South Korea
Prior art keywords
rare earth
fluorine
compound
water
ions
Prior art date
Application number
KR1019940002849A
Other languages
Korean (ko)
Other versions
KR950024980A (en
Inventor
홍영호
황해원
우상모
Original Assignee
주식회사 럭키금속
박수환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 럭키금속, 박수환 filed Critical 주식회사 럭키금속
Priority to KR1019940002849A priority Critical patent/KR970001450B1/en
Publication of KR950024980A publication Critical patent/KR950024980A/en
Application granted granted Critical
Publication of KR970001450B1 publication Critical patent/KR970001450B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The removing agents consist of a) over 60 wt% of rare earth metal and b) below 40 wt% of aluminium compound adjusted pH 2~4. a) is chloride,nitrate,sulfate,acetate of rare earth metal(Ce,La,Nb,Pr),and b) is chloride,nitrate,sulfate,acetate of aluminium. It is useful for removing fluorine from wastewater originated by the manufacturing plants of semiconductor,refinery,glass or ceramic and plating plants.

Description

용존불소이온 제거제Dissolved Fluoride Ion Remover

본 발명은 불소가 함유된 폐수에서 용존불소이온을 제거하는 제거제에 관한 것으로, 보다 상세하게는 가용성회토류 화합물 및 알루미늄 화합물을 이용하여 불소를 효과적으로 제거할 수 있는 용존불소이온 제거제에 관한 것이다.The present invention relates to a remover for removing dissolved fluorine ions from waste water containing fluorine, and more particularly, to a dissolved fluorine ion remover capable of effectively removing fluorine using a soluble earth compound and an aluminum compound.

최근들어 환경에 대한 관심이 고조되는 가운데 반도체 제조공장, 제련공장, 유리나 세라믹스 제조공장, 도금 공장등에서 배출되는 폐수중에 함유된 불소(F)를 효과적이고 경제적으로 저농도까지 제거할 수 있는 처리제 및 처리방법이 여러 가지 제기되고 있다.In recent years, with increasing interest in the environment, treatment agents and treatment methods that can effectively and economically remove fluorine (F) contained in wastewater discharged from semiconductor manufacturing plants, smelting plants, glass or ceramic manufacturing plants, plating plants, etc. This is being raised in various ways.

가장 일반적인 방법은 Ca 화합물, Al 화합물 등을 이용하여 폐수중의 불소이온을 불용화하여 고액분리하는 방법(일본공개특허, 소60-117호, 소62-125894호)으로, 이 방법은 약품사용량 및 전사발생량이 많으며 또한 Ca 화합물로서 불소를 제거시 이론적으로 최대 8㎎/ℓ 정도의 불소이온이 용액중에서 잔존하게 된다.The most common method is to insolubilize fluorine ions in wastewater using Ca compounds, Al compounds, etc. (Japanese Patent Application Laid-Open No. 60-117, No. 62-125894). And a large amount of transcriptional generation, and when fluorine is removed as a Ca compound, theoretically up to 8 mg / l of fluorine ions remain in the solution.

그러므로 현재 방류기준치인 15ppm 이하로의 제거는 가능하나 앞으로의 환경규제강화 및 총량규제시, 그리고 나아가 환경정화측면에서 요구되고 있는 보다 저농도로의 제거난 불가능하다.Therefore, it is possible to remove below 15ppm, which is the current discharge standard, but it is impossible to remove to lower concentration which is required in terms of strengthening environmental regulation and total amount regulation and further environmental cleanup.

또한 이 경우는 배출수중 Ca 이온의 농도가 너무 높아서 Ca스케일형성 등의 문제점이 발생하게 된다.In this case, too, the concentration of Ca ions in the discharged water is so high that problems such as Ca scale formation occur.

따라서 보다 저농도까지, 그리고 전사발생량을 줄이기 위해 Ca 화합물 대신 불소와 매우 안정한 불용성 화합물을 형성하는 회토류를 이용하는 방법이 제시되었다.Therefore, a method of using a rare earth to form a very stable insoluble compound with fluorine instead of Ca compound has been proposed to lower the concentration and reduce the amount of transcription.

그 중 하나는, 흡착법으로 불소를 제거하는 방법이 한국특허 89-3882에 제안되었다.One of them, a method of removing fluorine by the adsorption method has been proposed in Korea Patent 89-3882.

이 흡착식 제거법은 금속의 수화된 불용성 회토류염 또는 수화된 회토류 산화물을 불소가 용해된 물과 접촉시킨 후 계속하여 알킬리 수용액과 접촉시켜 흡착제를 재생하고, 불소용 침강제를 상기 탈착된 용액에 가하여 불소화합물로서 불리제거하며 그 여액을 흡착제의 재생을 위한 알칼리 수용액으로 사용하는 흡착처리 방법으로서 불소나 불소 화합물이 저농도로 용해되어 있는 경우 효과적이다.This adsorptive removal method involves contacting a hydrated insoluble rare earth salt or a hydrated rare earth oxide of a metal with fluorine-dissolved water, followed by contact with an aqueous solution of alkyli to regenerate the adsorbent, and the fluorine sedimentation agent is desorbed. It is effective in the case of fluorine compound or fluorine compound dissolved at low concentration.

그러나, 이 방법은 사용하는 흡착제가 불용성 회토류 화합물이므로 원료로부터 회토류 수산화물의 제조비용이 고가이고 투입되는 양이 과량이며 이온교환작용이 산성의 용액에서만 이루어진다는 단점이 있으며 탈착시 이온교환반응에 의존교환반응에 의존해야 하기 때문에 반응속도가 느리다.However, this method has the disadvantages that the adsorbent used is an insoluble rare earth compound, so the cost of manufacturing the rare earth hydroxide from the raw material is expensive, the amount added is excessive, and the ion exchange is performed only in an acidic solution. The reaction rate is slow because it has to rely on the dependent exchange reaction.

또한 이 방법을 적용시 기존설비를 사용하지 못하며 대용량의 흡착제가 담긴 다수의 용기에서 단속적인 작업을 해야하는 번거로움이 발생된다.In addition, this method does not use the existing equipment, it is cumbersome to intermittently work in a number of vessels containing a large amount of adsorbent.

또한 생성된 알칼리불화물을 소석회로 처리시 상당히 많은 양의 CaF2잔사가 발생하고 처리후 용액속에 잔류하는 F가 항상 8㎎/ℓ정도의 농도 이상으로 존재하게 된다는 단점이 있다.In addition, there is a disadvantage that a considerable amount of CaF 2 residue is generated when the alkali fluoride is treated in the calcination process, and the F remaining in the solution after the treatment is always present at a concentration of about 8 mg / l or more.

최근에는 가용성회토류 산화물을 이용한 용존불소제거에 대한 연구가 진행되고 있는데, 본출원인은 가용성 회토류화합물에 의한 단독처리로 용존불소를 제거하는 방법을 국내특허출원(93-12855)한 바 있다.Recently, research on the removal of dissolved fluorine using a soluble earth oxide has been conducted. The present applicant has applied for a method of removing dissolved fluorine by a single treatment with a soluble rare earth compound (93-12855).

이 방법은 용존불소의 제거효율이나 잔사발생량의 면에서 타 처리방법에 비해 좋으나 폐수중의 불소이온의 농도가 상대적으로 낮을 경우나, 폐수의 액성에 따라 응집제를 과다하게 투입해도 여액의 콜로이드 상태가 되거나 침강이 잘되지 않아 폐수처리 공정상에 큰 문제가 되고 있다.This method is better than other treatment methods in terms of the removal efficiency of dissolved fluorine and the amount of residues, but the colloidal state of the filtrate is maintained even when the concentration of fluoride ions in the wastewater is relatively low or the coagulant is excessively added depending on the liquidity of the wastewater. It is a big problem in the waste water treatment process because of poor or sedimentation.

즉, 폐수는 보통 대량 발생하기 때문에 고액분리의 용이도가 매우 중요한 요소이므로 불소이온제거효과의 향상과 더불어 침강속도가 매우 빠른 처리법이 요구되고 있다.That is, since wastewater is usually generated in large quantities, the ease of separation of solid-liquids is a very important factor. Therefore, there is a need for a treatment method having a very high sedimentation rate as well as an effect of removing fluorine ions.

기존의 회토류 화합물을 이용한 방법에서는 회토류 화합물을 첨가한 후 유기응집제를 첨가하는데, 이 경우 침강속도는 어느 정도 빨리할 수 있을지 모르나 투입된 회토류 이온이 용액중의 Na+, H+, NH4 +, OH-이온등과 반응하여 형성되 회토류 불소 Complex에 의한 콜로이드 상태의 해결은 불가능하다.In the conventional method using a rare earth compound, an organic coagulant may be added after adding the rare earth compound. In this case, the sedimentation rate may be increased to some extent, but the injected earth earth ions are dissolved in Na + , H + , and NH 4. +, OH - ions and the like by reacting with the solution of a colloidal state formed by the time-earth Complex fluoride is not possible.

이에 본 발명은 기존에 제시된 문제점들을 해결함과 동시에 불소를 아주 저농도로, 고효율로 제거하는 방법을 제시하는데 본 발명의 목적이 있다.Accordingly, an object of the present invention is to propose a method for removing fluorine at a very low concentration and high efficiency while solving the problems presented previously.

상기와 같이 언급된 콜로이드형성 이온들을 살펴보면 F-이온 및 회토류 이온은 이온반경이 비슷하여 그만큼 화합물의 형성이 용이하고 그로 인해 콜로이드가 생성되는 것으로 생각된다.Referring to the colloid-forming ions mentioned above, it is thought that the F - ions and the rare earth ions have a similar ion radius, so that the formation of the compound is easy, and thus colloids are generated.

그러므로 이러한 문제점을 해결하기 위해서는 상기 화합물의 형성을 방해하는 방안을 모색해야 한다.Therefore, in order to solve this problem, it is necessary to find a way to prevent the formation of the compound.

따라서 수소이온, Ferric ion, Al ion 등을 첨가하였을 때 화합물 형성여부를 살펴보았다.Therefore, the formation of compounds was examined when hydrogen ions, ferric ions, and Al ions were added.

수소이온을 첨가한 이유는 수소이온농도에 따라 생성되는 화합물의 양상이 달라지기 때문이었으나 산과 알칼리를 첨가하여 수소이온농도를 변화시켜도 상기 언급한 알칼리 금속과 회토류 불소 complex는 여전히 형성되었다.The reason for the addition of hydrogen ions was that the form of the compound was changed depending on the concentration of hydrogen ions. However, the alkali metal and the rare earth fluorine complex mentioned above were still formed when the acid and alkali were added to change the hydrogen ion concentration.

한편, 이온변경차이가 큰 Ferric ion이나 Al ion의 경우에 complex 형성여부를 살펴본 결과 Ferric ion의 경우는 첨가효과가 없었으나, 본 발명과 같이 Al의 경우 콜로이드 생성을 완벽하게 방지할 수 있었다.On the other hand, as a result of examining the complex formation in the case of ferric ion or Al ion having a large difference in ion change, ferric ion did not have an additive effect, but Al could completely prevent colloid formation as in the present invention.

더욱이 Al의 첨가시 처리후 액이 더욱 맑고 비교적 고가인 회토류 원소를 그만큼 줄일 수 있으므로 경제적인 면에서도 유리하며 별도의 무기응집제를 첨가할 필요가 없어진다.Furthermore, when Al is added, the liquid after the treatment is clearer and the relatively expensive rare earth elements can be reduced by that amount, which is advantageous in terms of economics, and there is no need to add a separate inorganic coagulant.

이하 본 발명에 대해서 설명한다.Hereinafter, the present invention will be described.

본 발명은 가용성 회토류 화합물에 Al 화합물을 첨가한 것을 특징으로 하는 불소이온처리제로 이루어진다.The present invention comprises a fluorine ion treatment agent characterized by adding an Al compound to a soluble rare earth compound.

이와 같이 처리제를 이용하여 배수중의 불소이온을 불용화한 후 고액불리함으로써 불소가 고효율로 제거된다.In this way, the fluorine ions in the waste water are insolubilized using a treating agent and then fluorine is removed with high efficiency.

본 발명에 있어서 사용된 수용성 조성물은 중량%로 회토류화합물 60% 이상, Al 화합물 40% 이하의 것으로 이 수용성 조성물의 pH는 2-4가 적당하다.The water-soluble composition used in the present invention is 60% or more of the rare earth compound and 40% or less of the Al compound by weight%, and the pH of this water-soluble composition is 2-4.

본 발명에 있어서 회토류 화합물은 Ce, La, Nb, Pr을 주성분으로 하는 회토류 금속의 염화물, 질산염, 황산염, 초산염중 1종 또는 2종 이상으로 구성된 것이며, 첨가해 주는 Al 화합물은 Al의 염화물, 질산염, 황산염, 초산염중 1종 또는 2종 이상이다.In the present invention, the rare earth compound is composed of one or two or more of chlorides, nitrates, sulfates and acetates of a rare earth metal composed mainly of Ce, La, Nb, and Pr. The Al compound to be added is an chloride of Al. , Nitrates, sulfates, acetates, one or two or more.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다.The present invention will be described in more detail with reference to the following examples.

실시예 1, 비교예 1Example 1, Comparative Example 1

시약급 NH4F 1g을 1ℓ의 증류수에 녹여 만든 인공폐수(불소농도 51.3㎎/ℓpH=5.6)에 조성이 CeCl3183.5g/ℓ, LaCl386.4g/ℓ, NdCl354.1g/ℓ, PrCl312.0g/ℓ, Al2(SO4)340.9g/ℓ이고 미량의 CaCl2, BaCl2, NaCl2가 함유된 수용성 조성물(pH=4.1)을 10㎖ 투입한 후 5분간 반응을 시키고 여기에 가성소다용액을 가하여 용액의 pH를 7.5로 조절하였다.Reagent grade NH 4 F 1g The composition of the artificial waste water (fluorine concentration 51.3㎎ / ℓpH = 5.6) made dissolved in 1ℓ of distilled water, CeCl 3 183.5g / ℓ, LaCl 3 86.4g / ℓ, NdCl 3 54.1g / ℓ, PrCl 3 12.0 g / l, Al 2 (SO 4 ) 3 40.9 g / l, 10 ml of a water-soluble composition containing a small amount of CaCl 2 , BaCl 2 , NaCl 2 (pH = 4.1) was added and reacted for 5 minutes. Caustic soda solution was added to adjust the pH of the solution to 7.5.

pH 조정이 되고난 후 5분간 반응을 더 시키고 교반기를 끈후 용액을 1ℓ 페스실린더에 넣고 침강시킨 후 상등액중의 불소이온농도를 측정하였다.After the pH was adjusted, the reaction was further performed for 5 minutes, the agitator was turned off, and the solution was placed in a 1 L cylinder and allowed to settle, and the fluorine ion concentration in the supernatant was measured.

비교예로써 동일한 인공폐수에 상기의 수용성 조성물에서 Al2(SO4)3가 빠진 수용성 조성물(비교예 1)를 10㎖투입되고 위와 동일한 과정을 거쳐 침강시간 및 상등액의 불소이온농도를 측정하였다.As a comparative example, 10 ml of a water-soluble composition (Comparative Example 1) in which the Al 2 (SO 4 ) 3 was removed from the water-soluble composition was added to the same artificial wastewater.

그 결과 실시예 1의 경우 상등액의 불소이온농도는 1.6ppm이었고 Al은 검출되지 않았다.As a result, in Example 1, the fluorine ion concentration of the supernatant was 1.6 ppm and Al was not detected.

그러나, 비교예 1의 경우 침전생성이 되지 않고 콜로이드 상태로 고액분리가 불가능하여 불소이온농도는 측정을 할 수 없었다.However, in the case of Comparative Example 1, no precipitation was produced and solid-liquid separation was not possible in the colloidal state, so the fluorine ion concentration could not be measured.

불소이온농도의 측정은 이온전극측정법 및 질산토튬을 이용한 용량법으로 측정하였다.Fluoride ion concentration was measured by ion electrode measurement and capacitive method using tomium nitrate.

실시예 1, 비교예 2Example 1, Comparative Example 2

반도체 제조회사에서 발생되는 실제폐수 1ℓ(불소농도 325.7㎎/ℓ, pH=23)에, 회토류화합물이 368.5g/ℓ, Al화합물이 92.1g/ℓ인 수용성 조성물(실시예 2)로 하였고, Al 화합물을 첨가하지 않은 회토류 화합물 368.5g/ℓ인 수용성 조성물(비교예 2)을 63㎖씩 각각 투입하고 위와 동일한 방법으로 실험을 행한 후 불소이온농도를 측정하였다.To 1 liter of actual wastewater (fluorine concentration 325.7 mg / l, pH = 23) generated in a semiconductor manufacturer, a water-soluble composition (Example 2) containing 368.5 g / l of a rare earth compound and 92.1 g / l of an Al compound, 63 ml of a water-soluble composition (Comparative Example 2) having a rare earth compound 368.5 g / L without adding the Al compound was added to each of 63 ml, and the experiment was conducted in the same manner as described above, and the fluorine ion concentration was measured.

그 결과 실시예 2의 경우, 상등액의 불소이온농도는 3.3ppm, Al은 검출되지 않으며, 비교예 2의 경우 거의 침전이 생기지 않고 대부분 콜로이드 상태로 되어 고분자응집제를 과잉으로 투입액도 상등액이 여전히 콜로이드상태이므로 불소이온을 침전물의 형태로 제거가 불가능하다.As a result, in the case of Example 2, the fluorine ion concentration of the supernatant was 3.3 ppm and Al was not detected. Therefore, it is impossible to remove fluorine ions in the form of precipitate.

그러므로 실시예 2의 수용성 조성물이 불소이온 제거에 보다 효과적이라 할 수 있다.Therefore, it can be said that the water-soluble composition of Example 2 is more effective for removing fluorine ions.

실시예 3, 4, 5, 6Examples 3, 4, 5, 6

TV용 브라운관 제조회사에서 실제 배수(불소이온농도 81.7ppm, pH=2.4)에 대한 실시예 1과 동일한 회토류 및 미량의 CaCl2, BaCl2, NaCl2가 함유된 조성에 Al(SO4)3의 함량을 각각 40.9g/ℓ(실시예 3), 19.4g/ℓ(실시예 4), 87.5g/ℓ(실시예 5), 160.2g/ℓ(실시예 6)인 수용성 조성물을 15㎖씩 투입하고 위와 동일한 방법으로 실험을 행한 후 상등액의 불소이온농도를 및 Al 이온의 농도를 측정하였다.Al (SO 4 ) 3 in a composition containing the same rare earth and trace amounts of CaCl 2 , BaCl 2 , NaCl 2 as in Example 1 for the actual drainage (fluorine ion concentration 81.7 ppm, pH = 2.4) from the TV tube manufacturer for TV 15 ml of each of the water-soluble compositions having 40.9 g / L (Example 3), 19.4 g / L (Example 4), 87.5 g / L (Example 5), and 160.2 g / L (Example 6), respectively. After the experiment was conducted in the same manner as above, the fluorine ion concentration and the Al ion concentration of the supernatant were measured.

그 결과 불소이온농도의 경우 실시예 3이 1.8ppm, 실시예 4가 1.9ppm, 실시예 5가, 3.7ppm, 실시예 6이 4.9ppm이었으며, Al 이온의 경우 실시예 3, 4, 5는 불검출되었고 실시예 6만 0.1ppm 검출되었다.As a result, in case of fluorine ion concentration, Example 3 was 1.8 ppm, Example 4 was 1.9 ppm, Example 5 was 3.7 ppm, Example 6 was 4.9 ppm, and in case of Al ions, Examples 3, 4, and 5 were not detected. And only Example 6 was detected at 0.1 ppm.

Claims (3)

가용성 회토류 화합물과 알루미늄 화합물로 조성됨을 특징으로 하는 용존불소이온 제거제.Dissolved fluorine ion remover, characterized in that the composition is composed of a soluble rare earth compound and an aluminum compound. 제1항에 있어서, 가용성 회토류 화합물이 60중량% 이상이고, 알루미늄 화합물이 40중량% 이하로 조성됨을 특징으로 하는 용존불소이온 제거제.The dissolved fluorine ion remover according to claim 1, wherein the soluble rare earth compound is 60 wt% or more and the aluminum compound is 40 wt% or less. 제1항 또는 제2항에 있어서, 회토류 화합물은 Ce, La, Nb, Pr을 주성분으로 하는 회토류 금속의 염화물, 질산염, 황산염, 초산염중 1종 또는 2종 이상이고, Al 화합물은 Al의 염화물, 질산염, 황산염, 초산염중 1종 또는 2종 이상 조성됨을 특징으로 하는 용존불소이온 제거제.The rare earth compound according to claim 1 or 2, wherein the rare earth compound is one or two or more of chlorides, nitrates, sulfates and acetates of a rare earth metal composed mainly of Ce, La, Nb, and Pr. Dissolved fluorine ion remover, characterized in that one or two or more of chloride, nitrate, sulfate, acetate.
KR1019940002849A 1994-02-17 1994-02-17 Matter for removing fluorine ion from water KR970001450B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940002849A KR970001450B1 (en) 1994-02-17 1994-02-17 Matter for removing fluorine ion from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940002849A KR970001450B1 (en) 1994-02-17 1994-02-17 Matter for removing fluorine ion from water

Publications (2)

Publication Number Publication Date
KR950024980A KR950024980A (en) 1995-09-15
KR970001450B1 true KR970001450B1 (en) 1997-02-06

Family

ID=19377348

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940002849A KR970001450B1 (en) 1994-02-17 1994-02-17 Matter for removing fluorine ion from water

Country Status (1)

Country Link
KR (1) KR970001450B1 (en)

Also Published As

Publication number Publication date
KR950024980A (en) 1995-09-15

Similar Documents

Publication Publication Date Title
US6464883B2 (en) Remover of fluoride ion and treatment method for wastewater containing fluoride ion using the same
EP0986518B1 (en) A process for the treatment of effluent streams
US4758353A (en) Removal of heavy metals from waste streams
US4698163A (en) Treatment of phosphate-containing wastewater
EP2792645B1 (en) Process for removing fluorides from water
US4100065A (en) Method for removing of multivalent heavy metals from metal plating waste effluents
CN111573901A (en) Method for treating fluorine-containing wastewater
DE3917412C1 (en)
Drondina et al. Electrochemical technology of fluorine removal from underground and waste waters
KR970001450B1 (en) Matter for removing fluorine ion from water
US6251283B1 (en) Methods for removing selenium from a waste stream
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
KR0149934B1 (en) Fluorine-contained waste water treatment
FI58477C (en) COMPOSITION FOR FLUORING FOR DRIVE CONTAINERS FOR FRAME STATION
KR0142931B1 (en) Fluorine-containing wastewater processing method
Sollo Jr et al. Fluoride removal from potable water supplies
JP3632226B2 (en) Method for treating metal-containing wastewater
KR0142932B1 (en) Treatment of fluorine-containing wastewater
KR20080058077A (en) Method for treating wastewater including fluorine
JP3382648B2 (en) Method for producing white aluminum hydroxide
JPH10146589A (en) Method for recovery of iron in photographic discharge liquid
KR0140316B1 (en) Process for the treatment of acid waste solutions containing fluorine and heavy metals
JP2001079564A (en) Treatment of boron-containing water
JPH0140675B2 (en)
KR19990046414A (en) Treatment agent and method for treating industrial waste-water including flourine

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010117

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee