KR950012418B1 - Making method of low hydrogen clean steel - Google Patents

Making method of low hydrogen clean steel Download PDF

Info

Publication number
KR950012418B1
KR950012418B1 KR1019930030271A KR930030271A KR950012418B1 KR 950012418 B1 KR950012418 B1 KR 950012418B1 KR 1019930030271 A KR1019930030271 A KR 1019930030271A KR 930030271 A KR930030271 A KR 930030271A KR 950012418 B1 KR950012418 B1 KR 950012418B1
Authority
KR
South Korea
Prior art keywords
degassing
molten steel
slag
inclusions
minutes
Prior art date
Application number
KR1019930030271A
Other languages
Korean (ko)
Other versions
KR950018521A (en
Inventor
김기성
허완욱
Original Assignee
포항종합제철주식회사
조말수
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930030271A priority Critical patent/KR950012418B1/en
Publication of KR950018521A publication Critical patent/KR950018521A/en
Application granted granted Critical
Publication of KR950012418B1 publication Critical patent/KR950012418B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0068Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects

Abstract

The manufacturing method improves mechanical properties such as toughness and bendability by retarding the corrosion of refractories and applying calcium silicon. The manufacturing method comprises(A) charging deoxidizers with aluminum into the converter; (B) bubbling the molten steel and slag; (C) degassing treatment under the vacuum atmosphere for 10-15 minutes.

Description

저수소 고청정 후판 후물재의 제조방법Manufacturing method of high clean thick plate material

제1도는 상취랜스를 이용한 칼슘-실리콘계 탈류제 취입량에 따른 전산소량 변화를 나타내는 그래프.1 is a graph showing the change in the amount of oxygen in accordance with the calcium-silicone desorbent blowing amount using the upper lance.

제2도는 본 발명법 및 종래법에 의해 스프레이재의 스프레이 이후 탈가스 처리시간에 따른 수소함량변화를 나타내는 그래프.Figure 2 is a graph showing the hydrogen content change according to the degassing treatment time after spraying the spray material by the present invention method and the conventional method.

제3도는 본 발명법 및 종래법에 있어 초음파 탐상법에 의한 불량율 비교 그래프.3 is a graph of a comparison of the defective rate by the ultrasonic flaw detection method in the present invention and the conventional method.

제4도는 본 발명법 및 종래법에 있어 편석부의에 유황농도를 나타내는 그래프.4 is a graph showing the sulfur concentration in the segregation portion in the present invention method and the conventional method.

제5도는 본 발명법 및 종래법에 있어 -45c에서의 샤르피 충격치를 나타내는 그래프.5 is a graph showing the Charpy impact value at -45c in the present invention method and the conventional method.

본 발명은 전로에서 처리된 용강에 칼슘-실리콘(Ca-Si) 취입과 탈가스설비를 이용하여 비금속 개재물을 제거 및 제어하고, 수소를 제거하여 저수소 고청정 후판 후물재를 제조하는 방법에 관한 것이다.The present invention relates to a method for removing and controlling non-metallic inclusions by using calcium-silicon (Ca-Si) blowing and degassing equipment in a converter, and producing hydrogen-removed high-clean thick plate materials by removing hydrogen. will be.

후판 후물재는 두께의 증가에 따라 강중에 존재하는 산화물 및 유화물계 비금속 개재물과 수소에 의해서 중심부 미세크랙(CracK), 유화물계 개재물의 압연 방향연신, 마이크로 크랙부위 망간, 황농후편석에 의한 경화조직형성과 수소집적에 의한 백점현상를 유발함으로써 강재의 강도와 내피로성등 기계적성질을 저하시킴은 물론 굴곡 가공시나 사용시의 충격피로에 의해 각종결함과 파괴를 유발한다.The thick plate material is formed by the rolling direction stretching of the core microcracks (CracK) and the emulsion type inclusions, microcracks of manganese, and sulfur thick segregation due to the increase of the thickness of the oxide and emulsion-based nonmetallic inclusions and hydrogen in the steel. By causing white spot phenomenon due to excessive hydrogen accumulation, it lowers the mechanical properties such as strength and fatigue resistance of steel, and also causes various defects and fractures by impact fatigue during bending and use.

따라서 후판 후재물의 경우 이의 결함을 측정하기 위해 초음파 탐상을 실시하는데 결함발생시 사용이 불가능하다.Therefore, in case of thick plate material, ultrasonic flaw detection is performed to measure its defects, and it is impossible to use it in the event of a defect.

한편, 상기 개재물을 제거하기 위해서는 통상 전로에서는 탈산 출강된 용강을 교반하거나 탈산방법의 개선과 용강성분의 조정을 통하여 가능하지만 이 방법들을 이용한 개재물 제거는 한계가 있으며, 용강을 적절히 처리한다 하더라도 용강상부의 슬래그가 부상되는 개재물 제거는 한계가 있으며, 용강을 적절히 처리한다 하더라도 용강상부의 슬래그가 부상되는 개재물의 흡수에 적합치 못하면 부상된 개재물이 슬래그층에 흡수되지 못하고 용강의 순환류에 휩쓸려 용강내로 되돌아간다.On the other hand, in order to remove the inclusions in ordinary converters can be carried out by stirring the deoxidized molten steel or by improving the deoxidation method and adjustment of the molten steel component, the removal of the inclusions using these methods is limited, even if the molten steel is properly treated The removal of inclusions in which the slag floats is limited, and even if the molten steel is properly treated, if the slag on the molten steel is not suitable for the absorption of the floating inclusions, the injured inclusions are not absorbed by the slag layer and are swept back into the molten steel circulation stream. .

따라서, 비금속 개재물의 양을 저감하여 고청정강을 제조하기 위해서는 출강 및 탈산완료 후 용강을 비금속 개재물의 흡수가 용이한 슬래그와 반응하도록 처리하고 있다.Therefore, in order to reduce the amount of non-metallic inclusions and to produce high clean steel, the molten steel is treated to react with slag that is easy to absorb nonmetallic inclusions after tapping and deoxidation is completed.

한편, 전로정련을 통해 제조되는 후판후물재 용강에 있어서, 래들 상부슬래그는 출강시 유입이 불가피한 전로슬래그와 출강중에 병행되는 탈산작업시 생성된 탈산생성물에 의해 형성되는데, 주로 CaO, SiO2및AI2O3로 구성되고 소량의 FeO, MnO를 포함하고 있다. 이 슬래그는 자체로는 융점이 높아 반응성이 저하되고 비금속 개재물의 제거속도가 낮아 청정강제조에는 비능률적이다.On the other hand, in the thick plate material molten steel produced through converter refining, the upper ladle slag is formed by the converter slag which is inevitable inflow during tapping and the deoxidation product generated during deoxidation work during tapping, mainly CaO, SiO 2 and AI It consists of 2 O 3 and contains a small amount of FeO and MnO. The slag, by itself, has a high melting point, which leads to low reactivity and low removal rate of non-metallic inclusions, making it inefficient for clean steelmaking.

종래 후판후물재 용강을 제조함에 있어서, 비금속개재물, 수소를 감소시키기 위하여 출강시 탈산제를 투입하고 통산적인 전로스래그 유입량인 용강톤당 유입되는 전로스래그 3-25Kg을 기준으로 전로스래그 대비 중량비로 생석회 0.7-1.2를 충분한 혼합을 위하여 출강류에 부딪히게 출강중에 투입하고 개재물 포집능이 좋고 탈류능를 가진 슬래그 제조의 기본조건인 산소포텐셜(Oxygen potentiaI)즉, 용강을 산화 오염시키는 주요원인슬래그중 FeO, MnO성분을 낮게 유지하기 위하여 소형의 알미늄으루래들내로 유입된 슬래그 상부에 투입한다.In manufacturing molten steel of conventional thick plate material, in order to reduce non-metallic inclusions and hydrogen, the deoxidizer is added at the time of tapping, and the weight ratio to the total loss lag is based on the total loss lag 3-25Kg per ton of molten steel, which is the total amount of total loss lag. Quick lime 0.7-1.2 is added during the tapping to strike the tapping flow for sufficient mixing, and the oxygen potential (Oxygen potentiaI), which is the basic condition for producing slag with good inclusion trapping ability and degassing capacity, that is, FeO, In order to keep the MnO component low, it is put on top of the slag introduced into the small aluminum slug.

이후 상취랜스를 이용하여 용강톤당 100-500ℓ/mim 아르곤 가스를 취입하여 강버블링을 실시한 후 탈가스설비를 이용, 용강톤당 250-400ℓ/hr의 아르곤가스을 취입하여 탈수소를 위해 2torr이하 고진공에서 10-15분을 처리한다.After blowing the 100-500ℓ / mim argon gas per ton of molten steel using a deodorizing lance, and performing the steel bubble blowing, and using the degassing equipment, injecting the argon gas of 250-400ℓ / hr per ton of molten steel to less than 2torr in high vacuum for dehydrogenation. -15 minutes treatment.

그리고, 이 경우에는 탈가스설비의 침적관를 보호하기 위하여 침적관내외부에 하기 표 1의 성분을 가진 연와재와 물을 혼합하고 이 재료를 공기를 이용하여 탈가스처리 10-20분전에 스프레이를 실시한다.In this case, in order to protect the deposition pipe of the degassing facility, the softwood and water having the components shown in Table 1 are mixed inside and outside the deposition pipe, and the material is sprayed 10-20 minutes before degassing using air. do.

[표 1]TABLE 1

그러나, 이 방법의 경우 탈가스 처리 10-20분전에 스프레이를 실시하게 됨으로 써, 초기수소가 증가하게되고 알미늄이나 또는 유화물계 개재물의 제어한계, 탈류의 한계로 초음파탐상결과 불량율이 증가하여 소재로 사용이 불가능한 문제점이있다.However, this method is sprayed 10-20 minutes before the degassing treatment, which increases the initial hydrogen, the control limit of aluminum or sulfide inclusions, and the limitation of degassing. There is a problem that is impossible to use.

본 발명자들은 상기한 종래방법들의 제반문제점를 해결하기위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 1차로 교반시간 및 개재물 분리부상시간을 증가시키고, 탈류제인 칼슘-실리콘(Ca-Si)을 용강내에 취입하고 취입중에 강교반을 해줌으로써 탈류반응을 촉진하고 저융점개재물을 생성시켜 분리부상을 용이하게 하고 또한 잔류 개재물을 구상화시키고 2차로 초기수소의 증가을 방지하기 위해 스프레이 실시후 건조시간을 확보해줌으로써 수소를 감소시켜 고청정 저수소 후판후물재를 제조할 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.The present inventors conducted research and experiments to solve the above problems of the conventional methods, and based on the results of the present invention, the present invention primarily increases the agitation time and inclusion separation injury time, and dewatering By blowing zein calcium-silicon (Ca-Si) into molten steel and stirring the steel during blowing, it promotes deflow reaction, produces low melting point inclusions, facilitates separation injury, and also spheroidizes the residual inclusions and increases the initial increase of initial hydrogen. The purpose of the present invention is to provide a method for manufacturing a highly clean low hydrogen thick plate material by reducing hydrogen by securing a drying time after the spray is carried out in order to prevent.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 전로로부터 래들로의 출강중 알미늄을 함유하는 탈산제로 용강을 탈산하고 생석회를 투입한 다음, 출강완료후 래들내에 유입된 전로슬래그 상부에 알미늄을 투입하여 탈류능 및 개재물 흡수능이 우수한 슬래그를 조제한후, 버블링스탠드에서 래들내의 용강 및 슬래그를 버블링한 다음, 진공조 및 침적조를 포함하는 탈가스설비에서 탈가스 처리하여 후판후물재를 제조하는 방법에 있어서, 상기 버블링후 상취랜스를 이용하여 칼슘 실리콘계 탈류제를 용강톤당 0.7-1.0kg을 취입하고; 그리고 탈가스 처리 30분 이상전에 알미늄이나 내화재를 물과 혼합한 스프레이재를 탈가스설비의 침적관에 스프레이하고 2torr이하의 고진공으로 10-15분 동안 탈가스 처리하는 저수소 고청정 후판후물재의 제조방법에 관한 것이다.The present invention deoxidizes molten steel with deoxidizer containing aluminum during tapping from converter to ladle, and adds lime to the slag, and then adds aluminum to the upper part of converter slag introduced into the ladle after tapping to obtain slag with excellent dewatering ability and absorption of inclusions. In the method of preparing a thick plate material by bubbling the molten steel and slag in the ladle in a bubbling stand, and then degassing in a degassing facility including a vacuum bath and a deposition tank, 0.7-1.0 kg / tonne of calcium silicon-based desorbent is blown by using; In addition, the spray material mixed with aluminum or refractory water is sprayed on the deposition pipe of the degassing facility at least 30 minutes before the degassing treatment, and degassed for 10-15 minutes with high vacuum of 2torr or less. It relates to a manufacturing method.

후판후물재 제조시 제조되는 탈류능 및 개재물 흡수능이 우수한 슬래그로는 중량%로, CaO : 45-55%, AI2O3; 25-35%, 및 SiO2; 8-10%를 함유하고, 5.0-8.0의 염기도 (CaO/SiO2)를 갖는 슬래그를 들 수 있다. 본 발명에서는 버블링 스탠드에서의 버블링시 강 버블링하는 것이 바람직하다.Slag which is excellent in the degassing ability and the inclusion absorbing ability manufactured at the time of manufacture of thick plate material is weight%, CaO: 45-55%, AI 2 O 3 ; 25-35%, and SiO 2 ; Slag containing 8-10% and having a basicity (CaO / SiO 2) of 5.0-8.0. In the present invention, it is preferable to bubble strongly at the time of bubbling at the bubbling stand.

본 발명에서 투입되은 칼슘-실리콘계 탈류제는 아르곤가스등의 불활성가스를 이용하여 상취랜스에 의해 취입되며, 취입시 강교반에 의한 탈류반응 및 개재물 분리부상을 촉진시키고 분리부상이 어려운 개재물은 Ca와 반응시켜 개재물을 구상화시키는 작용을 하게 된다.Calcium-silicone desorbent added in the present invention is blown by the upper lance using an inert gas such as argon gas, promotes the dehydration reaction by the steel stirring and the separation separation inclusions and the inclusions difficult to separate the separation reaction with Ca To act to shape the inclusions.

이때, 본 발명에서 투입되는 칼슘-실리콘계 탈류제은 통상의 칼슘-실리콘계 탈류제를 사용할 수 있는데, 예를들면, 중량%로Ca;30%이상, Si;55-65%, C;1.4%이하, P;0.05%이하 및 기타 불가피한 불순물로 조성되는 칼슘-실리콘계 탈류제를 들수 있다.At this time, the calcium-silicone dehydrating agent introduced in the present invention may use a conventional calcium-silicone dehydrating agent, for example, by weight% Ca; 30% or more, Si; 55-65%, C; 1.4% or less, P; 0.05% or less and calcium-silicone desorbents composed of other unavoidable impurities.

그러나, 상기 칼슘-실리콘계 탈류제의 취입량이 톤당 0.7Kg이하인 경우에는 용강내로 취입된 칼슘 및 실리콘과 용강내의 개재물의 반응 기회감소로 첨가효과가 미흡하고, 1.0Kg이상인 경우에는 강교반증가에 따른 재산화, 슬래그의 용강내 역류로 용강이 오염되고 온도가 강하되어 탈가스 처리시간 단축이 불가피 해지고 연속주조 연결시간 부족등 작업이 원활히 이루어지지 못하므로, 상기 칼슘-실리콘계 탈류제의 취입량은 용강톤당 0.7-1.0Kg으로 제한하는 것이 바람직 하다.However, when the amount of calcium-silicone desorbent is less than 0.7Kg per ton, the addition effect is insufficient due to the reduction of the reaction chance of calcium and silicon injected into the molten steel and the inclusions in the molten steel. Because the molten steel is contaminated by the reverse flow of molten steel and slag and the temperature drops, it is inevitable to shorten the degassing treatment time, and the lack of continuous casting connection time is not performed smoothly. It is desirable to limit to 0.7-1.0 Kg.

또한, 상기 칼슘-실리콘계 탈류제의 입도는 40mesh이하로 제한하는 것이 바람직하다.In addition, the particle size of the calcium-silicon releasing agent is preferably limited to 40 mesh or less.

한편, 본 발명에서는 침적관를 보호하기 위하여 침적관 보호용 알루미나 내화재를 물과 혼합한 스프레이재를 침적관에 도포한후 탈가스처리를 행하게되는데, 스프레이재의 도포는 탈가스처리전 30분이상 바람직하게는 30분-1시간 이전에 행해야 하는데, 이는 충분한 건조시간을 확보해줌으로써 수소증가를 방지할 수 있기 때문이다.On the other hand, in the present invention, in order to protect the immersion tube, a spray material mixed with alumina refractory material for protecting the immersion tube is applied to the immersion tube, followed by degassing treatment. The spraying material is preferably applied for 30 minutes or more before degassing treatment. It should be done 30 minutes to 1 hour before, since it is possible to prevent the increase of hydrogen by ensuring sufficient drying time.

이때, 본 발명에서 사용되는 침적관 보호용 알루미나 내화물은 통상의 AI2O3-SiO2내화물을 사용할 수 있는데, 예를들면 AI2O3; 80중량% 이상이고 SiO2가 18중량% 이하 및 기타 불가피한 불순물을 포함하여 조성되는 알루미나 내화물이 바람직하다.At this time, the alumina refractory for protecting the dip tube used in the present invention may use a conventional AI 2 O 3 -SiO 2 refractory, for example, AI 2 O 3 ; Preference is given to alumina refractory comprising at least 80% by weight and composed of up to 18% by weight of SiO 2 and other unavoidable impurities.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

300톤을 용량의 전로로부터 1710℃의 용강을 출강시 95중량% 품위의 알루미늄 750Kg으로 탈산하고 생석회 2.4톤을 투입하면서 래들에 출강한 뒤 소형의 알루미늄 60Kg을 유입된 전로슬래그 상부에 투입하여 슬래그중 FeO, MnO을 탈산시키고 상취랜스를 이용하여 아르곤가스를 유량 3.5Nm3/min으로 취입하여 강버블링을 5-7분 실시하고, 하기표 2의 탈류제를 상취랜스를 이용하여 용강중에 용강톤당 0.7Kg을 취입하였다.When tapping molten steel at 1710 ° C from a converter with a capacity of 300 tons, it deoxidizes to 750Kg of 95% by weight grade aluminum and taps into the ladle while adding 2.4 tons of quicklime. Deoxidation of FeO and MnO, blowing argon gas at a flow rate of 3.5 Nm 3 / min using a deodorizing lance, and performing 5-5 minutes of strong bubbling, using the decanting agent of Table 2 per molten steel in the molten steel 0.7 kg was blown.

또 비교예로서 종래법의 칼슘실리콘의 취입이 없는 경우에 대해서도 동일하게 출강시 및 출강후 탈산 및 생석회투입, 아르곤가스를 이용한 강버블링을 실시하였다.As a comparative example, also in the case where there was no injection of calcium silicon according to the conventional method, deoxidation, quicklime injection, and strong bubbling using argon gas were performed at the time of tapping and after tapping.

다음에, 탈가스설비에서 2torr이하의 고진공하에서 10-15분동안 탈가스 처리한 다음, 후판후물재를 제조하였다.Next, after degassing for 10-15 minutes in a high vacuum of 2torr or less in a degassing facility, a thick plate material was produced.

이때, 탈가스 설비 침적관의 침식에 의한 침적관 연와 부분탈락 및 크랙방지를 위해 하기표 1의 내화재를 물과 혼합하여 침적관에 스프레이를 실시하는데 종래법에서는 탈가스설비에서 용강도착 10-20분전에 실시하였으나 본 발명법에서는 상기 1공정을 거친용강이 탈가스 설비에 도착하기 30분전에 실시하였다. 상취랜스를 이용한 칼슘-실리콘계 탈류제 취입량에 따른 전산소량 및 탈류제를 전혀 취입하지 않은 경우(종래법)에 대한 전산소량을 측정하고, 그 결과를 제1도에 나타내었다.At this time, in order to prevent sedimentation pipe connection, partial dropout and cracking by erosion of the degassing facility deposition pipe, the refractory material of Table 1 is mixed with water and sprayed on the deposition pipe in the conventional method. In the present invention method, however, molten steel having undergone the above step 1 was carried out 30 minutes before arriving at the degassing facility. The total oxygen amount according to the calcium-silicone desorbent blowing amount using the upper lance and the total oxygen amount for the case where no desorbent was blown (conventional method) were measured, and the results are shown in FIG.

또한, 탈가스처리전 침적관 스프레이이후 탈가스처리 시간에 따른 수소함량 변화를 조사하고, 그 결과를 제2도에 나타내었다.In addition, the hydrogen content change according to the degassing time after the deposition pipe spray before degassing was investigated, and the results are shown in FIG. 2.

또한, 초음파 탐상법에 의해 결함에 의한 불량율을 조사하고, 그 결과를 제3도에 나타내었다.In addition, the defect rate by the defect was investigated by the ultrasonic flaw detection method, and the result is shown in FIG.

또한, 편석부위의 황함량 및 -45℃에서의 샤르피 충격치를 조사하고, 그 결과를 편석부위의 황함량에 대해서는 제4도에, 샤르피 충격치에 대해서는 제5도에 나타내었다.In addition, the sulfur content of the segregated portion and the Charpy impact value at −45 ° C. were investigated, and the results are shown in FIG. 4 for the sulfur content of the segregated portion and FIG. 5 for the Charpy impact value.

[표 2]TABLE 2

[표 3]TABLE 3

제1도에 나타난 바와 같이, 청정도의 치수인 강중산화물계 개재물의 양으로 나타나는 전산소량의 평균값으로 비교해볼 때 본 발명법이 종래법에 비하여 우수함을 알 수 있다.As shown in FIG. 1, it can be seen that the method of the present invention is superior to the conventional method when compared with the average value of the total oxygen amount represented by the amount of strong oxide inclusions, which is a dimension of cleanliness.

또한, 제2도에 나타난 바와 같이, 본 발명법이 종래법에 비하여 우수한 수소함량 감소효과를 나타내고 있는데, 이는 30분 이상 건조시 초기수소함량이 종래법 보다 낮아져 고진공하에서 10-15분 탈가스 처리후에도 수소농도가 감소하기 때문이다.In addition, as shown in FIG. 2, the present invention shows an excellent hydrogen content reduction effect compared to the conventional method, which is lower in initial hydrogen content than the conventional method when dried for 30 minutes or more, and degassed under high vacuum for 10-15 minutes. This is because the hydrogen concentration decreases later.

또한, 제3도 및 제4도에 나타난 바와 같이, 본 발명법인 칼슘-실리콘계 탈류제 취입에 의해 MnS의 연신개재물이 구상화되고 편석도에서도 알 수 있는 바와 같이, 편석부의 유황 농도가 적어짐으로써 본 발명법이 종래법에 비하여 불량율이 크게 감소됨을 명확히 알 수 있다.In addition, as shown in FIG. 3 and FIG. 4, the stretch inclusion of MnS is spheroidized by the calcium-silicone type | system | group degassing agent injection of this invention method, and as shown also in segregation degree, it is seen that the sulfur concentration of a segregation part becomes small. It can be clearly seen that the inventive method significantly reduces the defective rate compared with the conventional method.

또한, 제5도에 나타난 바와 같이, 충격치에 있어서도 본 발명법 이 종래법에 비하여 우수하게 나타남을 알 수 있다.In addition, as shown in FIG. 5, it can be seen that the method of the present invention is superior to the conventional method even in the impact value.

즉, 본 발명법의 경우 칼슘실리콘 투입과 침적과 보호용 내화재의 침적관 내외부스프레이후 건조시간을 확보하고 고진공하에서 처리를 해줌으로써 초음파탐상에 의한 불량율을 크게 감소시킬 수 있으며, 전산소량에 있어서도 다소 낮은값을 보이고, 충격치, 인성, 굴곡가능성등의 기계적성질이 크게 향상되므로써, 본 발명법이 종래법보다 우수함을 알 수 있다.That is, in the present invention method, the calcium silica can be injected and the drying time after the internal and external spraying of the deposition and protective refractory materials is secured, and the treatment rate under high vacuum can greatly reduce the defect rate caused by the ultrasonic inspection, and even in the amount of oxygen By showing a value and greatly improving mechanical properties such as impact value, toughness, and bendability, it can be seen that the present invention method is superior to the conventional method.

상술한 바와 같이, 본 발명에 의하면, 제강공정에서 용이하게 얻어지는 칼슘실리콘 사용과 탈가스 설비의 내화물 침식을 지연시키는 물질을 효과적으로 사용함으로써 편석도 저감도MnS 및 알미루미나계 개재물 구상화 및 전 산소량과 수소감소에 따른 저수소 고청정 후판후물재를 제조할 수 있는 효과가 있다.As described above, according to the present invention, the segregation degree reduction degree MnS and the alumina-based inclusions spheroidization and the total amount of oxygen by using calcium silicon easily obtained in the steelmaking process and effectively using materials that delay the refractory erosion of the degassing plant There is an effect that can produce a low hydrogen high clean thick plate material according to the hydrogen reduction.

Claims (1)

전로로부터 래들로의 출강중 알미늄을 함유하는 탈산제로 용강을 탈산하고 생석회를 투입한다음, 출강완료 후 래들내의 유입된 전로 슬래그 상부에 알미늄을 투입하여 탈류능 및 개재물 흡수능이 우수한 슬래그를 조제한후, 버블링 스텐드에서 래들내의 용강 및 슬래그를 버블링한 다음, 진공조 및 침석조를 포함하는 탈가스 설비에서 탈가스 처리하여 후판후물재를 제조하는 방법에 있어서, 상기 버블링후 상취랜스를 이용하여 통상의 칼슘-실리콘계 탈류제를 용강톤당 0.7-1.0Kg을 취입하고; 그리고 탈가스 처리 30분 이상전에 통상의 알루미나 내화재를 물과 혼합한 스프레이재를 탈가스 설비의 침적관에 스프레이하고 2torr이하의 고진공으로 10-15분 동안 칼가스 처리하는 것을 특징으로 하는 저수소 고청정 후판후물재의 제조방법.Deoxidizer containing aluminum during tapping from converter to ladle is used to deoxidize molten steel and add quicklime, and after finishing tapping, aluminum is added to the top of the converter slag introduced into the ladle to prepare slag with excellent dewatering ability and absorption of inclusions. A method of manufacturing a thick plate material by bubbling molten steel and slag in a ladle in a bubbling stand, followed by degassing in a degassing facility including a vacuum tank and a settling tank. 0.7-1.0 Kg per ton of molten calcium-silicone desorbent of the blow-in; And 30 minutes or more before degassing, the spray material mixed with alumina refractory material with water is sprayed on the deposition pipe of the degassing facility and calgas treatment for 10-15 minutes with high vacuum of 2torr or less. Method for producing a clean thick plate material.
KR1019930030271A 1993-12-28 1993-12-28 Making method of low hydrogen clean steel KR950012418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930030271A KR950012418B1 (en) 1993-12-28 1993-12-28 Making method of low hydrogen clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930030271A KR950012418B1 (en) 1993-12-28 1993-12-28 Making method of low hydrogen clean steel

Publications (2)

Publication Number Publication Date
KR950018521A KR950018521A (en) 1995-07-22
KR950012418B1 true KR950012418B1 (en) 1995-10-17

Family

ID=19373286

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930030271A KR950012418B1 (en) 1993-12-28 1993-12-28 Making method of low hydrogen clean steel

Country Status (1)

Country Link
KR (1) KR950012418B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258785B1 (en) * 2011-08-01 2013-04-29 주식회사 포스코 Manufacturing method of duplex stainless steel
KR101412552B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Lf-refining method for improving desulfurization effiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258785B1 (en) * 2011-08-01 2013-04-29 주식회사 포스코 Manufacturing method of duplex stainless steel
KR101412552B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Lf-refining method for improving desulfurization effiency

Also Published As

Publication number Publication date
KR950018521A (en) 1995-07-22

Similar Documents

Publication Publication Date Title
CN109097518B (en) Smelting process for controlling inclusion of spring steel
CN110205436B (en) Smelting method for producing IF steel in full-flow low-oxygen level
CN108330389A (en) One kind exempting from Calcium treatment calmness clean steel production technology
KR950012418B1 (en) Making method of low hydrogen clean steel
JP3463573B2 (en) Manufacturing method of ultra clean ultra low sulfur steel
KR920004937B1 (en) Making process for the high cleaned steel
KR100226901B1 (en) Desulphurization agent of molten metal
KR100226898B1 (en) Molten metal purification composite of al-killed steel
CN111112594A (en) Stopper rod for pouring low-carbon low-alloy steel and steelmaking process using stopper rod
JPH04110413A (en) Production of high carbon steel wire rod
KR910006640B1 (en) Making process for high pure steel
KR101018167B1 (en) Method for Manufacturing Steel with Low Sulfur
KR900006660B1 (en) Treating agent for desulfurizing molten steels and method for treating molten steels
KR100311803B1 (en) Method for refining aluminium deoxidation steel
KR100815768B1 (en) Method for controlling refine slag of Grain-Oriented electrical Steel
KR20020000701A (en) A method for refining high silicon molten iron without slopping
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP2008260997A (en) Desulfurization method of molten steel
KR950010171B1 (en) Making method of high purity steel
KR100896641B1 (en) Method for Desulphurization-Refining Molten Pig Iron
KR20020042122A (en) Method for manufacturing extra low carbon steel with high cleanness
KR101091956B1 (en) Method for desulfurizing molten metal
KR100325098B1 (en) Molten steel refinement in electric furnace
JPH1192818A (en) Melting of high clean extra-low carbon steel
SU1167212A1 (en) Refining mixture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031002

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee