KR0130429B1 - Process for making glass fiber reinforced thermoplastic composite material prepreg - Google Patents

Process for making glass fiber reinforced thermoplastic composite material prepreg

Info

Publication number
KR0130429B1
KR0130429B1 KR1019940018168A KR19940018168A KR0130429B1 KR 0130429 B1 KR0130429 B1 KR 0130429B1 KR 1019940018168 A KR1019940018168 A KR 1019940018168A KR 19940018168 A KR19940018168 A KR 19940018168A KR 0130429 B1 KR0130429 B1 KR 0130429B1
Authority
KR
South Korea
Prior art keywords
glass fiber
thermoplastic composite
prepreg
glass fibers
glass
Prior art date
Application number
KR1019940018168A
Other languages
Korean (ko)
Other versions
KR960004416A (en
Inventor
임대우
강창권
김태호
Original Assignee
박홍기
제일합섬주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박홍기, 제일합섬주식회사 filed Critical 박홍기
Priority to KR1019940018168A priority Critical patent/KR0130429B1/en
Publication of KR960004416A publication Critical patent/KR960004416A/en
Application granted granted Critical
Publication of KR0130429B1 publication Critical patent/KR0130429B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Abstract

A process for producing a glass fiber reinforced thermoplastic composite material prepreg comprises the steps of: preparing polypropylene sheets having a melt index of 8g/10min; laminating a glass fiber web formed uniformly and non-directionally, a glass fiber arranged one-directionally, and a glass fiber arranged at the right angle, followed by needle-punching the laminated materials to make a glass fiber mat; laminating a polypropylene sheet, a glass fiber mat, molten polypropylene, a glass fiber mat and a polypropylene in turn, followed by a conventional way to produce said prepreg which is excellent in mechanical properties with a direction as well as has improved physical properties with its right angle.

Description

유리섬유 강화 열가소성 복합재료 프리프레그의 제조방법Method for manufacturing glass fiber reinforced thermoplastic composite prepreg

제1도는 종래의 열가소성 복합재료 프리프레그 단면도1 is a cross-sectional view of a conventional thermoplastic composite prepreg

제2도는 본 발명에 따른 열가소성 복합재료 프리프레그 단면도2 is a cross-sectional view of the thermoplastic composite prepreg according to the present invention

본 발명은 판상의 연가소성 복합재료 프리프레그의 제조방법에 관한 것으로, 자세하게는, 유리섬유 매트에 열가소성 수지를 합침하여 경량이면서 재사용이 가능하고, 기계적 강도 및 성형성이 우수한 판상의 열가소성 복합재료 프리프레그를 제조하는 방법에 관한 것으로, 더 자세하게는 특정 방향의 기계적 강도를 향상시켜 자동차 범퍼빔 등의 구조재로 사용되는 열가소성 복합재료 프리프레그를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a plate-shaped flammable composite material prepreg, and in detail, by incorporating a thermoplastic resin into a glass fiber mat, it is lightweight and reusable, and has a plate-like thermoplastic composite material prep having excellent mechanical strength and formability. The present invention relates to a method for manufacturing a leg, and more particularly, to a method for manufacturing a thermoplastic composite prepreg used as a structural material such as an automobile bumper beam by improving mechanical strength in a specific direction.

일반적으로 고분자 복합재료는 물리, 화학적 성질이 서로 다른 소재를 고분자 기재중에 물리적으로 복합시켜 새로운 기능성을 부여한 것으로 현재까지 많은 연구가 진행되어 많은 부분이 실용화 되고 있다. 오늘날 시장의 요구가 점점 다양화, 고도화 되면서 고분자 재료에서도 알로이화, 복합화 등을 통한 고기능 재료 제조가 활발히 진행되고 있다. 특히 강도, 강성, 특성을 향상시키는 보강재로 쓰이는 유리섬유는 사출성형용으로 단섬유 강화재료로 많이 사용되고 있다. 그러나, 이 재료는 펠릿트 제조공정 및 사출성형 공정에 의하여 유리섬유 길이가 매우 제한되며, 강도 및 강성이 증가하여도 충격강도가 두드러지게 저하한다. 또한 유리섬유 배향에 의한 배향성에 기인한 물성저하의 문제점도 지니고 있다. 이 문제점들의 해결 방법으로 제조된 것이 특수 가공한 유리 장섬유 매트와 열가소성 수지를 적층하여, 압축성형이 가능토록한 열가소성 복합재료 프리프레그이다. 이 열가소성 복합재료는 제반 물성, 특히 내충격성을 크게 향상시켜 자동차 용도를 중심으로 경량화 재료로서 사용되는 실예가 크게 증가하고 있다.In general, polymer composite materials are physically compounded with polymers having different physical and chemical properties in a polymer substrate to impart new functionality. Many studies have been conducted so far, and many parts have been put to practical use. As the demands of the market become more diversified and advanced today, the manufacture of high-performance materials through alloying and compounding in polymer materials is actively progressing. In particular, glass fiber, which is used as a reinforcing material to improve strength, stiffness and properties, is widely used as a short fiber reinforcing material for injection molding. However, this material has a very limited glass fiber length by the pellet manufacturing process and the injection molding process, and the impact strength is remarkably lowered even if the strength and rigidity are increased. In addition, there is a problem of the physical property degradation due to the orientation by the glass fiber orientation. The solution to these problems is a thermoplastic composite prepreg made by laminating a specially processed glass filament mat and a thermoplastic resin to enable compression molding. This thermoplastic composite material greatly improves overall physical properties, particularly impact resistance, and there is a growing number of examples used as lightweight materials mainly for automobile applications.

판상의 열가소성 복합재료 프리프레그는 통상 열가소성 수지와 매트상의 유리 섬유 보강재를 사용하여 제조되는 것으로 매트상의 보강재 상하면에 열가소성 수지 시이트를 연속적으로 겹쳐서, 수지 용융온도 이상에서 열용융 함침시킨 다음 냉각시키는 방법으로 제조된다. 이렇게 제조된 열가소성 복합재료 프리프레그는 토목용의 거무집, 대차 등에 추가의 성형공정 없이 사용할 수 있을 뿐만 아니타, 용융온도 이상에서 열가소성 복합재료 프리프레그를 금형 내에 투입하여 압축성형 함으로써 임의의 성형품을 제조할 수도 있다. 이 경우 매트상의 보강재는 유리 장섬유 또는 단섬유를 사용하여 일정한 두께의 웨The plate-shaped thermoplastic composite prepreg is usually manufactured using a thermoplastic resin and a mat-like glass fiber reinforcement. The thermoplastic sheet is continuously stacked on the upper and lower surfaces of the mat-like reinforcement material, thermally impregnated above the resin melting temperature, and then cooled. Are manufactured. The thermoplastic composite prepreg thus prepared can be used without additional molding process for civilian constructions, trolleys, etc. In addition, the thermoplastic composite prepreg is injected into the mold at a melting temperature or higher to produce an arbitrary molded article. You may. In this case, the reinforcement material on the mat is made of glass of constant thickness using short glass fibers or short fibers.

브(web)를 형성시킨 후 니들펀칭(needle punching)하여 유리섬유끼리 물리적으로 서로 결합하게 함으로써 제조된다. 이러한 니들펀칭에 의하여 유리섬유가 매트 형상으로 제조된 뿐만 아니라, 유리성유를 부분적으로 절단함으로써 열가소성 복합재료 프리프레그외 성형시 유리섬유에 유동성을 부여하게 된다. 또한 니들펀칭시 바늘에 의하여 유리섬유 끝부분을 표면으로 밀어냄으로써 형성된 스파이크(spike)가 복합재료의 성형시에 작업성을 용이하게 해준다. 매트상의 유리섬유 제조방법 및 니들펀칭에 대한 것으로는 미국 특허 4,404,717, 4,615,717, 4,277,531, 5,018,255 등에, 열가소성 복합재료 프리프레그 제조방법에 대해서는 미국 특허 4,749,153 및 4,263,364 등에 제안되어 있다.After forming a web (needle) punching (needle punching) is produced by physically bonding the glass fibers to each other. The needle punching not only manufactures the glass fibers in a mat shape, but also partially cuts the glass oil to impart fluidity to the glass fibers during molding of the thermoplastic composite prepreg. In addition, a spike formed by pushing the glass fiber tip to the surface by a needle during needle punching facilitates workability during molding of the composite material. A method for manufacturing glass fiber on a mat and needle punching is proposed in US Pat. Nos. 4,404,717, 4,615,717, 4,277,531, 5,018,255, and the like.

일반적인 열가소성 복합재료 프리프레그는 열가소성 수지를 기본 모재(matrix)로 하고 강화재로는 무배향의 장섬유 매트 또는 단섬유를 사용하기 때문에 강도의 방향성이 없다. 그러나, 자동차 범퍼빔 등의 구조재에 요구되는 특징으로서는 특정 방향에의 강도가 요구되는 경우가 많다. 이러한 요구에 대응하기 위하여 유리섬유를 한 방향으로 배열하여 특정방향의 강도를 향상시킨 제품이 개발되고 있다. 이러한 일방향 강화 열가소성 복합재료 프리프레그는 제1도에 나타난 바와 같이 무배향의 유리섬유와 일방향으로 배향시킨 유리장섬유가 조합된 유리섬유 매트를 이용한 것으로 일반적인 열가소성 복합재료 프리프레그와 비교하여 동등한 성형 가공성을 유지하며 섬유강화 방향으로의 인장강도, 충격강도 등 기계적 물성은 약 2-3배 정도 향상된다. 이러한 일방향 강화 열가소성 복합재료 프리프레그의 제조방법으로는 미국특허 4,749,613 및 유럽특허 434,846 등에 제안되어 있으나 일방향의 직각방향 강도가 무배향에 비하열 수비 %까지 낮아져 일방향의 섬유 배열 강도에도 영향을 줄 수 있다.The general thermoplastic composite prepreg has no direction of strength because thermoplastic resin is used as a base matrix and non-oriented long fiber mat or short fiber is used as a reinforcing material. However, as a feature required for structural materials such as automobile bumper beams, strength in a specific direction is often required. In order to meet these demands, products are being developed in which glass fibers are arranged in one direction to improve strength in a specific direction. As shown in FIG. 1, the unidirectional reinforced thermoplastic composite prepreg is made of a glass fiber mat including a non-oriented glass fiber and a glass fiber oriented in one direction. The moldability is comparable to that of a general thermoplastic composite prepreg. The mechanical properties such as tensile strength and impact strength in the direction of fiber reinforcement are improved by about 2-3 times. As a method of manufacturing such a one-way reinforced thermoplastic composite prepreg, it has been proposed in US Patent 4,749,613 and European Patent 434,846. However, the direction of the perpendicular direction in one direction is lowered to the non-oriented heat dissipation percentage, which may affect the fiber array strength in one direction. .

본 발명자들은 모재로 폴리프로필렌을 사용하고 이에 매트상의 유리섬유를 강화시켜, 압축성형이 가능한 일방향 열가소성 복합재료 프리프레그를 제조함에 있어 이러한 결점을 개선하기 위하여 노력한 결과, 제2도에 도시되어 있는 것처럼 무배향의 유리섬유와 일방향으로 배열한 유리섬유 매트 위에 일방향의 직각 방향으로 유리섬유를 배열한 후 니들펀칭하여 사용함으로써 한 방향의 기계적 물성을 유지하는 동시에 그의 직각 방향의 기계적 물성, 특히 내충격 강도를 향상시킨 우수한 열가소성 복합재료 프리프레그를 얻게 되있다.The present inventors have made efforts to remedy these shortcomings in producing a unidirectional thermoplastic composite prepreg capable of compression molding by using polypropylene as a base material and reinforcing the glass fibers on the mat, as shown in FIG. By arranging glass fibers in one direction orthogonal direction on a glass fiber mat arranged in one direction and a non-oriented glass fiber, needle punching is used to maintain mechanical properties in one direction and at the same time the mechanical properties, in particular impact strength The result is an improved thermoplastic composite prepreg.

즉, 본 발명의 목적은 특정방향의 내충격성, 인장강도 등의 기계적 물성을 유지하면서 그의 직각 방향의 기계적 물성이 향상되어, 자동차 범퍼빔, 토목, 건축용 등이 구조재에 사용될 수 있는 일방향 강화 열가소성 복합재료 프리프레그를 제조하는데 있는 것이다.That is, an object of the present invention is to improve the mechanical properties of the right-angle direction while maintaining the mechanical properties such as impact resistance, tensile strength in a specific direction, one-way reinforced thermoplastic composite that can be used for structural materials such as automobile bumper beams, civil engineering, construction It is to make material prepreg.

본 발명에 있어서 일방향 강화 열가소성 복합재료 프리프레그는 폴리프로필렌시이트(sheet)/유리섬유 매트/용융 폴리프로필렌/유리섬유 매트/폴리프로필렌 시이트로 적충된 재료를 더블 벨트 프레스(double belt press)에 투입하여 수지의 용융온도 이상에서 폴리프로필렌 수지를 유리섬유 매트에 열용융 함침한 후 냉각하여 제조된다. 그리고, 용융 폴리프로필렌은 티다이(T-die)가 부착된 압출기에 의하여 더블 벨트 프레스에 공급된다.In the present invention, the unidirectional reinforced thermoplastic composite prepreg is made of a polypropylene sheet / glass fiber mat / melted polypropylene / glass fiber mat / polypropylene sheet and loaded with a double belt press. The polypropylene resin is prepared by hot-melting and impregnating a glass fiber mat above the melting temperature of the resin. The molten polypropylene is then supplied to the double belt press by an extruder with a T-die.

본 발명에서 사용된 폴리프로필렌 수지는 특별한 제한이 있는 것은 아니지만 용융지수(melt index, ASTM D1238, 230℃. 2.16Hg)가 2-20g/10min의 것을 사용하는 것이 바람직하며, 산화방지제, 열안정제, 대전방지제, 핵제, 염료 등을 본 발명의 효과에 현저한 피해를 주지 않는 범위에서 첨가할 수 있다. 폴리프로필렌 수지의 용융지수가 20g/10min를 초과하면 수지의 함침 및 성형공정에서 수지의 과도한 유동으로 인하여 제품의 강도가 불균일하게 되며 표면특성도 저하된다. 용융지수가 2g/10min 미만이면 수지의 함침성이 불량하여 강도가 저하되며 성형공정에서 불량이 발생하기 쉽다.Polypropylene resin used in the present invention is not particularly limited, but it is preferable to use a melt index (melt index, ASTM D1238, 230 ℃. 2.16Hg) of 2-20g / 10min, antioxidant, heat stabilizer, Antistatic agents, nucleating agents, dyes and the like can be added within a range that does not significantly affect the effects of the present invention. If the melt index of the polypropylene resin exceeds 20g / 10min, the strength of the product becomes uneven due to excessive flow of the resin in the impregnation and molding process of the resin, and the surface properties are also reduced. If the melt index is less than 2g / 10min, the impregnability of the resin is poor, the strength is lowered, and defects are likely to occur in the molding process.

본 발명에 사용한 유리섬유 매트는 특별한 제한이 있는 것은 아니지만 좋게로는 굵기 10-30㎛의 유리섬유 필타멘트를 50-3000개를 집속시킨 유리섬유 로빙(roving)을 무배향으로 균일하게 웨브를 형성하고 그 위에 유리섬유를 일방향 및 그의 직각방향으로 배열한 후 니들펀칭하여 제조한다. 일방향으로 배열되는 유리섬유는 유리섬유 매트 총중량의 30-70 중량% 범위내로 하고, 일방향의 적각방향으로 배열되는 유리섬유는 유리섬유 총중량의 10-30 중량% 범위 내에 있도록 한다. 유리섬유 필라멘트의 직경이 30㎛ 이상이면 강화 효과가 적어져 복합재료의 물성이 저하되며 10㎛ 이하이면 유리섬유들 사이로 수지의 함침성이 좋지 못하여 기계적 물성이 저하된다. 일방향의 직각방향으로 배열되는 유리섬유의 함량이 유리섬유 총중량의 30중량%를 초과하면 함침성이 현저히 떨어져 물성이 저하되고, 10 중량% 미만이면 유리섬유 보강 효과가 적게된다. 또한 일방향 배열의 유리섬유의 중량비가 유리섬유 총중량에 대하여 70%를 초과하면 성형공정에서 열가소성 복합재료 프리프레그의 작업성 및 함침성이 불량하고 섬유 강화 직각방향의 기계적 강도가 미약하고, 30 중량% 미만이면 특정방향의 강도 향상효과가 적다.The glass fiber mat used in the present invention is not particularly limited, but preferably the web is uniformly formed without orientation of glass fiber roving in which 50 to 3000 glass fiber filaments having a thickness of 10-30 μm are concentrated. The glass fibers are arranged on one direction and at right angles thereof, and then prepared by needle punching. The glass fibers arranged in one direction are in the range of 30-70% by weight of the total weight of the glass fiber mat, and the glass fibers arranged in one direction of inclination direction are in the range of 10-30% by weight of the total weight of the glass fibers. If the diameter of the glass fiber filament is 30㎛ or more, the reinforcing effect is less and the physical properties of the composite material is lowered. If the glass fiber filament is less than 10㎛, the impregnability of the resin between the glass fibers is not good, mechanical properties are lowered. If the content of the glass fibers arranged in the direction perpendicular to one direction exceeds 30% by weight of the total weight of the glass fiber, the impregnation is significantly lowered, the physical properties are lowered, if less than 10% by weight glass fiber reinforcement effect is reduced. In addition, when the weight ratio of the glass fibers in one direction exceeds 70% of the total weight of the glass fibers, the workability and impregnability of the thermoplastic composite prepreg in the molding process are poor, and the mechanical strength in the perpendicular direction of the fiber reinforcement is weak, and 30 wt% If less, the effect of improving strength in a specific direction is small.

본 발명에 있어서, 일방향 강화 열가소성 복합재료 프리프레그는 유리섬유의 함량이 열가소성 복합재료 프리프레그 총중량의 20-60 중량%의 범위 내로 하는 것이 좋다. 유리섬유의 함량이 60 중량% 이상이면 수지의 함침성 뿐만 아니라 표면특성도 저하되고, 20 중량% 이하이면 물성이 저하된다.In the present invention, the unidirectional reinforced thermoplastic composite prepreg is preferably in the range of 20-60% by weight of the glass fiber content of the total weight of the thermoplastic composite prepreg. If the content of the glass fiber is 60% by weight or more, not only the impregnability of the resin but also the surface property decreases, and when the content of the glass fiber is 20% by weight or less, the physical properties decrease.

본 발명에 의하여 제조된 일방향 강화 열가소성 복합재료 프리프레그는 경량이면서 특정방향으로의 기계적 강도가 우수할 뿐만 아니라 그의 직각방향의 물성도 향상되어 자동차 범퍼빔 등의 자동차 구조재를 비롯하여 거푸집 등의 토목, 건축용 재료로도 사용할 수 있다.The unidirectional reinforced thermoplastic composite prepreg produced by the present invention is lightweight and has excellent mechanical strength in a specific direction, and also improves the physical properties in a right angle thereof, such as automobile structural materials such as automobile bumper beams, civil engineering and construction materials such as formwork. Can also be used as a material.

본 발명을 실시예 및 비교 실시예에 의거하여 더욱 자세히 설명한다.The present invention will be described in more detail based on Examples and Comparative Examples.

(실시예 1)(Example 1)

용융지수(ASTM D1238, 230℃, 2. l 6㎏)가 8g/10min인 폴리프로필렌 수지(삼성종합화학 제품, HJ-400)를 제막기를 이용하여 두께 0.5mm의 폴리프로필렌시이트를 제조하였다. 또한 유리섬유 로빙(한국화이바 제품, ER 2310)을 250g/㎡로 균일하게 무배향의 유리섬유 웨브를 형성하고 그 위에 크릴(creel)을 이용하여 유리섬유 500g/㎡를 일방향으로 배열하고, 유리섬유 200g/㎡를 그의 직각방향으로 배열한 후 니들펀칭하여 유리섬유 매트를 제조하였다. 니들펀칭은 단면이 삼각형이고 각 단면의 모서리 부분에 각각 3개씩 총 9개의 미들(barb)이 달려있는 바늘로 18회/㎠ 니들펀칭 하였다. 이와 같이 제조한 폴리프로필렌 시이트와 유리섬유 매트를 폴리프로필렌 시이트/유리섬유 매트/용융 폴리프로필렌/유리섬유 매트/폴리프로필렌 시이트 순으로 적충하여 더블 벨트 프레스로 220℃, 20psi로 가열 가압하여 유리섬유 함량이 42 중량%인 판상의 열가소성 복합재료 프리프레그를 제조하였다. 상기의 방법으로 제조한 복합 재료의 물성은 [표 1]과 같다.A polypropylene sheet having a thickness of 0.5 mm was prepared using a polypropylene resin (Samsung General Chemicals, HJ-400) having a melt index (ASTM D1238, 230 ° C., 2. 6 kg) of 8 g / 10 min. In addition, glass fiber roving (FIBER Korea, ER 2310) is uniformly formed at 250 g / m2 of non-oriented glass fiber web, and glass fiber 500g / m2 is arranged in one direction by using creel thereon, and glass fiber A glass fiber mat was produced by needle punching after arranging 200 g / m 2 at right angles thereof. Needle punching was performed 18 times / cm 2 needle punching with a needle having a triangular cross section and a total of nine barbs each having three at each corner of each cross section. The polypropylene sheet and glass fiber mat prepared as described above were loaded in the order of polypropylene sheet / glass fiber mat / melt polypropylene / glass fiber mat / polypropylene sheet and heated and pressurized to 220 ° C. and 20 psi by a double belt press. This 42 wt% plate-shaped thermoplastic composite prepreg was prepared. Physical properties of the composite material produced by the above method are shown in [Table 1].

(비교 실시예 1)(Comparative Example 1)

유리섬유 매트 제조에 있어서 무배향의 유리섬유를 450g/㎡, 일방향의 직각방향으로 배열하는 유리섬유를 사용하지 않는 것을 제외하고는 실시예 1과 같이 실시하였다.The glass fiber mat was prepared in the same manner as in Example 1 except that the glass fibers arranged in an unoriented orientation of 450 g / m 2 and one direction were not used.

(비교 실시예 2)(Comparative Example 2)

유리섬유 매트 제조에 있어서 무배향의 유리섬유를 400g/㎡, 일방향의 직각방향으로 유리섬유를 50g/㎡으로 배열하는 것을 제외하고는 실시예 1과 같이 실시하였다.The glass fiber mat was prepared in the same manner as in Example 1 except that the non-oriented glass fibers were arranged at 400 g / m 2 and the glass fibers were arranged at 50 g / m 2 in one direction orthogonal.

(비교 실시예 3)(Comparative Example 3)

유리섬유 매트 제조에 있어서 무배향의 유리섬유를 100g/㎡, 일방향의 직각방향으로 배열하는 유리섬유를 350g/㎡으로 배열하는 것을 제외하고는 실시예 1과 같이 실시하였다.The glass fiber mat was prepared in the same manner as in Example 1 except that the non-oriented glass fibers were arranged at 100 g / m 2 and the glass fibers arranged in one direction at right angles were 350 g / m 2.

(비교 실시예 4)(Comparative Example 4)

유리섬유 매트 제조에 있어서 무배향의 유리섬유를 750g/㎡, 일방향으로 200g/㎡ 일방향의 직각방향으로 유리섬유를 배열하지 않는 것을 제외하고는 실시예 1과 같이 실시하였다.The glass fiber mat was prepared in the same manner as in Example 1 except that the glass fibers were not oriented in a direction perpendicular to 750 g / m 2 and 200 g / m 2 in one direction.

(비교 실시예 5)(Comparative Example 5)

유리섬유 매트 제조에 있어서, 무배향의 유리섬유를 200g/㎡, 일방향으로 750g/㎡ 일방향의 직각방향으로 유리섬유를 배열하지 않는 것을 제외하고는 실시예 1과 같이 실시하였다.In the manufacture of the glass fiber mat, the glass fibers in the non-oriented direction was performed in the same manner as in Example 1 except that the glass fibers were not arranged in a direction perpendicular to 200 g / m 2 and 750 g / m 2 in one direction.

[표 1] 열가소성 복합재료 프리프레그의 물성[Table 1] Physical properties of thermoplastic composite prepreg

일방향 : 유리섬유가 배열된 방향One direction: The direction in which glass fibers are arranged

직각방향 : 유리섬유가 배열된 방향의 직각 방향Right angle: right angle direction in which glass fibers are arranged

Claims (5)

폴리프로필렌 수지를 유지섬유 매트에 열용융 함침하여 판상의 열가소성 복합재료 프리프레그를 제조함에 있어서, 유리섬유 매트는 유리섬유 로빙을 무배향의 균일한 웨브(web)를 형성하고 그 위에 일방향 및 그의 직각 방향으로 유리섬유를 배열한 후 니들펀칭하여 제조되는 것을 특징으로 하는 열가소성 복합재료 프리프레그.In producing a plate-like thermoplastic composite prepreg by heat-melting impregnating a polypropylene resin on a fat fiber mat, the glass fiber mat forms a uniform web of non-oriented glass fiber rovings and is oriented in one direction and right angles thereon. The thermoplastic composite material prepreg is produced by needle punching after arranging the glass fibers in the direction. 제1항에 있어서, 일방향으로 배열된 유리섬유가 유리섬유 총중량에 대하여 30-70 중량%, 일방향의 직각 방향으로 배열된 유리섬유는 유리섬유 총중량의 10-30 중량% 범위 내에 있는 것을 특징으로 하는 열가소성 복합재료 프리프레그.The method of claim 1, wherein the glass fibers arranged in one direction is 30-70% by weight relative to the total weight of the glass fibers, the glass fibers arranged in a direction perpendicular to the one direction is in the range of 10-30% by weight of the total weight of the glass fibers. Thermoplastic Composite Prepreg. 제1항에 있어서, 열가소성 복합수지 프리프레그는 유리섬유가 열가소성 복합수지 프리프레그 총중량에 대하여 20-60% 범위 내에서 사용되는 것을 특징으로 하는 열가소성 복합재료 프리프레그.The thermoplastic composite prepreg according to claim 1, wherein the thermoplastic composite prepreg is used in the range of 20-60% of the glass fiber in the total weight of the thermoplastic composite prepreg. 제1항에 있어서, 유리섬유는 10-30㎛ 굵기의 유리섬유 필타멘트를 50-3000개 집속시킨 것임을 특징으로 하는 열가소성 븍합재료 프리프레그.The method of claim 1, wherein the glass fiber is a thermoplastic composite material prepreg characterized in that the concentration of 50-3000 pieces of glass fiber filament of 10-30㎛ thickness. 제1항에 있어서, 폴리프로필렌 수지는 용융지수가 2-20g/10min의 것을 사용한 것임을 특징으로 하는 열가소성 복합재료 프리프레그.The thermoplastic composite prepreg according to claim 1, wherein the polypropylene resin uses a melt index of 2-20 g / 10 min.
KR1019940018168A 1994-07-26 1994-07-26 Process for making glass fiber reinforced thermoplastic composite material prepreg KR0130429B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940018168A KR0130429B1 (en) 1994-07-26 1994-07-26 Process for making glass fiber reinforced thermoplastic composite material prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940018168A KR0130429B1 (en) 1994-07-26 1994-07-26 Process for making glass fiber reinforced thermoplastic composite material prepreg

Publications (2)

Publication Number Publication Date
KR960004416A KR960004416A (en) 1996-02-23
KR0130429B1 true KR0130429B1 (en) 1998-04-07

Family

ID=19388904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940018168A KR0130429B1 (en) 1994-07-26 1994-07-26 Process for making glass fiber reinforced thermoplastic composite material prepreg

Country Status (1)

Country Link
KR (1) KR0130429B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716027B1 (en) * 2005-11-16 2007-05-11 삼성토탈 주식회사 Polypropylene compounds for concrete mold form panel
KR101037609B1 (en) * 2009-05-14 2011-05-30 한화엘앤씨 주식회사 Hybrid composite material with enhanced crash performances
KR101472683B1 (en) * 2013-08-14 2014-12-12 롯데케미칼 주식회사 Manufacturing method of bumper beam for vehicle
WO2015056899A1 (en) * 2013-10-16 2015-04-23 코오롱인더스트리(주) Hybrid prepreg for vehicle bumper and vehicle bumper manufactured using same
KR20200050077A (en) * 2018-10-31 2020-05-11 주식회사 서연이화 Composite material for vehicle interior and manufacturing method for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100607260B1 (en) * 1999-06-03 2006-07-28 에스케이케미칼주식회사 Composite plate for a shoe
KR102179558B1 (en) * 2018-11-13 2020-11-16 주식회사 포스코 Mold, apparatus and method for casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716027B1 (en) * 2005-11-16 2007-05-11 삼성토탈 주식회사 Polypropylene compounds for concrete mold form panel
KR101037609B1 (en) * 2009-05-14 2011-05-30 한화엘앤씨 주식회사 Hybrid composite material with enhanced crash performances
KR101472683B1 (en) * 2013-08-14 2014-12-12 롯데케미칼 주식회사 Manufacturing method of bumper beam for vehicle
WO2015056899A1 (en) * 2013-10-16 2015-04-23 코오롱인더스트리(주) Hybrid prepreg for vehicle bumper and vehicle bumper manufactured using same
KR20200050077A (en) * 2018-10-31 2020-05-11 주식회사 서연이화 Composite material for vehicle interior and manufacturing method for the same

Also Published As

Publication number Publication date
KR960004416A (en) 1996-02-23

Similar Documents

Publication Publication Date Title
KR100814861B1 (en) Articles manufactured using thermoplastic compound plate-shaped material
CN101243121B (en) Isotropic fiber-reinforced thermoplastic resin sheet, and process for the production and molded plate thereof
KR920001316B1 (en) Improvements in fiber reinforced plastics sheets
US5085928A (en) Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers
US11584835B2 (en) Laminated substrate and method for manufacturing the same
US5441590A (en) Method for the preparation of prepreg of thermoplastic composite resin
KR101233813B1 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
KR101417245B1 (en) Complex sheet manufacturing device with excellent saturation property and method of manufacturing high strength complex sheet
KR20150092078A (en) Articles including high melt flow index resins
JPWO2018101245A1 (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
KR0130429B1 (en) Process for making glass fiber reinforced thermoplastic composite material prepreg
JP6801321B2 (en) Laminated base material for rib molding
US20040226191A1 (en) Toecap made from woven layers of continuous strands aligned in layer-specific orientation
JPH07103244B2 (en) Stamping molding material
KR20180079729A (en) Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
US20220227079A1 (en) Cold Press Molded Body Containing Carbon Fiber and Glass Fiber, and Manufacturing Method Thereof
KR102063600B1 (en) Fiber-reinforced composite material and manufacturing method of interior and exterior ofvehicles using the same
KR102340130B1 (en) Sandwich panel comprising a fiber reinforced composite material as surface layers
KR102063602B1 (en) Fiber reinforced composite material sheet and method of manufacturing the same
JP6771265B2 (en) A preform, a method for producing the preform, and a fiber reinforced plastic using the above preform.
KR960016594B1 (en) Method for manufacturing thermoplastic composite
KR20200064759A (en) Method for preparing fiber reinforced plastic composite material and fiber reinforced plastic composite material using the same
US20230311371A1 (en) Reinforced synthetic product with curved geometry
KR950013880B1 (en) Method for manufacturing glass fiber reinforced plate like thermoplastic composite
KR102483485B1 (en) Long fiber reinforced thermoplastics and molded article fabricated by the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20001013

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee