KR0142894B1 - Wastewater treatment method using electrolysis of iron - Google Patents

Wastewater treatment method using electrolysis of iron

Info

Publication number
KR0142894B1
KR0142894B1 KR1019950029471A KR19950029471A KR0142894B1 KR 0142894 B1 KR0142894 B1 KR 0142894B1 KR 1019950029471 A KR1019950029471 A KR 1019950029471A KR 19950029471 A KR19950029471 A KR 19950029471A KR 0142894 B1 KR0142894 B1 KR 0142894B1
Authority
KR
South Korea
Prior art keywords
iron
phosphorus
nitrogen
concentration
rod electrode
Prior art date
Application number
KR1019950029471A
Other languages
Korean (ko)
Other versions
KR970015488A (en
Inventor
황규대
김복현
Original Assignee
황규대
김복현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황규대, 김복현 filed Critical 황규대
Priority to KR1019950029471A priority Critical patent/KR0142894B1/en
Publication of KR970015488A publication Critical patent/KR970015488A/en
Application granted granted Critical
Publication of KR0142894B1 publication Critical patent/KR0142894B1/en

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 오수 및 폐수중 오염물질을 처리하는 공법에 관한 것으로서, 특히 철의 전기분해를 이용하여 유기물질 및 질소와 인을 제거하는 오· 페수처리공법에 관한 것이다.The present invention relates to a method for treating contaminants in sewage and wastewater, and more particularly, to a wastewater treatment method for removing organic substances, nitrogen and phosphorus using electrolysis of iron.

본 발명의 오·페수처리공법은 활성미생물이 존재하는 폭기조에 철봉전국(1)을 설치하고 직류전원장치를 이용하여 정전압의 전류를 철봉전극(1)에 흐르게 하여 전기 분해작용시 석출된 철산화물에 의해서 유기물, 인 및 질소를 처리하는 공정을 포함하는 것을 특징으로 한다.In the wastewater treatment method of the present invention, the iron oxide station 1 is installed in an aeration tank in which active microorganisms exist, and the iron oxide precipitated during electrolysis by flowing a constant voltage current through the iron rod electrode 1 using a DC power supply device. It characterized in that it comprises a step of treating organic matter, phosphorus and nitrogen by.

Description

철의 전기분해를 이용한 오·폐수처리공법Wastewater treatment method using electrolysis of iron

제1도는 종래의 표준활성슬러지공법을 실행하는 장치의 개략구성도,1 is a schematic configuration diagram of an apparatus for implementing a conventional standard activated sludge process,

제2도는 오·폐수에 함유된 인과 질소를 제거하는 종래 생물학적인 방법을 실행하는 장치의 개략구성도,2 is a schematic configuration diagram of a device for implementing a conventional biological method for removing phosphorus and nitrogen contained in wastewater,

제3도는 본 발명에 따른 오·페수처리공법을 실행하는 장치의 개략구성도이다.3 is a schematic configuration diagram of an apparatus for performing the wastewater treatment method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1: 철봉전극2: 가변전원트랜서1: iron electrode 2: variable power transformer

[기술분야][Technical Field]

본 발명은 하수, 오수, 분뇨, 축산폐수 및 산업폐수 등의 오수 및 폐수중에 포함된 오염물질을 처리하는 생물학적 오·폐수처리공법에 관한 것으로서, 특히 철의 전기분해를 이용하여 유기물질 및 질소와 인을 제거하는 오·폐수처리공법에 관한 것이다.The present invention relates to a biological sewage treatment method for treating contaminants contained in sewage and wastewater, such as sewage, sewage, manure, livestock waste, and industrial wastewater, and in particular, organic materials and nitrogen using iron electrolysis. The present invention relates to a wastewater treatment method for removing phosphorus.

[발명의 배경][Background of invention]

주거지지역, 축산농가, 공장등에서 발생하는 각종 오수 및 폐수증에는 유기물질 및 질소와 인 등의 오염물질이 함유되어 있는데, 이들 오염물질을 제거하지 않는채 오·폐수를 하천, 호수 등의 수계로 유입된다면, 호소와 내만 등의 폐쇄성 수역에서 조류 중식의 생산력이 과잉증대되는 부영양화의 현상이 나타나 수질이 더욱 악화된다. 따라서 오·폐수증에 함유된 유기물질 및 질소와 인 등의 오염물질은 반드시 제거되어야 한다.Various sewage and wastewater from residential areas, livestock farms, and factories contain organic substances and pollutants such as nitrogen and phosphorus.These wastewater is discharged into rivers, lakes, etc. without removing these pollutants. If introduced, eutrophication occurs in the closed waters such as lakes and bays, resulting in an over-nutrition of algae food, resulting in worse water quality. Therefore, organic substances and wastes such as nitrogen and phosphorus contained in sewage water must be removed.

종래 오·폐수처리방법에는 생물학적처리방법과 화학적처리방법이 있는데, 먼저 종래 생물학적처리방법의 대표적인 공법인 표준활성슬러지공법에 대하여 설명한다.Conventional wastewater treatment methods include biological treatment methods and chemical treatment methods. First, the standard activated sludge method, which is a representative method of the conventional biological treatment method, will be described.

표준활성슬러지공법(conventional activated sludge process)은 제1도에 도시되어 있는바와 같이, 우선 오·폐수중 큰 불순물과 고형물을 여과 및 1차침전지에서의 침전에 의한 물리적 처리로 제거(전처리)시키고, 상등수를 폭기조로 보낸다. 이때, 폭기조에 유입된 오·폐수내의 부유물질, 용존물질 또는 콜로이드 상태의 생물학적으로 분해가능한 유기물의 제거원리는 다음과 같다.As shown in FIG. 1, the conventional activated sludge process removes (pretreatment) large impurities and solids in the wastewater by physical treatment by filtration and precipitation in the primary settler. Send the supervisor to the aeration tank. At this time, the removal principle of suspended matter, dissolved matter or colloidal biologically degradable organic matter in the waste water introduced into the aeration tank is as follows.

[유기물제거 원리][Organic Removal Principle]

폭리조에 공급된 산소와 호기성 미생물과 반응하여 유기물질 H20나 CO2의 안정된 최종산물로 전환시켜 오·폐수중 유기물질을 산화분해하고 잉여슬러지를 생산한다. 이와 같이 처리된 오·폐수는 최종(2차)침전지로 유입되어 정화된 상등수와 슬러지로 분리된다. 미생물체로 침전된 슬러지는 폭기조내 적정 미생물의 농도를 유지시키기 위하여 필요로 하는 양의 일부는 폭기조로 다시 유입(반송)시키고 나머지는 잉여슬러지로 폐기한다. 또한, 최종(2차)침전조의 상등수는 최종처리수로 하천등으로 방류시킨다.It reacts with oxygen and aerobic microorganisms supplied to the sedimentation tank and converts it into a stable final product of organic substance H 2 O or CO 2 to oxidize and decompose organic substances in waste water and produce excess sludge. The wastewater treated in this way flows into the final (secondary) settler and is separated into purified supernatant and sludge. The sludge precipitated by the microorganisms flows back to the aeration tank (part of the amount needed to maintain the proper concentration of microorganisms in the aeration tank) and the remaining sludge is disposed of as excess sludge. In addition, the supernatant water of the final (secondary) sedimentation tank is discharged to a river or the like as the final treated water.

상기와 같은 표준활성슬러지공법은 유기물의 제거효율은 매우 양호하게 유지하나 인(P)과 질소(N)의 제거효율이 매우 저조하여 인과 질소의 양호한 제거를 위하여는 추가적인 시설을 하지 않으면 않된다.The standard activated sludge process as described above maintains very good removal efficiency of organic matter, but the removal efficiency of phosphorus (P) and nitrogen (N) is very low, so additional facilities must be provided for good removal of phosphorus and nitrogen.

유기물을 포함한 인과 질소를 제거하기 위한 방법으로 생물학적인 방법이 제2도에 도시되어 있다. 본 처리방법중 인(P)와 질소(N)의 제거원리는 다음과 같다.A biological method is shown in FIG. 2 as a method for removing phosphorus and nitrogen including organics. The principle of removal of phosphorus (P) and nitrogen (N) in this treatment method is as follows.

[인제거 원리][Principle Removal Principle]

인 제거의 경우, 혐기성반응조(용존산소가 존재하지 않는 반응조)에서 오·폐수와 혼합된 미생물의 세포내에서 인을 세포밖으로 과잉방출케 한 후 폭기조에서는 유기물질 산화과정에서 생성된 에너지를 이용하여 미생물세포내로 인을 과잉 흡수케 하여 폐슬러지의 형태로 인을 제거시키는 방법과, 혐기성반응조에서 미생물에 의해 인이 과잉방출된 혼합액을 미생물과 분리한후 분리된 상등액에 석회 또는 금속염을 첨가하여 인을 제거하는 방법 등이 있다.In the case of phosphorus removal, in the anaerobic reactor (reactor without dissolved oxygen), phosphorus is released to the outside of the cells of microorganisms mixed with wastewater, and then the aeration tank uses the energy generated during the oxidation of organic substances. Method of removing phosphorus in the form of waste sludge by excessively absorbing phosphorus into microbial cells, and separating the mixed solution which is over-released by microorganisms in an anaerobic reactor with microorganisms and adding lime or metal salt to the separated supernatant How to remove it.

[질소제거 원리][Nitrogen Removal Principle]

질소제거의 원리는 오·폐수중 암모니아성 질소가 폭기조의 활성미생물의 호흡 과정에 의해 질산염으로 질산화되고, 최종침전지에 유입되기전 질산염이 함유된 혼합액을 폭기조 앞에 설치된 무산소조로 반송시켜 질산염을 질소가스로 환원시켜 질소를 제거한다.The principle of nitrogen removal is that the ammonia nitrogen in the waste water is nitrified to nitrate by the respiration process of the active microorganisms in the aeration tank, and the nitrate is returned to the anoxic tank installed in front of the aeration tank before the nitrate is introduced into the aeration tank. Reduced to remove nitrogen.

상기와 같은 종래의 생물학적 처리방법은 물리/화학적처리 방법에 비해서 비용이 저렴하고, 슬러지생성량도 적다는 장점이 있으나, 다음과 같은 문제점이 있다.The conventional biological treatment method as described above has the advantages of lower cost and less sludge production than physical / chemical treatment methods, but has the following problems.

첫째, 유입수중 유기물과 인 및 질소의 농도변화에 따라 질소(N)와 인(P)의 처리 효율이 크게 영향을 받는다.First, the treatment efficiency of nitrogen (N) and phosphorus (P) is greatly affected by the concentration of organic matter, phosphorus and nitrogen in the influent.

둘째, 반응조의 최적설계를 위한 운전조건을 유입수중 유기물/질소의 농도비가 12배이상이고, 유기물/인의 농도비가 20이하로 유지되어야만 만족할만 한 최종처리수를 얻을수 있다.Second, satisfactory final treatment water can be obtained if the operating conditions for the optimum design of the reactor are maintained at a concentration ratio of organic matter / nitrogen in the influent of 12 times or more and the concentration ratio of organic matter / phosphorus of 20 or less.

세째, 반응조의 용존산소 농도, 수은, pH 등의 환경인자와 고형물체류시간(SRT), 무산소조와 폭기조의 수리학적체류기간(HRT)등의 설계인자와 운전조건에 의해 질소(N)와 인(P)의 처리효율이 크게 저하된다.Third, depending on the operating conditions such as dissolved oxygen concentration, mercury and pH of the reaction tank, the designation time of the solid retention time (SRT), the hydraulic stay period of the anoxic tank and the aeration tank (HRT), and nitrogen (N) and phosphorus ( The treatment efficiency of P) is greatly reduced.

네째, 고농도의 유해성 오염물이 반응조에 유입될 경우 미생물의 활성도가 일시 적으로 저하되어 처리효율이 급격히 낮아진다.Fourth, when high concentrations of harmful contaminants enter the reactor, the activity of microorganisms is temporarily reduced, resulting in a drastic drop in treatment efficiency.

다섯째, 무산소조로 반송하는 슬러지중 질산염과 용존산소의 농도가 높을 경우는 질소와 인의 처리효율이 크게 저하된다.Fifth, when the concentration of nitrate and dissolved oxygen in the sludge returned to the anoxic tank is high, the treatment efficiency of nitrogen and phosphorus is greatly reduced.

그러므로, 인과 질소의 제거를 위한 생물학적 처리공정은 최적 공정관리가 매우 복잡하고, 활성미생물에 의한 영양염류 제거율의 신뢰도가 매우 낮아 제거효율을 높이기 위하여 오·폐수에 화학약품을 투입하는 화학적 처리방법을 병행하여 주로 사용하고 있다.Therefore, the biological treatment process for the removal of phosphorus and nitrogen has a very complex process for optimal process control, and the chemical treatment method is to inject chemical into the waste water to increase the removal efficiency because the reliability of nutrient removal rate by active microorganism is very low. It is mainly used in parallel.

화학약품을 투입하는 화학적 처리방법은 생물학적 처리방법에 비하여 비교적 공정이 간단하고 시설의 유지관리가 간편하여 처리효율의 신뢰도가 높은 장점이 있으나 약품사용시 다음과 같은 문제점이 있다.The chemical treatment method of injecting chemicals has the advantages of relatively simple process and easy maintenance of facilities compared to biological treatment methods, which has high reliability of treatment efficiency, but has the following problems when using chemicals.

첫째, 화학약품 사용비용이 매우 높다.First, the cost of using chemicals is very high.

둘째, 잉여슬러지의 처리량이 증가된다.Second, the throughput of surplus sludge is increased.

세째, 금속염과 같은 화학약품을 반응조에 계속 투입할 경우는 미생물의 활성도가 급격히 저하되어 유기물과 질소의 제거율이 낮아진다.Third, when the chemicals such as metal salts are continuously added to the reaction tank, the activity of microorganisms is drastically lowered, and the removal rate of organic matter and nitrogen is lowered.

[발명의 목적][Purpose of invention]

본 발명은 전술한 종래기술의 문제점을 해결하기 위해서 안출된 것으로서, 기존 오·폐수처리장치에 쉽게 적용할수 있어서 시설비가 저렴하고 운전관리가 용이하며, 처리비용이 적게들고, 유기물, 인 및 질소의 농도비율에 관계없이 제거효율이 월등하게 향상된 오·폐수처리공법을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art, it can be easily applied to the existing waste water treatment apparatus, the equipment cost is low, easy operation and management, the treatment cost is low, organic matter, phosphorus and nitrogen It is an object of the present invention to provide a wastewater treatment method with an improved removal efficiency regardless of the concentration ratio.

[발명의 요약][Summary of invention]

상기 목적을 달성하기 위한 본 발명의 오·폐수처리공법은 활성미생물이 존재하는 폭기조에 철봉전극을 설치하여 철봉전극의 전기 분해작용시 석출된 철산화물에 의해 인을 제거하고, 활성미생물에 의해 유기물 및 질소를 제거하는 콤펙트된 공정을 포함하는 것을 특징으로 한다.Wastewater treatment method of the present invention for achieving the above object is to install the iron rod electrode in the aeration tank in which the active microorganisms exist to remove phosphorus by the iron oxide precipitated during the electrolysis of the iron rod electrode, the organic material by the active microorganism And a compact process for removing nitrogen.

[발명의 구체적 실시예에 대한 설명][Description of Specific Embodiment of the Invention]

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 오·폐수처리공법은 제3도에 도시되어 있는 바와 같이, 활설미생물이 존재하는 폭기조에 철봉전극(1)을 설치하고 직류전원장치를 이용하여 정전압의 전류를 철봉전극(1)에 흐르게 하여 전기분해작용시 석출된 철산화물에 의해서 유기물, 인 및 질소를 처리하는 공정을 포함한다. 철봉전극(1)은 폭기조외에 처리장유입부에 설치하여도 유사한 효과를 거둘수 있다.In the wastewater treatment method of the present invention, as shown in FIG. 3, an iron rod electrode 1 is installed in an aeration tank in which active microorganisms exist, and a constant voltage current is applied to the iron rod electrode 1 using a DC power supply. Treating the organic matter, phosphorus and nitrogen by the iron oxide precipitated during electrolysis. The iron rod electrode 1 can have a similar effect even if it is installed in the treatment plant inlet in addition to the aeration tank.

철봉전극의 재질은 여러가지 철종류를 모두 이용할수 있으나, 경제성을 고려하여 일반구조강재(rolled steel for general structure)인 KDS3503 또는 SS41이라 불리우는 폐철봉을 이용하는 것이 바람직하다.The iron rod electrode may be made of all kinds of iron, but it is preferable to use a waste steel rod called KDS3503 or SS41, which is a rolled steel for general structure, in consideration of economical efficiency.

폭기조내에서 철의 전기분해시 석출되는 철염의 농도를 균일하게 하기 위해서 철봉전극(1)에 가변 전원트랜서(2)를 설치하여 전류의 흐름방향을 1일 주기로 교대로 바꾸어 준다. 상기와 같이 철봉전극(1)의 전류흐름을 바꾸어 주면, 철봉전극(1)에 스케일(scale)이 형성되는 것도 효과적으로 방지할수 있다.In order to equalize the concentration of iron salt precipitated during electrolysis of iron in the aeration tank, a variable power supply transformer 2 is installed in the iron rod electrode 1 to alternately change the flow direction of the current at a daily interval. By changing the current flow of the bar electrode 1 as described above, it is also possible to effectively prevent the scale (scale) is formed on the bar electrode (1).

철의 전기분해에 적용된 전압의 세기는 석출된 철입자당 효과적으로 제거되는 인의 양과 과잉석출된 철산화물에 의해 증가된 폐슬러지의 최소생산량 및 색도유발, 미생물의 활성도 등의 영향을 고려하여 낮은 전압을 이용한다.The strength of the voltage applied to the electrolysis of iron is lowered by taking into account the effects of the amount of phosphorus effectively removed per precipitated iron particles, the minimum production of waste sludge increased by over-deposited iron oxide, color induction, and microbial activity. I use it.

본 발명의 처리방법에서 철의 전기분해시 석출된 철산화물의 작용에 의한 유기물, 질소 및 인의 제거원리는 다음과 같다.Principle of removal of organic matter, nitrogen and phosphorus by the action of iron oxide precipitated during the electrolysis of iron in the treatment method of the present invention is as follows.

[유기물제거 원리][Organic Removal Principle]

유기물질의 제거는 철의 전기분해에 의한 석출된 철산화물에 의해 폭기조내 원생 동물과 같은 호기성 박테리아를 크게 중식시켜 유기물질의 산화, 분해능력의 증가와 함께 최종침전지에서는 일부의 입자성 부유물질등이 철산화물에 흡착제거되어 슬러지의 침전성도 양호하게 유지시키기 때문에 기존의 처리공정 보다 양호한 유기물제거율을 보여준다.The removal of organic substances greatly aerobic bacteria such as protozoa in the aeration tank by the iron oxide precipitated by electrolysis of iron, which greatly increases the oxidation and decomposition capacity of organic substances and some particulate suspended solids in the final settler. Adsorption and removal of this iron oxide also maintains the sedimentation properties of the sludge shows a good organic matter removal rate than the conventional treatment process.

[질소제거 원리][Nitrogen Removal Principle]

질소제거의 원리는 철의 전기분해에 의해 석출된 철산화물에 의해 폭기조내 질산화 박테리아가 크게 중식되면 오·폐수중 암모니아성 질소가 호기성미생물의 호흡과 정에 의해 질산염으로 크게 질산화되고, 최종침전지에서는 철명이 혼합된 활성슬러지와 질산염이 함유된 폐수를 폭기조로부터 무산소조로 반송시켜 무산소조에서 탈질미 생물에 의해 질산염이 질소가스로 환원되어 질소산화물을 제거한다.The principle of nitrogen removal is that when the nitrifying bacteria in the aeration tank are largely neutralized by the iron oxide precipitated by the electrolysis of iron, the ammonia nitrogen in the wastewater is greatly nitrified to nitrate by the aerobic microbial respiration process. Wastewater containing activated sludge mixed with nitrate is returned from the aeration tank to the anoxic tank, whereby the nitrate is reduced to nitrogen gas by the denitrification microorganism in the anoxic tank to remove nitrogen oxides.

[인제거 원리][Principle Removal Principle]

인의 제거원리는 폭기조에 투입된 양극의 철봉표면에서 2차철이온이 석출되어, 석출된 2가 철이온은 수용액에서 전류의 흐름방향에 따라 양극에서 음극의 철봉표면으로 이동하는 과정에서 폭기조내 용존산소와 반응하며 3가 철로 전환된다. 이때, 반응조내 철이온은 용존산소와 반응하여 주로 입자상 철산화물을 형성하기 때문에 오·폐수중 인산염이 철산화물의 표면에 흡착되어 제거된다.The principle of phosphorus removal is that secondary iron ions are deposited on the iron rod surface of the anode injected into the aeration tank, and the precipitated divalent iron ions move from the anode to the iron rod surface of the cathode along the direction of current flow in aqueous solution. Reacts with and converts to trivalent iron. At this time, since the iron ions in the reaction vessel react with dissolved oxygen to form mainly iron iron oxide, phosphate in the waste water is adsorbed on the surface of the iron oxide and removed.

[실험예1]Experimental Example 1

운전조건 및 실험결과를 표1를 참조하여 설명한다.Operation conditions and experimental results will be described with reference to Table 1.

(운전조건)(Operation conditions)

본 실험에서는 철산화물이 함유된 슬러지의 질소제거 효율에 미치는 반송율, 유기물 부하량과 같은 인자들의 영향을 조사하고, 인과 질소제거의 최적 운전조건을 도출하기 위하여 실험을 진행하였다.In this experiment, the effects of factors such as the return rate and the organic load on the nitrogen removal efficiency of iron oxide sludge were investigated, and the experiment was conducted to derive the optimum operating conditions for phosphorus and nitrogen removal.

실험에 이용된 공정은 폭기조의 질산화 과정에 의해 생성된 질산염을 효과적으로 제거하기 위하여 폭기조 앞에 무산소조를 설치하여 무산소/호기공정을 사용하였고, 이때, 폭기조내의 MLSS(mixed liquor suspended solid) 혼합액을 무산소조(탈질조)로 보내는 반송율을 변화시켜 무산소조의 수리학적 체류시간(HRT)변화에 따른 총질소, 유기물질 및 인의 제거효율을 조사하였다.The process used in the experiment used an anaerobic / aerobic process by placing an anoxic tank in front of the aeration tank to effectively remove the nitrates produced by the nitrification process of the aeration tank.In this case, the mixed liquor suspended solid (MLSS) mixture in the aeration tank was anoxic (denitrification). The removal efficiency of total nitrogen, organic matter and phosphorus was investigated by changing the hydraulic retention time (HRT) of the anaerobic tank.

무산소조 체류시간은 철봉전극을 투입한 실험운전세트 NO.1, NO2 및 NO.3에서 각 4시간, 2,7시간, 2시간으로 운전하기 위하여 폭기조에서 무산소조로의 혼합액의 반송비를 유입유량에 대하여 각각 100%, 200%, 300% 등으로 변화시켜 유지하였다. 이때, 철봉을 투입하지 않는 대조실험운전세트 NO4의 무산소조체류시간은 혼합액의 반송비를 100%로 운전하여 4시간으로 유지하였다. 이때 무산소조와 폭기조의 총수리학적 체류시간(HRT)은 철봉전극을 투입한 실험운전세트 NO1, NO.2 및 NO.3에서 반송율을 고려하여 각각 9시간, 6시간, 4,5시간으로, 철봉전극을 투입하기 않은 대조실험 운전세트 NO.4는 9시간으로 운전하였고, 상기 그룹의 모든 실혐운전세트의 고형물 체류시간(SRT)은 9일로 유지하였다.The aerobic tank residence time is a 4 hour, 2,7, or 2 hour period in the experimental set NO.1, NO2 and NO.3 with the rod electrode inserted. The change was maintained at 100%, 200%, 300%, and the like, respectively. At this time, the anaerobic bath residence time of the control experiment set NO4 without adding the iron rod was maintained at 4 hours by operating the return ratio of the mixed solution at 100%. At this time, the total hydraulic residence time (HRT) of the anoxic tank and the aeration tank was 9 hours, 6 hours, 4,5 hours, respectively, considering the transfer rate in the experimental set NO1, NO.2 and NO.3 with the rod electrode. The control experiment set NO.4 without the electrode was operated for 9 hours, and the solids retention time (SRT) of all demonstration sets in the group was maintained for 9 days.

운전시간동안 실험에 이용된 유입수중 TCOD(Total Chemical Oxygen Demand)와 TKN(Total Kjedahl Nitrogen) 및 TP(Total Phosphorus)의 평균 농도는 각각 376㎎TCOD/ℓ, 46㎎TKN/ℓ, 및 26㎎TP/ℓ였다. 유입 오·폐수중 TCOD/TKN 비는 약 8이었고, 무산소조에 유입되는 TKN의 용적부하량은 0.14㎏TKN/㎥-day 이었다. 이때, 실험에 이용된 유입원수에 대한 평균 TCOD : TKN : TP 비는 약 100:12:8이였다.The mean concentrations of TCOD (Total Chemical Oxygen Demand), TKN (Total Kjedahl Nitrogen) and TP (Total Phosphorus) in the influent used during the test were 376 mg TCOD / L, 46 mg TKN / L, and 26 mgTP, respectively. / l. The TCOD / TKN ratio in the influent wastewater was about 8, and the volume load of TKN in the anaerobic tank was 0.14㎏TKN / ㎥-day. At this time, the average TCOD: TKN: TP ratio of the influent used in the experiment was about 100: 12: 8.

실험운전세트에 투입된 철봉전극의 유효 표면적은 15㎠였으며 석출된 철의 농도는 실험운전세트 NO.1, NO.2 및 NO.3에서 각각 36㎎Fe/ℓ, 28㎎/ℓ, 25㎎Fe/ℓ였다. 이러한 철농도의 영향으로 반응조내 평균 MLSS 혼합액의 농도는 철봉전극을 투입하여 전기분해시킨 폭기조와 무산소조의 전체시스템에서 평균 약 2,300∼2,600㎎MLSS/ℓ로 유지되어 MLVSS(mixed liquor volatile suspended solid)/MLSS 비가 약 0.69였다. 반면에, 철봉전극을 투입하지 않은 대조실험운전세트 NO.4에서는 철산화물과 같은 무기물의 증가요인이 없었기 때문에 MLVSS/MLSS 비가 일반적인 활성 슬러지와 유사한 약 0.78로 유지되었고 이때의 평균 MLSS 농도는 약1,600㎎/ℓ였다.The effective surface area of the iron rod electrode put into the experimental run set was 15 cm2, and the precipitated iron concentrations were 36 mgFe / L, 28 mg / L and 25 mgFe in the experimental run sets NO.1, NO.2 and NO.3, respectively. / l. Due to the iron concentration, the concentration of the average MLSS mixture in the reaction tank was maintained at an average of about 2,300 to 2,600 mg MLSS / l in the entire system of the aeration tank and the anoxic tank electrolyzed by the iron rod electrode, and thus MLVSS (mixed liquor volatile suspended solid) / MLSS ratio was about 0.69. On the other hand, in the control experiment set NO.4 with no electrode added, the MLVSS / MLSS ratio was maintained at about 0.78, similar to that of general activated sludge, because there was no increase factor of minerals such as iron oxide, and the average MLSS concentration at this time was about 1,600. Mg / l.

[실험결과][Experiment result]

(질소제거율)(Nitrogen removal rate)

총질소(T-N) 평균 제거율은 철봉전극을 투입한 실험운전세트에서 HRT를 2시간, 2.7시간, 4시간등으로 증가시킬수록 각각 71%, 75%, 80% 등의 제거효율을 보여주었다. 반면에, 철봉을 투입하지 않은 대조 실험운전세트 NO.4에서의 총질소제거율은 63%을 보여주었다.The average removal rate of total nitrogen (T-N) was 71%, 75%, 80%, etc. as the HRT was increased to 2 hours, 2.7 hours, 4 hours, etc. in the experimental set with the rod electrode. On the other hand, the total nitrogen removal rate in control control set NO.4 without iron rod was 63%.

이때, 무산소조의 HRT 변화에 따른 총질소 제거효율의 차이는 무산소조의 HRT가 증가할수록 MLSS 혼합액중 질산염과 용존산소 등의 산화물이 함유된 슬러지의 반송량이 HRT가 짧은 실험운전세트보다 상대적으로 적게 유입되어 탈질 미생물에 의한 질산염의 제거효율이 양호하게 유지되었기 때문이다.In this case, the difference in the total nitrogen removal efficiency according to the HRT change of the oxygen-free tank is that as the HRT of the oxygen-free tank increases, the conveyance of sludge containing oxides such as nitrate and dissolved oxygen in the MLSS mixture is relatively smaller than that of the experimental operation set with short HRT. This is because the removal efficiency of the nitrate by the denitrification microorganism was maintained well.

(기물제거율)(Removal rate)

총유기물(TCOD) 의 제거율은 무산소조의 HRT 변화에 거의 관계없이 철전극을 투입하지 않은 실험운전세트와 철봉전극을 투입한 실험운전세트에서 거의 일정한 90%정도의 효율을 보여주어 촐봉전극을 투입한 반응조에서 석출된 철산화물의 작용에 의해 유기물의 제거율이 전혀 영향을 받지 않았음을 보여주었다. 반면에 총부유물질(TSS) 제거율은 철봉전극을 투입한 실험운전세트에서 95% 효율을 보여주었고, 철봉전극을 투입하지 않은 실험운전세트에서는 93% 효율을 보여주었다. 이때, 철봉전극을 투입하지 않은 대조실험운전세트의 총부유물질(TSS)제거율이 낮은 원인은 유입수중 유기물부하량과 부유물질이 높은 상태에서 슬러지벌킹(sludge bulking)이 간혹 발생하여 처리수중 총부유물질(TSS) 농도가 일시적으로 높아진 반면에 철봉전극을 투입한 실험운전세트에서는 슬러지 용적지수가 약 70㎎/g 이하로, 석출된 철이 부유물질의 침전과정에서 함께 흡착되어 슬러지의 침강성을 양호하게 유지하기 때문에 처리수중 총부유물질(TSS)의 농도가 상대적으로 낮아진 것으로 나타났다.The removal rate of total organic matter (TCOD) showed almost constant efficiency of 90% in the experimental set without the iron electrode and the test set without the iron electrode regardless of the HRT change of the oxygen-free tank. It was shown that the removal rate of organic matter was not affected at all by the action of the iron oxide precipitated in the reactor. On the other hand, total suspended solids (TSS) removal was 95% efficient in the experimental set without the rod electrode and 93% in the experimental set without the rod electrode. At this time, the cause of low total suspended solids (TSS) removal rate of the control test set without inputting the rod electrode was caused by sludge bulking in the state of high organic matter load and suspended solids in the influent water, and thus total suspended solids in the treated water. (TSS) concentration temporarily increased while the sludge volume index was about 70 mg / g or less in the experimental operation set with the rod electrode, and the precipitated iron was adsorbed together during the sedimentation process of the suspended solids to maintain good sludge settling properties. As a result, the concentration of TSS in treated water was relatively lower.

(제거율)(Removal rate)

인제거율은 유입수의 농도가 26㎎/ℓ일 경우 철봉전극을 투입한 실험운전세트의 HRT 4시간인 실험운전세트에서 처리수의 인농도가 5.9㎎/ℓ을 보여주어 80% 효율을 나타내었고, HRT 2시간의 실험운전세트에서는 처리수의 인농도가 8.4㎎/ℓ을 보여주기 72% 효율을 나타내었다. 반면에 철봉전극을 투입하지 않은 대조실험운전세트의 인제거율은 처리수의 인농도가 17.3㎎/ℓ을 보여 33% 효율로 보여주어 철봉전극을 전기분해시켜 석출된 철염이 실험운전세트에 유입된 불용성 인과 흡착반응하여 크게 제거될 수 있다는 것을 보여주었다.Phosphorus removal rate was 80% when the concentration of influent was 26 mg / l, and the phosphorus concentration of treated water was 5.9mg / l in the experimental set of 4 hours HRT of the experimental set with iron rod electrode. In the experimental set of 2 hours of HRT, the treated water showed a 72% efficiency showing 8.4 mg / l of phosphorus concentration. On the other hand, the phosphorus removal rate of the control experiment set without iron rod electrode showed 33% efficiency because the phosphorus concentration of treated water was 17.3mg / l, which caused the iron salt precipitated by electrolyzing the iron rod electrode to the experimental operation set. It has been shown that it can be greatly removed by adsorption with insoluble phosphorus.

이때, 철산화물이 혼합된 슬러지를 무산소조로 반송시켜 슬러지 체류시간을 2∼4시간의 범위로 유지한 실험조건에서는 철염과 흡착제거된 용해성 인의 재방출이 대조 실험운전세트에 비해 크게 증가되지 않았기 때문에 처리수중 용해성 인농도를 양호하게 유지할수 있었다. 무산소조의 체류시간이 길수록 인제거율이 높은 원인은 적용된 운전조건에서 철봉전극표면의 특성과 실험운전세트의 용존산소 및 수용액과 작용하는 전위차 등의 차이로 반응조 NO.1, NO.2 및 NO.3에서 석출된 철의 농도가 각각 36㎎/ℓ, 28㎎/ℓ 및 25㎎/ℓ 등으로 나타나 각 실험운전세트에서 철 1㎎당 제거된 평균 용해성 인의 양이 각각 0.56㎎P, 0.67㎎P, 0.070㎎P등의 차이를 보여주었기 때문이다.At this time, under the experimental conditions in which the sludge mixed with iron oxide was returned to the anoxic tank to maintain the sludge residence time in the range of 2 to 4 hours, the re-release of iron salt and the soluble phosphorus removed by adsorption did not increase significantly compared to the control experiment set. Soluble phosphorus concentration in the treated water was maintained well. The longer the residence time of the anoxic tank is, the higher the phosphorus removal rate is due to the difference in the characteristics of the electrode bar surface and the potential difference between the dissolved oxygen and the aqueous solution of the experimental set under the applied operating conditions.The reaction tanks NO.1, NO.2 and NO.3 The iron concentrations precipitated at 36mg / l, 28mg / l and 25mg / l, respectively, indicating that the average amount of soluble phosphorus removed per 1mg of iron in each experimental set was 0.56mgP, 0.67mgP, This is because the difference was 0.070 mgP.

[실험예2]Experimental Example 2

운전조건 및 실험결과를 표2를 참조하여 설명한다.Operation conditions and experimental results will be described with reference to Table 2.

(운전조건)(Operation conditions)

본 실험에서는 인의 농도를 고정시킨 상태에서 유기물 부하량을 변화시켰을 때 철산화물이 포함된 슬러지의 질소제거효율을 조사하고자 실시하였다.This experiment was conducted to investigate the nitrogen removal efficiency of iron oxide-containing sludge when the organic load was changed with the concentration of phosphorus fixed.

무산소조와 폭기조의 총 수리학적 체류시간(HRT)과 반소율은 각각 7.7시간과 100%로 동일하게 유지하였고, 고형물체류시간은 9일로 운전하였다.The total hydraulic residence time (HRT) and half-rate of the anaerobic and aeration tanks remained the same at 7.7 hours and 100%, respectively, and the solid stay time was maintained at 9 days.

운전시간동안 실험에 이용된 유입수중 TCOD의 평균 농도는 철봉전극을 투입한 실험운전세트 NO.1, NO.2, NO.3에서 각각 151㎎TCOD/ℓ, 209㎎TCOD/ℓ, 및 286㎎TCOD/ℓ였고, 철봉전극을 투입하지 않은 대조실험운전세트에서는 160㎎TCOD/ℓ였다.The mean concentrations of TCOD in the influent used in the experiment during the run time were 151 mg TCOD / L, 209 mg TCOD / L, and 286 mg in the experimental set NO.1, NO.2, and NO.3 with iron rod electrodes, respectively. It was TCOD / l, and 160 mg TCOD / l in the control experiment set without the rod electrode.

각 실험운전세트에 유입되는 유입 오·폐수의 성상은 TCOD/TKN 농도비가 약 6이고, 무산소조내으 평균 TKN과 유기물의 용적부하량은 실험운전세트 NO.1∼NO.3에서 각각 0.1∼0.2㎏TKN/㎥-day였다. 반면에, 철봉전극을 투입하지 않은 대조시험운전세트 NO.4 는 평균 TKN과 유기물의 용적부하량이 각각 0.1㎏TKN/㎥-day와 0.7㎏TCOD/㎥-day였다. 또한, 유입수증 인의 농도는 인산이수소 칼륨(KH2PO4)을 이용하여 약 25㎎/ℓ가 되도록 하였다.TCOD / TKN concentration ratio is about 6, and the mean TKN and volumetric loads of organic matter in the oxygen-free tank are 0.1 ~ 0.2kgTKN in the experimental set NO.1 ~ NO.3, respectively. / M 3 -day. On the other hand, in the control test set NO.4 with no iron rod electrode applied, the average volumetric loads of TKN and organic matter were 0.1 kg TKN / ㎥-day and 0.7 kg TCOD / ㎥-day, respectively. In addition, the concentration of phosphorus influent was adjusted to about 25 mg / l using potassium dihydrogen phosphate (KH 2 PO 4 ).

이때, 철봉전극의 전기분해시 반응조에서 석출된 철의 농도는 실험운전세트 NO.1, NO.2 및 NO.3에서 각각 20㎎Fe/ℓ, 22㎎Fe/ℓ, 23㎎Fe/ℓ였으며, 실험운전세트에 투입된 철봉전극의 유효 표면적은 150㎠였다. 이러한 철농도의 영향으로 실험운전세트내 평균 MLSS의 농도는 철봉전극을 투입하여 전기분해시킨 폭기조와 무산소조의 전체시스템에서 평균 약 1,255∼2,253㎎MLSS/ℓ로 유지되어 MLVSS/MLSS 비가 약 0.68이었다.At this time, the concentration of iron precipitated in the reaction tank during electrolysis of the electrode was 20 mgFe / L, 22 mg Fe / L, 23 mg Fe / L in the experimental set NO.1, NO.2 and NO.3, respectively. , The effective surface area of the iron rod electrode put into the experimental operation set was 150 cm 2. Due to the iron concentration, the average MLSS concentration in the experimental operation set was maintained at an average of about 1,255 to 2,253 mg MLSS / l in the entire system of the aeration tank and the anoxic tank electrolyzed by the iron rod electrode, and the MLVSS / MLSS ratio was about 0.68.

반면에, 철봉전극을 투입하지 않은 대조실험운전세트 NO.4에서는 철산화물과 같은 무기물의 증가요인이 없었기 때문에 MLVSS/MLSS 비가 일반적인 활성슬러지와 유사한 약 0.78로 유지되었고 이때의 평균 MLSS 농도는 약 1,000㎎/ℓ였다.On the other hand, in the control experiment set NO.4 without using the electrode, the MLVSS / MLSS ratio was maintained at about 0.78, similar to that of the general activated sludge, because there was no increase factor of inorganic substances such as iron oxide, and the average MLSS concentration at this time was about 1,000. Mg / l.

[실험결과][Experiment result]

(질소제거율)(Nitrogen removal rate)

총질소(T-N)의 제거효율은 실험운전세트 NO.1에서 처리수의 평균 NO3-N농도가 6㎎/ℓ로 나타나 67%의 효율을 보여주었고, 실험운전세트 NO.3에서는 처리수의 NO3-N농도가 4.7㎎/ℓ 나타나 86%의 효율을 보여주었다. 반면에 철봉을 투입되지 않은 대조실험운전세트 NO.4의 T-N제거율은 처리수중 NO3-N 농도가 10.1㎎/ℓ로 나타나 47%의 낮은 효율을 보여주었다. 이때, 유기물 부하량이 낮은 철봉전극을 투입하지 않은 대조실험운전세트의 T-N 제거율이 낮은 원인은 무산소 조에 유입되는 용해성 유기물 농도가 낮을수록 탈질화 박테리아의 증식율이 저하되어 실험운전세트내 미생물 단위 g당 제거된 용해성 유기물의 양도 상대적으로 줄어 들었기 때문이다. 또한, 실험운전세트내 MLSS중 휘발성 부유물질(MLVSS)이 차지하는 평균농도가 대조실험운전세트에서는 약 830㎎/ℓ이었으나, 철봉전극을 투입한 실험운전세트에서는 유기물 부하량이 증가되어 1,168∼2,164㎎/ℓ의 농도범위로 높게 유지되어 무산소조내 탈질화 박테리아의 활성도가 차이를 보여주었기 때문이다.The removal efficiency of total nitrogen (TN) was 67 mg with the average NO 3 -N concentration of treated water in the experimental set NO.1, which was 6 mg / l. The NO 3 -N concentration was 4.7 mg / l, indicating an efficiency of 86%. On the other hand, the TN removal rate of the control set NO.4 without iron rods showed a low efficiency of 47%, as the concentration of NO 3 -N in the treated water was 10.1mg / l. At this time, the lower TN removal rate of the control experiment set without inputting the rod electrode with low organic load was lowered as the concentration of soluble organics flowing into the anoxic tank decreased, so that the proliferation rate of denitrified bacteria was lowered. This is because the amount of dissolved soluble organic matter has also been relatively reduced. In addition, the average concentration of volatile suspended solids (MLVSS) in the MLSS of the experimental set was about 830 mg / l in the control experimental set, but the organic load was increased in the experimental set with the iron rod electrode, resulting in 1,168-2,164 mg / This is because the activity of the denitrifying bacteria in the anaerobic tank showed a difference in the concentration range of 1L.

그러므로, 철염이 함유된 슬러지의 T-N 제거율은 실험운전세트에 유입된 용해성 유기물 부하량이 높을수록 대조실험운전세트에 비해 매우 양호한 처리효율을 얻을수 있었다.Therefore, the T-N removal rate of the iron salt-containing sludge was able to obtain a very good treatment efficiency compared to the control experiment set as the amount of soluble organic matter introduced into the experimental set was higher.

유기물제거율Organic matter removal rate

총 유기물(TCOD)의 평균 제거율은 TCOD 유입농도가 151㎎/ℓ인 실험운전세트 NO.1에서 처리수의 용해성 유기물(SCOD) 농다가 23㎎/ℓ으로 나타나 87%의 효율을 보여주었고, 철봉이 투입되지 않은 대조실험운전세트 NO4에서는 처리수의 SCOD(용해성 화학적 산소요구량) 농도가 34㎎/ℓ나타나 78%의 효율을 보여주었다. 총부유물질(TSS) 제거율은 철봉전극 투입한 실험운전세트에서 유기물 용적부하량이 0.24 ㎏COD/㎡-day에서 0.45 ㎏COD/㎡-day로 증가할수록 82%에서 91%의 효율로 높아졌고, 철봉전극을 투입하지 않은 대조 실험운전세트에서는 83%의 제거효율을 보여주었다. 이러한 원인은 실험운전세트에 유입되는 유기물의 농도가 증가할수록 미생물의 증식율이 높아진 상태에서 석출된 철산화물에 의해 최종 침전지내 활성슬러지의 침전성이 양호하여 처리수중 총부유물질(TSS)농도가 생대적으로 낮아졌기 때문이다.The average removal rate of total organic matter (TCOD) was 87 mg in soluble organic matter (SCOD) concentration of treated water in experimental operation set NO.1 with TCOD inflow concentration of 151 mg / ℓ, showing 87% efficiency. In this uncontrolled test run set NO4, the SCOD (soluble chemical oxygen demand) concentration of the treated water was 34 mg / l, showing 78% efficiency. The total suspended solids (TSS) removal rate increased from 82% to 91% as the organic material volume load increased from 0.24 ㎏COD / ㎡-day to 0.45 ㎏COD / ㎡-day in the experimental operation set with the rod electrode. The control experiment set without the electrode showed 83% removal efficiency. The reason for this is that as the concentration of organic matter flowing into the experimental operation set increases, the precipitation of activated sludge in the final sedimentation basin is improved due to the iron oxide deposited in the state of increasing the growth rate of microorganisms. This is because it is lowered.

(인제거율)(Phosphorus removal rate)

인제거율은 철봉전극을 투입한 실험운전세트에서 유기물 부하량에 거의 관계없이 유입수중 인의 평균농도가 약 25㎎/ℓ일 경우 처리수의 인 농도는 약 6㎎/ℓ 정도를 보여주어 75%로 나타내였다. 반면, 철봉전극을 투입하지 않은 대조실험운전세트에서는 처리수의 인농도가 16.6㎎/ℓ으로 나타나 27%의 저조한 제거효율을 보여 주었다.Phosphorus removal rate is 75%, which is about 6mg / l when the average concentration of phosphorus in the influent is about 25mg / l regardless of organic load in the experimental operation set with the rod electrode. It was. On the other hand, in the control experiment set without iron rod electrode, the phosphorus concentration of treated water was 16.6 mg / l, indicating a 27% poor removal efficiency.

이러한 원인은 실험운전세트 NO.1∼NO.3에서 석출된 철의 평균농도가 20∼23㎎/ℓ로 균일하게 유지되어 철 1㎎ 당 제거된 평균 용해성 인의 양이 거의 동일한 약 0.9㎎PO4-P/㎎Fe로 나타났기 때문이다.The reason for this was that the average concentration of iron precipitated in the experimental sets NO.1 to NO.3 was maintained uniformly at 20 to 23 mg / l, so that the average amount of soluble phosphorus removed per 1 mg of iron was about 0.9 mgPO 4. This is because it appeared as -P / mgFe.

전술한 본 발명의 철의 전기분해를 이용한 오·폐수처리공법은 다음과 같은 효과를 발휘한다.The waste water treatment method using the electrolysis of iron of the present invention described above has the following effects.

첫째, 기존 활성슬러지의 처리공정에 쉽게 적용될수 있기 때문에 시설비가 저렴하고 운전관리가 매우 용이하다.First, since it can be easily applied to the treatment process of the existing activated sludge, facility cost is low and operation management is very easy.

둘째, 화학적 응집제로 사용하는 약품비용에 비하여 처리비용과 슬러지의 생성량이 매우 적다.Second, the treatment cost and the amount of sludge produced are very small compared to the chemical cost used as the chemical flocculant.

섯째, 유입수중 유기물, 인 및 질소의 농도 비율에 크게 영향을 받지 않은 상태에서 처리효율이 기존에 이용되는 처리방법에 비해 월등한 처리율의 신뢰성을 보여준다.Fifth, the treatment efficiency shows superior reliability compared to the conventional treatment methods in the state that is not significantly affected by the concentration ratio of organic matter, phosphorus and nitrogen in the influent.

네째, 처리장치의 최적설계를 위한 운전조건을 유입수중 유기물/질소의 농도비 및 유기물/인의 농도비에 관계없이 인과 질소의 제거효율이 매우 양호함을 보여준다.Fourth, the operating conditions for the optimum design of the treatment system show that the removal efficiency of phosphorus and nitrogen is very good regardless of the organic / nitrogen concentration ratio and organic / phosphorus concentration ratio in the influent.

다섯째, 처리장치에 일시적으로 고농도의 유기물이 유입되어도 유기물의 질소 및 인의 제거효율이 매우 양호함을 보여준다.Fifth, even if a high concentration of organic matter is temporarily introduced into the treatment device, the nitrogen and phosphorus removal efficiency of the organic matter is very good.

Claims (2)

하수, 오수, 분뇨, 축산폐수 및 산업폐수 등을 처리하는 생물학적 오·폐수처리 공법에 있어서, 활성미생물이 존재하는 폭기조 또는 처리 장유입부에 철봉전극(1)을 설치하고 직류전원장치를 이용하여 정전압의 전류를 철봉전극(1)에 흐르게 하여 전기분해작용시 석출된 철산화물에 의해서 유기물, 인 및 질소를 처리하는 공정을 포함하는 것을 특징으로 하는 오·폐수처리공법.In the biological sewage treatment method for treating sewage, sewage, manure, livestock waste, industrial wastewater, etc., an iron rod electrode (1) is installed at the aeration tank or treatment inlet where active microorganisms exist and a DC power supply device is used. A process for treating wastewater and wastewater, comprising the step of flowing a constant voltage current through an iron rod electrode (1) to treat organic matter, phosphorus and nitrogen by iron oxide precipitated during electrolysis. 제1항에 있어서, 철봉전극(1)으로의 전류흐름방향은 가변전원트랜서(2)에 의해서 1일주기로 교대로 바꾸어주는 것을 특징으로 하는 오·폐수처리공법.The waste water treatment method according to claim 1, wherein the current flow direction to the iron rod electrode (1) is alternately changed by the variable power supply transformer (2) at a daily cycle.
KR1019950029471A 1995-09-07 1995-09-07 Wastewater treatment method using electrolysis of iron KR0142894B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950029471A KR0142894B1 (en) 1995-09-07 1995-09-07 Wastewater treatment method using electrolysis of iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950029471A KR0142894B1 (en) 1995-09-07 1995-09-07 Wastewater treatment method using electrolysis of iron

Publications (2)

Publication Number Publication Date
KR970015488A KR970015488A (en) 1997-04-28
KR0142894B1 true KR0142894B1 (en) 1998-07-01

Family

ID=66596297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950029471A KR0142894B1 (en) 1995-09-07 1995-09-07 Wastewater treatment method using electrolysis of iron

Country Status (1)

Country Link
KR (1) KR0142894B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011096A (en) * 1999-07-26 2001-02-15 방용철 Method and system for purfing waste water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321857B1 (en) * 1999-04-22 2002-02-02 김효근 Removal of Toxic Heavy Metals from Wastewater Sludge Using Electrokinetic Processing
KR20010035183A (en) * 2001-01-12 2001-05-07 박덕영 Pathway circulating treatment system for waste water by electrocoagulation and biofilteration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011096A (en) * 1999-07-26 2001-02-15 방용철 Method and system for purfing waste water

Also Published As

Publication number Publication date
KR970015488A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
KR100415252B1 (en) Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
CN102603119B (en) Garbage leachate treatment device and treatment method thereof
CN102786182B (en) Device for processing landfill leachate
CN101423313B (en) Fluorescent whitening agent production waste water treatment process
US20060000784A1 (en) Water treatment
CN106554126A (en) A kind of reverse osmosis concentrated water depth standard processing method and system
CN100402441C (en) Method for treating sewage by catalytic iron internal electrogravimetry and its filler
CN108083561A (en) A kind of deep treatment method of high chroma, indegradable industrial effluent
KR20170010679A (en) Treatnent system for organic livestock wastewater by electrolytic oxidation and treatment method thereof
CN202022821U (en) Equipment for treating ammonia nitrogen and COD (chemical oxygen demand) in wastewater of surface treatment
KR100891004B1 (en) Wastewater Treatment System and Method Using Nano Metal and Catalysis Membrane
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
KR100419827B1 (en) Biological, pysical and chemical treatment method of waste water from livestock
CN101254980B (en) Biological denitrification system and method for low C/N ratio high strength ammonia chemical comprehensive wastewater
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR101489134B1 (en) Advanced treatment method for purifying wastewater
CN102101740B (en) Treatment method of high-concentration organic wastewater in electronic industry
KR100229237B1 (en) Advanced treatment method and its device of night soil
CZ42494A3 (en) Process for reducing content of phosphorus in waste water
KR0142894B1 (en) Wastewater treatment method using electrolysis of iron
Martienssen et al. Capacities and limits of three different technologies for the biological treatment of leachate from solid waste landfill sites
KR100490310B1 (en) Method for treating wastewater using iron electrolysis
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
KR100327545B1 (en) Municipal wastewater treatment system
KR100517095B1 (en) Wastewater Treatment Apparatus and Method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130521

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20150131

Year of fee payment: 18

EXPY Expiration of term