KR930005307B1 - Catalyst for preparation of methacrylic acid and process for preparation of it - Google Patents

Catalyst for preparation of methacrylic acid and process for preparation of it Download PDF

Info

Publication number
KR930005307B1
KR930005307B1 KR1019910007015A KR910007015A KR930005307B1 KR 930005307 B1 KR930005307 B1 KR 930005307B1 KR 1019910007015 A KR1019910007015 A KR 1019910007015A KR 910007015 A KR910007015 A KR 910007015A KR 930005307 B1 KR930005307 B1 KR 930005307B1
Authority
KR
South Korea
Prior art keywords
catalyst
methacrylic acid
nitrogen
producing
solid catalyst
Prior art date
Application number
KR1019910007015A
Other languages
Korean (ko)
Other versions
KR920021218A (en
Inventor
백행남
이정호
윤현기
이기화
신현관
Original Assignee
재단법인 한국화학연구소
채영복
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국화학연구소, 채영복 filed Critical 재단법인 한국화학연구소
Priority to KR1019910007015A priority Critical patent/KR930005307B1/en
Publication of KR920021218A publication Critical patent/KR920021218A/en
Application granted granted Critical
Publication of KR930005307B1 publication Critical patent/KR930005307B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The catalyst is used for production of methacrylic acid. The composition is PaMo12TlbVcCudXeYfOg (where, P is phosphorus, Mo is molybdenum, Tl is thallium, V is vanadium, Cu is copper, O is oxygen, X is at least one compound chosen among cesium and potassium, Y is at least one compund selcted from organic cyclic compounds contaning pyridine or nitrogen; a,b,c,d,e and f are the mole ratios, a=1-1.6, b=0.1-1.0, c=0.5-1.5, d=0.1-0.5, e=0.5-2.0, f=0.01-0.5, g is value to adjust atomic valence of each composition). The catalyst carrier is silica or alumina.

Description

메타크릴산을 제조하는 고체촉매 및 그의 제조방법Solid catalyst for producing methacrylic acid and its preparation method

본 발명은 메타크롤레인을 분자상 산소와 기상접촉 산화시켜 메타크릴산을 제조하는 일반식(Ⅰ)로 표시하는 신규 고체촉매 및 그의 제조방법에 관한 것이다.The present invention relates to a novel solid catalyst represented by the general formula (I) for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, and a method for producing the same.

PaMo12TlbVcCudXeYfOg……………………………………(Ⅰ)P a Mo 12 Tl b V c Cu d X e Y f O g . … … … … … … … … … … … … … (Ⅰ)

상기 (Ⅰ)식에서 P, Mo, Tl, V, Cu, O는 각각 인, 몰리브덴, 탈륨, 바나듐, 구리, 산소를 나타내며, X는 세슘, 칼륨 중에서 선택한 1종 이상의 원소이고, Y는 피리딘 또는 질소함유 유기환화합물 중에서 선택한 1종 이상의 화합물이다. 또 a, b, c, d, e, f는 각각 1 내지 1.6, 0.1 내지 1.0, 0.5 내지 1.5, 0.1 내지 0.5, 0.5 내지 2.0, 0.01 내지 0.5의 값으로 몰비를 나타내며, g는 각 조성에서 원자가를 맞추기 위하여 필요한 값이다.In Formula (I), P, Mo, Tl, V, Cu, and O represent phosphorus, molybdenum, thallium, vanadium, copper and oxygen, respectively, X is at least one element selected from cesium and potassium, and Y is pyridine or nitrogen. It is 1 or more types of compound chosen from containing organic ring compound. And a, b, c, d, e, and f represent molar ratios with values of 1 to 1.6, 0.1 to 1.0, 0.5 to 1.5, 0.1 to 0.5, 0.5 to 2.0, and 0.01 to 0.5, respectively, and g is the valence in each composition. This is the value needed to match.

지금까지 메타크릴산 제조 촉매로는 특유의 강한 산특성과 산화-환원 특성을 갖는 헤테로폴리산 계통의 촉매가 고활성, 고선택성을 보이는 것으로 알려져, 동 계통의 촉매가 미국특허 4042625, 4272408호, 일본 공개특허공보 84-20243, 일본 공개특허공보 85-48143 유럽특허 24954호 등에 명시되어 있다.Until now, as a methacrylic acid production catalyst, it is known that heteropolyacid-based catalysts having unique strong acid properties and oxidation-reduction properties exhibit high activity and high selectivity, and catalysts of the same system are disclosed in U.S. Patent Nos. 4042625, 4272408, and Japan. Patent Publications 84-20243, Japanese Unexamined Patent Publication No. 85-48143, European Patent No. 24954, and the like.

그러나 헤테로폴리산 자체의 열안전성이 낮기 때문에 400℃ 이상에서는 헤테로폴리산의 기본골격인 케긴구조가 파괴되고 경시적인 승화와 소결로 인한 촉매의 비활성화가 빠르게 진행되는 것이 대표적인 단점으로 지적되어 왔다.However, due to the low thermal safety of the heteropolyacid itself, it has been pointed out that the deactivation of the catalyst due to the sublimation and sintering of the kegin structure, which is the basic skeleton of the heteropolyacid, over 400 ° C. has been pointed out as a representative disadvantage.

따라서 헤테로폴리산계 촉매의 열안정성 향상을 위하여 촉매성분의 조합에 관한 연구가 활발하게 진행되어 왔으며, 실제로 많은 진전이 있어 왔다. 특히 헤테로폴리산 음이온의 상대 양이온으로 1가 금속의 함량을 증가시키고 바나듐, 텅스텐 등을 첨가하여 케긴구조의 열안정성을 높히거나 승화성을 억제시키는 방법이 제안되고 있으며, 지금까지 기상산화 반응용 헤테로폴리산계 촉매의 특허의 명세서에 기재된 내용도 대부분이 범주를 벗어나지 못하고 있다.Therefore, studies on the combination of catalyst components have been actively conducted to improve the thermal stability of the heteropolyacid-based catalyst, and indeed, much progress has been made. In particular, a method of increasing the content of monovalent metal as a relative cation of a heteropolyacid anion and adding vanadium, tungsten, etc. to increase the thermal stability of the keggin structure or to suppress sublimation has been proposed. Most of the contents described in the specification of the patent do not go out of scope.

그러나 실제 촉매반응에서 헤테로폴리산 음이온과 1가 금속양이온으로 이루어진 중성염은 촉매능이 현저히 저하되고, 성형된 촉매의 기계적 강도가 약해지기 때문에 첨가량에 한계가 있으며, 높은 촉매능을 유지할 수 있는 정도의 첨가량으로 상기한 비활성화 요인을 억제하는 데 충분한 효과를 발휘하지 못하고 있다. 더구나 헤테로 폴리산계 촉매의 주된 비활성화 요인중의 하나인 소결의 일반적인 소결과는 달리 비교적 낮은 온도인 150 내지 200℃ 이상에서부터 서서히 진행되며, 그 원인이 촉매성분 중에서 일부가 유동성을 갖고 입자이동이 일어나면서 성분분리를 일으키고 재결정화하기 때문으로, 소결 정도가 매우 심각하며, 촉매조성의 불균일성을 가져와 전환율 뿐만 아니라 선택도까지 감소시키는 복잡한 양상을 띠기 때문에 기존의 특허에 공지된 금속원소의 조합만으로 비활성화를 억제시키기는 매우 어렵다.However, neutral salts composed of heteropolyacid anions and monovalent metal cations in the actual catalytic reaction have a limited amount of catalyst due to a significant decrease in the catalytic performance and a weak mechanical strength of the formed catalyst. It is not sufficient to suppress the above deactivation factors. Moreover, unlike general sintering of sintering, which is one of the main deactivation factors of heteropolyacid catalysts, the process proceeds slowly from a relatively low temperature of 150 to 200 ° C., because some of the catalyst components have fluidity and particle movement occurs. Due to the component separation and recrystallization, the degree of sintering is very serious, and due to the complex aspect of reducing the conversion as well as the selectivity due to the heterogeneity of the catalyst composition, the inactivation is suppressed only by the combination of metal elements known in the existing patent. It is very difficult to make.

본 발명의 특징은 촉매조성의 미세조정, 제조방법의 개선, 그리고 특별한 조촉매를 사용함으로써, 상기한 비활성화 요인을 효과적으로 억제하여 높은 촉매능으로 장시간 조업이 가능하도록 한 것에 있다.A feature of the present invention is that the fine adjustment of the catalyst composition, the improvement of the production method, and the use of a special promoter effectively suppress the above-mentioned deactivation factor, thereby enabling long-term operation with high catalytic performance.

본원의 촉매조성중 인과 몰리브덴은 헤테로폴리산을 구성하는 메타크릴산제조 촉매의 주촉매이고, 탈륨, 바나듐, 구리는 활성을 높여주는 조촉매로, X, Y는 선택성을 높혀주는 조촉매로 작용하나, 위 원소들의 각각으로는 높은 촉매능을 발휘하지 못하며, 위 원소들의 적절한 조합으로부터 고활성, 고선택성을 보이는 촉매를 제조할 수 있다. 특히 상기 일반식(Ⅰ)에서 바나듐, X 그리고 Y는 앞서 언급한 여러가지 촉매의 비활성화 요인을 억제하는 독특한 효과를 나타낸다.Phosphorus and molybdenum in the catalyst composition of the present application is the main catalyst of the methacrylic acid production catalyst constituting the heteropolyacid, thallium, vanadium, copper is a promoter for enhancing the activity, X, Y is a promoter for increasing the selectivity, Each of the elements does not exhibit high catalytic ability, and a catalyst having high activity and high selectivity can be prepared from an appropriate combination of the above elements. In particular, vanadium, X and Y in the general formula (I) has a unique effect of inhibiting the deactivation factors of the various catalysts mentioned above.

바나듐은 앞서 언급한 비활성화의 요인중 헤테로폴리산의 경시적 승화 억제에 중요한 작용을 하는데, 단지 촉매조성비의 정량적인 첨가만으로는 그 효과를 충분히 재현성 있게 발휘하지 못한다. 바나듐이 혼합물로 불균일하게 분포되면 오히려 촉매의 선택성이 감소되므로 촉매제조시에 특별한 기술을 발휘하여 바나듐을 케긴단위의 몰리브덴의 자리에 완전히 치환시키는 것이 매우 중요하다.Vanadium plays an important role in suppressing the sublimation of heteropoly acid over time as one of the deactivation factors mentioned above, and only quantitative addition of the catalyst composition ratio does not sufficiently reproduce the effect. If the vanadium is unevenly distributed in the mixture, the selectivity of the catalyst is rather reduced. Therefore, it is very important that the vanadium is completely substituted in the position of molybdenum of the keggin unit by using a special technique in preparing the catalyst.

X는 전기된 비활성화 요인중 헤테로폴리산의 열안정성을 증대시켜 조업중 케긴구조의 파괴를 방지하는 역할을 하며, 촉매의 활성과 선택도를 고려할 때 첨가량은 0.5 내지 2.0, 바람직하게는 0.7 내지 1.8로 조절되어야 한다.X serves to prevent the destruction of the keggin structure during operation by increasing the thermal stability of the heteropoly acid among the inactivation factor, the amount of addition is controlled to 0.5 to 2.0, preferably 0.7 to 1.8 in consideration of the activity and selectivity of the catalyst Should be.

전기한 바나듐과 X조합으로부터 촉매의 열안정성의 향상과 경시적 승화성의 억제에 상당한 효과를 얻었으나, 장시간의 반응에서 주된 비활성화 요인중의 하나인 성분분리를 동반한 재결정화에 의한 소결현상은 극복되지 않았다.Although the vanadium and X combinations mentioned above have a significant effect on improving the thermal stability of the catalyst and suppressing the sublimation over time, the sintering phenomenon due to recrystallization with component separation, which is one of the main deactivation factors in the long time reaction, is overcome. It wasn't.

그러므로 본원 발명의 완성은 상기 단점을 효과적으로 제거하므로써 이루어졌다.Therefore, the present invention has been accomplished by effectively eliminating the above disadvantages.

본원 발명을 더욱 상세히 설명하면, 촉매의 비활성화 억제에 가장 핵심이 되는 성분 중 하나인 Y성분은 촉매조성에서 미량 존재하지만 헤테로폴리산계 촉매에서 항상 대두되는 복잡한 양상의 소결을 억제하는데 매우 효과적이다. 헤테로폴리산의 이차구조는 그 자체의 특성상 높은 온도에서 불안정성을 보인다. 즉 상대적으로 크기가 큰 거대음이온과 이온반경이 매우 작은 수소이온과의 이차구조로부터 음이온간의 거리가 가까워져 음이온 상호간의 반발력으로 불안정해진다. 상온에서는 결정수를 취하여 음이온 상호간의 반발력을 최소화하나 150℃ 이상에서는 결정수가 빠져나가므로 다시 불안정해져 거대음이온의 유동성으로 인한 소결을 초래한다. Y는 수소이온을 받아들여 매우 큰 이온반경을 갖는 양이온이 되며, 헤테로폴리산 음이온의 상대 양이온으로 취해져 이차구조를 구성함으로써 비교적 높은 온도에서도 헤테로폴리산을 안정화시키고, 메타크롤레인산화반응에 높은 선택성을 발휘하는 활성구조로 유도한다. 상기한 효과로 많은 특허명세서에서 촉매제조 과정에서 침전제로 Y성분을 사용하나 이 경우 침전제인 Y성분을 헤테로폴리산의 이차구조를 활성구조로 유도할 뿐, 소성후에는 촉매조성에 남아 있지 않아 장시간 조업시 헤테로폴리산이 다시 불안정해져 비활성화의 원인이 된다. 본원 발명에서는 소성이 완료된 최종 촉매조성에 Y성분을 일정량 유지하도록 함으로써 상기한 비활성화를 극복할 수 있었다. 또한 Y 성분은 조업중에 극미량이 계속 발휘되므로 이를 보충하기 위하여 반응물에 0.1 내지 1000ppm 바람직하게는 0.1 내지 500ppm을 공급하는 것이 중요하다. 그러나 Y 자체가 염기이기 때문에 과량 존재시에는 헤테로폴리산의 활성점인 산점의 분포가 너무 적어져 촉매활성이 감소하게 되므로 촉매조성에서 Y의 함량은 미세하게 조절되어야만 한다.In more detail, the Y component, which is one of the most essential components for suppressing the deactivation of the catalyst, is very effective in suppressing the sintering of a complicated aspect which is present in a small amount in the catalyst composition but always occurs in the heteropolyacid catalyst. The secondary structure of the heteropolyacid shows instability at high temperatures due to its nature. That is, the distance between the anions is close to the secondary structure between the relatively large macroanions and the hydrogen ions with very small ion radius, and thus becomes unstable due to the repulsive force between the anions. At room temperature, crystal water is taken to minimize the repulsion between anions, but above 150 ° C, the crystal water escapes, resulting in instability and sintering due to the fluidity of the macroanion. Y accepts hydrogen ions and becomes a cation with a very large ion radius, and is taken as a counter cation of a heteropolyacid anion to form a secondary structure, thereby stabilizing heteropolyacids at a relatively high temperature and exhibiting high selectivity for methacrolein oxidation. Guide to the structure. Due to the above effects, many patent specifications use Y component as precipitant in the catalyst manufacturing process, but in this case, Y component, which is a precipitant, induces the secondary structure of heteropoly acid into the active structure, and does not remain in the catalyst composition after firing. Heteropolyacids become unstable again, causing deactivation. In the present invention, it was possible to overcome the above deactivation by maintaining a certain amount of the Y component in the final catalyst composition completed firing. In addition, since the Y component is continuously exerted during the operation, it is important to supply 0.1 to 1000 ppm, preferably 0.1 to 500 ppm, to the reactant to compensate for this. However, since Y itself is a base, in the presence of an excessive amount, the distribution of the acid point, which is the active point of heteropoly acid, is so small that the catalytic activity is reduced, so the Y content must be finely controlled in the catalyst composition.

본 발명의 촉매제조방법을 상세히 설명하면 다음과 같다. 12-몰리브도 인산을 물에 녹이고 정량의 인산과 오산화 바나듐을 첨가한 후, 2 내지 10시간 동안 환류하여 바나듐이 몰리브덴의 자리에 완전히 치환된 진홍색 용액을 얻는다(용액 A). 위의 환류과정을 거치지 않으면 바나듐을 정량적으로 첨가해도 바나듐이 원하는 자리에 치환되지 않고 불균일 혼합물이 생기기 때문에 촉매의 선택도 감소와 비활성화의 주된 요인이 된다. 또 다른 용기에 구리, 탈륨, X, Y를 일정한 조성비로 섞어 녹인다(용액 B). 용액 A를 50 내지 80℃로 유지하고 격렬하게 교반하면서 용액 B를 가한 후, 가열 농축시킨다. 농축된 슬러리를 80 내지 250℃의 전기로에서 건조시키고 100메시이하로 분쇄하여 성형한다. 성형과정에서 촉매의 기계적 강도를 향상시키기 위하여, 또는 반응열을 효과적으로 분산시키기 위하여 실리카나 알루미나 등이 통상적 담체들과 함께 섞어서 성형할 수도 있으며, 성형체의 모양은 구형, 정체, 중공형 등 어느 것이나 사용할 수 있다. 성형된 촉매는 소성과정을 거쳐 활성화되는데, 일반식(Ⅰ)에서 성분 Y는 활성화 과정에서 그 함량이 결정되므로 촉매의 활성화 과정이 매우 중요하다. 소성과정을 상세히 설명하면, 180 내지 300℃의 질소분위기, 바람직하게는 180 내지 260℃에서 일차 소성하여 촉매에 열손상을 입히지 않고 촉매제조과정에서 첨가된 각종 음이온과 과량 존재하는 Y를 비롯한 불순물들이 제거되며, 촉매의 물리적 성질이 결정되어진다. 이차소성이 끝나면 온도를 260 내지 400℃ 바람직하게는 280 내지 380℃, 질소/공기 비가 1 내지 10, Y의 농도가 0.1 내지 1000ppm인 분위기하에서 활성화한다. 이 활성화 과정에서 성분 Y의 함량이 미세하게 조절된다. 상기 제조방법으로 제조된 최종 촉매의 조성은 XRF, XPS, TPD 등의 분석에서 일반식(Ⅰ)의 조성을 갖고 있음이 확인되었으며, 적외선 분광기를 이용한 분석으로부터 Y성분이 헤테로폴리산 음이온의 상대양이온으로 존재함을 확인하였다. 또한, 최종촉매의 물에 대한 용해도 Y성분을 상기 방법으로 처리하지 않은 촉매에 비해 현저히 감소하였다. 그리고 반응 조건은 아래와 같다.The catalyst production method of the present invention will be described in detail as follows. 12-molybdo phosphoric acid is dissolved in water, and quantitative phosphoric acid and vanadium pentoxide are added, followed by reflux for 2 to 10 hours to obtain a crimson solution in which vanadium is completely substituted for molybdenum (solution A). If the above reflux process is not performed, the quantitative addition of vanadium does not replace the vanadium in the desired site, and a heterogeneous mixture is formed, which is a major factor in reducing the selectivity and deactivation of the catalyst. In another container, mix copper, thallium, X, and Y at a constant composition ratio (solution B). Maintain solution A at 50-80 ° C., add solution B with vigorous stirring, and then concentrate by heating. The concentrated slurry is dried in an electric furnace at 80 to 250 ° C. and pulverized to 100 mesh or less for molding. In order to improve the mechanical strength of the catalyst during the molding process or to effectively disperse the heat of reaction, silica or alumina may be mixed with conventional carriers to form the molded body, and the shape of the molded body may be any of spherical, stagnant and hollow shapes. have. The molded catalyst is activated through a calcination process. In the general formula (I), the content of the component Y is determined in the activation process, so the activation process of the catalyst is very important. When the firing process is described in detail, various anions added in the catalyst production process and impurities including Y present in the catalyst manufacturing process without first causing the thermal damage to the catalyst by first firing at a nitrogen atmosphere of 180 to 300 ° C., preferably 180 to 260 ° C. Removed, and the physical properties of the catalyst are determined. After the secondary firing, the temperature is activated at a temperature of 260 to 400 ° C., preferably 280 to 380 ° C., and a nitrogen / air ratio of 1 to 10 and Y at a concentration of 0.1 to 1000 ppm. During this activation, the content of component Y is finely controlled. It was confirmed that the final catalyst prepared by the preparation method had the composition of general formula (I) in the analysis of XRF, XPS, TPD, etc., and the Y component was present as a relative cation of the heteropolyacid anion from an infrared spectroscopy analysis. It was confirmed. In addition, the solubility Y component of the final catalyst in water was significantly reduced compared to the catalyst which was not treated by the above method. And reaction conditions are as follows.

반응온도 : 250 내지 350℃Reaction temperature: 250 to 350 ℃

공간속도 : 800 내지 3000hr-1 Space Speed: 800 ~ 3000hr -1

메타크롤레인 농도 : 3 내지 7%Methacrolein concentration: 3-7%

산소/메타크롤레인 농도 : 1.5 내지 4.0Oxygen / Methacrolein Concentration: 1.5 to 4.0

물 : 10 내지 40%Water: 10-40%

반응압력 : 0 내지 5기압Reaction pressure: 0 to 5 atmospheres

질소 : 필요량Nitrogen: Required amount

Y : 메타크롤레인을 기준으로 0.1 내지 1000ppmY: 0.1 to 1000 ppm based on methacrolein

촉매 활성 실험결과의 정의는 다음과 같다.The results of the catalytic activity test are as follows.

실시예를 들어 상세히 설명하면 다음과 같다.For example, it will be described in detail as follows.

[실시예 1]Example 1

P1.2Mo12Tl0.5V1.0Cu0.3Cs1.5(PyH)* 0.1+SiO2(30중량%)P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 Cs 1.5 (PyH) * 0.1 + SiO 2 (30% by weight)

* 상기식에서 PyH는 피리디늄 양이온을 나타낸다.* In the formula, PyH represents a pyridinium cation.

12-몰리브도인산 2kg을 물 6000ml에 녹이고 여기에 85% 인산 11.68ml와 오산화바나듐 77.48g을 가하여 6시간 동안 환류시켜 진홍색 용액을 얻는다(용액 A). 2800ml의 물에 초산탈륨 112.4g, 질산세슘 249.1g, 질산구리 59.44g과 피리딘 104ml를 녹인다(용액 B). 용액 A를 60 내지 70℃로 유지하고 격렬하게 교반하면서 용액 B를 가한다. 얻어진 노란색 혼탁용액 60 내지 70℃로 유지하면서 계속 농축시켜 슬러리를 만든 후 110℃ 전기로에서 건조시킨다. 건조된 덩어리를 100메시 이하로 분쇄하고 실리카분말 500g과 균일 혼합하여 성구기에서 성형한다. 성형된 촉매는 질소분위기 220℃에서 2시간 동안 일차 소성하고, 410℃에서 3시간동안 이차소성한다. 소성된 촉매는 330℃, 질소/공기 비는 3, 피리딘은 50ppm인 조건에서 5시간 동안 활성화하여, 직경 1인치, 높이 2m의 반응기에 충전했다. 그리고 반응온도는 280℃, 공간속도는 1200-hr, 메타크롤레인 농도는 4%, 산소/메타크롤레인의 비는 2.5, 물은 15%, 및 반응압력은 12psi의 조건에서 초기 100hrs경과후의 반응결과와 2000hgs경과후의 반응결과를 나타내었다.Dissolve 2 kg of 12-molybdate phosphoric acid in 6000 ml of water, add 11.68 ml of 85% phosphoric acid and 77.48 g of vanadium pentoxide to reflux for 6 hours to obtain a crimson solution (solution A). Dissolve 112.4 g of thallium acetate, 249.1 g of cesium nitrate, 59.44 g of copper nitrate, and 104 ml of pyridine in 2800 ml of water (solution B). Maintain solution A at 60-70 ° C. and add solution B with vigorous stirring. The resulting yellow turbid solution was kept at 60 to 70 ° C. and concentrated to make a slurry, followed by drying in a 110 ° C. electric furnace. The dried mass is pulverized to 100 mesh or less and uniformly mixed with 500 g of silica powder, and then molded in a penis machine. The shaped catalyst is first calcined at 220 ° C. for 2 hours and secondaryly calcined at 410 ° C. for 3 hours. The calcined catalyst was activated for 5 hours at 330 ° C., nitrogen / air ratio 3, and pyridine 50 ppm, and charged into a reactor 1 inch in diameter and 2 meters in height. The reaction temperature was 280 ° C, the space velocity was 1200 -hr , the methacrolein concentration was 4%, the oxygen / methcrolein ratio was 2.5, the water was 15%, and the reaction pressure was 12 psi after the initial 100 hrs. The reaction result and the reaction result after 2000 hgs were shown.

[실시예 2]Example 2

P1.2Mo12Tl0.5V1.0Cu0.3K1.5(PyH)0.1+SiO2(30중량%)P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 K 1.5 (PyH) 0.1 + SiO 2 (30% by weight)

촉매 제조과정 중 질산세슘 대신 질산칼륨 129.2g을 가한외는 실시예 1과 동일하게 실시한 결과는 표 1에 나타내었다.Except for adding 129.2 g of potassium nitrate instead of cesium nitrate in the catalyst preparation process, the results were carried out in the same manner as in Example 1 are shown in Table 1.

[실시예 3]Example 3

P1.2Mo12Tl0.5V1.0Cu0.3Cs1.5(Pyrazine H)0.05+SiO2(30중량%)P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 Cs 1.5 (Pyrazine H) 0.05 + SiO 2 (30% by weight)

* Pyrazine H는 피라지늄 양이온을 나타낸다.* Pyrazine H represents a pyrazinium cation.

촉매제조과정 중 피리딘 대신 피라진 52.5ml을 가하고, 활성하 과정에서 활성화온도는 340℃, 피리딘 대신 피리진을 20ppm 공급한 외는 실시예 1과 동일하게 실시한 결과는 표 1에 나타내었다.52.5ml of pyrazine was added instead of pyridine during the preparation of the catalyst, and the activation temperature was 340 ° C in the course of activation, and 20 ppm of pyridine was supplied instead of pyridine.

[비교실시예 1]Comparative Example 1

P1.2Mo12Tl0.5V1.0Cu0.3Cs1.5+SiO2(30중량%)P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 Cs 1.5 + SiO 2 (30% by weight)

활성화조건을 온도 380℃, 질소/공기 비 3으로 한외는 실시예 1과 동일하게 실시한 결과는 표 2에 나타내었다.The results of the same conditions as in Example 1 except that the activation conditions were 380 ° C. and nitrogen / air ratio 3 are shown in Table 2.

[비교실시예 2]Comparative Example 2

P1.2Mo12Tl0.5V1.0Cu0.3Cs1.5(PyH)0.1+SiO2(30중량%)P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 Cs 1.5 (PyH) 0.1 + SiO 2 (30% by weight)

용액 A의 환류과정을 생략한 외는 실시예 1과 동일하게 실시한 결과는 표 2에 나타내었다.The results of the same procedure as in Example 1 except for the refluxing process of Solution A are shown in Table 2.

[비교실시예 3]Comparative Example 3

P1.2Mo12Tl0.5V1.0Cu0.3Cs1.5(PyH)0.1 P 1.2 Mo 12 Tl 0.5 V 1.0 Cu 0.3 Cs 1.5 (PyH) 0.1

실리카를 첨가하지 아니한 이외에는 실시예 1과 동일하게 실시한 결과는 표 2에 나타내었다.Table 2 shows the results of the same procedure as in Example 1 except that silica was not added.

[표 1]TABLE 1

[표 2]TABLE 2

Claims (4)

일반식(Ⅰ)General formula (Ⅰ) PaMo12TlbVcCudXeYfOg……………………………………(Ⅰ)P a Mo 12 Tl b V c Cu d X e Y f O g . … … … … … … … … … … … … … (Ⅰ) 로 표시하는 메타크릴산 제조용 고체촉매Solid catalyst for methacrylic acid production 상기 일반식에서 P, Mo, Tl, V, Cu, O는 인, 몰리브덴, 탈륨, 바나듐, 구리, 산소를 나타내며, X는 세슘, 칼륨 중에서 선택한 1종 이상의 원소이고, Y는 피리딘, 질소함유 유기환화합물중에서 선택한 1종 이상의 화합물이다. 또 a, b, c, d, e, f는 각각 1 내지 1.6, 0.1 내지 1.0, 0.5 내지 1.5, 0.1 내지 0.5, 0.5 내지 2.0, 0.01 내지 0.5의 값으로 몰비를 나타내며, g는 각 조성에서 원자가를 맞추기 위하여 필요한 값이다.In the general formula, P, Mo, Tl, V, Cu, O represents phosphorus, molybdenum, thallium, vanadium, copper, oxygen, X is at least one element selected from cesium, potassium, Y is pyridine, nitrogen-containing organic ring compound It is 1 or more types of compounds chosen from. And a, b, c, d, e, and f represent molar ratios with values of 1 to 1.6, 0.1 to 1.0, 0.5 to 1.5, 0.1 to 0.5, 0.5 to 2.0, and 0.01 to 0.5, respectively, and g is the valence in each composition. This is the value needed to match. 12-몰리브도인산, 인산, 오산화바나듐을 환류시켜 얻은 용액에 초산탈륨, 질산구리, X, Y 용액을 가하여 공침시킨 후, 80 내지 250℃에서 건조하여 성형한 촉매를 180 내지 300℃의 질소분위기에서 1 내지 5시간동안 1차 소성하고, 380 내지 500℃에서 2 내지 5시간 동안 이차소성을 거쳐, 260 내지 400℃에서 질소/공기 비가 1 내지 10, Y의 농도가 0.1 내지 1000ppm인 분위기하에서 활성화시켜 된 일반식(Ⅰ)로 표시되며, 메타크롤레인을 분자상 산소와 접촉시켜 메타크릴산을 제조하는 고체 촉매(Ⅰ)의 제조방법.A solution obtained by refluxing 12-molybdate phosphoric acid, phosphoric acid, and vanadium pentoxide was added to the solution by coprecipitation by adding tallium acetate, copper nitrate, X, and Y solutions, and then drying at 80 to 250 ° C. to form a catalyst having a nitrogen of 180 to 300 ° C. First firing in an atmosphere for 1 to 5 hours, secondary firing at 380 to 500 ° C. for 2 to 5 hours, and nitrogen / air ratio at 260 to 400 ° C. under an atmosphere having a concentration of 1 to 10 and Y of 0.1 to 1000 ppm. A method for producing a solid catalyst (I), represented by the general formula (I) obtained by activation, wherein methacrolein is contacted with molecular oxygen to produce methacrylic acid. 제1항 및 제2항에 있어서, 각 원소의 출발물질이 암모늄염, 질산나염, 염소염, 초산염 또는 금속산염화물인 메타크릴산 제조용 고체촉매의 제조방법.The method for producing a solid catalyst for producing methacrylic acid according to claim 1 or 2, wherein the starting material of each element is ammonium salt, nitrate salt, chlorine salt, acetate or metal chloride. 제1항 및 제2항에 있어서, 실리카, 알루미나 등의 담체를 사용하고 구형, 정제, 중공형 모양으로 상형하는 메타크릴산 제조용 고체촉매의 제조방법.The method for producing a solid catalyst for methacrylic acid production according to claim 1 or 2, wherein the carrier is made of a carrier such as silica or alumina and is shaped into a spherical, tablet or hollow shape.
KR1019910007015A 1991-05-01 1991-05-01 Catalyst for preparation of methacrylic acid and process for preparation of it KR930005307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910007015A KR930005307B1 (en) 1991-05-01 1991-05-01 Catalyst for preparation of methacrylic acid and process for preparation of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910007015A KR930005307B1 (en) 1991-05-01 1991-05-01 Catalyst for preparation of methacrylic acid and process for preparation of it

Publications (2)

Publication Number Publication Date
KR920021218A KR920021218A (en) 1992-12-18
KR930005307B1 true KR930005307B1 (en) 1993-06-17

Family

ID=19313934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910007015A KR930005307B1 (en) 1991-05-01 1991-05-01 Catalyst for preparation of methacrylic acid and process for preparation of it

Country Status (1)

Country Link
KR (1) KR930005307B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1029591B1 (en) * 1999-02-19 2005-11-02 Nippon Shokubai Co., Ltd. Method for the production of acrylic acid and method for the preparation of the catalyst

Also Published As

Publication number Publication date
KR920021218A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
EP0043100B2 (en) Oxidation catalyst and process for preparation thereof
US4051179A (en) Catalytic process for the preparation of unsaturated carboxylic acids
US3915892A (en) Vanadium-phosphorus mixed oxide oxidation catalysts
JPH10507964A (en) Ethylene oxide catalyst and method for producing the same
US3998876A (en) Catalytic process for preparation of unsaturated carboxylic acids
JPS5811416B2 (en) Method for producing methacrylic acid
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
US4150064A (en) Activating zinc ferrite oxidative dehydrogenation catalysts
JPH0326101B2 (en)
US3843554A (en) Catalyst compositions of scheelite crystal structure containing vanadium,bismuth and cation vacancies
JPS6158462B2 (en)
KR930005306B1 (en) Process for preparaton of catalyst for producing methacrylic acid
EP0326536B1 (en) Process for the production of maleic anhydride
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
KR930005307B1 (en) Catalyst for preparation of methacrylic acid and process for preparation of it
US4541964A (en) Production of methacrylonitrile
US3959297A (en) Process for the preparation of 3-cyanopyridine
JPS6230177B2 (en)
US4172051A (en) Catalyst for producing methacrylic acid
US4054607A (en) Process for preparing anisaldehyde
US3867438A (en) Process for the oxidation of {60 ,{62 -unsaturated aldehydes to {60 ,{62 -unsaturated carboxylic acids
US4127591A (en) Method of producing maleic anhydride
US3806470A (en) Catalyst compositions of scheelite crystal structure containing bismuth ions and cation vacancies
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JPS5896041A (en) Preparation of methacrylic acid

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020208

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee