KR940001790B1 - Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor - Google Patents

Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor Download PDF

Info

Publication number
KR940001790B1
KR940001790B1 KR1019860003176A KR860003176A KR940001790B1 KR 940001790 B1 KR940001790 B1 KR 940001790B1 KR 1019860003176 A KR1019860003176 A KR 1019860003176A KR 860003176 A KR860003176 A KR 860003176A KR 940001790 B1 KR940001790 B1 KR 940001790B1
Authority
KR
South Korea
Prior art keywords
solar cell
manufacturing
polycrystalline silicon
gas
silicon solar
Prior art date
Application number
KR1019860003176A
Other languages
Korean (ko)
Other versions
KR870010638A (en
Inventor
이병령
Original Assignee
주식회사 금성사
구자학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 금성사, 구자학 filed Critical 주식회사 금성사
Priority to KR1019860003176A priority Critical patent/KR940001790B1/en
Publication of KR870010638A publication Critical patent/KR870010638A/en
Application granted granted Critical
Publication of KR940001790B1 publication Critical patent/KR940001790B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The method for mfg. a metal insulator semiconductor (MIS) type polycrystalline silicon solar cell comprises (a) depositing an aluminium layer (1) for forming an electrode, (b) annealing a P-type polycrystalline silicon wafer under the nitrogen atmosphere to form an oxide (11), (c) depositing an aluminium layer to form a grid pattern metal electrode (4), and (d) depositing a silicon nitride (13) by using a mixed gas of silan (SiH4) gas and methan (NH3) gas diluted in the argon (Ar) to generate a fixed positive charge (12) between the nitride and the oxide. The solar cell increases electromotive force and short current.

Description

금속절연 반도체형 다결정 실리콘 태양전지의 제조방법Manufacturing method of metal insulated semiconductor polycrystalline silicon solar cell

제1도는, 종래의 태양전지의 개략 단면도.1 is a schematic cross-sectional view of a conventional solar cell.

제2도는, 본 발명 방법에 의한 태양전지의 개략 단면도.2 is a schematic cross-sectional view of a solar cell according to the method of the present invention.

본 발명은 금속절연 반도체(Metal Insulator Semiconductor)(이하 MIS라 약칭함)형 다결정 실리콘 태양전지의 제조방법에 관한 것으로, 특히 공정 및 구조의 단순화를 기하여 태양 에너지의 변환 효율을 증대시키도록 한 MIS형 다결정 실리콘 태양전지의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a metal insulator semiconductor (hereinafter, referred to as MIS) type polycrystalline silicon solar cell, and in particular, to increase conversion efficiency of solar energy by simplifying the process and structure. A method for manufacturing a polycrystalline silicon solar cell.

종래에는 주로 단결정 실리콘을 이용한 태양 전지의 제조방법이 있었으나, 이는 다결정 실리콘 태양전지에 비하여 고전력의 높은 효율을 가진다는 장점은 있으나, 제품의 생산원가가 높은 문제점이 있었다.Conventionally, there has been a method for manufacturing a solar cell mainly using single crystal silicon, which has the advantage of having high power and high efficiency as compared to polycrystalline silicon solar cells, but has a high production cost problem.

이를 개선하고자 하여 제1도에 도시한 바와 같이 P형 다결정 실리콘표면(2)에 15-20Å 두께 정도의 실리콘 산화물(Si-Oxide)(3)을 형성시킨 후에, 그 위에 다극형(Grid Pattern)의 금속전극(4)을 형성하고, 이에 SiO2, ZnS, TiO2, MgF2등의 조성에 의한 역반사(Antireflection)(이하 AR이라 약칭함) 피막층을 형성한 것이 있으나, 이 역시 단결정 실리콘을 사용한 태양 전지와는 달리 결정 입자 계면에 의한 효과로 인하여 금속과 반도체 사이에 다수 이송자의 에너지 장벽(Schottky Barrier)이 낮고, 또한, 결정 입자 계면에서 소수 이송자(Minorty Carrier)의 재결합 등의 원인으로 고전력의 높은 효율을 얻을 수가 없는 문제점이 있었다.In order to improve this, as shown in FIG. 1, after forming a silicon oxide (Si-Oxide) 3 having a thickness of about 15 to 20 Å on the P-type polycrystalline silicon surface 2, a grid pattern is formed thereon. The metal electrode 4 of the present invention was formed, and an antireflection (hereinafter referred to as AR) coating layer was formed by the composition of SiO 2 , ZnS, TiO 2 , MgF 2, and so on. Unlike the solar cell used, due to the effect of the crystal grain interface, the energy barrier (Schottky Barrier) of the multiple carriers between the metal and the semiconductor is low, and also high power due to the recombination of minority carriers at the crystal grain interface. There was a problem that can not be obtained high efficiency.

본 발명은 이러한 점을 감안하여 반도체 표면에 반전층(Inversion Layer)을 야기시켜 다수 이송자(Majority Carrier)의 에너지 장벽을 높힘과 동시에 결정입자 계면의 표면 안정화(Passivation)를 거쳐 이곳에서 부터의 열전자 방출을 억제하여 역포화 전류를 감소시킴으로서 전지의 기전력과 단락 전류의 특성을 증대시켜 전력 효율을 향상시키도록한 태양전지의 제조방법을 제공하도록한 것으로서, 이를 첨부한 도면에 의하여 그의 제조공정을 설명하면 다음과 같다.In view of this, the present invention causes an inversion layer on the surface of the semiconductor to increase the energy barrier of the majority carrier, and at the same time, through surface stabilization of the crystal grain interface, to release hot electrons therefrom. To reduce the reverse saturation current to increase the characteristics of the electromotive force and the short-circuit current of the battery to provide a method for manufacturing a solar cell to improve the power efficiency. As follows.

제2도는 본 발명의 제조방법에 의한 태양전지의 개략구조 단면도를 나타내고 있는 것으로서,2 is a schematic cross-sectional view of a solar cell according to the manufacturing method of the present invention.

첫째, 후면에 전극을 형성하기 위하여 알루미늄(Al)(1)을 뒷쪽에 침전시킨다.First, aluminum (Al) 1 is deposited on the back side to form an electrode on the back side.

둘째, P형 다결정 실리콘 웨이퍼를 질소 분위기 450℃ 용광로에서 약 10-15분간 풀림(Annealing)하여 산화물을 15-20Å 두께 정도로 형성시킨다.Second, the P-type polycrystalline silicon wafer is annealed in a nitrogen atmosphere 450 ° C. furnace for about 10-15 minutes to form an oxide of about 15-20 μm thick.

셋째, 동작 영역에 전극을 형성하기 위하여 다극형으로 알루미늄(Al)을 증착시킨다.Third, aluminum (Al) is deposited in a multipolar form to form an electrode in the operating region.

네째, 알곤(Ar)에 희석시킨 실란(SiH4)가스와 메탄(NH3)가스의 혼합기체를 이용하여 PECVD(Plasma Enhanced Chemical Vapor Deposition)공법을 이용하여 실리콘 질화물(Silicon Nitride)(13)을 침전시킨다.Fourth, silicon nitride (13) was prepared by using a plasma enhanced chemical vapor deposition (PECVD) method using a mixture of silane (SiH 4 ) gas and methane (NH 3 ) gas diluted in argon (Ar). Precipitate.

이와 같이 실리콘질화물(13)을 형성시키게 되면, 질화물과 산화물 계면 사이에 고정 양극 전하(Fixed Positive Charge)(12)가 발생하게 되어 반도체 표면상에 반전 영역을 형성하게 되며, 상기와 같은 반전 영역에 의하여 금속과 반도체 사이의 에너지 장벽을 높여주게 되는 것이다.As such, when the silicon nitride 13 is formed, a fixed positive charge 12 is generated between the nitride and the oxide interface to form an inversion region on the semiconductor surface. This raises the energy barrier between the metal and the semiconductor.

따라서, 빛에 의하여 반도체 내부에 생성된 다수 이송자가 금속 영역으로 방출되는 량이 감소되므로서, 전지의 기전력이 증가하게 된다.Therefore, the amount of light emitted from the plurality of carriers generated inside the semiconductor to the metal region is reduced, thereby increasing the electromotive force of the battery.

또한, 질화물의 침전시에 수소(H2)가스가 실리콘 결정 입자내로 침투하게 되어 실리콘과 결합하여 결정입자계면을 표면 안정화시킴으로서 소수 이송자의 재결합을 줄이게 되어 어둠 전류(Dark Current)를 감소시키게 되므로, 전지의 단락 전류를 증가시킬 수가 있는 것이다.In addition, since the hydrogen (H 2 ) gas penetrates into the silicon crystal grains when the nitride is precipitated, it is combined with silicon to stabilize the grain boundary surface, thereby reducing the recombination of the minority carriers, thereby reducing the dark current. The short circuit current of the battery can be increased.

이상에서와 같이 본 발명은 표면 상태와 결정 입자 계면에 있어, 수소에 의한 표면안정화로 표면 재결합 속도를 감소시킬 뿐만 아니라, 고정 양극 절연전하에 의하여 실리콘표면상에 형성된 반전 영역으로서, 금속과 반도체 계면에서의 에너지 장벽을 높힐 수가 있는 것이어서, 전지의 기전력과 단락 전류를 증가시킬 수가 있어, 태양전지의 효율을 향상시킴은 물론 제품의 생산 코스트를 저렴화할 수가 있는 것이다.As described above, the present invention not only reduces the surface recombination rate due to surface stabilization by hydrogen at the surface state and the crystal grain interface, but also as an inverted region formed on the silicon surface by the fixed anode insulating charge. By increasing the energy barrier at, it is possible to increase the electromotive force and short-circuit current of the battery, thereby improving the efficiency of the solar cell and reducing the production cost of the product.

Claims (1)

후면에 전극을 형성하기 위해 알루미늄(Al)(1)을 침전시키는 공정과, P형 다결정 실리콘 웨이퍼를 질소 분위기에서 어닐링하여 산화물(11)을 형성하는 공정과, 알루미늄(A1)을 증착시켜 다극형 금속 전극(4)을 형성하는 공정과, 상기 공정후 질화물과 산화물계면 사이에 고정 양극전하(12)를 발생시키기 위해 알곤(Ar)에 희석시킨 실란(SiH4)가스와 메탄(NH3)가스의 혼합기체를 이용하여 실리콘 질화물(13)을 침전시키는 공정을 포함하여 이루어진 것을 특징으로 하는 금속 절연 반도체형 다결정 실리콘 태양전지의 제조방법.Precipitating aluminum (Al) (1) to form an electrode on the back, annealing the P-type polycrystalline silicon wafer in a nitrogen atmosphere to form an oxide (11), and depositing aluminum (A1) to multipolar type A silane (SiH 4 ) gas and a methane (NH 3 ) gas diluted with argon (Ar) to generate a fixed anode charge 12 between the process of forming the metal electrode 4 and the nitride and oxide interface after the process. Method for producing a metal-insulated semiconductor type polycrystalline silicon solar cell, characterized in that comprising the step of precipitating silicon nitride (13) using a mixed gas of.
KR1019860003176A 1986-04-24 1986-04-24 Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor KR940001790B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860003176A KR940001790B1 (en) 1986-04-24 1986-04-24 Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860003176A KR940001790B1 (en) 1986-04-24 1986-04-24 Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor

Publications (2)

Publication Number Publication Date
KR870010638A KR870010638A (en) 1987-11-30
KR940001790B1 true KR940001790B1 (en) 1994-03-05

Family

ID=19249606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860003176A KR940001790B1 (en) 1986-04-24 1986-04-24 Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor

Country Status (1)

Country Link
KR (1) KR940001790B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180043A (en) * 2010-12-02 2011-09-14 江阴浚鑫科技有限公司 Method for printing pattern on solar battery sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180043A (en) * 2010-12-02 2011-09-14 江阴浚鑫科技有限公司 Method for printing pattern on solar battery sheet
CN102180043B (en) * 2010-12-02 2012-08-08 浚鑫科技股份有限公司 Method for printing pattern on solar battery sheet

Also Published As

Publication number Publication date
KR870010638A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
US4253881A (en) Solar cells composed of semiconductive materials
US4828628A (en) Solar cell
US20070137699A1 (en) Solar cell and method for fabricating solar cell
EP3161874B1 (en) Passivation of light-receiving surfaces of solar cells with crystalline silicon
JP6982947B1 (en) Solar cells and their manufacturing methods, photovoltaic modules
CN103050553A (en) Crystalline silicon solar cell with double-side passivation and preparing method thereof
JP2005183469A (en) Solar cell
JP2808004B2 (en) Solar cell
CN114744050B (en) Solar cell and photovoltaic module
EP0093514A1 (en) Amorphous silicon solar cell incorporating an insulating layer to suppress back diffusion of holes into an N-type region and method of fabrication thereof
WO2011160814A2 (en) Method for creating a passivated boron-doped region, especially during production of a solar cell, and solar cell with passivated boron-diffused region
KR940001790B1 (en) Manufacturing method of poly crystal silicon solar battery typed metal insulator semiconductor
KR20090110029A (en) Silicon solar cell comprising multi-layer of rear passivation layer and Method of preparing the same
JPS61222277A (en) Photovoltaic device and manufacture thereof
CN112349791B (en) Solar cell and preparation method thereof
JP2001250968A (en) Crystal silicon thin film semiconductor device, crystal silicon thin film photovoltaic element, and method of manufacturing for crystal silicon thin film semiconductor device
Elgamel et al. Efficient combination of surface and bulk passivation schemes of high‐efficiency multicrystalline silicon solar cells
JP3346907B2 (en) Solar cell and method of manufacturing the same
CN115172522B (en) Solar cell, preparation method and photovoltaic module
Banerjee et al. Review of rear surface passivation in Passivated Emitter Rear Cell (PERC) using different process technologies
KR101129422B1 (en) Fabrication method of solar cell and solar cell fabrication by the same
CN116913984B (en) Dielectric layer, preparation method, solar cell and photovoltaic module
TWI701841B (en) Solar cell, and surface passivation structure and surface passivation method thereof
KR102118905B1 (en) Solar cell including a tunnel oxide layer and method of manufacturing the same
JP3649948B2 (en) Photovoltaic device and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050221

Year of fee payment: 12

EXPY Expiration of term