KR960003921B1 - Method for treatment of waste water from cold rolling plant - Google Patents

Method for treatment of waste water from cold rolling plant Download PDF

Info

Publication number
KR960003921B1
KR960003921B1 KR1019930018898A KR930018898A KR960003921B1 KR 960003921 B1 KR960003921 B1 KR 960003921B1 KR 1019930018898 A KR1019930018898 A KR 1019930018898A KR 930018898 A KR930018898 A KR 930018898A KR 960003921 B1 KR960003921 B1 KR 960003921B1
Authority
KR
South Korea
Prior art keywords
wastewater
waste water
mixed
oil
thiocyanate
Prior art date
Application number
KR1019930018898A
Other languages
Korean (ko)
Other versions
KR950008374A (en
Inventor
김상식
손승호
Original Assignee
포항종합제철주식회사
조말수
재단법인 산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인 산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930018898A priority Critical patent/KR960003921B1/en
Publication of KR950008374A publication Critical patent/KR950008374A/en
Application granted granted Critical
Publication of KR960003921B1 publication Critical patent/KR960003921B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Abstract

The waste water treatment comprises (A) well mixing oil-containing waste water, alkali-containing waste water, sulfur-containing waste water, and organic substances-containing waste water ; (B) adding acid heavy metal-containing waste water to above mixture to adjust thiocyan concentration of the mixture at lower than 30 mg/l ; (C) adding sulfuric acid to adjust the pH of the mixed waste water at 6.5-8.0 ; (D) adding coagulant to the neutralized waste water to remove oil and suspensions ; and (E) biologically oxidizing, absorbing and adsorbing the treated water from (D) in an aerating tank.

Description

제철소 냉연공장에서 발생되는 폐수처리방법Wastewater Treatment Method from Cold Rolling Mill

제 1 도는 종래 방법에 의한 냉연공장 폐수처리 방법의 계통도1 is a schematic diagram of a cold rolling mill wastewater treatment method according to the conventional method

제 2 도는 본 발명에 의한 냉연공장 폐수처리방법의 계통도2 is a system diagram of a cold rolling mill wastewater treatment method according to the present invention

제 3 도는 본 발명에 있어 폭기조에서의 반응시간에 따른 COD, 및 티오시안이온 농도의 변화를 나타내는 그래프3 is a graph showing the change of COD and thiocyanate concentration according to the reaction time in the aeration tank in the present invention.

제 4 도는 본 발명에 있어 폭기조에서의 반응시간에 따른 티오시안 이온 농도 변화를 나타내는 그래프4 is a graph showing a change in thiocyanate ion concentration according to the reaction time in the aeration tank in the present invention.

제 5 도는 본 발명에 있어 혼합폐수 대비 산중금속 폐수 유입량에 따른 황산투입량 변화를 나타내는 그래프5 is a graph showing a change in sulfuric acid input according to the acid heavy metal wastewater inflow compared to the mixed wastewater in the present invention

제 6 도는 종래 방법에 있어 반응시간에 따른 COD, 및 티오시안이온 농도의 변화를 나타내는 그래프6 is a graph showing the change of COD and thiocyanate concentration with reaction time in the conventional method.

제 7 도는 종래의 화학적 방법에 있어 FeCl3투입량에 따른 COD, 및 티오시안이온 농도의 변화를 나타내는 그래프7 is a graph showing the change of COD and thiocyanate concentration according to the amount of FeCl 3 input in the conventional chemical method.

본 발명은 냉연공장에서 발생되는 폐수처리방법에 관한 것으로서, 보다 상세하게는 냉연공장에서 발생되는 오일함유폐수, 알카리 함유 폐수, 탈류폐액, 유기물함유 폐수 및 산중금속 함유폐수를 효과적으로 처리하는 방법에 관한 것이다.The present invention relates to a wastewater treatment method generated in a cold rolling mill, and more particularly, to a method for effectively treating oil-containing wastewater, alkali-containing wastewater, deflowing wastewater, organic matter-containing wastewater and acid heavy metal-containing wastewater generated in a cold rolling mill. will be.

냉연공장에서 발생되는 폐수는 열연공장에서 생산된 열연코일을 소재로 하여 산세, 냉간압연, 전기청정, 소둔 및 도금을 하여 표면이 미련한 냉연 및 도금제품을 생산하는 과정에서 오일, 알카리, 탈류폐액, 유기물 함유폐수, 크롬 함유폐수 및 유기물 함유폐수가 다양하게 발생된다.Waste water generated in cold rolling mill is made of hot rolled coil produced in hot rolling mill, which is pickled, cold rolled, electro-cleaned, annealed and plated to produce cold-rolled and plated products with surface roughness. Organic wastewater containing chromium, chromium containing wastewater and organic wastewater are generated in various ways.

종래 냉연공장에서 발생되는 폐수처리방법으로는, 제 1 도에 나타낸 바와같이, 1단계로 오일함유폐수와 알카리함유폐수를 각각 수집조로 포집한후 반응조로 유입시켜 황산에 의해 pH를 조절한 후 응집조에서 무기 응집제에 의해 폴록을 향상시켜 부상 분리조에서 오일 물질을 스키머에 의해 제거한 후, 2단계로 1단계에서 처리된 오일함유폐수, 알카리 함유폐수의 처리수와 여기에 유기물 함유폐수, 탈류폐액과 함께 폭기조로 유입시켜 폭기조에서 미생물에 의해 COD, SCN- 이온을 저감시킨후, 3단계로 이들 처리수와 크롬함유폐수, 산중금속함유 폐수를 산폐수 수집조로 유입시킨 후 pH 조정조로 이송하여 pH 조정을 한후 응집조에서 응집제에 의해 크롬 및 중금속무질을 침전제거하여 처리하는 방법 및 ; 폐수처리 공정과 과정이 상기의 방법과 같으나 폭기조의 미생물에 의한 오염 물질 처리에 가장 악영향을 주는 탈류 폐액만을 폭기조로 유입시켜 처리하지 않고 단독으로 화학적 처리는 하는 방법들이 주로 이용되어 왔다.As a conventional method for treating wastewater generated in a cold rolling mill, as shown in FIG. 1, the oil-containing wastewater and the alkali-containing wastewater are collected in a collection tank, and then flowed into a reaction tank to adjust pH by sulfuric acid, and then aggregate. In the tank, the pollock is improved by the inorganic flocculant, the oil material is removed by the skimmer in the floating separation tank, and the oil-containing wastewater, the alkali-containing wastewater treated in the first stage in two stages, and the organic-containing wastewater and the dehydration liquid COD, SCN- After reducing the ions, these treated water, chromium-containing wastewater and acid-heavy metal-containing wastewater are introduced into the acid wastewater collection tank in three stages, and then transferred to a pH adjusting tank for pH adjustment. A method for treating by; Wastewater treatment processes and processes are the same as those described above, but methods of chemically treating the wastewater alone, which are the most adversely affected by the contaminant treatment by the microorganisms in the aeration tank, do not flow into the aeration tank.

그러나 이들 종래에 방법들은 반응조에서 차지하는 알카리 함유폐수(pH 11-12.2)을 황산에 의해 중화시키기가 어려울 뿐 아니라 많은 황산을 소모시키고, 특히 탈류폐액을 폭기조로 바로 유입시켜 처리함으로써 탈류폐액에 함유된 고농도의 티오시안(약 50,00mg/L 전후)이 폭기조의 미생물과 직접 접촉함으로서 미생물에 충격을 주어 미생물의 활성을 저하시킬 뿐 아니라 이로 인하여 COD와 티오시안이온의 처리효과가 미흡하며, 심할 경우 미생물의 폐사현상을 유발시켜 폐수처리에 큰 문제점이 되어 있다.However, these conventional methods are not only difficult to neutralize alkali-containing wastewater (pH 11-12.2) in the reaction tank by sulfuric acid, but also consume a lot of sulfuric acid, and in particular, by treating the demineralization waste liquid directly into the aeration tank, High concentrations of thiocyan (approximately 50,00mg / L) directly contact microorganisms in the aeration tank, which impacts the microorganisms and lowers the activity of the microorganisms, resulting in insufficient COD and thiocyanate ions. It causes the death of microorganisms has become a big problem in wastewater treatment.

또한 탈류폐액속의 티오시안이온에 의한 폭기조 미생물의 영향을 최소로 하기 위한 탈류폐액의 단독적인 화학적 처리는 처리효율이 미흡하여 최종유출수의 COD 농도 증대의 요인으로 작용되어 적합하지 않다.In addition, the sole chemical treatment of the effluent waste to minimize the effect of the aeration tank microorganism by the thiocyanate in the effluent waste is not suitable because it is insufficient in the treatment efficiency and acts as a factor of increasing the COD concentration of the final effluent.

이에, 본 발명은 오일함유 폐수, 알칼리 함유 폐수, 탈류폐액 및 유기물 함유 폐액을 혼합한 혼합 폐수에 산중금속 함유폐수를 혼합시켜 폐수를 균등화시킴으로써, 황산 및 소석회 사용량 절감은 물론 혼합폐수중의 COD외 탈류 폐액중에 함유된 티오시안 이온을 폭기조로 유입되기전 안정화시킴으로써, 폭기조의 미생물에 의해 오염물질을 효과적이고 안정적으로 처리할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present invention is to equalize the wastewater by mixing the acid-heavy metal-containing wastewater in the mixed wastewater mixed with oil-containing wastewater, alkali-containing wastewater, dehydration wastewater and organic-containing wastewater, so as to reduce the amount of sulfuric acid and calcined lime, as well as COD in mixed wastewater The present invention aims to provide a method for effectively and stably treating contaminants by microorganisms in an aeration tank by stabilizing thiocyan ions contained in the demineralization wastewater before entering the aeration tank.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 제철소, 냉연공장에서 발생되는 폐수를 처리하는 방법에 있어서, 오일함유폐수, 알칼리 함유폐수, 탈류폐액 및 유기물 함유폐액을 충분히 혼합하는 단계 ; 이들 혼합폐수중에 산중금속 함유 폐수를 혼합시켜 혼합폐수중의 티오시안 농도가 300mg/ℓ 이하가 되도록 조정하는 단계 ; 티오시안 농도가 조정된 폐수에 황산을 첨가하여 폐수를 pH를 6.5-8.0으로 중화시키는 단계 ; 중화된 폐수에 응집제를 첨가하여 오일, 부유물질을 제거하는 단계 ; 및 오일, 부유물질이 제거된 폐수를 폭기조의 미생물에 의해 산화, 흡수, 흡착 처리하는 단계를 포함하여 제철소 냉연공장에서 발생되는 폐수를 처리하는 방법에 관한 것이다.The present invention relates to a method for treating wastewater generated in a steel mill and a cold rolling mill, comprising the steps of: sufficiently mixing an oil-containing wastewater, an alkali-containing wastewater, a deflowing waste liquid and an organic-containing waste liquid; Mixing acid heavy metal-containing wastewater in these mixed wastewater so as to adjust the thiocyanate concentration in the mixed wastewater to 300 mg / l or less; Neutralizing the wastewater to pH 6.5-8.0 by adding sulfuric acid to the thiocyanate adjusted wastewater; Removing oil and suspended solids by adding a flocculant to the neutralized wastewater; And it relates to a method for treating the wastewater generated in the cold rolling mill of the steel mill, including the step of oxidizing, absorbing, and adsorption of the wastewater from which oil and suspended solids have been removed by the aeration tank.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

제철소 냉연공장에서 발생되는 폐수를 본 발명에 따라 처리하기 위해서는 제 2 도에 나타난 바와같이, 오일함유 폐수, 알카리함유 폐수, 탈류폐액 및 유기물 함유 폐수를 1차로 폐수 혼합탱크에서 충분히 혼합시키는데, 이렇게 혼합시키면 pH가 11.2-12.0, COD가 400mg/ℓ 전후 및 티오시안 이온농도가 350mg/ℓ 전후인 혼합 폐수가 얻어진다.In order to treat the wastewater generated in the cold rolling mill in accordance with the present invention, oil-containing wastewater, alkali-containing wastewater, demineralization wastewater and organic matter-containing wastewater are first mixed sufficiently in the wastewater mixing tank as shown in FIG. This results in a mixed wastewater having a pH of 11.2-12.0, a COD of about 400 mg / l and a thiocyanate ion concentration of about 350 mg / l.

다음에, 상기 혼합 폐수를 조정조로 이송시키고 pH 0.6-2.0인 산중금속함유폐수를 적당량 혼합시켜 혼합폐수를 균등화시키게 되는데, 이때 폐수의 pH는 10.5-8.0범위이고, 티오시안 이온농도는 300mg/ℓ 이하로 유지된다.Next, the mixed wastewater is transferred to the adjusting tank and mixed with an appropriate amount of acid heavy metal-containing wastewater having a pH of 0.6-2.0 to equalize the mixed wastewater, wherein the pH of the wastewater is in the range of 10.5-8.0, and the thiocyanate ion concentration is 300 mg / l. Is maintained below.

다음에, 상기와 같이 균등화된 폐수를 중화조로 이송시켜 황산에 의해 pH가 6.5-8.0이 되도록 중화시킨다.Next, the equalized wastewater is transferred to a neutralization tank and neutralized to pH 6.5-8.0 by sulfuric acid.

다음에, 중화처리된 혼합폐수는 응집조로 이송되고, 여기서 PAC(Poly Aluminum Chloride)와 같은 무기웅집제를 첨가하여 응집시킨 다음, 부상분리조로 이송시켜 오일, 부유물질등을 부상 분리시킨다.Next, the neutralized mixed wastewater is transferred to a coagulation tank, where the inorganic coagulant such as poly aluminum chloride (PAC) is added to coagulate, and then, the flocculation tank is floated to separate oil and suspended solids.

다음에, 상기와 같이 오일, 부유물질등을 부상분리시킨 혼합폐수를 폭기조에 유입시켜 미생물에 의해 산화, 흡수, 흡착 처리하게 된다.Next, the mixed wastewater in which oil, suspended solids, etc. are separated and floated is introduced into the aeration tank, whereby the microorganisms are oxidized, absorbed, and adsorbed.

상기와 같이 폭기조에서의 미생물에 의한 폐수처리 이후 공정은 통상의 방법에 의해 행해진다.As described above, the process after the wastewater treatment by the microorganisms in the aeration tank is performed by a conventional method.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

제 2 도에 표시된 바와같이 1단계로 냉연공장에서 발생되는 전량의 오일함유폐수, 알카리함유폐수, 탈류폐액 및 유기물 함유폐수를 폐수 혼합탱크에서 충분히 혼합한후, 조정조로 이송시 적정량이 산중금속함유 폐수를 혼합시켜 안정화시켰다.As shown in FIG. 2, the oil-containing wastewater, the alkali-containing wastewater, the dehydration wastewater and the organic-containing wastewater generated in the cold rolling mill are sufficiently mixed in the wastewater mixing tank in one step, and then the appropriate amount is contained in the acid heavy metal when transported to the adjusting tank. Wastewater was mixed and stabilized.

2단계로 중화조에서 황산에 의해 pH가 6.5-8이 되도록 중화시킨 다음 응집조에서 PAC에 의해 플록을 형성시켜 부상분리조에 오일, 부유 물질등을 제거시켰다.In the second step, the neutralization tank was neutralized to pH 6.5-8 by sulfuric acid, and then floc was formed by PAC in the flocculation tank to remove oil and suspended matter.

상기한 1,2단계로 처리하여 얻은 COD가 325mg/ℓ, 티오시안 이온 농도가 287mg/ℓ인 폐수를 폭기조에 유입시켜 12시간 동안 반응시키고, 반응시간에 따른 COD, 및 티오시안 이온농도 변화를 관찰하고, 그 결과를 제 3 도에 나타내었다.Wastewater containing 325 mg / l of COD and 287 mg / l of thiocyan ion inflow into the aeration tank was reacted for 12 hours, and the COD and thiocyan ion concentrations were changed according to the reaction time. It observed and the result is shown in FIG.

제 3 도에 나타난 바와 같이 본 발명에 따라 전처리된 폐수를 폭기조에서 12시간 동안 반응시키는 경우 폭기조의 미생물에 의해 COD가 26mg/ℓ, 티오시안이 14.4mg/ℓ로 각각 92%, 95% 이상이 제거됨을 알 수 있다.As shown in FIG. 3, when the wastewater pretreated according to the present invention is reacted in the aeration tank for 12 hours, COD of 26 mg / l and thiocyne of 14.4 mg / l are 92% and 95%, respectively, by the aeration tank. It can be seen that it is removed.

또한, 상기한 1,2단계로 처리하여 얻은 티오시안 농도가 203mg/ℓ, 423mg/ℓ 및 514mg/ℓ인 폐수를 폭기조에 유입시켜 24시간동안 반응시켰고, 반응시간에 따른 티오시안 농도를 관찰하고, 그 결과를 제 4 도에 나타내었다.In addition, the wastewater having thiocyanate concentrations of 203 mg / l, 423mg / l and 514mg / l obtained in the first and second steps was introduced into the aeration tank and reacted for 24 hours. The results are shown in FIG.

제 4 도에 나타난 바와같이, 폭기조로 유입되는 혼합 폐수중에 티오시안 농도가 400mg/ℓ 이상인 경우에는 미생물에 의한 반응시간이 12시간 이상이 되더라도 티오시안 저감효과가 미흡하다는 것을 알 수 있다.As shown in FIG. 4, when the thiocyanate concentration is 400 mg / L or more in the mixed wastewater introduced into the aeration tank, the thiocyanate reduction effect is insufficient even if the reaction time due to the microorganism is 12 hours or more.

그러나, 본 발명에서와 같이 혼합 폐수중의 티오시안 농도가 300mg/ℓ 이하인 경우에는 이들 물질을 안정적으로 처리할 수 있음을 알 수 있다.However, it can be seen that when the thiocyanate concentration in the mixed wastewater is 300 mg / L or less as in the present invention, these substances can be stably treated.

또한, 혼합폐수에 산중금속함유 폐수 주입량에 따른 황산주입량 감소경향을 관찰하고 그 결과를 제 5 도에 나타내었다.In addition, the decrease of sulfuric acid injection amount according to the acid heavy metal-containing wastewater injection into the mixed wastewater was observed and the results are shown in FIG.

제 5 도에 나타난 바와같이, 산중금속 함유폐수를 혼합시키지 않을때의 황산 투입량을 100으로 할 때 혼합폐수량 대비 산중금속 함유폐수 6.5%, 12.5%, 25%, 37.5%로 각각 혼합했을 때 황산투입량 저감은 20%, 31%, 42% 및 51%로 거의 직선적으로 감소하고 있음을 알 수 있다.As shown in FIG. 5, when the amount of sulfuric acid input when the acid heavy metal-containing wastewater is not mixed is 100, the amount of sulfuric acid input when the acid heavy metal-containing wastewater is mixed at 6.5%, 12.5%, 25%, and 37.5%, respectively, compared to the mixed wastewater. It can be seen that the reductions are almost linearly reduced to 20%, 31%, 42% and 51%.

[비교예 1]Comparative Example 1

실시예에서와 같은 냉연폐수를 제 1 도와 같은 종래방법으로 처리하였는데, 목기조에 유입되기전의 폐수의 COD는 438mg/ℓ이고, 티오시안 농도는 375mg/ℓ이였다.The cold rolled wastewater as in Example was treated by the conventional method as in the first degree, where the COD of the wastewater before entering the wood tank was 438 mg / l and the thiocyanate concentration was 375 mg / l.

상기와 같이 전처리된 폐수를 폭기조에 유입시켜 16시간동안 반응시키고, 반응시간에 따른 COD, 티오시안 농도변화를 관찰하고, 그 결과를 제 6 도에 나타내었다.The pretreated wastewater was introduced into the aeration tank and reacted for 16 hours, and the COD and thiocyanate concentration changes according to the reaction time were observed. The results are shown in FIG.

제 6 도에 나타난 바와같이, 폭기조에서 미생물 처리후에도 COD가 271mg/ℓ이고, 티오시안 이온농도가 157mg/ℓ로 제거효율이 각각 38%, 52%로 매우 미흡하다는 것을 알 수 있다.As shown in FIG. 6, it can be seen that even after the microbial treatment in the aeration tank, the COD is 271 mg / l, and the thiocyanate ion concentration is 157 mg / l, and the removal efficiencies are 38% and 52%, respectively.

이러한 결과는 5만 전후의 티오시안 이온 함유 폐수인 탈류폐액이 바로 폭기조로 유입됨으로써, 미생물에 충격을 주어 미생물 활성을 저하시키거나 심할 경우 폐사시킬 뿐만 아니라 이 폐수가 폭기조에서 충분히 섞여 안정화되더라도 탈류폐액의 유량변동이나 탈류폐액중의 티오시안 농도변화가 심하므로, 오염물 부하 조정이 어렵기 때문이다.These results indicate that dehydration waste, which is a thiocyan ion-containing wastewater of about 50,000, flows directly into the aeration tank, which not only impacts the microorganisms, but also reduces the microbial activity or causes death if severe. This is because it is difficult to adjust the pollutant load because the fluctuations in the flow rate and the thiocyanate concentration in the demineralized waste liquid are severe.

[비교예 2]Comparative Example 2

실시예에서와 같은 냉연폐수중 탈류폐액만 단독으로 철염형태의 하나인 FeCl3에 의해 COD 및 티오시안 이온제거 실험을 수행하고, 그 결과를 제 7 도에 나타내었다.COD and thiocyan ion removal experiments were performed by using FeCl 3 , which is one of the iron salt forms alone, in the cold wastewater as in Example only, and the results are shown in FIG. 7.

제 7 도에 나타난 바와같이, COD, 및 티오시안 이온농도가 각각 초기 2826mg/ℓ, 및 25432mg/ℓ인 폐수가 화학적 처리를 한 후에도 각각 2324mg/ℓ, 및 21250mg/ℓ로 나타나 처리효율이 매우 낮음을 알 수 있다.As shown in FIG. 7, COD and thiocyan ion concentrations were 2324 mg / l and 21250 mg / l, respectively, even after chemical treatment of the initial 2826 mg / l and 25432 mg / l, respectively, resulting in very low treatment efficiency. It can be seen.

Claims (1)

제철소 냉연공장에서 발생하는 폐수를 처리하는 방법에 있어서, 오일함유폐수, 알카리 함유폐수, 탈류폐액 및 유기물 함유 폐액을 충분히 혼합하는 단계 ; 이들 혼합폐수중에 산중금속 함유폐수를 혼합시켜 혼합폐수중의 티오시안 농도가 30mg/ℓ 이하가 되도록 조정하는 단계 ; 티오시안 농도가 조정된 폐수에 황산을 첨가하여 폐수의 pH를 6.5-8.0으로 중화시키는 단계 ; 중화된 폐수에 응집제를 첨가하여 오일, 부유물질을 제거하는 단계 ; 및 오일, 부유물질이 제거된 폐수를 폭기조의 미생물에 의해 산화, 흡수, 흡착 처리하는 단계를 포함하여 구성됨을 특징으로 하는 제철소 냉연공장에서 발생되는 폐수처리방법.CLAIMS 1. A method for treating wastewater generated in a cold mill in a steel mill, the method comprising: thoroughly mixing an oil-containing wastewater, an alkali-containing wastewater, a deflowing waste liquid and an organic matter-containing waste liquid; Mixing acid heavy metal-containing wastewater in these mixed wastewater to adjust the thiocyanate concentration in the mixed wastewater to 30 mg / l or less; Neutralizing the pH of the wastewater to 6.5-8.0 by adding sulfuric acid to the thiocyanate adjusted wastewater; Removing oil and suspended solids by adding a flocculant to the neutralized wastewater; And oxidizing, absorbing, and adsorbing the wastewater from which oil and suspended solids have been removed by the microorganism in the aeration tank.
KR1019930018898A 1993-09-17 1993-09-17 Method for treatment of waste water from cold rolling plant KR960003921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930018898A KR960003921B1 (en) 1993-09-17 1993-09-17 Method for treatment of waste water from cold rolling plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930018898A KR960003921B1 (en) 1993-09-17 1993-09-17 Method for treatment of waste water from cold rolling plant

Publications (2)

Publication Number Publication Date
KR950008374A KR950008374A (en) 1995-04-17
KR960003921B1 true KR960003921B1 (en) 1996-03-23

Family

ID=19363904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930018898A KR960003921B1 (en) 1993-09-17 1993-09-17 Method for treatment of waste water from cold rolling plant

Country Status (1)

Country Link
KR (1) KR960003921B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638283B (en) * 2009-08-11 2011-09-28 中冶南方工程技术有限公司 Two-stage biochemical treatment technique of cold rolling and silicon steel alkaline waste water
CN105314790A (en) * 2014-06-23 2016-02-10 高嵩 Treatment method being suitable for oil recovery sewage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990008596A (en) * 1997-07-02 1999-02-05 김종진 Method for promoting biological wastewater treatment of demineralized waste liquor and its device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638283B (en) * 2009-08-11 2011-09-28 中冶南方工程技术有限公司 Two-stage biochemical treatment technique of cold rolling and silicon steel alkaline waste water
CN105314790A (en) * 2014-06-23 2016-02-10 高嵩 Treatment method being suitable for oil recovery sewage

Also Published As

Publication number Publication date
KR950008374A (en) 1995-04-17

Similar Documents

Publication Publication Date Title
US4292176A (en) Use of activated carbon in waste water treating process
CN110040911B (en) Treatment method of copper-containing high-salt printing and dyeing wastewater
CN102730862B (en) Sewage treatment method in synthetic rubber production
JPH04349997A (en) Treatment of organic waste water
CN113860659A (en) Treatment method of industrial wastewater difficult to degrade
KR960003921B1 (en) Method for treatment of waste water from cold rolling plant
JP2796909B2 (en) Wastewater treatment method
CN115259573A (en) Treatment method of high-sulfate organic wastewater in petroleum refining industry
JPS6320600B2 (en)
JPH0352699A (en) Treatment of sewage of night soil system
JPS6257400B2 (en)
KR20000013756A (en) Livestock wastewater treatment method using combination of membrane separation type activated sludge method and electrolytic method
CN110040870B (en) Method for treating paint spraying wastewater
KR0142894B1 (en) Wastewater treatment method using electrolysis of iron
CN215924703U (en) Hazardous waste landfill leachate evaporation treatment system
CN111087081B (en) Wastewater treatment method and application thereof
US20220234920A1 (en) Method of removing contaminate in wastewater
KR950002113B1 (en) Waste water treatment method
CN114573088B (en) Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application
Suschka et al. Full scale treatment of phenolic coke coking waste water under unsteady conditions
KR100231950B1 (en) Sewage treatment process and apparatus
KR100280075B1 (en) Sanitary Landfill Leachate Treatment Method
CN108117235B (en) Pesticide wastewater treatment system and process
RU2057088C1 (en) Method for treatment of sewage sediments with removal of heavy metals (versions)
DE2526095A1 (en) Continuous purificn. of petroleum refinery effluents - by biological oxidn. and aeration between stages

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040312

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee