KR940000987B1 - Manufacturing method for soi-structured transistor - Google Patents

Manufacturing method for soi-structured transistor Download PDF

Info

Publication number
KR940000987B1
KR940000987B1 KR1019900021453A KR900021453A KR940000987B1 KR 940000987 B1 KR940000987 B1 KR 940000987B1 KR 1019900021453 A KR1019900021453 A KR 1019900021453A KR 900021453 A KR900021453 A KR 900021453A KR 940000987 B1 KR940000987 B1 KR 940000987B1
Authority
KR
South Korea
Prior art keywords
gate
drain
channel
oxide film
forming
Prior art date
Application number
KR1019900021453A
Other languages
Korean (ko)
Other versions
KR920013744A (en
Inventor
김종호
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019900021453A priority Critical patent/KR940000987B1/en
Publication of KR920013744A publication Critical patent/KR920013744A/en
Application granted granted Critical
Publication of KR940000987B1 publication Critical patent/KR940000987B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

The method for improving the to pology and preventing the carrier movement between gate, drain and source comprises the steps of: (a) forming active regions for N and P channels; (b) forming a field oxide layer on an oxide layer placed between the active regions; (c) injecting the high density P type ion after exposing the P channel source and drain region with a first masking process; (d) injecting the high density P type ion into the exposed P channel gate trench region and high density n channel source, drain regions; (e) injecting the low density n type ion into the exposed low density n channel source, drain regions and P channel gate trench region; (f) forming a side-wall oxide layer and a gate oxide layer on the inside of the gate trench; and (g) forming a gate electrode, a protective layer and a metal layer in sequence.

Description

소이구조의 트랜지스터 제조방법Soy structure transistor manufacturing method

제1도는 종래의 구조단면도.1 is a structural cross-sectional view of the related art.

제2도는 본 발명의 공정단면도.2 is a cross-sectional view of the process of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 베어웨이퍼 2 : 산화막1: bare wafer 2: oxide film

3 : P형 에피층 4 : 아일랜드3: P type epi layer 4: Ireland

5 : 필드산화막 6 : P소오스 및 드레인5: field oxide film 6: P source and drain

7 : n게이트 트렌치 8 : n소오스 및 드레인7: n-gate trench 8: n source and drain

9 : n소오스 및 드레인 10 : n게이트 트렌치9: n source and drain 10: n gate trench

11 : 게이트 트렌치 측벽 12 : 게이트 산화막11: gate trench sidewall 12: gate oxide film

13,13a : 게이트 전극폴리실리콘 14 : BPSG막13,13a: gate electrode polysilicon 14: BPSG film

15 : 금속막15: metal film

본 발명은 소이(S.O.I : Silicon On Insulator)구조의 트랜지스터 제조방법에 관한 것으로, 특히 게이트 트렌치(Gate Trench)와 게이트 측벽(Gate Sidewall)을 이용하여 토포러지(Topology)의 개선 및 게이트와 소오스 및 드레인 사이의 캐리어 (Carrier)이동을 방지하는데 적당하도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fabricating a transistor having a SOI structure, and in particular, to improve topology and improve gate, source, and drain using a gate trench and a gate sidewall. It is suitable to prevent the movement of the carrier (carrier) between.

종래의 소이구조의 트랜지스터는 제1도에 나타낸 바와 같이 사파이어나 절연체위에 p형 에피층을 형성시켜 여기에 게이트와 소오스 및 드레인을 형성한 것으로 절연체 위에 트랜지스터가 형성되므로 인해 전류누설을 방지할 수가 있고 벌크(Bulk)효과를 줄일 수 있었다.Conventional soy structure transistors have a p-type epitaxial layer formed on sapphire or an insulator as shown in FIG. 1, and a gate, a source, and a drain are formed thereon. As a transistor is formed on the insulator, current leakage can be prevented. Bulk effect could be reduced.

이것의 제조공정을 제1도를 참조하여 설명하면 다음과 같다.This manufacturing process will be described with reference to FIG.

먼저 웨이퍼(20) 위에 절연체인 산화규소막(21)을 형성하고 이어 p형 에피 (Epi)층(22)을 형성한 후 이 p형 에피층(22)을 선택적으로 이방성 에치(Anisotropic Etch)를 실시하여 N채널 트랜지스터 및 p채널 트랜지스터의 활성 영역(23)을 형성한다.First, a silicon oxide film 21 as an insulator is formed on the wafer 20, and then a p-type epi layer 22 is formed. Then, the p-type epi layer 22 is selectively anisotropic etched. The active region 23 of the N-channel transistor and the p-channel transistor is formed.

그리고 활성영역(23)과 활성영역(23)사이의 산화규소막(21)위에 LOCOS (Local Oxidation of Silicon)공정을 실시하여 필드산화막(24)을 형성하고 각 활성영역(23) 중앙부위에 게이트 산화규소막(25)과 게이트 폴리실리콘막(26)을 차례로 형성한다.Then, a LOCOS (Local Oxidation of Silicon) process is performed on the silicon oxide film 21 between the active region 23 and the active region 23 to form a field oxide layer 24, and a gate is formed at the center of each active region 23. The silicon oxide film 25 and the gate polysilicon film 26 are sequentially formed.

이어 소오스 및 드레인용 고농도 n형 이온주입 및 고농도 P형 이온주입용 마스크 공정과 이온주입공정을 차례로 실시하여 각 게이트 양측 아래에 소오스 및 드레인 접합을 형성한다.Subsequently, a high concentration n-type ion implantation and a high concentration P-type ion implantation mask process and an ion implantation process for source and drain are sequentially performed to form source and drain junctions under both gates.

그리고 B.P.S.G(Boron-Phosphorous-Silicate-Glass)막(27)과 금속막 (28)을 차례로 증착하므로써 공정이 완료된다.The process is completed by depositing the B.P.S.G (Boron-Phosphorous-Silicate-Glass) film 27 and the metal film 28 in sequence.

그러나 상기 종래기술은 트랜지스터가 아일랜드 위에 형성되어지기 때문에 이후 증착되는 금속막의 토포러지가 좋지 못하여 금속막에 크랙(Crack)이 발생되기 쉽고 캐리어의 이동속도가 늦어져 스피드가 느려지는 단점이 있었다.However, since the transistor is formed on the island, the topography of the subsequently deposited metal film is not good, so that cracks are easily generated in the metal film and the moving speed of the carrier is slowed down, resulting in a slow speed.

본 발명은 상기 단점을 제거키 위한 것으로 이를 첨부된 제2도(A) 내지 제3도 (H)를 참조하여 상술하면 다음과 같다.The present invention is to eliminate the above disadvantages and will be described in detail with reference to the accompanying drawings 2 (A) to 3 (H) as follows.

먼저 제2도(a)와 같이 웨이퍼(Wafer)(1)위에 산화를 행하여 절연체로서 산화막(2)을 형성하고 이 위에 P형 에피층(3)을 약 9000-10000Å의 두께로 형성한 다음 P형 에피칭(3)을 일정간격으로 식각하여 섬모양으로 n채널 및 p채널 트랜지스터의 활성영역(4)을 형성한다.First, as shown in FIG. 2A, oxidation is performed on the wafer 1 to form an oxide film 2 as an insulator, and a P-type epitaxial layer 3 is formed thereon to a thickness of about 9000-10000 kPa. Type-etching 3 is etched at regular intervals to form islands of active regions 4 of n- and p-channel transistors.

이어 제4도(b)와 같이 상기 활성영역(4)과 활성영역(4) 사이의 산화막(2)위에 산화막(5)을 형성하고, 전면에 감광제(PR1)을 증착하고 노광 및 현상하여 p채널 트랜지스터의 고농도 소오스 및 드레인 형성영역을 노출시킨 뒤 p형 이온인 보론(Boron)을 고에너지로 고농도 주입하여 고농도 p형 소오스 및 드레인(6)을 형성한다.Subsequently, as illustrated in FIG. 4B, an oxide film 5 is formed on the oxide film 2 between the active region 4 and the active region 4, and a photoresist PR 1 is deposited on the entire surface, and is exposed and developed. After exposing the high concentration source and drain formation regions of the p-channel transistor, high concentration of p-type boron is implanted at high energy to form the high concentration p-type source and drain 6.

그리고 제2도(c)와 같이 상기 감광제(PR1)을 제거한 다음 각 활성영역(4)의 중앙부인 게이트 형성영역에 사진식각 공정으로 깊이 약 7000-8000Å의 게이트 트랜지스터를 형성한다.As shown in FIG. 2C, the photoresist PR 1 is removed, and then a gate transistor having a depth of about 7000 to 8000 Å is formed in the gate forming region, which is the center of each active region 4, by a photolithography process.

이어 제2도(d)와 같이 전면에 감광제(PR2)를 증착하고 노광, 현상하여 트랜지스터 영역의 고농도 소오스 및 드레인 형성 영역과 p채널 트랜지스터영역의 게이트 트렌치 영역을 노출시킨 다음 상기 노출된 영역에 n형 이온인 인(Phosphorous)이온을 고네에너지로 주입하여 고농도 n형 게이트 트렌치(7)와 고농도 n형 소오스 및 드레인(8)을 형성하고 감광제(PR2)을 제거한다.Subsequently, as illustrated in FIG. 2D, the photoresist PR 2 is deposited on the entire surface, and is exposed and developed to expose a high concentration source and drain formation region of the transistor region and a gate trench region of the p-channel transistor region. Phosphorous ions, which are n-type ions, are implanted with high energy to form a high concentration n-type gate trench 7 and a high concentration n-type source and drain 8 to remove photoresist PR 2 .

그리고 제2도(e)와 같이 감광제(PR3)를 증착하고 노광, 현상하여 n채널 트랜지스터 영역의 저농도 n형 소오스 및 드레인 형성영역과 p채널 트랜지스터영역의 저농도 n형 게이트 트렌치 형성영역을 노출시킨 다음 상기 영역들에 n형 이온인 보론을 저에너지로 저농도 주입하여 저농도 n형 소오스 및 드레인(9)과 저농도 n형 게이트 트렌치(10)를 형성한다.As shown in FIG. 2E, the photosensitive agent PR 3 is deposited, exposed, and developed to expose the low concentration n-type source and drain formation region of the n-channel transistor region and the low concentration n-type gate trench formation region of the p-channel transistor region. Next, low concentrations of n-type ions boron are implanted into the regions at low energy to form a low concentration n-type source and drain 9 and a low concentration n-type gate trench 10.

이어 제2도(f)와 같이 전체적으로 산화막을 형성한 다음 이를 에치백하여 n채널 및 p채널 트랜지스터 영역의 각 게이트 트렌치 내에 약 300Å 두께의 게이트 트렌치 측벽(11)과 게이트 산화막(12)을 약 50Å의 두께로 형성한 다음 제2도(g)와 같이 상기 n형 채널 및 p채널 트랜지스터 영역의 각 게이트 트렌치내에 게이트 전극 폴리실리콘(13)(13a)을 증착한다.Subsequently, as shown in FIG. 2 (f), an oxide film is formed as a whole and then etched back to form a gate trench sidewall 11 and a gate oxide film 12 having a thickness of about 300 microseconds in each gate trench of the n-channel and p-channel transistor regions. Next, as shown in FIG. 2 (g), gate electrode polysilicon 13 and 13a are deposited in each gate trench of the n-type and p-channel transistor regions.

마지막으로 제2도(h)와 같이 B.P.S.G막(14)과 금속막(15)을 차례로 형성하여 소이구조의 트랜지스터를 완성하게 된다.Finally, as shown in FIG. 2 (h), the B.P.S.G film 14 and the metal film 15 are sequentially formed to complete a transistor having a soy structure.

이상과 같이 본 발명에 의하면 다음과 같은 효과가 있다.As described above, the present invention has the following effects.

첫째, 게이트를 트렌치 구조로 형성하므로 토포러지의 차이를 줄일 수 있으며, 이로 인해 캐리어의 이동을 용이하게 하므로 동작스피드를 증대시킬 수 있다.First, since the gate is formed in a trench structure, the difference in topology can be reduced, and thus the movement speed can be increased because the carrier can be easily moved.

둘째, 게이트와 소오스/드레인 사이에 절연측벽을 형성하므로 게이트와 소오스/드레인 사이의 전계형성을 방지할 수 있다.Second, since an insulating side wall is formed between the gate and the source / drain, electric field formation between the gate and the source / drain can be prevented.

따라서 게이트와 소오스/드레인 사이의 캐리어 이동을 방지할 수 있다.Thus, carrier movement between the gate and the source / drain can be prevented.

Claims (2)

웨이퍼(1)위에 산화막(2)과 p형 에피층(3)을 차례로 증착하고 일정 간격으로 p형 에피층(3)을 식각하여 N채널 및 p채널 트랜지스터의 활성영역(4)을 형성하는 단계, 상기 활성영역(4)사이의 산화막(2)위에 필드산화막(5)을 형성하는 단계, 제1마스킹 공정으로 p채널 트랜지스터의 고농도 소오스 및 드레인이 될 부분을 노출시킨 뒤 고농도 p형 이온주입하는 공정과, p채널 및 n채널 트랜지스터의 게이트가 형성될 각 활성영역(4)중앙부분에 소정깊이로 식각하여 제2마스킹 공정으로 n채널 트랜지스터의 고농도 소오스 및 드레인이 될 부분 및 p채널 트랜지스터의 게이트 트렌치 부분을 노출시킨 뒤 고농도 p형 이온주입하는 공정과, 제3마스킹 공정을 실시하여 n채널 트랜지스터의 저농도 소오스 및 드레인이 될 부분과 p채널 트랜지스터의 게이트 트렌치 부분을 노출시킨 뒤 저농도 n형 이온주입하는 공정과, 전면에 산화막을 증착하고 에치백하여 각 게이트 트렌치 내에 측벽산화막(11)과 게이트 산화막(12)을 형성하는 단계, 각 게이트 트렌치내에 게이트 전극(13)을 형성하는 단계, 전면에 보호막(14)과 금속막(15)을 차례로 형성하는 단계가 순차적으로 포함됨을 특징으로 하는 소이구조의 트랜지스터 제조방법.Depositing an oxide film 2 and a p-type epi layer 3 on the wafer 1 in turn and etching the p-type epi layer 3 at regular intervals to form an active region 4 of the N-channel and p-channel transistors. Forming a field oxide film 5 on the oxide film 2 between the active regions 4, and exposing a portion to be a high concentration source and a drain of the p-channel transistor by a first masking process and then implanting a high concentration p-type ion. And a portion of a high concentration source and drain of the n-channel transistor and a gate of the p-channel transistor in the second masking process by etching a predetermined depth in the center of each active region 4 where the gates of the p-channel and n-channel transistors are to be formed. High-density p-type ion implantation and third masking process are performed after exposing the trench portion to expose the low-density source and drain portion of the n-channel transistor and the gate trench portion of the p-channel transistor. Forming a sidewall oxide film 11 and a gate oxide film 12 in each gate trench by depositing and etching back an oxide film on the entire surface, and then forming a gate electrode 13 in each gate trench. And forming a protective film (14) and a metal film (15) sequentially on the entire surface thereof. 제1항에 있어서, 게이트 전극(13)은 폴리실리콘으로 형성하고 보호막(14)은 BPSG막으로 형성함을 특징으로 하는 소이구조의 트랜지스터 제조방법.The method of claim 1, wherein the gate electrode (13) is formed of polysilicon and the protective film (14) is formed of a BPSG film.
KR1019900021453A 1990-12-22 1990-12-22 Manufacturing method for soi-structured transistor KR940000987B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900021453A KR940000987B1 (en) 1990-12-22 1990-12-22 Manufacturing method for soi-structured transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900021453A KR940000987B1 (en) 1990-12-22 1990-12-22 Manufacturing method for soi-structured transistor

Publications (2)

Publication Number Publication Date
KR920013744A KR920013744A (en) 1992-07-29
KR940000987B1 true KR940000987B1 (en) 1994-02-07

Family

ID=19308168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900021453A KR940000987B1 (en) 1990-12-22 1990-12-22 Manufacturing method for soi-structured transistor

Country Status (1)

Country Link
KR (1) KR940000987B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993605B1 (en) 2017-12-19 2019-06-27 하트미디어(주) Method of saving an archive of action webtoon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993605B1 (en) 2017-12-19 2019-06-27 하트미디어(주) Method of saving an archive of action webtoon

Also Published As

Publication number Publication date
KR920013744A (en) 1992-07-29

Similar Documents

Publication Publication Date Title
US5571738A (en) Method of making poly LDD self-aligned channel transistors
KR870006676A (en) Process for fabricating bipolar transistors and complementary MOS transistors on shared substrates
JPH0691201B2 (en) Method for manufacturing CMOS semiconductor device
KR940000987B1 (en) Manufacturing method for soi-structured transistor
JPH1065019A (en) Manufacturing method of cmos device
KR100263475B1 (en) Semiconductor device and method for fabricating the same
JPS62298130A (en) Element isolation method
JPH0818042A (en) Method for manufacturing mos transistor
KR20000060696A (en) Method for manufacturing semiconductor device the same
KR100259586B1 (en) Method for manufacturing semiconductor device
KR100305205B1 (en) Method for manufacturing semiconductor device
KR100261166B1 (en) Method for fabricating semiconductor device
KR940005292B1 (en) Manufacturing method of semiconductor device
KR930004301B1 (en) Making method of transistor of short channel effect structure
KR100214520B1 (en) Manufaturing method of transistor
KR100234718B1 (en) Semiconductor device and process for fabricating the same
KR940011803B1 (en) Method of fabricating a dram cell
KR100804146B1 (en) Method of fabricating PMOSFET with shallow channel depth and dual gate oxide
KR100268867B1 (en) Semiconductor device and method for fabricating the same
KR930010674B1 (en) Manufacturing method of bipolar transistor
KR0132507B1 (en) Semiconductor device and its manufacturing method
KR100297104B1 (en) Method for manufacturing semiconductor device
KR100231131B1 (en) Manufacturing method of semiconductor
KR100223795B1 (en) Manufacturing method of semiconductor memory device
KR940000986B1 (en) Manufacturing method of stack type cmos

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061211

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee