KR930011406B1 - Method and product of manufacturing silicon steel sheet having improved magnetic flux density - Google Patents

Method and product of manufacturing silicon steel sheet having improved magnetic flux density Download PDF

Info

Publication number
KR930011406B1
KR930011406B1 KR1019910018622A KR910018622A KR930011406B1 KR 930011406 B1 KR930011406 B1 KR 930011406B1 KR 1019910018622 A KR1019910018622 A KR 1019910018622A KR 910018622 A KR910018622 A KR 910018622A KR 930011406 B1 KR930011406 B1 KR 930011406B1
Authority
KR
South Korea
Prior art keywords
less
annealing
cold rolling
steel sheet
cold
Prior art date
Application number
KR1019910018622A
Other languages
Korean (ko)
Other versions
KR930008167A (en
Inventor
배병근
우종수
Original Assignee
포항종합제철 주식회사
정명식
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철 주식회사
Priority to KR1019910018622A priority Critical patent/KR930011406B1/en
Priority to PCT/KR1992/000050 priority patent/WO1993008313A1/en
Priority to JP50761793A priority patent/JP2700505B2/en
Priority to RU9293043462A priority patent/RU2092605C1/en
Priority to CZ931218A priority patent/CZ284195B6/en
Priority to EP19920922513 priority patent/EP0567612A4/en
Priority to CN92113058A priority patent/CN1039352C/en
Publication of KR930008167A publication Critical patent/KR930008167A/en
Application granted granted Critical
Publication of KR930011406B1 publication Critical patent/KR930011406B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The steel sheet having superior magnetic properties comprises (in wt.) up to 0.02 % C, up to 0.008 % N, 1.0-3.5 % Si, up to 0.7 % Al, up to 1.0 % Mn, 0.05-1.0 % Ni, up to 0.10 % P, 0.02-0.50 % Cu, up to 0.01 % S, and 0.02-0.2 % Sn + Sb with the balance Fe. A steel slab is hot-rolled to give sheet which is pickled and cold- rolled with a one-stage or double cold-rolling method from which cold-rolled sheet is high-temp. annealed or annealed with stress- relieving. The sheets are used for the core materials of electrical equipment for example motors, generators, small transformers, etc., and have low iron loss and high magnetic flux density and permeability.

Description

자성이 우수한 무방향성 전기강판 및 그 제조방법Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof

본 발명은 각종모터, 소형변압기등의 전기기의 철심으로 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 철손이 낮고 자속밀도와 투자율이 높은 무방향성 전기강판 및 그 제조방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet used in the iron core of electric motors, such as various motors, small transformers, and a manufacturing method thereof, and more particularly, to a non-oriented electrical steel sheet having a low iron loss, high magnetic flux density and permeability, and a manufacturing method thereof. It is about.

일반적으로, 무방향성 전기강판은 Si함량에 의거 자성특성이 구분되어 Si함량이 1.0% 이하인 경우 저급재, Si함량이 1.0~2.0%인 경우 중급재, 그리고 Si함량이 2.0% 이상인 경우 고급재로 편리상 구분되고 있다.In general, non-oriented electrical steel sheet is divided into magnetic properties based on Si content, so it is a low grade material when the Si content is 1.0% or less, a medium grade material when the Si content is 1.0 to 2.0%, and a high grade material when the Si content is 2.0% or more. Phase is divided.

이와 같은 구분은 Si이 많이 첨가됨에 따라 철손이 낮아지기 때문이지만, 자속밀도 혹은 투자율은 Si함량이 높아짐에 따라 오히려 감소하는 효과가 있다.This division is because the iron loss is lowered as much Si is added, but the magnetic flux density or permeability is rather reduced as the Si content is increased.

따라서, 무방향성 전기강판에 있어서 이들 자성특성을 모두 향상시키려는 노력이 경주되어 왔다.Therefore, efforts have been made to improve all of these magnetic properties in non-oriented electrical steel sheets.

상기한 무방향성 전기강판의 제조방법으로는 풀리프로세스(Fully-process)와 세미 프로세스(Semi-process)로 구분되는데, 풀리프로세스는 열연판을 산세한 후 냉간압연하고 소둔 후 소요기가 가공하는 공정이며, 세미프로세스는 열연판을 산세한 후 냉간압연하고 중간소둔 후 통상 15%이하의 압하율로 경압연(skin pass압연)한후 수요가가 가공하는 공정이다.The method of manufacturing the non-oriented electrical steel sheet is classified into a fully-process and a semi-process. The pulley process is a process in which hot rolled plates are pickled, cold rolled, and then annealed. The semi-process is a process where demand is processed after pickling hot rolled plates, cold rolling, and intermediate annealing, usually with a rolling pass of 15% or less.

풀리프로세스의 경우 냉간압연시 1차 냉간압연한 후, 중간소둔하고 2차 냉간압연을 실시하는 2단냉연법이 있지만, 2차냉연 후 소둔을 실시하기 때문에 이 역시풀리 프로세스로 구분된다.In the case of the pulley process, there is a two-stage cold rolling method in which the first cold rolling during cold rolling, the intermediate annealing, and the second cold rolling are performed. However, the pulley process is also classified as a pulley process.

방향성 전기강판을 제조하는 종래방법으로는 Si 혹은 Al을 낮추어서 철손은높지만 투자율을 높이는 방법이 알려져 있는데, 이 방법은 사용상 제한이 있으며, 또한, Si 및 Al을 증가시켜 자속밀도와, 투자율은 비록 낮지만, 철손을 낮추려는 의도에서 행하여지는 방법이 알려져 있는데, 이 방법은 전기기의 효율에 문제점이 있다.Conventional methods for producing grain-oriented electrical steel sheet are known to lower the Si or Al to increase the iron loss but increase the permeability. This method has limitations in use, and also increases the magnetic flux density and the permeability by increasing the Si and Al. However, there is a known method that is intended to lower the iron loss, this method has a problem in the efficiency of the electric machine.

또한, 일본공개특허공보(소) 63-317627호에는 0.2~1.0wt%의 Si함유 강으로서 Mn을 1.0~1.5wt% 함유하고, Sn,Sb,Ni 및 Cu로 이루어진 그룹중에서 선택된 1종 또는 2종이상을 첨가하여 세미프로세스로 제조되는 무방향성 전기강판 및 그 제조방법이 제시되어 있는데, Mn이 과도하게 첨가되므로서 원가상승 및 열간압연이 오스테나이트상에서 행하여지므로 자석특성중 자속밀도가 낮은 문제점이 있다.In addition, Japanese Laid-Open Patent Publication No. 63-317627 discloses 0.2-1.0 wt% Si-containing steel containing 1.0-1.5 wt% of Mn, and at least one selected from the group consisting of Sn, Sb, Ni, and Cu. A non-oriented electrical steel sheet manufactured by semi-process by adding a paper phase and a manufacturing method thereof have been presented. Since the increase in cost and hot rolling is performed on austenite due to excessive addition of Mn, the problem of low magnetic flux density in the characteristics of the magnet is eliminated. have.

본 발명은 무방향성 전기강판의 성분계를 적절히 선정하는 풀리프로세스에 의해 낮은 철손을 가지면서 높은 자속밀도와 높은 투자율을 동시에 갖는 자성이 우수한 무방향성 전기강판을 제공하고자하는데, 그 목적이 있다.An object of the present invention is to provide an excellent non-oriented electrical steel sheet having low magnetic loss and high magnetic flux density and high magnetic permeability by a pulley process for appropriately selecting the component system of the non-oriented electrical steel sheet.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 중량%로, C : 0.02%이하, Si : 1.0~3.5%, Mn : 1.0%이하, P : 0.10%이하, S : 0.01%이하, N : 0.008%이하, Al : 0.7%이하, Ni : 0.05~1.0%, Cu : 0.02~0.5%, Sn과 Sb중 1종 또는 2종의 합 : 0.02~0.2%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 자성이 우수한 무방향성 전기강판에 관한 것이 또한, 본 발명은 중량%로, C : 0.02%이하, Si : 1.0∼3.5%, Mn : 1.0%이하, P : 0.10%이하, S : 0.01%이하, N : 0.008%이하, Al : 0.7%이하, Ni : 0.05∼1.0%, Cu : 0.02∼0.05%, Sn과 Sb중 1종 또는 2종의 합 : 0.02∼0.2%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 열간압연, 열연판소둔, 산세, 1단 냉간압연 혹은 1차냉간압연하고 중간소둔 한후 2차 냉간압연을 실시하는 2단 냉간압연을 실시한후 냉연판의 고온소둔 및 응력 제거소둔하는 풀리프로세스로 제조되는 자성이 우수한 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention by weight, C: 0.02% or less, Si: 1.0-3.5%, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.008% or less, Al: 0.7% or less, Ni: 0.05 to 1.0%, Cu: 0.02 to 0.5%, one or two of Sn and Sb: 0.02 to 0.2%, and a non-oriented electrical steel sheet having excellent magnetic properties composed of residual Fe and other unavoidable impurities. In addition, the present invention is a weight%, C: 0.02% or less, Si: 1.0 to 3.5%, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.008% or less, Al: 0.7% Hereafter, Ni: 0.05 to 1.0%, Cu: 0.02 to 0.05%, one or two of Sn and Sb: 0.02 to 0.2%, hot rolled steel slab composed of balance Fe and other unavoidable impurities Annealing, pickling, 1st stage cold rolling or 1st cold rolling, after intermediate annealing, 2nd stage cold rolling after secondary cold rolling, and high temperature annealing and stress removal annealing of cold rolled plate Room to manufacture oriented electrical steel sheet Relate to.

통상 Cu 가 첨가되는 강의 열간가공에서 Sn 혹은 Sb등의 결정립계의 편석 원소가 공존시 표면에 농화석출된 Cu의 융점이 낮아져 표면균열의 감수성이 증가될 수 있는데, 이와 같은 현상은 Cu의 량이 많은 경우에 잘 발생되며 특히 Sn 혹은 Sb가 강의 결정립계에 침입한 Cu의 용융온도를 낮추기 때문에 Cu의 량과 Sn 혹은 Sb의 양의 적정량 이하로 할 필요가 있다. 본 발명자는 Sn 혹은 Sb, Ni 및 Cu는 한 원소씩 첨가한 경우보다 함께 첨가한 경우가 철손, 자속밀도 및 투자율이 동시에 향상됨을 발견하였다. 이들 원소들은 결정립형상을 제어하고 (110) 및 (200)등의 자성에 유리한 집합조직을 잘 발달시키기 때문에 1종 또는 2종이상씩 첨가되지만 본 발명에서와 같이 Si이 1.0~3.5%이고, Mn이 1.0%이하로 첨가되는 무방향성 전기강판에서는 이들 원소를 동시에 첨가하므로서 특히 결정립이 잘 성장하는 것을 관찰하였다. 본 발명에서와 같은 제조방법에서는 Fe이외의 성분은 가능한한 적게 첨가하는 것이 투자율을 높이는 방법이 되기 때문에 Si이외의 성분은 1.0%이하로 첨가한 것이다.Normally, when the segregation element of the grain boundary such as Sn or Sb coexists in the hot processing of the steel to which Cu is added, the melting point of the thickened and precipitated Cu is lowered, which may increase the susceptibility of surface cracking. Since Sn or Sb lowers the melting temperature of Cu, which is particularly invasive to grain boundaries of steel, it is necessary to make the amount of Cu and Sn or Sb less than the proper amount. The present inventors found that iron loss, magnetic flux density, and permeability are simultaneously improved when Sn or Sb, Ni, and Cu are added together than when adding elements one by one. These elements are added in one or two or more kinds because they control the grain shape and develop a good texture for magnetism such as (110) and (200), but Si is 1.0-3.5% as in the present invention, Mn In the non-oriented electrical steel sheet added at 1.0% or less, it was observed that grains grew particularly well by adding these elements simultaneously. In the manufacturing method as in the present invention, since the addition of components other than Fe as possible is a method of increasing the permeability, the components other than Si are added at 1.0% or less.

이하, 본 발명의 성분계에 대한 수치한정이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation about the component system of this invention is demonstrated.

상기 C은 집합조직을 향상시킬 수는 있으나, 최종제품에 과다하게 잔류할 시 자성을 저해하므로, 그 함량은 0.02%이하로 한정하는 것이 바람직하며, 최종 제품에 C이 0.008%이하가 되도록 탈탄할 수도 있다.The C may improve the texture, but when excessively remaining in the final product inhibits magnetism, the content is preferably limited to 0.02% or less, and decarburized so that C is 0.008% or less in the final product. It may be.

상기 Si는 무방향성 전기강판의 제품특성을 나타내는 기본 성분으로서 비저항을증가시켜 철손을 낮추는 역할을 하는데, 그 함량이 1.0% 이하인 경우에는 철손이 증가하게 되고, 3.5%이상이 되면 냉간압연성이 나빠지므로, Si의 함량은 1.0~3.5%로 한정하는 것이 바람직하다.The Si is a basic component showing the product characteristics of the non-oriented electrical steel sheet to increase the specific resistance serves to lower the iron loss, if the content is less than 1.0%, the iron loss is increased, if more than 3.5% cold rolling property is bad Since the content of Si is preferably limited to 1.0 to 3.5%.

상기 Mn은 비저항을 증가시켜 철손을 낮추는 효과가 있지만 S와 결합하여 MnS로 되어 자성을 열화시키므로 S를 낮게 관리하여야 하는 문제점이 있으며, 또한, 재가열온도를 1200℃이상으로 높일 수 없는 문제점이 있기 때문에 Mn의 함량은 1.0% 이하로 한정하는 것이 바람직하다.The Mn has the effect of lowering the iron loss by increasing the specific resistance, but in combination with S to MnS deteriorates the magnetism, there is a problem to manage S, and also because there is a problem that can not increase the reheating temperature to more than 1200 ℃ The content of Mn is preferably limited to 1.0% or less.

상기 P는 비저항을 증가시켜 철손을 낮추며, 자성에 유리한(200) 면과(100)면의 집합조직을 잘 발달시켜 자성을 향상시키는 효과를 갖지만, Si의 함량이 1.0% 이상인 강의 냉간압연성을 고려하여 0.1%이하로 한정하는 것이 바람직하다.The P has an effect of lowering the iron loss by increasing the specific resistance and improving the magnetism by well developing the texture of the (200) and (100) surfaces which are favorable for magnetism, but the cold rolling property of the steel having a Si content of 1.0% or more In consideration, it is preferable to limit it to 0.1% or less.

상기 S는 불필요한 불순물로서 가능한한 첨가되지 않는 것이 자성에 유리한데, 본 발명에 있어서는 0.01%까지는 자성특성에 큰 영향을 주지 않는다.It is advantageous for magnetism that S is not added as much as possible as an unnecessary impurity, but in the present invention, up to 0.01% does not significantly affect the magnetic properties.

상기 Al은 비저항을 증가시켜 철손을 향상시키기 위하여 첨가되는데, 가격이 비싸므로 자성향상정도를 고려하여 최대 0.7%까지 첨가하는 것이 바람직하다.The Al is added to improve the iron loss by increasing the specific resistance, but since the price is expensive, it is preferable to add up to 0.7% in consideration of the degree of magnetic improvement.

상기 N은 불순물이므로 가능한 한 적게 투입하는 것이 유리하며, 최대 0.008%까지는 허용될 수 있다.Since N is an impurity, it is advantageous to add as little as possible, and up to 0.008% can be tolerated.

상기 Ni은 단독 첨가시에는 그 효과가 적으며, Sn 혹은 So 및 Cu와 복합으로 첨가하되, 그 첨가량은 0.5~1.0%로 한정하는 것이 바람직한데, 그이유는0.05%이하에서는 자성향상정도가 적으며, 1.0% 이상에서는 첨가량에 비해 자성향상정도가 적기 때문이다.When Ni is added alone, the effect is small, and Sn or So and Cu are added in combination, but the amount of addition is preferably limited to 0.5 ~ 1.0%, for less than 0.05%, the degree of magnetic enhancement is less. This is because the magnetic enhancement degree is less than the addition amount at 1.0% or more.

상기 Cu는 내식성을 증가시켜 전기제품의 수명을 증가시키는 비저항을 증가시켜 철손을 낮츠며, 자성에 유리한 집합조직을 잘 발달시키지만 열간압연시만 표면의 균열을 보장시킬 수 있으므로, Cu의 함량은 0.02~0.5%로 한정하는 것이 바람직하다.The Cu decreases iron loss by increasing the resistivity, which increases the corrosion resistance, which increases the life of electrical appliances, and develops the texture that is favorable for magnetism, but can ensure the cracking of the surface only during hot rolling, so the Cu content is 0.02. It is preferable to limit to 0.5%.

Sn 및 Sb가 단독 또는 복합으로 첨가되는 경우 그 첨가량이 0.2%이하인 경우에는 Cu가 최대 0.5%까지 첨가되어도 무방하나 그 첨가량이 0.2%이상인 경우에는 열연판이 표면형상을 제어하는데 곤란하며 냉간압연시 팔파탈의 원인이 될 수 있다.When Sn and Sb are added alone or in combination, Cu may be added up to 0.5% when the amount is less than 0.2%, but when the amount is more than 0.2%, the hot rolled plate is difficult to control the surface shape. It can be a cause of fatality.

상기 Su 혹은 Sb는 1종 혹은 2종의 복합첨가가 가능하며 이들 원소는 결정립계에 편석하는 원소로서, 그 첨가량이 0.02%이하인 경우에는 그 효과가 적으며, 0.2%이상인 경우에는 냉간압연성이 곤란해지므로, Sb 혹은 Sn의 단독 또는 복합 첨가량은 0.02~0.2%로 한정하는 것이 바람직하다.Su or Sb can be added in one kind or two kinds, and these elements are segregated at grain boundaries, and the effect is less when the addition amount is less than 0.02%, and cold rolling is difficult when the amount is more than 0.2%. It is preferable to limit the amount of Sb or Sn alone or in combination to 0.02 to 0.2%.

이하, 본 발명의 무방향성 전기 강판을 제조하는 방법에 대하여 상세히 설명한다.Hereinafter, the method of manufacturing the non-oriented electrical steel sheet of the present invention will be described in detail.

제강공정에서 제조된 강은 슬라브의 형태로 열연재가열로에 장입되고 열간압연 한 후 600℃이상의 온도에서 권취하는데, 이때, 슬라브의 재가열온도는 1250℃까지 가열할 수 있으며, 권취온도는 열연판의 결정립을 성장시키기 위하여 600-800℃의 범위로 하는 것이 바람직하다.Steel manufactured in the steelmaking process is charged into a hot rolled material furnace in the form of slabs and wound up at a temperature of 600 ° C. or higher after hot rolling. At this time, the reheating temperature of the slab can be heated to 1250 ° C. In order to grow a grain, it is preferable to set it as the range of 600-800 degreeC.

상기와 같이 열안압연된 열연판은 700-1100℃의 온도범위에서 10초~20분 동안 연속소둔되는데, 연속소둔시간이 10초 이하인 경우에는 결정립이 성장하지 않기 때문에 자성이 저조하며, 20분 이상인 경우에는 설비에 제한이 따르므로, 열연판의 연속소둔시간은 10초~20분으로 한정하는 것이 바람직하다.Hot-rolled sheet as described above is continuously annealed for 10 seconds to 20 minutes in the temperature range of 700-1100 ℃, when the continuous annealing time is less than 10 seconds, the crystal grains do not grow, the magnetism is poor, more than 20 minutes In this case, since equipment is subject to limitation, the continuous annealing time of the hot rolled sheet is preferably limited to 10 seconds to 20 minutes.

한편, 상기와 같이 열간압연된 열연판을 연속소둔하는 대신에 상소둔을 행할 수도 있는데, 상소둔을 행하는 경우에는 600-1000℃의 온도범위에서 30분-10시간 동안 행하는 것이 바람직한데, 그 이유는 상소둔 시간이 30분이하인 경우에는 상소둔의 효과가 적고, 10시간 이상인 경우에는 큰 자성향성이 없는 생산성만 떨러지기 때문이다.On the other hand, instead of continuously annealing the hot-rolled hot rolled plate as described above, the annealing may be performed, but when performing annealing, it is preferable to perform for 30 minutes-10 hours in the temperature range of 600-1000 ℃, the reason This is because when the annealing time is 30 minutes or less, the effect of the annealing is less, and when the annealing time is 10 hours or more, only the productivity without a large inclination is lost.

상기와 같이, 연속소둔 또는 상소둔된 열연판은 산세되고, 1단 냉간압연 혹은 1차 냉간압연하고 중간소둔후 2차 냉간 압연을 실시하는 2단 냉간압연을 실시한 다음 고온 소둔한다.As described above, the continuous annealing or annealing hot rolled plate is pickled, subjected to two stages cold rolling followed by one stage cold rolling or the first cold rolling, and the second cold rolling after the intermediate annealing, followed by high temperature annealing.

풀리 프로세스는 상기와같이 1단 냉간 압연 또는 2단 냉간압연한 후 냉연판을 고온수둔한 후 소요가가 가공하는 방법인데, 이는 소둔된 열연판을 1차 냉간압연하고 중간 소둔을 한 후 결정립 성장을 위하여 경압하율로 압연한 다음 응력유기 결정립 성장을 위한 수요가 열처리를 실시하는 세미프로세스와는 다르다.The pulley process is a method in which the required cost is processed after the high temperature annealing of the cold rolled plate after the first stage cold rolling or the two stage cold rolling, as described above. The demand for the growth of stress-based grains after rolling at a light reduction rate is different from that of the semi-process which undergoes heat treatment.

상기고온소둔은 700-1100℃의 온도범위에서 10분 이하동안 연속소둔으로 행하여지며, 100% 질소가스 혹은 질소와 수소의 혼합가스 및 기타의 환원가스의 분위기에서 행하는 것이 바람직하다.The high temperature annealing is performed by continuous annealing for 10 minutes or less in the temperature range of 700-1100 ° C., and is preferably performed in an atmosphere of 100% nitrogen gas or a mixed gas of nitrogen and hydrogen and other reducing gases.

냉간압연판의 C의 함량이 0.008% 이상인 경우에는 고온소둔전에 이슬점을 20-70℃로 하여 10분 이하에서 질서와 수소의 혼합분위기에서 탈탄을 실시할 수 있으며, 수요가가 필요에 따라 C의 함량이 0.003% 이상인 경우에는 응력제거 소둔시 탈탄 분위기로 수요가 열처리를 행할 수 있다.If the C content of the cold rolled plate is more than 0.008%, decarburization can be carried out in a mixed atmosphere of order and hydrogen for 10 minutes or less with dew point of 20-70 ℃ before high temperature annealing. If the content is 0.003% or more, the demand may be heat-treated in a decarburized atmosphere during stress relief annealing.

냉연판을 고온소둔한 후 절연피막코팅을 할 수 있으며, 코팅 미실시시에는 수요가가 블루잉 열처리를 행할 수도 있다.Insulation coating may be performed after the cold rolled sheet is hot annealed, and when the coating is not carried out, demand may be blued.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

제강공정에서 제조된 하기 표 1과 같은 성분의 강슬라브를 1220℃에서 가열하고 하기 표 2와 같이 열간압연하여 2.3mm의 두께로 한 후, 권취하고 열연판 소둔한 후 0.5mm의 두께로 냉간압연하였다.Steel slabs prepared in the steelmaking process as shown in Table 1 are heated at 1220 ° C. and hot rolled as shown in Table 2 to a thickness of 2.3 mm, followed by winding and annealing, followed by cold rolling to a thickness of 0.5 mm. It was.

다음에, 상기와 같이 냉간압연된 냉연판을 20%의 수소와 80%의 질소 혼합가스 분위기에서 하기 표 2의 소둔온도에서 3분간 실시하였다.Next, the cold rolled cold rolled plate as described above was carried out for 3 minutes at an annealing temperature of Table 2 in an atmosphere of 20% hydrogen and 80% nitrogen mixed gas.

다음에, 냉연판 소둔재를 790℃의 온도 및 100%의 질소분위기에서 2시간 동안 응력제거 소둔을 행한 후 각각에 대하여 자성을 측정하고 그 측정결과를 하기 표 2에 나타내었다.Next, the cold-rolled sheet annealing material was subjected to stress relief annealing at a temperature of 790 ° C. and 100% nitrogen atmosphere for 2 hours, and then the magnetic properties were measured for each, and the measurement results are shown in Table 2 below.

[표 1]TABLE 1

[표 2]TABLE 2

(*) W15/50(W/kg) : 50Hz에서 1.5Tesla로 자화했을 때의 철손(*) W15 / 50 (W / kg): Iron loss when magnetized to 1.5 Tesla at 50 Hz

B 50(Tesla) : 5000A/m로 자화했을 때의 유도되는 자속밀도B 50 (Tesla): Induced magnetic flux density when magnetized at 5000A / m

u 1.5 : 50Hz에서 1.5Tesla로 자화했을 때의 투자율u 1.5: Permeability when magnetized to 1.5 Tesla at 50 Hz

상기 표 2에 나타난 바와같이, 본 발명의 성분 범위에 해당되는 발명강 (a-d)을 본 발명에 부합되는 제조조건으로 제조한 발명재(1-4)가 본 발명의 성분 범위를 벗어나는 비교강(a-e)을 출발소재로 하여 제조된 비교재(1-7)에 비하여 자성이 우수함을 알수 있다.As shown in Table 2 above, the inventive material (1-4) manufactured by the inventive steel (ad) corresponding to the component range of the present invention in accordance with the present invention is out of the component range of the present invention ( It can be seen that the magnetic properties are superior to the comparative material (1-7) prepared using ae) as a starting material.

한편, 상기 표 2의 각 시편에 대하여 결정립크기를 측정한 결과, 비교재 1,2 및 3은 각 5㎛, 56㎛ 및 47㎛이었고, 비교재(4~7)의 경우에는 56~63㎛의 범위의 값을 나타내었으며, 발명재(1-4)의 경우에는 65~98㎛의 범위의 크기를 나타내었다.On the other hand, as a result of measuring the grain size for each specimen of Table 2, Comparative materials 1,2 and 3 were 5㎛, 56㎛ and 47㎛, respectively, 56-63㎛ in the case of the comparative materials (4-7) In the case of Inventive Material (1-4), the value of the range was in the range of 65-98 μm.

즉, 본 발명재(1-4)의 결정립 크기는 비교재(1~7)의 것에 비하여 큰 값을 갖는다.That is, the grain size of this invention material (1-4) has a large value compared with the thing of the comparative materials (1-7).

[실시예 2]Example 2

하기 표 1과 같이 Cu 및 Sn의 함량을 달리한 슬라브를 1200℃에서 재가열한 후 850℃에서 마무리 압연을 종료하여 2.3mm의 두께로 하고 700℃에서 권취한 후 800℃ 3시간 동안 열연판을 소둔한 다음 산세하였다.After re-heating the slab with different contents of Cu and Sn at 1200 ° C. as shown in Table 1, the finish rolling was finished at 850 ° C. to a thickness of 2.3 mm, wound at 700 ° C., and then annealed the hot rolled plate for 800 ° C. for 3 hours. And then pickled.

산세 후 열연판은 0.5mm의 두께로 냉간압연하였고, 950℃에서 2분간 고온 소둔한 후 자성을 측정하고, 그 결과를 냉간압연상태와 함께 하기 표 4에 나타내었다.After pickling, the hot rolled plate was cold rolled to a thickness of 0.5 mm, and then magnetically measured at 950 ° C. for 2 minutes at high temperature, and the results are shown in Table 4 together with the cold rolled state.

[표 3]TABLE 3

[표 4]TABLE 4

(*) W15/50(W/kg) : 50Hz에서 1.5Tesla로 자화했을 때의 철손(*) W15 / 50 (W / kg): Iron loss when magnetized to 1.5 Tesla at 50 Hz

B 50(Tesla) : 5000A/m로 자화했을 때의 유도되는 자속밀도B 50 (Tesla): Induced magnetic flux density when magnetized at 5000A / m

u 1.5 : 50Hz에서 1.5Tesla로 자화했을 때의 투자율u 1.5: Permeability when magnetized to 1.5 Tesla at 50 Hz

상기 표 4에 나타난 바와 같이, 본 발명의 성분 범위에 해당되는 발명강 (e-f)을 본 발명에 부합되는 제조조건으로 제조한 발명재(5-6)가 본 발명의 성분 범위를 벗어나는 비교강(f)을 출발소재로 하여 제조된 비교재(8)에 비하여 자성이 우수할 뿐만 아니라 냉연판 압연상태에 있어서도 양호함을 알 수 있다.As shown in Table 4, the invention steel (ef) corresponding to the component range of the present invention manufactured by the manufacturing conditions conforming to the present invention (5-6) is a comparative steel (out of the component range of the present invention) Compared with the comparative material 8 manufactured by using f) as a starting material, it was found that not only was excellent magnetic property but also good in the cold rolled state.

[실시예 3]Example 3

중량%로, C : 0.006%, Si : 2.9%, Mn : 0.35%, P : 0.03%, S : 0.005%, Al : 0.2%, N : 0.003%, Sn : 0.11%, Ni : 0.25% 및 Cu : 0.16%로 조성되는 강슬라브를 1200℃로 재가열한 후 마무리 압연시 종료온도를 페라이트 상인 900℃로 하여 2mm의 두께로 열간압연하고 700℃에서 권취한 후 하기 표 5와 같은 조건으로 열연판을 소둔하고, 산세한 후 1.0mm의 두께로 1차 냉간압연하고 900℃에서 2분간 중간소둔한 다음, 50%의 압하율로 0.5mm의 두께가 되게 2차 냉간압연하여 2단 냉간압연법으로 냉간압연하였다.By weight, C: 0.006%, Si: 2.9%, Mn: 0.35%, P: 0.03%, S: 0.005%, Al: 0.2%, N: 0.003%, Sn: 0.11%, Ni: 0.25% and Cu : After reheating the steel slab composed of 0.16% to 1200 ° C., the final temperature at the time of finish rolling was 900 ° C., which is a ferrite phase, hot rolled to a thickness of 2 mm, and wound at 700 ° C., followed by the hot rolled sheet under the conditions shown in Table 5 below. After annealing, pickling, primary cold rolling to thickness of 1.0mm, middle annealing at 900 ℃ for 2 minutes, secondary cold rolling to thickness of 0.5mm with 50% reduction rate, and cold by two stage cold rolling method Rolled.

다음에, 상기와 같이 냉간압연된 최종냉간압연판을 1050℃에서 3분간 고온소둔하고 절단하여 790℃에서 2시간 동안 응력제거소둔을 행한 다음, 자성을 측정하고, 그측정결과를 하기 표 5에 나타내었다.Next, the cold-rolled final cold rolled plate as described above was subjected to high temperature annealing at 1050 ° C. for 3 minutes and subjected to stress relief annealing at 790 ° C. for 2 hours, and then to measure magnetic properties. The measurement results are shown in Table 5 below. Indicated.

[표 5]TABLE 5

(*) W15/50(W/kg) : 50Hz에서 1.5Tesla로 자화했을 때의 철손(*) W15 / 50 (W / kg): Iron loss when magnetized to 1.5 Tesla at 50 Hz

B 50(Tesla) : 5000A/m로 자화했을 때의 유도되는 자속밀도B 50 (Tesla): Induced magnetic flux density when magnetized at 5000A / m

u 1.5 : 50Hz에서 1.5Tesla로 자화했을 때의 투자율u 1.5: Permeability when magnetized to 1.5 Tesla at 50 Hz

상기 표 5에 나타난 바와같이, 본 발명에 부합되는 열연판 소둔조건으로 소둔한 발명재(7-9)가 본 발명의 벗어난 소둔조건으로 열연판을 소둔하여 제조된 비교재(9)에 비하여 자성이 우수함을 알 수 있다.As shown in Table 5, the inventive material (7-9) annealed under the hot-rolled sheet annealing conditions in accordance with the present invention is magnetic compared to the comparative material (9) manufactured by annealing the hot-rolled sheet under the annealing conditions out of the present invention It can be seen that this is excellent.

상술한 바와 같이, 본 발명은 철손이 낮고 자속밀도와 투자율이 높은 무방향성 전기강판을 제공하므로서, 성에너지 및 전기제품의 효율화를 극대화할 수 있는 효과가 있는 것이다.As described above, the present invention is to provide a non-oriented electrical steel sheet having a low iron loss, high magnetic flux density and high permeability, thereby maximizing the efficiency of sex energy and electrical appliances.

Claims (4)

중량%로, C : 0.02%이하, Si : 1.0~3.5%, Mn : 1.0%이하, P : 0.10%이하, S : 0.01%이하, N : 0.008%이하, Al : 0.7%이하, Ni : 0.05~1.0%, Cu : 0.02~0.5%, Sn 과 Sb중의 1종 또는 2종의 합 : 0.02~0.2%, 잔부 Fe 및 기타 불가피하게 첨가되는불순물로 조성됨을 특징으로 하는 자성이 우수한 무방향성 전기강판.By weight%, C: 0.02% or less, Si: 1.0 ~ 3.5%, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.008% or less, Al: 0.7% or less, Ni: 0.05 ~ 1.0%, Cu: 0.02 ~ 0.5%, Sn or Sb, or one or two of them: 0.02 ~ 0.2%, balance Fe and other unavoidable impurities. . 중량%로, C : 0.02%이하, Si : 1.0~3.5%, Mn : 1.0%이하, P : 0.10%이하, S : 0.01%이하, N : 0.008%이하, Al : 0.7%이하, Ni : 0.05~1.0%, Cu : 0.02~0.5%, Sn 과 Sb중의 1종 또는 2종의 합 : 0.02~0.2%, 잔부 Fe 및 기타 불가피하게 첨가되는불순물로 조성되는 강슬라브를 열간압연, 열연판소둔, 산세, 1단 냉간압연 혹은 1차 냉간압연하고 중간소둔한 후 2차 냉간압연을 실시하는 2단 냉간압연을 실시한 후, 냉연판의 고온소둔 및 응력제거 소둔하는 풀리프로세스에 의해 제조되는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.02% or less, Si: 1.0 ~ 3.5%, Mn: 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.008% or less, Al: 0.7% or less, Ni: 0.05 ~ 1.0%, Cu: 0.02 ~ 0.5%, Sn or Sb, or one or two of them: 0.02 ~ 0.2%, remainder Fe and other unavoidably added impurities, hot rolled, hot rolled annealing, After pickling, 1 stage cold rolling or 1st cold rolling and intermediate annealing followed by 2 stage cold rolling which carries out 2nd cold rolling, it is manufactured by the pulley process of high temperature annealing and stress removal annealing of a cold rolled sheet. Method for producing non-oriented electrical steel sheet having excellent magnetic properties. 제2항에 있어서, 상기 열연판의 소둔 방식이 700-1100℃의 온도에서 10초~20분동안 행하여지는 연속소둔 방식임을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The method of claim 2, wherein the annealing method of the hot rolled sheet is a continuous annealing method performed for 10 seconds to 20 minutes at a temperature of 700-1100 ℃. 제2항에 있어서, 상기 열연판의 소둔 방식이 600-1000℃의 온도에서 30분-10시간동안 행하여지는 상소둔 방식임을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.The method of claim 2, wherein the annealing method of the hot rolled sheet is a normal annealing method performed at a temperature of 600-1000 ° C. for 30 minutes to 10 hours.
KR1019910018622A 1991-10-22 1991-10-22 Method and product of manufacturing silicon steel sheet having improved magnetic flux density KR930011406B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019910018622A KR930011406B1 (en) 1991-10-22 1991-10-22 Method and product of manufacturing silicon steel sheet having improved magnetic flux density
PCT/KR1992/000050 WO1993008313A1 (en) 1991-10-22 1992-10-22 Nonoriented electrical steel sheets with superior magnetic properties, and methods for manufacturing thereof
JP50761793A JP2700505B2 (en) 1991-10-22 1992-10-22 Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
RU9293043462A RU2092605C1 (en) 1991-10-22 1992-10-22 Sheets of isotropic electrotechnical steel and method for their manufacturing
CZ931218A CZ284195B6 (en) 1991-10-22 1992-10-22 Non-oriented electric steel sheets and process for producing thereof
EP19920922513 EP0567612A4 (en) 1991-10-22 1992-10-22 Nonoriented electrical steel sheets with superior magnetic properties, and methods for manufacturing thereof.
CN92113058A CN1039352C (en) 1991-10-22 1992-10-22 Unoriented electrical engineering steel plate with good magnetism and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910018622A KR930011406B1 (en) 1991-10-22 1991-10-22 Method and product of manufacturing silicon steel sheet having improved magnetic flux density

Publications (2)

Publication Number Publication Date
KR930008167A KR930008167A (en) 1993-05-21
KR930011406B1 true KR930011406B1 (en) 1993-12-06

Family

ID=19321638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910018622A KR930011406B1 (en) 1991-10-22 1991-10-22 Method and product of manufacturing silicon steel sheet having improved magnetic flux density

Country Status (1)

Country Link
KR (1) KR930011406B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100268848B1 (en) * 1996-10-08 2000-10-16 이구택 Non oriented electric steel sheet with low hysterisis after stress removing annealing
KR20010064943A (en) * 1999-12-20 2001-07-11 이구택 A method for manufacturing non grain oriented electrical steel sheet having high magnetic induction
CN113737089B (en) * 2020-05-29 2022-07-15 宝山钢铁股份有限公司 Low-cost and extremely-low-aluminum non-oriented electrical steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
KR930008167A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
KR102535436B1 (en) Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2009235574A (en) Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
KR950004934B1 (en) Method of making non-oriented electro magnetic steel plates with excellent magnetic characteristic
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR930011406B1 (en) Method and product of manufacturing silicon steel sheet having improved magnetic flux density
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
JP2022503910A (en) Non-oriented electrical steel sheet and its manufacturing method
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
KR930011407B1 (en) Method and product of manufacturing silicon steel sheet having improved magnetic flux density
KR102483636B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR960006027B1 (en) Process for production of non-oriented electrical steel sheet having excellent magnetic properties
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
CN114729415B (en) Non-oriented electrical steel sheet and method for producing same
JPS6253571B2 (en)
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081203

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee