KR950013880B1 - Method for manufacturing glass fiber reinforced plate like thermoplastic composite - Google Patents

Method for manufacturing glass fiber reinforced plate like thermoplastic composite Download PDF

Info

Publication number
KR950013880B1
KR950013880B1 KR1019920023402A KR920023402A KR950013880B1 KR 950013880 B1 KR950013880 B1 KR 950013880B1 KR 1019920023402 A KR1019920023402 A KR 1019920023402A KR 920023402 A KR920023402 A KR 920023402A KR 950013880 B1 KR950013880 B1 KR 950013880B1
Authority
KR
South Korea
Prior art keywords
glass fiber
needle
thermoplastic resin
barbs
mat
Prior art date
Application number
KR1019920023402A
Other languages
Korean (ko)
Other versions
KR940014555A (en
Inventor
김광태
김정락
김상필
김종희
Original Assignee
제일합성주식회사
박홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합성주식회사, 박홍기 filed Critical 제일합성주식회사
Priority to KR1019920023402A priority Critical patent/KR950013880B1/en
Publication of KR940014555A publication Critical patent/KR940014555A/en
Application granted granted Critical
Publication of KR950013880B1 publication Critical patent/KR950013880B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H11/00Non-woven pile fabrics
    • D04H11/08Non-woven pile fabrics formed by creation of a pile on at least one surface of a non-woven fabric without addition of pile-forming material, e.g. by needling, by differential shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The glass fiber-reinforced, plate-like thermoplastic resin composite is prepared by (A) forming a randomly oriented web of long glass fiber(3), as a reinforced fiber for a mat, on a conveyor belt(2), and (B) punching the mat with two kinds of needles, upwardly barbed(4) and downwardly barbed(5). The thermoplastic resin is selected from polyolefin-based resin, polybutylene terephthalate, polyamide or polycarbonate.

Description

유리섬유가 보강된 판상의 열가소성 수지 복합재료의 제조방법Manufacturing method of plate-like thermoplastic resin composite material reinforced with glass fiber

제 1 도는 니들펀칭공정의 개략도이고,1 is a schematic diagram of a needle punching process,

제 2 도는 니들펀칭기의 개략구조도이다.2 is a schematic structural diagram of a needle punching machine.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 니들펀칭기 2 : 컨베이어 벨트1: needle punching machine 2: conveyor belt

3 : 유리섬유3: glass fiber

4 : 미늘(barb)이 위로 향하여 달려있는 바늘(needle)4: needle with barb facing up

5 : 미늘(barb)이 아래로 향하여 달려있는 바늘(needle)5: needle with barb facing down

7 : 니들보드(needle board)7: needle board

본 발명은 판상의 열가소성 수지 복합재료의 제조방법에 관한 것으로, 좀더 구체적으로 유리섬유 매트에 열가소성 수지를 함침하여 경량이면서 재사용이 가능하고 기계적 강도 및 성형성이 우수한 유리섬유가 보강된 판상의 열가소성 수지 복합재료 프리프레그의 제조방법에 관한 것이다.The present invention relates to a method for producing a plate-shaped thermoplastic resin composite material, and more specifically, to a glass fiber mat is impregnated with a thermoplastic resin, lightweight, reusable, glass fiber reinforced glass fiber reinforced mechanical strength and formability excellent A method for producing a composite prepreg.

일반적으로 고분자 복합재료는 물리, 화학적 성질이 서로 다른 소재를 고분자 기재중에 기계적으로 복합시켜 새로운 기능성을 부여하는 것으로 현재까지 많은 연구가 진행되고 또 많은 부분이 실용화 되어 왔다.In general, polymer composite materials are mechanically complexed with polymers having different physical and chemical properties in a polymer substrate to impart new functionality. Until now, many studies have been conducted and many parts have been put into practical use.

그러나, 오늘날 시장의 요구가 점점 다양화, 고도화됨에 따라 고분자 재료에서도 이들 요구에 대응할 알로이화, 복합화등의 여러가지 시도가 행해지고 있다. 예를들면, 강도 및 강성을 올리는 방법으로써 유리섬유의 이용도 그 하나인데 사출성형용으로는 단섬유를 강화한 재료가 개발되고 있다. 그러나, 이들 재료는 펠릿트 제조공정 및 사출 성형공정에서 오는 제약으로 유리섬유 길이가 매우 제한되며 강도 및 강성이 올라가도 충격강도가 두드러지게 저하하고 또 유리섬유 배향에 의한 배향성도 생기기 쉬운 문제가 있다.However, as the demands of the market are increasingly diversified and advanced, various attempts such as alloying and complexation have been made in polymer materials to meet these demands. For example, glass fiber is one of the methods of increasing the strength and rigidity, but materials for strengthening short fibers have been developed for injection molding. However, these materials have a problem that the glass fiber length is very limited due to the constraints of the pellet manufacturing process and the injection molding process, the impact strength is remarkably lowered even when the strength and rigidity is increased, and the orientation due to the glass fiber orientation is also likely to occur.

상기 문제점을 해결할 방법으로 특수가공된 유리장섬유 매트와 열가소성 수지를 라미네이트하여 압축성형이 가능한 열가소성 수지 복합재료 프리프레그를 만들게 되었으며 내충격성등 제반물성을 크게 향상시켜 자동차 용도를 중심으로 경량화 재료로서 사용되는 실예가 크게 늘어나고 있다.In order to solve the above problems, specially processed glass filament mats and thermoplastic resins were laminated to make a thermoplastic resin composite prepreg that can be compression molded. There are a growing number of examples.

판상의 열가소성 수지 복합재료 프리프레그는 통상 열가소성 수지와 매트상의 유리섬유 보강재를 사용하여 제조되는 것으로 매트상의 보강재 상하면에 열가소성 수지 필름을 연속적으로 겹치고, 계속해서 수지의 용융온도 이상의 분위기하에서 열용융 함침시킨 다음 냉각시키는 방법에 의하여 제조된다.The plate-shaped thermoplastic resin prepreg is usually manufactured by using a thermoplastic resin and a mat-like glass fiber reinforcing material. The thermoplastic resin film is continuously laminated on the upper and lower surfaces of the mat-like reinforcing material, and subsequently heat-melted and impregnated in an atmosphere above the melting temperature of the resin. It is then prepared by a method of cooling.

이렇게 제조된 열가소성 수지 복합재료 프리프레그는 토목용 거푸집, 대차(臺車)등에 추가의 성형공정없이 사용할 수 있을 뿐아니라, 수지의 용융온도이상으로 열가소성 수지 복합재료 프리프레그가 유동성을 갖게 하여 금형내에 투입하여 압축성형함으로써 임의의 성형품을 제조할 수도 있다. 이 경우 섬유상의 보강재는 유리장섬유 및 단섬유를 니들펀칭(needle punching)하여 유리섬유끼리 물리적으로 서로 결합하게 함으로써 제조될 수 있다. 이러한 니들펀칭에 의하여 유리섬유가 매트형상으로 제조될 뿐만 아니라, 유리섬유를 부분적으로 절단함으로써 열가소성 수지 복합재료의 성형시 유리섬유에 유동성을 부여하게 된다. 또한 니들 펀칭시에 바늘에 의하여 유리섬유 일부분을 표면으로 밀어내어 스파이크(spike)가 형성됨으로써 복합재료의 성형시에 다루기가 쉽게 된다.The thermoplastic composite prepreg manufactured in this way can be used without additional molding process for civil formwork, trolley, etc. In addition, the thermoplastic composite prepreg can be flowed in the mold because the resin composite temperature is higher than the melting temperature of the resin. Arbitrary molded articles can also be produced by injection molding. In this case, the fibrous reinforcement may be manufactured by needle punching the glass filaments and short fibers to physically bond the glass fibers to each other. The needle punching not only manufactures the glass fibers in a mat shape, but also partially cuts the glass fibers to impart fluidity to the glass fibers during molding of the thermoplastic resin composite material. In addition, a spike is formed by pushing a portion of the glass fiber to the surface by a needle at the time of needle punching, thereby facilitating handling in forming the composite material.

니들펀칭방법에 대해서는 미국특허 제4,277,531호 및 제5,018,255호에 공지되어 있지만 이들 방법들은 기계적 물성이 우수하고 성형공정에 있어서 유리섬유의 유동성이 우수한 복합재료를 제조할 수 있으나, 스파이크가 한면에만 많이 형성됨으로써 수지의 용융온도 이상의 예열 공정에서 유리섬유가 과도하게 부풀어 올라 금형내에 충진이 어려워지는 결점이 있다. 이러한 결점을 보안하기 위하여 미국특허 제4,335,176호에 스파이크가 많은 면을 바깥쪽으로 향하게 유리섬유 매트를 배열하여 열가소성 수지 복합재료 프리프레그를 제조하는 방법이 제안되어 있으나, 열가소성 수지 복합재료 제조에 있어서 열가소성 수지의 함침성이 불량하다는 결함이 있다.Needle punching methods are known from U.S. Patent Nos. 4,277,531 and 5,018,255, but these methods can produce composite materials with excellent mechanical properties and excellent flowability of glass fibers in the molding process, but many spikes are formed on one side. As a result, the glass fiber excessively swells in the preheating step at the melting temperature or higher of the resin, thereby making it difficult to fill the mold. In order to secure such defects, US Pat. No. 4,335,176 proposes a method of manufacturing a thermoplastic resin composite prepreg by arranging glass fiber mats with the spike-like side facing outward. There is a defect that impregnability of is poor.

따라서, 본 발명의 목적은 열가소성 수지의 함침성이 우수하고 우수한 물성을 가지며 성형시 유리섬유의 유동성이 우수할 뿐만 아니라 성형을 위한 예열공정이 있어서도 과도한 부풀음이 일어나지 않는 열가소성 수지 복합재료 프리프레그의 제조방법을 제공하는데 있다.Accordingly, an object of the present invention is to prepare a thermoplastic resin composite prepreg which is excellent in impregnability of thermoplastic resin, has excellent physical properties, has excellent flowability of glass fibers during molding, and does not cause excessive swelling even in a preheating process for molding. To provide a method.

상기 목적 뿐만 아니라 용이하게 표출되는 또다른 목적을 달성하기 위하여 본 발명에서는 미늘(barb)가 서로 반대 방향으로 형성된 두 종류의 바늘(needle)로써 니들펀칭함으로써 제조한 유리섬유 매트와 열가소성 수지를 특정한 방법으로 적층한 후, 수지를 용융온도 이상에서 용융 함침시킴으로써 함침성 및 기계적 물성 뿐만아니라 성형시에 유리섬유의 유동성도 우수한 열가소성 수지 복합재료 프리프레그를 얻을 수 있었다.In order to achieve the above object as well as another easily expressed object, in the present invention, a glass fiber mat and a thermoplastic resin prepared by needle punching with two kinds of needles formed with barbs in opposite directions are specified. After the lamination, the resin was melt-impregnated at a melting temperature or higher to obtain a thermoplastic resin composite prepreg having excellent impregnation and mechanical properties as well as flowability of glass fibers during molding.

본 발명을 좀더 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명에 사용한 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리스티렌등과 같은 폴리올레핀 수지나 폴리부틸렌테레프탈레이트, 폴리아마이드, 콜리카보네이트등이 사용될 수 있으며, 열가소성 수지 복합 재료 프리프레그 총 중량의 80~50중량% 범위가 되도록 하는 것이 바람직하다.The thermoplastic resin used in the present invention may be a polyolefin resin such as polyethylene, polypropylene, polystyrene, polybutylene terephthalate, polyamide, colicarbonate, etc., 80 to 50% by weight of the total weight of the thermoplastic resin composite material prepreg It is preferable to make it into a range.

본 발명에 사용한 유리섬유 매트는 굵기 3~30㎛의 유리섬유 필라멘트 30~200개가 집속된 연속 장섬유를 컨베이어 벨트위에 무방향성을 갖게하여 웨브(Web)를 형성한 후, 제 2 도에 도시된 바와같이 미늘이 상하방향으로 각각 형성되어 고리부를 형성한 두 종류의 바늘을 작용시켜 니들펀칭하여 제조하며 열가소성 수지 복합재료 프리프레그 총 중량의 20~50중량%의 범위가 되도록 하는 것이 바람직하다.In the glass fiber mat used in the present invention, a continuous long fiber in which 30 to 200 pieces of glass fiber filaments having a thickness of 3 to 30 μm is concentrated on a conveyor belt to form a web, and then a web is shown in FIG. As described above, the barbs are each formed in the vertical direction to act as needle punches by operating two kinds of needles having a ring portion, and it is preferable to make the range of 20 to 50% by weight of the total weight of the thermoplastic resin composite prepreg.

열가소성 수지가 50중량% 이하이거나 유리섬유가 50중량% 이상이면 성형시에 유동성이 불량하고, 열가소성 수지가 80중량% 이상이거나 유리섬유가 20중량% 이하이면 강도, 강성등의 기계적 물성이 저하되는 문제가 있었다.If the thermoplastic resin is 50 wt% or less or the glass fiber is 50 wt% or more, the fluidity is poor at the time of molding, and if the thermoplastic resin is 80 wt% or more or the glass fiber is 20 wt% or less, the mechanical properties such as strength and stiffness are lowered. There was a problem.

제 1 도는 니들펀칭공정을 나타낸 것으로 1은 니들펀칭이며, 2는 컨베이어 벨트이고, 3은 유리섬유이다. 본 발명에 있어서 니들펀칭은 제 2 도에 도시되어 있는 바와같이 형태가 서로 다른 두 종류의 바늘 즉, 미늘(barb ; 6)이 아래로 달려있는 바늘(4)과 미늘(6)이 위로 달려있는 바늘(5)이 2 : 1~3 : 1의 비율로 장착되어 있는 니들보드(needle board : 7)가 상하로 왕복운동을 함에 따라 유리섬유를 서로 얽어주며 섬유를 절단하기도 하는 것이다. 니들보드(7)가 아래로 운동할 때에는 미늘(6)이 아래로 달린 바늘(4)에 의하여 유리섬유를 아래표면으로 밀어냄으로써 아래면에 스파이크가 형성되며, 니들보드(7)가 위로 운동할 때에는 미들(6)이 위로 향하게 달린 바늘(5)에 의하여 윗면에 스파이크가 형성되게 된다. 또한, 미늘(6)이 아래로 달린 형태의 바늘(4)과 미늘(6)이 위로 달린 형태의 바늘(5)이 2 : 1~3 : 1 또는 1 : 2~1 : 3의 비율로 있기 때문에 유리섬유 매트의 한면 이 다른 한면보다도 많은 스파이크가 형성되게 된다. 본 발명에 사용한 바늘(4,5)은 삼각형의 단면을 가지며 한 모서리 부분에 2~4개씩 층 9~12개의 미늘(6)이 달려있는 바늘(4.5)을 사용한다. 미늘(6)이 12개 이상이면 니들펀칭공정에서의 섬유의 절단이 많이 되어 복합재료의 물성이 저하하게 되며, 6개 이하이면 니들펀칭 효과가 우수하지 못하다.1 shows a needle punching process, in which 1 is needle punching, 2 is a conveyor belt, and 3 is glass fiber. Needle punching in the present invention is a needle (4) and barb (6) with the two different types of needles, barb (6) hangs down as shown in Figure 2 Needle board (needle board 7) is equipped with a needle (5) ratio of 2: 1 to 3: 1 reciprocating up and down, the glass fibers are entangled with each other to cut the fibers. When the needle board 7 moves downward, spikes are formed on the bottom surface by pushing the glass fiber to the lower surface by the needle 4 with the barb 6 downward, and the needle board 7 moves upward. At this time, the spike is formed on the upper surface by the needle 5 with the middle 6 facing upward. In addition, the needle 4 having the barb 6 down and the needle 5 having the barb 6 up are in a ratio of 2: 1 to 3: 1 or 1: 2 to 1: 3. This results in more spikes on one side of the fiberglass mat than the other. The needles 4 and 5 used in the present invention use a needle 4.5 having a triangular cross section and having 9 to 12 barbs 6 layered at two to four at one corner. When the number of barbs 6 is 12 or more, the fibers are severely cut in the needle punching process, thereby deteriorating the physical properties of the composite material. When the number of barbs 6 or less, the needle punching effect is not excellent.

본 발명에 있어서 니들펀칭 횟수는 특별한 제한이 있는 것은 아니지만 10~100회/㎠의 범위에서 조절하는 것이 바람직하며, 3cm 이하의 길이를 갖는 단섬유의 함량이 전체 유리섬유 함량의 10~20중량%의 범위에 들도록 하는 것이 수지의 함침성 및 유동성 측면에서 바람직하다.In the present invention, the number of needle punching is not particularly limited, but is preferably adjusted in the range of 10 to 100 times / cm 2, and the content of short fibers having a length of 3 cm or less is 10 to 20% by weight of the total glass fiber content. It is preferable to fall in the range of from the viewpoint of impregnation and fluidity of the resin.

본 발명에 의하여 제조한 열가소성 수지 복합재료 프리프레그는 유리섬유 매트를 스파이크가 많은면을 바깥쪽으로 향하게 배열하여 열가소성 수지/유리섬유 매트/열가소성 수지/유리섬유 매트/열가소성 수지/유리섬유 매트/열가소성 수지 순으로 적층하고 수지의 용융온도 이상에서 용융 함침시킨 다음 냉각하여 제조하는 것을 특징으로 한다.The thermoplastic resin composite prepreg produced by the present invention is arranged in a glass fiber mat with the spiked side facing outwards, thermoplastic resin / glass fiber mat / thermoplastic / glass fiber mat / thermoplastic / glass fiber mat / thermoplastic Laminated in order and melt-impregnated above the melting temperature of the resin, characterized in that it is produced by cooling.

본 발명에 의하여 제조한 열가소성 복합재료 프리프레그는 경량이며, 기계적 강도가 우수할 뿐아니라 수지의 함침성이 우수하고 성형을 위한 예열공정에서의 과도한 부풀음현상을 개선한 것으로, 이러한 판상의 재료를 이용하여 압축성형을 함으로써 자동차의 범퍼 빔, 밧데로 트레이등 자동차 부품, 건축자재등의 각종 분야에 사용할 수 있다.The thermoplastic composite prepreg manufactured by the present invention is lightweight, has excellent mechanical strength, has excellent resin impregnation, and improves excessive swelling during preheating for molding. By compression molding, it can be used in various fields such as bumper beams of cars, battery trays, automobile parts, and building materials.

다음의 실시예 및 비교실시예는 본 발명을 좀더 자세히 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다. 실시예 및 비교실시예에 의거하여 제조한 열가소성 수지 복합재료 프리프레그는 다음의 방법으로 평가하였다. (1) 인장강도 : ASTM D638에 의거하여 측정, (2) 굴곡강도 : ASTM D790에 의거하여 측정, (3) 충격강도 : ASTM D256에 의거하여 측정, (4) 함침성 : 자동밀도측정기로 밀도측정에 의해 측정, (5) 유동성 : 복합재료 프리프레그를 가로×세로 10×10cm으로 절단하여 적외선 오븐내에서 200℃×10분간 예열한 후, 금형온도 70℃, 가로×세로 10×50cm의 금형에 장입한 다음, 85kg/㎠의 압력으로 압축성형 하였다. 이후 압축성형시의 유리섬유 유동성은 아래의 식으로 계산하였다.The following examples and comparative examples further illustrate the invention, but do not limit the scope of the invention. The thermoplastic resin composite prepreg manufactured according to the Example and the comparative example was evaluated by the following method. (1) Tensile strength: measured in accordance with ASTM D638, (2) Flexural strength: measured in accordance with ASTM D790, (3) Impact strength: measured in accordance with ASTM D256, (4) Impregnation: Density with automatic densitometer Measured by measurement, (5) Fluidity: The composite material prepreg is cut into 10 × 10 cm horizontally and preheated in an infrared oven for 200 ° C. × 10 minutes, followed by a mold temperature of 70 ° C. and 10 × 50 cm horizontally. It was charged to and then compression molded at a pressure of 85 kg / cm 2. Since the glass fiber fluidity during compression molding was calculated by the following equation.

유동성=[(성형후 면적-100)/100]×100(%)Fluidity = [(area after molding-100) / 100] × 100 (%)

[실시예 1]Example 1

용융지수(Melt Index, 230℃, 2.16Kg)가 4g/10min인 폴리프로필렌수지 100중량부에 말레인산 무수물 0.5중량부, 과산화벤조일 0.3중량부를 헨셀믹서를 이용하여 혼합한 후 쌍나사 압출기를 이용하여 압축하고, 이를 제막기(casting machine)로 두께 0.5mm의 폴리프로 필렌시이트를 제조하였다. 또한, 글리시딜에테르트리메톡시실란으로 표면처리된 연속 스트랜드(strand)의 유리섬유를 미늘(barb)이 아래로 향하게 달린 바늘과 위로 향하게 달린 바늘이 2 : 1의 비율로 장착된 니들펀칭기로 니들펀칭하여 3cm 이하인 단섬유의 함량이 15중량%, 단위면적당 무게가 900g/㎠인 유리섬유 매트를 제조하였다. 니들펀칭 조건은 단위 면적당 니들펀칭 횟수기 20회/㎠이며, 니들(needle)은 단면이 삼각형이고 모서리 부분에 각각 3개씩 총 9개의 미늘이 달려있는 것을 사용하였다.Melting index (Melt Index, 230 ° C, 2.16Kg) was mixed with 100 parts of polypropylene resin having 4g / 10min, 0.5 parts by weight of maleic anhydride and 0.3 parts by weight of benzoyl peroxide using a Henschel mixer, and then compressed using a twin screw extruder. Then, a polypropylene sheet having a thickness of 0.5 mm was manufactured by a casting machine. In addition, a needle punching machine in which a continuous strand of glass fibers surface-treated with glycidyl ether trimethoxysilane was mounted at a ratio of 2: 1 with a needle having a barb facing downward and a needle facing upward. Needle punching was carried out to produce a glass fiber mat having a content of 15% by weight of short fibers of 3 cm or less and a weight per unit area of 900 g / cm 2. The needle punching condition is 20 times / cm 2 of needle punching per unit area, and needles (needle) were triangular in cross section and 9 barbs each having three at each corner were used.

상술한 방법으로 제조된 폴리프로필렌 시이트와 유리섬유 매트를 유리섬유의 스파이크(spike)가 많은 면을 바깥쪽으로 향하게 하여 핫프레스에 폴리프로필렌 시이트/유리섬유 매트/폴리프로필렌 시이트/유리섬유 매트/폴리프로필렌 시이트 순으로 적층한 후, 210℃에서 10분간 폴리프로필렌수지를 유리섬유 매트에 함침시킨 다음, 냉각하여 3.8mm, 유리섬유 함량이 40중량%인 판상의 열가소성 수지 복합재료 프리프레그를 제조하였다. 상기의 방법으로 제조한 복합 재료의 물성결과를 표 1에 기재하였다.The polypropylene sheet and glass fiber mat produced by the above-described method are directed to the polypropylene sheet / glass fiber mat / polypropylene sheet / glass fiber mat / polypropylene on a hot press with the spiked side of the glass fiber facing outward. After laminating in sheet order, polypropylene resin was impregnated into a glass fiber mat at 210 ° C. for 10 minutes, and then cooled to prepare a plate-shaped thermoplastic resin composite prepreg having a glass fiber content of 3.8 mm. Table 1 shows the physical properties of the composite material prepared by the above method.

[실시예 2]Example 2

미늘(barb)이 위로 향하게 달린 바늘과 아래로 향하게 달린 바늘의 비율을 3 : 1로 하여 니들펀칭한 것을 제외하고는 실시예 1과 동일하게 실시하였고, 물성결과를 표 1에 기재하였다.Except for needle punching with the ratio of the needle with the barb facing upward and the needle facing downward with 3: 1, the same procedure as in Example 1 was carried out, and the physical property results are shown in Table 1.

[비교실시예 1]Comparative Example 1

미늘이 아래를 향하게 달려있는 바늘만을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였고, 물성 결과를 표 1에 기재하였다.The same procedure as in Example 1 was carried out except that only the needle with the barb facing downward was used, and the physical property results are shown in Table 1.

[비교실시예 2]Comparative Example 2

삼각형 단면을 가지며 단면의 모서리 부분에 5개씩 총 15개의 미늘(bard)이 달려있는 바늘을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였고, 물성결과를 표 1에 기재하였다.Except for using a needle having a triangular cross section and a total of 15 bard (five bard) in each of the corners of the cross section was carried out in the same manner as in Example 1, the physical properties results are shown in Table 1.

[표1]Table 1

Claims (4)

열가소성 수지를 매트상의 보강섬유에 함침시켜 압축성형이 가능한 판상의 복합재료를 제조함에 있어서, 매트상의 보강섬유로는 유리장섬유를 컨베이어 벨트위에 무향성을 갖게하여 웨브(web)를 형성한 후, 미늘(barb)이 아래 방향으로 달려 있는 바늘과 미늘이 위 방향으로 달려 있는 두 종류의 바늘을 보강섬유에 작용시킴을 특징으로 하는 판상의 섬유 강화 열가소성 수지 복합재료 제조방법.In manufacturing a plate-like composite material capable of compressing molding by impregnating a thermoplastic resin into a mat-shaped reinforcing fiber, the mat-like reinforcing fiber is made of glass long fibers on the conveyor belt to form a web, and then A method of producing a plate-shaped fiber-reinforced thermoplastic composite material, characterized in that the barb is in the downward direction and the two types of needle in the upward direction act on the reinforcing fibers. 제 1 항에 있어서, 형태가 다른 두 종류의 바늘은 삼각형 단면을 가지고 각모서리 부분에 2~4개씩 총 6~12개의 미늘(barb)이 있으며 미늘의 방향이 위쪽으로 달려있는 것과 아래쪽으로 달려있는 바늘을 특징으로 하는 판상의 섬유 강화 열가소성 수지 복합재료 제조방법.According to claim 1, The two different types of needles have a triangular cross-section, there are a total of 6 to 12 barbs (2 to 4 barbs) in each corner portion, and the direction of the barbs is upwards and downwards. A method of producing a plate-shaped fiber-reinforced thermoplastic composite material characterized by a needle. 제 1 항에 있어서, 미늘이 아래 방향으로 달려 있는 바늘과 위방향으로 달려 있는 바늘이 2 : 1~3 : 1의 비율로 구성됨을 특징으로 하는 섬유 강화 열가소성 수지 복합재료 제조방법.The method according to claim 1, wherein the needles in which the barbs hang in the downward direction and the needles in the upward direction are comprised in a ratio of 2: 1 to 3: 1. 제 1 항에 있어서, 열가소성 수지 폴리올레핀계 수지, 폴리부틸렌 테레프탈레이트, 폴리아미드 또는 폴리카보네이트인 것을 특징으로 하는 섬유 강화 열가소성 수지 복합재료 제조방법.The method for producing a fiber-reinforced thermoplastic resin composite material according to claim 1, wherein the thermoplastic resin is a polyolefin resin, polybutylene terephthalate, polyamide or polycarbonate.
KR1019920023402A 1992-12-05 1992-12-05 Method for manufacturing glass fiber reinforced plate like thermoplastic composite KR950013880B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920023402A KR950013880B1 (en) 1992-12-05 1992-12-05 Method for manufacturing glass fiber reinforced plate like thermoplastic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920023402A KR950013880B1 (en) 1992-12-05 1992-12-05 Method for manufacturing glass fiber reinforced plate like thermoplastic composite

Publications (2)

Publication Number Publication Date
KR940014555A KR940014555A (en) 1994-07-18
KR950013880B1 true KR950013880B1 (en) 1995-11-17

Family

ID=19344810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920023402A KR950013880B1 (en) 1992-12-05 1992-12-05 Method for manufacturing glass fiber reinforced plate like thermoplastic composite

Country Status (1)

Country Link
KR (1) KR950013880B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938120B1 (en) * 2008-07-04 2010-01-22 주식회사 화인텍 Device for pressing glass fiber reinforced strand mats and apparatus for polyuretan foams comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200459956Y1 (en) * 2010-01-25 2012-04-25 (주)호정산업 Needle for vegetation mat punching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938120B1 (en) * 2008-07-04 2010-01-22 주식회사 화인텍 Device for pressing glass fiber reinforced strand mats and apparatus for polyuretan foams comprising the same

Also Published As

Publication number Publication date
KR940014555A (en) 1994-07-18

Similar Documents

Publication Publication Date Title
US8303743B2 (en) Thermoplastic compound plate-shaped material, method for manufacturing and articles manufactured using the same
KR920001316B1 (en) Improvements in fiber reinforced plastics sheets
KR960012439B1 (en) Method for manufacturing thermoplastic composite resin
US3664909A (en) Needled resin fibrous article
KR101263960B1 (en) Composite thermoplastic sheets including natural fibers
US20050095415A1 (en) Glass mat thermoplastic composite
EP0646454B1 (en) Fibre reinforced thermoplastic sheet
US7132025B2 (en) Method of producing a thick, thermoformable, fiber-reinforced semi-finished product
US20040161993A1 (en) Inorganic fiber insulation made from glass fibers and polymer bonding fibers
CN109996658A (en) The manufacturing method of fiber-reinforced resin molded product and fiber-reinforced resin molded product
JP3675380B2 (en) Glass fiber composite mat for glass fiber reinforced stampable sheet and method for producing the same, glass fiber reinforced stampable sheet, method for producing the same and molded product
WO2001098064A2 (en) Molding of reinforced thermoplastic composites
KR950013880B1 (en) Method for manufacturing glass fiber reinforced plate like thermoplastic composite
FI84843C (en) Process for producing fiber-reinforced raw material for plastics
EP0532715B1 (en) Method for manufacturing a composite article and composite article
KR0130429B1 (en) Process for making glass fiber reinforced thermoplastic composite material prepreg
KR102318250B1 (en) Method for preparing fiber reinforced plastic composite material and fiber reinforced plastic composite material using the same
KR960016594B1 (en) Method for manufacturing thermoplastic composite
KR960016595B1 (en) Prepreg
KR950011714B1 (en) Method for manufacturing fiber reinforced thermoplastic composite
KR970001183B1 (en) Method of manufacturing the thermoplastic shaped material
WO2004048072A1 (en) Rigid composite structure
KR950009491B1 (en) Fiber reinforced composite resin forming sheet
KR950000172B1 (en) Molding method & fiber reinforced thermoplastic articles
US20230311371A1 (en) Reinforced synthetic product with curved geometry

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990929

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee