KR970001214B1 - Covering method of a high molecular substance - Google Patents

Covering method of a high molecular substance Download PDF

Info

Publication number
KR970001214B1
KR970001214B1 KR1019940000080A KR19940000080A KR970001214B1 KR 970001214 B1 KR970001214 B1 KR 970001214B1 KR 1019940000080 A KR1019940000080 A KR 1019940000080A KR 19940000080 A KR19940000080 A KR 19940000080A KR 970001214 B1 KR970001214 B1 KR 970001214B1
Authority
KR
South Korea
Prior art keywords
glass container
coating
organic polymer
powder
resin powder
Prior art date
Application number
KR1019940000080A
Other languages
Korean (ko)
Other versions
KR950023612A (en
Inventor
김용웅
Original Assignee
주식회사 하나
김용웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19375264&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR970001214(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 하나, 김용웅 filed Critical 주식회사 하나
Priority to KR1019940000080A priority Critical patent/KR970001214B1/en
Publication of KR950023612A publication Critical patent/KR950023612A/en
Application granted granted Critical
Publication of KR970001214B1 publication Critical patent/KR970001214B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • C03C17/326Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Abstract

Process for coating an organic polymer resin powder on a glassware is described. For an example, a glassware with a volume of 150ml is spray ed with silanol as a coupling agent, sprayed with polyester powder, having a specific gravity of about 1.5 and a particle size of 20 microns, charged with static electricity by a corona charge of 30,000-50,000V, heated at 180 deg.C for 10 min, and cooled slowly to room temperature. The covering depth is 120 microns, covering weight is 3.0 g, covering efficiency is 98.3 %.

Description

유리용기 표면의 유기고분자 분체 피복법Coating method of organic polymer powder on the surface of glass container

본 발명은 유리용기의 외표면을 피복하는 방법에 관한 것으로, 보다 상세하게는, 유리제품의 외부표면을 유기고분자 합성수지분말을 분사시켜서 피복하는 방법에 관한 것이다.The present invention relates to a method for coating the outer surface of a glass container, and more particularly, to a method for coating the outer surface of a glass article by spraying organic polymer synthetic resin powder.

종래부터, 유리용기의 표면을 무기물질 또는 유기물질을 사용하며 피복하는 방법은 당업자에게 이미 여러 가지가 잘 알려져 있다. 유리용기를 무기물질 또는 유기물질을 사용하며 피복하는 목적은 외부충격 및 내압력이 강하고 파열시에 그 피막이 일종의 보호막 역할을 하며, 피복물질에 안료를 혼합하여 원하는 색상을 띠게 함으로써, 외관이 미려한 유리용기를 제조하기 위한 것이다.Conventionally, a method of coating the surface of a glass container using an inorganic material or an organic material is already well known to those skilled in the art. The purpose of coating the glass container using inorganic or organic materials is that the outer shock and internal pressure are strong, and the film acts as a kind of protective film when it is ruptured. To prepare.

지금까지 알려진 기술로서는, 무기물질을 사용하여 유리용기를 피복하는 방법이 있는데, 이 무기물질을 이용한 피복법은 액상분사법에 의한 것이었다. 이러한 액상분사법은 우선 무기물질을 사용하기 때문에, 피도물인 유리용기를 500~600℃의 고온으로 열처리를 해야 하며, 따라서, 고온열처리비용이 상당히 높은 결점을 갖고 있었다. 또한, 피복되는 무기물질의 용융점을 낮추기 위하여 무기물질 분말내에 납과 같은 중금속이 함유되어서, 액상분사시 발생되는 먼지(dust)와 함께 심각한 공해문제를 야기시켰던 것이다. 이 액상분사법은 피도물에의 도착율(20~30%)이 낮아 다량의 원료손실을 초래함으로써, 원가상승의 요인이 되며, 색상의 견고성, 안정성과 미려함에서 문제점을 내포하고 있는 실정이다.As a technique known to date, there is a method of coating a glass container using an inorganic material, and the coating method using the inorganic material is based on a liquid spray method. Since the liquid spraying method first uses an inorganic material, the glass container, which is to be coated, needs to be heat-treated at a high temperature of 500 to 600 ° C., and therefore, the high temperature heat treatment cost has a considerable disadvantage. In addition, in order to lower the melting point of the coated inorganic material, the heavy metal such as lead is contained in the inorganic material powder, causing serious pollution problems with the dust generated during liquid injection. This liquid spray method has a low arrival rate (20-30%) to the coated object, causing a large amount of raw material loss, which is a factor in the cost increase, and has a problem in color robustness, stability and beauty.

이와 같은 액상분사법에 의한 무기물질의 피복법의 결점을 해소하기 위하여, 유기물질을 사용하여 피복하는 방법이 개발되었다. 이 방법은 무기물질 대신에 유기물질을 사용하여 액상분사하는 방법으로, 유기물질로는 액상의 에폭시나 아크릴수지를 사용하였으며, 그 용매로 벤젠 등을 사용하였다. 이 유기물질을 사용하는 방법은 무기물질을 사용하는 방법과는 달리, 온도를 150~180℃정도로 유지하여 피복할 수 있었다. 그러나, 이 방법도 열처리온도를 500~600℃의 고온에서 150~180℃정도의 저온으로 변화시켜 에너지소비를 줄인 것외에는 무기물질의 액상분사법과 같은 문제점을 그대로 내포하고 있다.In order to solve the drawback of the coating method of the inorganic material by the liquid injection method, the coating method using the organic material was developed. This method is a liquid spray using an organic material instead of an inorganic material, a liquid epoxy or acrylic resin was used as the organic material, benzene and the like as the solvent. Unlike the method using the inorganic material, the method of using the organic material could be coated by maintaining the temperature at about 150 ~ 180 ℃. However, this method also has the same problems as liquid phase spraying of inorganic materials, except that the heat treatment temperature is changed from a high temperature of 500 to 600 ° C. to a low temperature of 150 to 180 ° C. to reduce energy consumption.

특히, 생산원가에서 커다란 비중을 차지하는 원료의 소비량 감소는 회수가 불가능한 관계로 유기물질이나 무기물질의 액상피복에서는 전혀 기대할 수 없으며, 또한, 피막두께도 15㎛ 내외로의 도착만 가능하며, 원하는 피막의 강도 또한 얻을 수 없는 실정이다. 또한, 용매로 사용되는 벤젠 등은 휘발성이 강하며 인화점이 낮아 화재의 위험성을 배제하기 어려운 실정이며, 특히, 체내에 축적되어 장기간 흡입할 경우, 인체에 치명적인 결과를 초래하는 유독성물질이라는 데에도 커다란 문제점이 있다고 할 것이다.In particular, the reduction of consumption of raw materials, which make up a large portion of the production cost, is impossible to recover from liquid coatings of organic or inorganic materials, and the film thickness can only arrive within 15 µm. The strength of is also not obtained. In addition, benzene, which is used as a solvent, is highly volatile and has a low flash point, making it difficult to rule out the risk of fire. There will be a problem.

이러한 문제점을 해소하고자, 피복하고자 하는 유리용기에 결합제(coupling agent)를 분사한 후, 180~220℃의 온도에서 10~20분간 예열시키고, 예열된 유리용기에 약 30,000~50,000V의 코로나방전에 의한 -하전입자를 갖는 유기고분자 수지분말을 분사기로 분사시킨 후, 180~200℃의 온도에서 10~20분간 경화 열처리하여, 그 분말이 유리용기 표면에 융착되게 한 다음, 가열된 유리를 가열로에서 꺼내어 상온에서 냉각시키는 방법이 개발되었다. 그러나, 이 방법에서는 유기고분자 수지분말을 유리용기의 표면에 효율적으로 분사하여 도착시키기 위해 예열처리를 별도로 실시해야 하므로, 에너지소비 절감의 견지에서 생산비 상승의 한 요인이 되는 문제점이 있었다.In order to solve this problem, after spraying a coupling agent (coupling agent) to the glass container to be coated, preheated for 10 to 20 minutes at a temperature of 180 ~ 220 ℃, about 30,000 ~ 50,000 V corona discharge in the preheated glass container And then spraying the organic polymer resin powder with charged particles with an injector, followed by curing heat treatment for 10 to 20 minutes at a temperature of 180 ~ 200 ℃, the powder is fused to the glass container surface, and then heated glass to a heating furnace A method of cooling out at room temperature was developed. However, this method requires a separate preheating treatment in order to efficiently spray the organic polymer resin powder onto the surface of the glass container, and thus has a problem of increasing the production cost in view of reducing energy consumption.

본 발명자는 상기한 문제점을 해소함은 물론, 유리용기 표면을 피복하는 근본목적인 외부충격 및 내압력에의 대응력 증강과, 파열시 보호막의 형성 및 미려한 용기제작을 위한 유기고분자 분체 피복법을 개발하게 되었다.The present inventors have solved the above problems, as well as developing the organic polymer powder coating method for enhancing the resistance to the external impact and internal pressure to cover the surface of the glass container, the formation of a protective film at the time of rupture and the production of a beautiful container.

본 발명의 목적은, 인체에 유해한 용매의 사용을 배제하여, 인체에 무해한 유리용기를 제조하는 유리용기 표면의 피복법을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a coating method for the surface of a glass container that produces a glass container that is harmless to the human body by eliminating the use of a solvent harmful to the human body.

또한, 본 발명은 피복물질의 손실율을 5% 이하로 낮추어 원가를 절감할 수 있으며, 유리용기의 내충격도와 내압력도를 증강시킬 수 있는 유리용기 표면의 피복법을 제공하고자 한다.In addition, the present invention is to reduce the loss rate of the coating material to 5% or less to reduce the cost, to provide a coating method of the glass container surface that can enhance the impact resistance and pressure resistance of the glass container.

따라서, 상기한 본 발명의 목적을 달성하고자, 본 발명에서는, 피복하고자 하는 유리용기 등의 피도체에 결합체를 분사한 후, 피도체는 접지에 의하여 전자홀을 형성시키고 고분자 유기분말 수지는 마찰에 의한 정전기로 대전시켜서 분사기로 분사한 다음, 180~200℃의 온도에서 7~15분간 가열시켜 분말을 유리용기 등의 피도체 표면에 융착되게 한다. 가열된 유리용기는 가열로에서 꺼내어 상온에서 냉각시킨다.Therefore, in order to achieve the above object of the present invention, in the present invention, after injecting a binder to a coating material such as a glass container to be coated, the conductive material forms an electron hole by grounding and the polymer organic powder resin It is charged by the electrostatic charge and sprayed by an injector, and then heated for 7 to 15 minutes at a temperature of 180 ~ 200 ℃ to fusion powder on the surface of the object such as glass container. The heated glass container is removed from the heating furnace and cooled at room temperature.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

먼저, 피복하고자 하는 유리용기 등의 피도체에, 물에 묽게 용해시킨 결합체를 에어분무기 등을 사용하여 분사시킨다. 결합체의 종류는 사용하는 유기고분자 수지의 특성에 따라 선택되는데, 통상, 실란의 유도체중에서 선택된다. 그후, 분말입자의 크기가 10~80㎛인 유기고분자 수지분말의 도착효율을 높이기 위해서, 유리용기 등의 피도체는 전자홀을 형성시키고, 유기고분자 수지분말은 정전압을 띠게 한다. 피도체에 전자홀을 형성시키기 위해서는, 피도체에 유기고분자 수지분말을 도착시키는 도착부스(booth) 및 피도체 지지대를 접지하고, 상기한 지지대에 물을 분사한 다음, 피도체를 상기한 지지대에 꽂고 밀폐시켜서, 자연증발에 의해 물분자가 피도체 내벽에 흡착되도록 한다. 그리고, 유기고분자 수지분말을 압축공기를 이용하여 분말입자가 고르게 대전될 수 있게 가속시키면 입자끼리 부딪혀 마찰이 생겨 정전기가 발생하게 되는데, 이 정전기를 하전된 입자중, +하전입자만으로 피도체를 피복한다.First, a binder dissolved in water is sprayed onto an object such as a glass container to be coated using an air sprayer or the like. The type of binder is selected according to the characteristics of the organic polymer resin to be used, and is usually selected from derivatives of silane. Thereafter, in order to increase the arrival efficiency of the organic polymer resin powder having a powder particle size of 10 to 80 µm, a subject such as a glass container forms electron holes, and the organic polymer resin powder has a constant voltage. In order to form an electron hole in the object, the arrival booth and the object support for arriving the organic polymer resin powder on the object are grounded, water is sprayed on the support, and then the object is attached to the support. Plugged in and sealed to allow water vapor to adsorb to the inner wall of the subject by spontaneous evaporation. When the organic polymer resin powder is accelerated to be evenly charged using compressed air, the particles collide with each other to generate friction, and static electricity is generated. do.

이와 같이, 피도체 내부를 물분사하고 접지하여 전자홀을 형성하고, 분사되는 유기고분자 수지분말을 마찰에 의한 +하전입자로 하면, 종래의 방법에서 접착강화를 위해 피도체를 예열시킬 필요가 없기 때문에, 에너지 절감에 커다란 효과를 가져오게 된다.In this way, if the inside of the object is sprayed with water and grounded to form electron holes, and the injected organic polymer resin powder is made of + charged particles by friction, there is no need to preheat the subject to enhance adhesion in the conventional method. This has a great effect on energy savings.

또한, 유기고분자 수지분말에 대전하는 전하의 양을 조절하는 것에 의해 피막두께를 80~150㎛범위내로 할 수 있으며, 피막두께에 따라 광택도가 변하는 유기고분자 수지의 성질을 이용하여서 피막두께를 변화시켜 광택도를 조절할 수도 있다. 사용되는 유기고분자 수지분말로는 폴리에스테르, 폴리우레탄, 에폭시 또는 에폭시-폴리에스테르 수지분말 등이 있다.In addition, by controlling the amount of charge charged to the organic polymer resin powder, the film thickness can be in the range of 80 to 150 µm, and the film thickness is changed by using the property of the organic polymer resin whose glossiness varies depending on the film thickness. You can also adjust the glossiness. The organic polymer resin powder to be used includes polyester, polyurethane, epoxy or epoxy-polyester resin powder.

분사공정이 완료되면, 180~200℃의 온도에서 7~15분간 가열시켜 피도체 표면에 유기고분자 분말입자가 완전히 융착되게 한다. 이때의 가열온도는 피도물의 크기와 수지분말의 경화조건에 따라 결정된다. 그리고, 분사후 가열시간은 7~15분간으로, 이는 피복하고자 하는 유리용기의 두께 및 크기에 비례하는데, 비교적 두께가 얇고 크기가 작은 피도체는 7~10분간 정도의 가열로써 충분하며, 두께가 두껍고 크기가 큰 피도체는 11~15분간 정도 가열시킴으로써 수지분말을 충분히 융착시킬 수 있다. 가열공정이 완료된 피도체는 상온까지 서서히 냉각시킴으로써 유리용기 등의 피도체의 유기고분자 분체 피복이 종료된다. 이 공정에서는 급냉을 방지하고 완전한 냉각을 위해 강제순환식 공냉방법을 채택하여 냉각시간의 단축을 도모할 수 있다.When the spraying process is completed, the organic polymer powder particles are completely fused to the surface of the object by heating for 7 to 15 minutes at a temperature of 180 ~ 200 ℃. The heating temperature at this time is determined by the size of the workpiece and the curing conditions of the resin powder. In addition, the heating time after spraying is 7 to 15 minutes, which is proportional to the thickness and size of the glass container to be coated. For the relatively thin and small sized objects, heating for about 7 to 10 minutes is sufficient. A thick and large sized object can sufficiently melt the resin powder by heating it for about 11 to 15 minutes. After the heating process is completed, the coated object is gradually cooled to room temperature to finish coating the organic polymer powder on the coated object such as a glass container. In this process, the cooling time can be shortened by adopting a forced circulation air cooling method to prevent quenching and complete cooling.

이 방법에 의해 유리용기 등을 피복하는 경우에는, 유기고분자 분체의 손실율이 5% 이하이고, 피도체의 피막두께는 약 80~150㎛의 범위로서, 유리용기 등을 보호하는 보호막의 역할을 한다.In the case of coating the glass container by this method, the loss ratio of the organic polymer powder is 5% or less, and the thickness of the coating film is in the range of about 80 to 150 µm, which serves as a protective film for protecting the glass container or the like. .

실시예 1Example 1

용량 150m의 유리용기에 결합체로서 실란올을 분사한 후, 70,000V의 정전압으로 하전된 폴리에스테르 분말(비중 약 1.5, 입자크기 20㎛)을 분사시킨 다음, 180℃의 온도에서 10분간 가열시켜 유리용기에 융착되게해서 상온까지 냉각하였다.After injecting silanol as a binder into a glass container having a capacity of 150 m, a polyester powder (specific gravity of about 1.5, particle size of 20 µm) charged at a constant voltage of 70,000 V is sprayed, and then heated at a temperature of 180 ° C. for 10 minutes. It was fused to the container and cooled to room temperature.

실시예 2Example 2

실시예 1과 동일한 조건하에서, 유리용기 내부의 수분의 농도를 높게 하였다.Under the same conditions as in Example 1, the concentration of water in the glass container was increased.

실시예 3Example 3

실시예 2와 동일한 조건에서, 70,000V의 정전압을 42,000V로 낮추었다.Under the same conditions as in Example 2, the constant voltage of 70,000V was lowered to 42,000V.

실시예 4Example 4

실시예 2와 동일한 조건하에서, 용기의 크기를 200ml로 변화시켰다.Under the same conditions as in Example 2, the size of the container was changed to 200 ml.

실시예 5Example 5

실시예 2와 동일한 조건에서, 고분자유기 수지분말을 에폭시(비중 1.5, 입자크기 20㎛)로 변화시켰다.Under the same conditions as in Example 2, the polymer organic resin powder was changed to epoxy (specific gravity 1.5, particle size 20 mu m).

실시예 6Example 6

실시예 2와 동일한 조건에서, 결합체 분사를 생략하였다.In the same conditions as in Example 2, the injection of the binder was omitted.

실시예 7Example 7

실시예 2와 동일한 조건에서, 피도체의 전자홀 형성을 억제하였다.Under the same conditions as in Example 2, formation of electron holes in the conductor was suppressed.

실험결과Experiment result

위의 실시예에서 생성된 유리용기의 피막두께, 도착중량 및 도착효율에 대하여 아래와 같은 데이터를 얻었다.The following data were obtained for the film thickness, arrival weight, and arrival efficiency of the glass vessel produced in the above example.

Claims (1)

실란의 유도체중에서 선택하여 물에 묽게 용해시킨 결합체를 에어분무기를 사용하여 피도체의 표면에 분사하는 단계와, 상기한 피도체를 예열시키는 단계와, 예열된 피도체의 표면에 정전압으로 하전된 유기고분자 수지분말을 분사하는 단계와, 상기한 유기고분자 수지분말이 도포된 피도체를 180℃∼250℃로 7~15분 가열하여 융착시키는 단계 및 가열된 피도체를 상온까지 서냉시키는 단계로 구성되는 유리용기 등의 표면을 피복하는 방법에 있어서, 상기한 피도체를 예열시키는 단계 대신에, 상기한 피도체의 내부에 물이 묻은 피도체 지지대를 넣고 밀폐시켜서, 상기한 피도체 지지대에 묻은 물의 자연증발에 의해 상기한 피도체의 내벽에 물입자가 부착되게 하는 단계로 구성되는 것을 특징으로 하는 유리용기 표면의 유기고분자 분체 피복법.Spraying the conjugates selected from derivatives of silane and diluted in water using an air sprayer, preheating the above-mentioned subjects, and organically charged organic materials on the surface of the pre-heated subjects. Spraying the polymer resin powder; and heating and heating the substrate coated with the organic polymer resin powder at 180 ° C. to 250 ° C. for 7 to 15 minutes, and slowly cooling the heated object to room temperature. In a method of coating a surface of a glass container or the like, instead of preheating the above-described subject, the inside of the above-mentioned subject is placed in a water-resistant member support and sealed, so that the water adhered to the above-described object support. The method of coating the organic polymer powder on the surface of the glass container, characterized in that the water particles adhere to the inner wall of the subject by evaporation.
KR1019940000080A 1994-01-04 1994-01-04 Covering method of a high molecular substance KR970001214B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940000080A KR970001214B1 (en) 1994-01-04 1994-01-04 Covering method of a high molecular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940000080A KR970001214B1 (en) 1994-01-04 1994-01-04 Covering method of a high molecular substance

Publications (2)

Publication Number Publication Date
KR950023612A KR950023612A (en) 1995-08-18
KR970001214B1 true KR970001214B1 (en) 1997-02-04

Family

ID=19375264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940000080A KR970001214B1 (en) 1994-01-04 1994-01-04 Covering method of a high molecular substance

Country Status (1)

Country Link
KR (1) KR970001214B1 (en)

Also Published As

Publication number Publication date
KR950023612A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
CA2202335C (en) Textured epoxy powder coating for wood substrates and method of coating wood therewith
TW562707B (en) Electrostatic powder coating of electrically non-conductive substrates
KR950032512A (en) Electronic coating with charged borosilicate
US5731043A (en) Triboelectric coating powder and procees for coating wood substrates
KR20030055312A (en) Low Gloss Powder Coatings
US4304802A (en) Process for coating glass or ceramic articles
AU773372B2 (en) Antistatic powder coating compositions and their use
US5637136A (en) Triboelectric coating powder and process
KR970001214B1 (en) Covering method of a high molecular substance
JP2909881B2 (en) Powder paint
DE69320644T2 (en) ELECTROSTATIC COATING OF POLYMER OBJECTS AND METHOD FOR THE PRODUCTION THEREOF
CN111057451A (en) Metal powder coating with high metal texture and preparation process thereof
GB1465372A (en) Method of treating the surface of a glass article
JPS575785A (en) Fluorescent material
KR940011447B1 (en) Method of coating grass surface
CN101382754B (en) Charge device coatings
JP4048140B2 (en) Painted glass container and manufacturing method thereof
SK11197A3 (en) Process for producing flat glass articles with coloured coatings, flat glass articles and composite glass articles
KR100354615B1 (en) Liquid coating method on surface of glass vessel
JPS54162740A (en) Electrostatic powder coating
MX9301792A (en) PREPARATION AND COATING OF A GLASS SUBSTRATE.
CN107774533A (en) A kind of nylon adds the powder injection process of the plastic material of glass fibre
JPH07148458A (en) Coating method
Voges et al. Properties of porcelain enamel, products utilizing porcelain enamel and basic processing procedures for porcelain enamel
JPS60203676A (en) Powdered coating compound primer of tetrafluoroethylene copolymer for ceramic base material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
J206 Request for trial to confirm the scope of a patent right
J206 Request for trial to confirm the scope of a patent right
J301 Trial decision

Free format text: TRIAL DECISION FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20000824

Effective date: 20010731

Free format text: TRIAL DECISION FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20000928

Effective date: 20010731

FPAY Annual fee payment

Payment date: 20020130

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee