KR950010748B1 - Method for preparation of the precomposite for carbon fiber - Google Patents

Method for preparation of the precomposite for carbon fiber Download PDF

Info

Publication number
KR950010748B1
KR950010748B1 KR1019930018091A KR930018091A KR950010748B1 KR 950010748 B1 KR950010748 B1 KR 950010748B1 KR 1019930018091 A KR1019930018091 A KR 1019930018091A KR 930018091 A KR930018091 A KR 930018091A KR 950010748 B1 KR950010748 B1 KR 950010748B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
solution
fusion
fiber
precursor
Prior art date
Application number
KR1019930018091A
Other languages
Korean (ko)
Other versions
KR950008752A (en
Inventor
임대우
김순식
강창권
김진익
Original Assignee
제일합섬주식회사
박홍기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일합섬주식회사, 박홍기 filed Critical 제일합섬주식회사
Priority to KR1019930018091A priority Critical patent/KR950010748B1/en
Publication of KR950008752A publication Critical patent/KR950008752A/en
Application granted granted Critical
Publication of KR950010748B1 publication Critical patent/KR950010748B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

The high intense and elastic carbon fiber is produced by (a) solution polymerizing a copolymer of 99.0 wt.pts(parts) acrylonitrile and 1.0 wt.pts(parts) itaconic acid with a polymerization initiator i.e. azobisisobutyronitrile in the dimethylsulfoxide as a solvent at 55 deg.C. to make a dimethylsulfoxide solution of 20 wt.pts(parts) polyacrylonitrile, (b) spinning the solution, removing the solvent, and drawing the undrawn fiber by 4.0 drawing magnification in 90 deg.C. heat water, (c) adding a polysiloxane oil solution to the drawn fiber, dispersing a triethylamine to it at 120 deg.C. pressurized vapour, and then drawing it by 3.0 drawing magnification, and (d) drying it by 130 deg.C. heat roller, treating it in the flame retarding furnace of 230-270 deg.C. for 50 mim and under the nitrogen atmosphere at 1000 deg.C. or more for 2 min.

Description

고강도·고탄성 탄소섬유용 전구체의 제조방법Manufacturing method of high strength, high elastic carbon fiber precursor

본 발명은 고강도·고탄성 탄소섬유용 전구체의 제조방법에 관한 것으로, 좀더 상세하게는 탄소섬유용 아크릴계 섬유의 방사와 내염화공정 사이에 2단계 이상의 다단계 연신을 하고 연신 전후 혹은 연신중에 폴리실록산계 유제처리 및 여기의 수용액 또는 증기처리를 행하여 단사간의 융착을 최소화 하므로서 탄소섬유의 품질 및 생산성을 높임을 특징으로 하는 고강도·고탄성 탄소섬유용 전구체의 제조방법에 관한 것이다.The present invention relates to a method for producing a high-strength, high-elastic carbon fiber precursor, and more particularly, two or more steps of multi-step stretching between spinning and flame-proofing the acrylic fiber for carbon fiber, polysiloxane emulsion treatment before or after stretching And it relates to a method for producing a high-strength, high elastic carbon fiber precursor characterized in that the quality and productivity of the carbon fiber is improved by minimizing fusion between single yarns by performing an aqueous solution or steam treatment.

탄소섬유는 다른 복합재료용 강화섬유에 비해 비강도 및 비탄성율이 우수하여 널리 이용되고 있으며 또한 이의 이용분야에 대하여 많은 연구 및 개발이 이루어져 왔다. 탄소섬유의 주요용도는 항공·우주산업분야, 스포츠·레져분야 및 일반 산업분야이며, 전기적 특성 및 열적 성질이 우수하여 더욱 광범위한 분야에서 이용될 전망이다.Carbon fibers are widely used because of their superior strength and inelasticity compared to other reinforcing fibers for composite materials, and many researches and developments have been made on their applications. The main uses of carbon fiber are in aviation, aerospace, sports, leisure and general industries, and are expected to be used in a wider range of fields due to their excellent electrical and thermal properties.

탄소섬유는 일반적으로 전구체로서 아크릴계, 레이온계, 피치계 또는 폴리비닐알콜계 섬유를 제조하여 산화성 분위기하에서 200~400℃의 열처리를 통해 내염화섬유로 만든후, 아르곤, 질소 등의 불활성 분위기하에서 1,000℃ 이상의 고온으로 열처리하여 제조한다.Carbon fiber is generally made of acrylic, rayon, pitch-based or polyvinyl alcohol-based fibers as precursors and made into flame resistant fiber by heat treatment at 200-400 ° C. under an oxidizing atmosphere, and then under 1,000 inert atmosphere such as argon and nitrogen. It is prepared by heat treatment at a high temperature of ℃ or more.

상기 공정중 내염화 공정은 아크릴 섬유내에 나프티리딘환 등의 환화구조를 형성, 섬유의 내열성을 향상시켜 이후 고온처리 공정에서 열적 안정성을 주기위한 공정으로서 탄소섬유의 물성을 좌우하는 중요한 공정이다. 내염화공정은 발열반응으로서 내염화 열처리시 반응이 진행함에 따라 급격한 발열을 동반한다. 이때 국부적인 축열이 일어나면 융착이 발생, 섬유의 분해·절사가 일어나 탄소섬유의 품질 및 생산성의 저하가 나타나게 된다. 따라서, 단사간 융착방지 기술은 탄소섬유의 품질 및 생산성을 높이는데 매우 중요하다. 이러한 단사간의 융착은 내염화공정 이전에 전구체 제조중에도 일어난다. 즉, 내염화공정 이전공정인 연신공정, 건조치밀화공정 중에서도 단사간 융착이 확인되며, 이러한 공정에서의 단사간 융착을 최소한으로 줄이는 것이 탄소섬유 제조에 있어 품질 및 조업면에서 대단히 중요한 포인트가 된다.The flameproofing process is an important process for forming the cyclized structure such as naphthyridine ring in the acrylic fiber to improve the heat resistance of the fiber to give thermal stability in the high temperature treatment process and then influence the physical properties of the carbon fiber. The flameproof process is an exothermic reaction and is accompanied by a rapid exotherm as the reaction proceeds during the flameproof heat treatment. At this time, when local heat storage occurs, fusion occurs, fiber breakdown and cutting occur, and the quality and productivity of carbon fiber decrease. Therefore, the single yarn fusion prevention technology is very important for improving the quality and productivity of the carbon fiber. This single yarn fusion occurs even during precursor preparation prior to the flameproof process. That is, fusion between single yarns is confirmed among the stretching process and the dry densification process before the flameproofing process, and reducing the fusion between single yarns in such a process is a very important point in terms of quality and operation in manufacturing carbon fiber.

전구체 제조공정 및 내염화시 단사간의 융착을 방지하기 위해서는 통상 전구체 제조공정에 실리콘유제를 사용한다. 예로서 일본특개평 2-91224호에서는 아미노 변성 실리콘유제를 부여하여, 그 섬유를 소성시켜 고성능의 탄소섬유를 제조하였다. 그러나, 다량의 필라멘트를 토우상으로 처리해야 하는 내염화 공정에서의 발열반응에 의한 단사간 융착을 방지하는데 있어 유제에 의한 방법은 근본적인 해결방법은 아니다. 즉, 내염화공정중의 융착은 환화 및 산화반응에 의한 열이 섬유내에 축열되므로서 일어나게 되며, 단사간 융착을 방지하기 위해서는 순간적인 축열을 방지해야 한다.In order to prevent fusion between the single yarn during the precursor manufacturing process and the flameproofing, silicone emulsion is usually used in the precursor manufacturing process. As an example, Japanese Patent Laid-Open No. 2-91224 gave an amino modified silicone oil and calcined the fiber to produce a high-performance carbon fiber. However, the tanning method is not a fundamental solution in preventing single yarn fusion by exothermic reaction in the flameproofing process in which a large amount of filaments are treated in a tow phase. In other words, the fusion during the flameproofing process occurs as heat by cyclization and oxidation reaction is accumulated in the fiber, and instantaneous heat storage should be prevented to prevent fusion between single yarns.

따라서, 본 발명의 목적은 탄소섬유 제조시 순간적인 축열로 인한 단사간 융착을 방지하여 섬유가 분해, 절사되는 것을 최소화 하므로서 탄소섬유의 품질 및 생산성이 우수한 탄소섬유용 아크릴 전구체의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for producing an acrylic precursor for carbon fiber excellent in carbon fiber quality and productivity by minimizing decomposition and cutting of fibers by preventing fusion between single yarns due to instant heat storage during carbon fiber production. have.

상기한 목적 뿐만 아니라 용이하게 표출되는 또다른 목적을 달성하기 위하여 본 발명에서는 아크릴로니트릴이 90중량% 이상 포함된 아크릴 중합체 용액을 방사하고 용매를 제거한후 30~99℃의 물 및 가압수증기하에서 2단계 이상의 다단연신을 행하며 다단연신중 습윤상태에서 유제처리 및 염기의 수용액 또는 증기로 처리하여 탄소섬유용 아크릴 전구체를 제조하고 이를 통상의 방법으로 건조, 내염화, 열처리하여 고강도·고탄성 탄소섬유를 제조한다.In order to achieve the above object as well as another object that is easily expressed in the present invention, after spinning the acrylic polymer solution containing 90% by weight or more of acrylonitrile and removing the solvent under water and pressurized steam of 30 ~ 99 ℃ Multi-stage stretching is carried out in a multi-stage stretching process, and an acrylic precursor for carbon fibers is prepared by treating with an emulsion or a base solution or steam in a wet state during multistage stretching, and drying, flame-resistant and heat-treating it in a conventional manner to produce high strength and high elastic carbon fibers. .

본 발명을 좀더 상세히 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명에서 사용하는 아크릴계 공중합체는 아크릴로니트릴 90중량% 이상과 이와 공중합가능한 단량체 10중량% 이하, 바람직하게는 0.01~5중량%로 구성된다. 이때 사용가능한 공중합 단량체로는 아크릴산, 메타크릴산, 이타콘산 및 이것들의 메틸에스터, 에틸에스타, 알카리염 및 아릴술폰산, 스티렌술폰산 및 이것들의 알칼리금속염 등이 있으며 이중 이타콘산이 적절하다. 아크릴계 공중합체는 이미 알려진 바와 같이 괴상중합, 현탁중합, 용액중합 등의 통상적인 중합법으로 중합하며 중합용매로는 물, 디메틸포름아미드, 디메틸설폭사이드, 디메틸아세트아마이드, 염화아연수용액, 로만연수용액을 사용하며 디메틸포름아미드, 디메틸설폭사이드, 디메틸아세트아마이드, 염화아연수용액, 로단연수용액중에 녹여 방사원액을 만든다. 통상적으로 아크릴계 섬유의 경우 습식방사법에 의한 전구체를 사용하는 것이, 보다 우수한 물성이 탄소섬유를 얻을 수 있으나 건식방사법에 의해 제조된 전구체의 경우 단섬유간의 융착이 한층 더 잘 일어나므로 본 발명을 적용하면 효과가 더욱 현저하게 나타난다.The acrylic copolymer used in the present invention is composed of 90% by weight or more of acrylonitrile and 10% by weight or less, preferably 0.01 to 5% by weight of a monomer copolymerizable therewith. The copolymerizable monomers that can be used include acrylic acid, methacrylic acid, itaconic acid and methyl esters thereof, ethyl ester, alkali salts and arylsulfonic acid, styrenesulfonic acid and alkali metal salts thereof, and the like. As already known, the acrylic copolymer is polymerized by conventional polymerization methods such as bulk polymerization, suspension polymerization and solution polymerization. As the polymerization solvent, water, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, zinc chloride aqueous solution and roman soft water solution are used. It is dissolved in dimethylformamide, dimethyl sulfoxide, dimethylacetamide, zinc chloride solution, and rodan soft solution to make a spinning stock solution. In general, in the case of acrylic fibers, the use of a precursor by wet spinning can provide carbon fibers with better physical properties, but in the case of precursors prepared by the dry spinning method, fusion between short fibers occurs more preferably. The effect is more pronounced.

본 발명의 가장 큰 특징은 방사와 내염화공정 사이에 2단계 이상의 다단계연신을 하고, 1차 혹은 2차 연신전후 또는 연신중에 여기의 증기 또는 염기의 수용액으로 처리를 하는 것이다. 연신은 30~99℃의 물중에서 다단계연신을 하고, 그후 120℃의 가압수증기하에서 연신 또는 완화를 한다. 연신은 통상 연신욕 입출구에 설치된 로울러에 의해 행해진다. 연신배율에 따라 입구와 출구사이의 로울러 구동속도를 조절하여 섬유에 연신 및 완화를 행하게 된다. 구동 로울러에 의해 연신을 할 경우 섬유와 로울러 표면 사이의 강한 압착으로 인해 단섬유간에 융착이 발생한다. 특히 연신비가 높을수록 강한 토크에 융착이 심해지며, 섬유내의 용매 함량이 많을수록 융착이 쉽게 일어난다. 이러한 로울러상의 융착은 유제를 처리하여 방지할 수 있다. 유제처리에 있어 포인트는 유제를 균일하게 부여하는 것이다. 키스-롤법이 가이드법보다 유제를 균일하게 부여할 수 있으므로 유리하다. 본 발명에 사용된 유제를 하기 일반식(I)과 같다.The greatest feature of the present invention is that two or more multistep stretching is carried out between the spinning and flameproofing processes, and treated with an aqueous solution of the vapor or base here before or during the first or second stretching. Stretching is carried out in a multistage stretching in water at 30 to 99 ° C., followed by stretching or relaxation under 120 ° C. pressurized steam. Stretching is usually performed by a roller provided at an extension bath entrance and exit. According to the draw ratio, the roller driving speed between the inlet and the outlet is adjusted to draw and relax the fibers. When drawing by the driving roller, fusion occurs between short fibers due to the strong compression between the fiber and the roller surface. In particular, the higher the draw ratio, the greater the fusion to the strong torque, and the higher the solvent content in the fiber, the easier the fusion occurs. This roller phase fusion can be prevented by treating the emulsion. In tanning, the point is to give the emulsion evenly. The kiss-roll method is advantageous because it can give an emulsion more uniformly than the guide method. The emulsion used in the present invention is represented by the general formula (I).

여기에서, R1, R2, R3, R4, R5, R6, R7은 메틸 또는 에틸기이며, R8은 알킬기, 수산기, 알콕시기 및 에폭시기를 함유한 폴리에테르이고, m, n은 1 이상의 정수이며, m+n은 20~2000사이의 값을 갖는다.Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 are methyl or ethyl groups, R 8 is a polyether containing an alkyl group, a hydroxyl group, an alkoxy group and an epoxy group, m, n Is an integer of 1 or more, and m + n has a value between 20 and 2000.

내염화공정중의 융착은 환화 및 산화반응에 의한 열이 섬유내에 축열되므로서 일어나는데 이는 1차 혹은 2차 연신 전후 또는 가압수증기하에서의 연신 혹은 완화중에서 염기의 수용액 또는 증기로 처리를 함으로서 방지할 수 있다. 사용되는 염기로는 트리에틸아민, 암모니아, 수산화나트륨, 수산화칼륨, 암모니아금속염으로 구성되는 군으로부터 선택되고 특히, 트리에틸아민, 암모니아가 바람직하다. 사용되는 염기의 농도는 0.006mol/1~0.015mol/l로 하며 120℃~150℃의 가압수증기하에서 분사하거나 가열하여 증기처리한다. 염기의 농도가 0.006mol/l 미만이면 내염화공정에서의 융착발생을 방지할 수 있는 효과가 저조한 단점이 있고 0.015mol/l를 넘으면 처리효과의 상승효과가 없었다.The fusion during the flameproofing process is caused by the heat storage by the cyclization and oxidation reactions in the fibers, which can be prevented by treating with an aqueous solution or steam of the base before or after primary or secondary stretching or during stretching or relaxation under pressurized steam. . The base used is selected from the group consisting of triethylamine, ammonia, sodium hydroxide, potassium hydroxide, ammonia metal salt, and triethylamine and ammonia are particularly preferable. The concentration of the base used is 0.006mol / 1 ~ 0.015mol / l and steamed by spraying or heating under pressurized steam at 120 ℃ ~ 150 ℃. If the concentration of the base is less than 0.006 mol / l has a disadvantage that the effect of preventing the fusion in the salt-proofing process has a low disadvantage, and if it exceeds 0.015 mol / l there was no synergistic effect of the treatment effect.

다음의 실시예 및 비교예는 본 발명을 좀더 상세히 설명하는 것으로 본 발명의 범주를 한정하지는 않는다.The following examples and comparative examples illustrate the invention in more detail and do not limit the scope of the invention.

[실시예 1]Example 1

아조비스이소부티로니트릴을 중합개시제로 사용하여 디메틸설폭사이드중에서 아크릴로니트릴 99.9중량%, 이타콘산 1.0중량%의 공중합체를 55℃에서 용액중합하여 폴리아크릴니트릴 20중량%의 디메틸설폭사이드 용액을 제조하였다. 이를 45℃로 유지하고, 홀수 3000, 홀크기 0.1mmø인 구금을 통해 30℃의 디메틸설폭사이드 30%의 수용액에 4mm의 에어갭을 주어 방사하였다. 이어 50℃의 수용액중에서 용매를 제거하고, 90℃의 열수중에서 4배연신을 하였다. 연신후 일반식(I)의 폴리실록산계 유제(R1~R7: 메틸, R8: 디메틸에테르, m=20, n=20)를 가하고, 120℃의 가압수증기상에 노즐을 설치하여 농도가 0.006mol/l인 트리에틸아민을 분사하면서 3배의 연신을 한후 상기의 폴리실록산계 유제를 가하고, 130℃의 가열 롤러를 사용하여 건조 치밀화한후, 230℃~270℃의 온도구배를 갖는 열풍산화성 분위기의 내염화노에서 50분간 처리하였다. 이어 질소분위기하, 1,000℃ 이상의 온도에서 2분간 처리하여 탄소섬유를 제조하였다. 얻어진 탄소섬유의 융착도 및 물성을 표 1에 나타내었다.Using azobisisobutyronitrile as a polymerization initiator, a copolymer of 99.9% by weight of acrylonitrile and 1.0% by weight of itaconic acid in dimethyl sulfoxide was polymerized at 55 DEG C to obtain a 20% by weight dimethyl sulfoxide solution of polyacrylonitrile. Prepared. This was maintained at 45 ° C, and was spun with an air gap of 4 mm in an aqueous solution of 30% of dimethyl sulfoxide 30% at 30 ° C through a detention with an odd number of 3000 and a hole size of 0.1 mm. Subsequently, the solvent was removed in an aqueous solution at 50 ° C and stretched four times in hot water at 90 ° C. After stretching, a polysiloxane-based emulsion of formula (I) (R 1 to R 7 : methyl, R 8 : dimethyl ether, m = 20, n = 20) was added, and a nozzle was installed on pressurized steam at 120 ° C. to increase the concentration. After stretching three times while injecting triethylamine of 0.006 mol / l, the polysiloxane emulsion was added, dried and densified using a heating roller at 130 ° C., and hot air oxidizing property having a temperature gradient of 230 ° C. to 270 ° C. Treatment was carried out for 50 minutes in an atmosphere flameproof furnace. Subsequently, carbon fibers were prepared by treating the mixture at a temperature of 1,000 ° C. or higher for 2 minutes under a nitrogen atmosphere. Table 1 shows the degree of fusion and physical properties of the obtained carbon fibers.

[실시예 2~3][Examples 2-3]

트리에틸아민의 농도를 각각 0.008mol/l, 0.010mol/l로 바꾼것 이외에는 실시예 1과 동일하게 실시하였으며 그 결과를 표 1에 나타내었다.Except for changing the concentration of triethylamine to 0.008 mol / l, 0.010 mol / l, respectively, was carried out in the same manner as in Example 1 and the results are shown in Table 1.

[비교예 1~3][Comparative Examples 1-3]

트리에틸아민을 처리하지 않았을 때와 각각 0.002mol/l, 0.004mol/l로 처리한것 이외에는 실시예 1과 동일하게 실시하였으며 그 결과를 표 1에 나타내었다.Except when the triethylamine was not treated and treated with 0.002 mol / l, 0.004 mol / l, respectively, was carried out in the same manner as in Example 1 and the results are shown in Table 1.

[표 1]TABLE 1

※ 물성평가방법※ Property Evaluation Method

(1) 융착도(1) fusion degree

탄소섬융 토우를 5mm 길이로 자른후 계면활성제 0.5중량% 수용액중에 분산시켜 프로펠러형 교반기를 사용하여 60rpm으로 1분간 교반시켜 여과한후 여과지 상에서 융착된 섬유의 수를 십분율로 나타내어 아래기준에 따라 판정하였다.Cut carbon tow into 5mm lengths, disperse in 0.5% by weight aqueous solution of surfactant, stir at 60rpm for 1 minute using propeller type stirrer, filter, and show the number of fibers fused on filter paper by 10%. It was.

융착수 1 이하 : ○Fusion water 1 or less: ○

융착수 2~4 : Fusion Water 2 ~ 4:

융착수 5 이상 : ×Fusion Water 5 or more: ×

(2) 스트랜드 강도 및 탄성율(2) strand strength and elastic modulus

JIS R-7601에 준하여 에폭시수지 함침 스트랜드의 물성을 측정하였고, 10회의 평균치를 표시하였다.The physical properties of the epoxy resin impregnated strands were measured in accordance with JIS R-7601, and average values of 10 times were displayed.

Claims (3)

아크릴로니트릴 함량이 90중량% 이상인 중합체를 방사하여 용매를 제거하고 얻은 섬유를 2단계 이상의 다단계 연신 및 가압수증기하에서 완화하는 동안에 염기의 수용액 또는 증기를 처리함을 특징으로 하는 탄소섬유용 전구체의 제조방법.Preparation of a precursor for carbon fiber characterized in that an aqueous solution or vapor of a base is treated while spinning a polymer having an acrylonitrile content of 90% by weight or more to remove the solvent and relaxing the obtained fiber under two or more multistage stretching and pressurized steam. Way. 제 1 항에 있어서, 염기는 트리에틸아민, 암모니아, 수산화나트륨, 수산화칼륨, 암모니아 금속염으로 구성되는 군으로부터 선택된 1종의 화합물임을 특징으로 하는 탄소섬유용 전구체의 제조방법.The method of producing a precursor for carbon fiber according to claim 1, wherein the base is one compound selected from the group consisting of triethylamine, ammonia, sodium hydroxide, potassium hydroxide, and ammonia metal salt. 제 1 항에 있어서, 염기의 농도는 0.006mol/l~0.015mol/l임을 특징으로 하는 탄소섬유용 아크릴 전구체의 제조방법.The method of claim 1, wherein the concentration of the base is 0.006 mol / l ~ 0.015 mol / l method for producing an acrylic precursor for carbon fibers.
KR1019930018091A 1993-09-09 1993-09-09 Method for preparation of the precomposite for carbon fiber KR950010748B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930018091A KR950010748B1 (en) 1993-09-09 1993-09-09 Method for preparation of the precomposite for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930018091A KR950010748B1 (en) 1993-09-09 1993-09-09 Method for preparation of the precomposite for carbon fiber

Publications (2)

Publication Number Publication Date
KR950008752A KR950008752A (en) 1995-04-19
KR950010748B1 true KR950010748B1 (en) 1995-09-22

Family

ID=19363194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930018091A KR950010748B1 (en) 1993-09-09 1993-09-09 Method for preparation of the precomposite for carbon fiber

Country Status (1)

Country Link
KR (1) KR950010748B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525447B (en) * 2024-01-05 2024-03-15 天津泰然储能科技有限公司 Three-stage gradient porous electrode for all-vanadium redox flow battery and preparation method thereof

Also Published As

Publication number Publication date
KR950008752A (en) 1995-04-19

Similar Documents

Publication Publication Date Title
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
JP2008308776A (en) Method for producing polyacrylonitrile-based precursor fiber, method for producing carbon fiber, and carbon fiber
JP2003073932A (en) Carbon fiber
JPS6336365B2 (en)
KR950010748B1 (en) Method for preparation of the precomposite for carbon fiber
JPH0978340A (en) Acrylic fiber of carbon fiber precursor
EP3954733A1 (en) Polyester resin for flame retardant fiber, flame retardant fiber having excellent dyeability, and preparation method therefor
JP2014159665A (en) Method for producing carbon fiber bundle, and carbon fiber bundle
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
GB2142665A (en) Acrylic fibers for producing preoxidized fibers
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JPS63203878A (en) Production of precursor fiber for producing carbon fiber
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
KR960005970B1 (en) Method for the preparation of the precursor for carbon fiber
EP0153809B1 (en) A process for preparing acrylonitrile-based filaments for carbon fibres free of agglutination
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2875667B2 (en) Method of stretching acrylic yarn for carbon fiber precursor in bath
JP2002371476A (en) Silicone oil solution for carbon fiber and method for producing carbon fiber
KR0123942B1 (en) Manufacturing process of carbon fiber
KR20120007183A (en) Manufacturing method of carbon fiber
JPS61119719A (en) Production of carbon fiber of high strength
JP2021139062A (en) Production method of carbon fiber bundle
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
US20210230775A1 (en) A process for producing carbon fibers and carbon fibers made therefrom
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990730

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee