JPS6158462B2 - - Google Patents

Info

Publication number
JPS6158462B2
JPS6158462B2 JP58078290A JP7829083A JPS6158462B2 JP S6158462 B2 JPS6158462 B2 JP S6158462B2 JP 58078290 A JP58078290 A JP 58078290A JP 7829083 A JP7829083 A JP 7829083A JP S6158462 B2 JPS6158462 B2 JP S6158462B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
isobutylene
propylene
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58078290A
Other languages
Japanese (ja)
Other versions
JPS59204164A (en
Inventor
Kunihisa Aoki
Shigeo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58078290A priority Critical patent/JPS59204164A/en
Priority to DE8484302869T priority patent/DE3460545D1/en
Priority to EP84302869A priority patent/EP0127942B1/en
Publication of JPS59204164A publication Critical patent/JPS59204164A/en
Priority to US06/794,323 priority patent/US4600541A/en
Priority to SU864027925A priority patent/SU1496631A3/en
Publication of JPS6158462B2 publication Critical patent/JPS6158462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Cosmetics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプロピレンまたはイソブチレンを触媒
の存在下、アンモ酸化してアクリロニトリルまた
はメタクリロニトリルを製造する方法に関する。
本発明の主たる要点はアンモ酸化反応に用いる触
媒に関する。 プロピレンまたはイソブチレンのアンモ酸化反
応によりアクリロニトリルまたはメタクリロニト
リルを製造する方法はよく知られており、アンモ
酸化反応に使用される触媒も多数提案されてい
る。例えば、特公昭36−5870、特公昭38−
17967、特公昭58−2232、特公昭48−43096、特開
昭50−25528等に多数のアンモ酸化用触媒が開示
されている。しかし乍ら、これら公知触媒はアン
モニア効率が比較的小さいという欠点を持つてい
る。すなわち、プロピレンまたはイソブチレンの
アクリロニトリルまたはメタクリロニトリルへの
転化率は大きいがアンモニアのアクリロニトリル
またはメタクリロニトリルへの転化率は比較的小
さく、アンモニアの価格が高騰している現今、満
足すべきものとはいえない。本発明はアクリロニ
トリルまたはメタクリロニトリルを製造するに当
つて、アンモニア効率に関してすぐれた触媒作用
を発現する新規な触媒を提供せんとするものであ
る。 本発明はプロピレンまたはイソブチレンを触媒
の存在下、アンモニアおよび酸素と高温で気相接
触させてアクリロニトリルまたはメタクリロニト
リルを製造するに当り、少くともモリブデン、ビ
スマス、鉄および成分A(Aはパラジウム、白
金、オスミウムおよびイリジウムから選択された
一種または一種以上の元素である)を含み、かつ
モリブデン12原子当り成分Aが0.002〜0.2原子で
ある酸化物触媒を用いることを特徴とするアクリ
ロニトリルまたはメタクリロニトリルの製造方法
である。 本発明の触媒は成分Aを微量用いることを特徴
とする。成分Aの量はモリブデン12原子当り
0.002〜0.2、好ましくは0.005〜0.1である。成分
Aがこの範囲より小さい場合はアンモニア収率
(Y〔NH3〕)が向上せず、またこの範囲より大き
い場合は完全酸化副生物CO2が増大し好ましくな
い。 本発明の触媒におけるビスマスまたは鉄の量は
モリブデン12原子当り0.5〜10の範囲から適宜選
定される。本発明の触媒はモリブデン、ビスマ
ス、鉄および成分Aの他に下記元素から選択され
る任意成分を含むことができる。アルカリ金属、
アルカリ土類金属、希土類金属、Sn、Pb、Ti、
Zr、W、V、Nb、Cr、Mn、Co、Ni、Zn、Cu、
In、Tl、B、PおよびSbを用いうる。これら任
意成分の量はモリブデン12原子当り10原子以下、
好ましくは5以下が適切であり、特にアルカリ金
属の中でカリウム、ルビジウムおよびセシウムは
0.5以下が好適である。 本発明酸化物触媒は隣成分を含むことができ
る。燐成分は、触媒の活性選択性に大きく影響し
ないけれども、触媒原料のスラリ安定化及び触媒
の耐摩耗強度の向上に有効な添加成分であること
は知られているが、本発明酸化物触媒においても
このような燐成分の添加効果が同様に認められ
る。 本発明の触媒に適用する担体はシリカが好適で
ある。シリカの含量は30〜30重量%の範囲で選ぶ
ことができる。 触媒の調製は、この種の触媒を調製する場合の
一般的な方法で行い得る。例えば金属塩の水溶液
または硝酸水溶液をシリカゾルと混合してスラリ
ーを得、次いで蒸発乾涸または噴霧乾燥して、最
後に550℃〜750℃の範囲から選定した温度で焼成
することによつて得ることができる。あるいは先
ず成分Aを含まない触媒を上記方法によつて得、
次いで該前駆触媒に成分Aを含む触媒を含浸し、
最後に350℃〜750℃の範囲から選定した温度で焼
成する方法も好適である。 本発明の方法は流動層反応あるいは固定層反応
のいずれの方式においても実施できる。プロピレ
ン、イソブチレンおよびアンモニアは必ずしも高
純度であることを要せず、工業グレードの原料を
使用しうる。イソブチレンにかえてターシヤリー
ブタノールを用いることができる。酸素源として
は空気が好適である。 プロピレンまたはイソブチレンに対する空気の
容積比は8〜13の範囲が好ましい。アンモニアの
要積比は広い範囲でとりうるが、プロピレンに対
しては特に1.0〜1.15が、またイソブチレンに対
しては特に1.2〜1.35が好ましい。アンモニアの
容積比がこの範囲より少さい場合はプロピレン収
率またはイソブチレン収率が低下し、逆にこの範
囲より大きい場合はアンモニア収率が低下する。
反応温度は400〜500℃、特に410〜480℃の範囲が
好ましい。反応圧力は常圧でもよいが、必要なら
加圧下に行いうる。原料混合ガスと触媒との接触
時間は、0.2〜10秒、特に0.4〜6秒の範囲が好ま
しい。 以下に本発明の実施例を示すが、本発明の範囲
はこれら実施例によつて限定されるものではな
い。 (1) 触媒調製 50重量%のシリカに担持された金属成分の原
子比組成が Pd0.02Mo12Bi4.1Fe7.2K0.07P1.0 で示される酸化物触媒を次のようにして調製し
た。30重量%のSiO2を含むシリカゾル166.7g
をとり、撹拌下、これに85重量%のリン酸1.73
gを加え、次いで水80gに七・モリブデン酸ア
ンモニウム〔(NH46Mo7O24・4H2O〕32.07g
を溶解した液を加え、最後に予め33gの13重量
%の硝酸に、29.83gの硝酸ビスマス〔Bi
(NO33・5H2O〕43.93gの硝酸第二鉄〔Fe
(NO33・9H2O〕および0.070gの硝酸パラジウ
ム〔Pd(NO32〕を溶解した混合液を加えた。
ここに得られた原料スラリーを並流式の噴霧乾
燥器に送り、約200℃で乾燥した。スラリーの
噴霧化は乾燥器上部中央に設置された、皿型回
転子を備えた噴霧化装置を用いて行つた。得ら
れた乾燥粉体はトンネル型キルンに移し、400
℃で1時間前焼成し、次いで690℃で2時間焼
成して触媒を得た。本触媒を5−Aとする。 Pdを含まない以外は触媒5−Aと同一組成
の触媒を上と同じ方法で調製した。得られた触
媒20gをビーカーに採り、これに0.014gの硝
酸パラジウム〔Pd(NO32〕を溶解した水溶液
3mlを加え含浸し、最後に500℃で2時間焼成
して触媒を得た。本触媒を5−Bとする。 触媒5−Aと同様の方法で本発明の触媒およ
び比較触媒を調製し、それらの組成を表1に示
した。なお触媒成分に白金、イリジウムまたは
オスミウムを用いる場合はそれぞれ、
〔H2PtCl6・6H2O〕、〔IrCl4・H2O〕または
〔OsCl3〕を用いた。その他の金属については適
宜アンモニウム塩、硝酸塩あるいは塩化物を用
いた。また触媒の焼成温度は、表1に記載した
如く触媒によつて適宜変更した。
The present invention relates to a method for producing acrylonitrile or methacrylonitrile by ammoxidizing propylene or isobutylene in the presence of a catalyst.
The main gist of the present invention relates to catalysts used in ammoxidation reactions. A method for producing acrylonitrile or methacrylonitrile by an ammoxidation reaction of propylene or isobutylene is well known, and many catalysts for use in the ammoxidation reaction have been proposed. For example, Tokuko Sho 36-5870, Tokko Sho 38-
A large number of catalysts for ammoxidation are disclosed in Japanese Patent Publication No. 17967, Japanese Patent Publication No. 58-2232, Japanese Patent Publication No. 48-43096, Japanese Patent Application Laid-Open No. 50-25528, etc. However, these known catalysts have the disadvantage of a relatively low ammonia efficiency. In other words, although the conversion rate of propylene or isobutylene to acrylonitrile or methacrylonitrile is large, the conversion rate of ammonia to acrylonitrile or methacrylonitrile is relatively small, which is still satisfactory in the present day when the price of ammonia is soaring. do not have. The present invention aims to provide a novel catalyst that exhibits excellent catalytic activity in terms of ammonia efficiency in producing acrylonitrile or methacrylonitrile. The present invention provides at least molybdenum, bismuth, iron, and component A (A is palladium, platinum, , osmium and iridium), and using an oxide catalyst containing 0.002 to 0.2 atoms of component A per 12 atoms of molybdenum. This is the manufacturing method. The catalyst of the present invention is characterized in that component A is used in a trace amount. The amount of component A is per 12 atoms of molybdenum
It is 0.002-0.2, preferably 0.005-0.1. If component A is smaller than this range, the ammonia yield (Y[NH 3 ]) will not improve, and if it is larger than this range, complete oxidation by-product CO 2 will increase, which is not preferable. The amount of bismuth or iron in the catalyst of the present invention is appropriately selected from the range of 0.5 to 10 per 12 molybdenum atoms. In addition to molybdenum, bismuth, iron, and component A, the catalyst of the present invention can contain an optional component selected from the following elements. alkali metals,
Alkaline earth metals, rare earth metals, Sn, Pb, Ti,
Zr, W, V, Nb, Cr, Mn, Co, Ni, Zn, Cu,
In, Tl, B, P and Sb can be used. The amount of these optional components is 10 atoms or less per 12 molybdenum atoms,
Preferably, 5 or less is appropriate, and potassium, rubidium and cesium are particularly suitable among alkali metals.
A value of 0.5 or less is preferable. The oxide catalyst of the present invention may contain neighboring components. Although the phosphorus component does not greatly affect the activity selectivity of the catalyst, it is known to be an effective additive component for stabilizing the slurry of the catalyst raw material and improving the wear resistance of the catalyst. The same effect of adding phosphorus components is also observed. Silica is preferably used as a carrier for the catalyst of the present invention. The silica content can be chosen in the range of 30-30% by weight. The catalyst can be prepared by a common method for preparing this type of catalyst. For example, it can be obtained by mixing an aqueous solution of a metal salt or an aqueous solution of nitric acid with a silica sol to obtain a slurry, followed by evaporation or spray drying, and finally calcination at a temperature selected from the range of 550°C to 750°C. can. Alternatively, first a catalyst containing no component A is obtained by the above method,
Then impregnating the precursor catalyst with a catalyst containing component A,
Finally, a method of firing at a temperature selected from the range of 350°C to 750°C is also suitable. The method of the present invention can be carried out in either a fluidized bed reaction or a fixed bed reaction. Propylene, isobutylene and ammonia do not necessarily need to be of high purity, and industrial grade raw materials can be used. Tertiary butanol can be used in place of isobutylene. Air is preferred as the oxygen source. The volume ratio of air to propylene or isobutylene is preferably in the range of 8 to 13. Although the required volume ratio of ammonia can be set within a wide range, it is preferably 1.0 to 1.15 for propylene, and 1.2 to 1.35 for isobutylene. If the volume ratio of ammonia is less than this range, the propylene yield or isobutylene yield will decrease, and conversely, if it is greater than this range, the ammonia yield will decrease.
The reaction temperature is preferably in the range of 400 to 500°C, particularly 410 to 480°C. The reaction pressure may be normal pressure, but the reaction may be carried out under increased pressure if necessary. The contact time between the raw material mixed gas and the catalyst is preferably in the range of 0.2 to 10 seconds, particularly 0.4 to 6 seconds. Examples of the present invention are shown below, but the scope of the present invention is not limited by these Examples. ( 1) Catalyst preparation An oxide catalyst whose atomic ratio composition of the metal component supported on 50% by weight of silica is Pd 0.02 Mo 12 Bi 4.1 Fe 7.2 K 0.07 P 1.0 was prepared . It was prepared as follows. 166.7g of silica sol containing 30% by weight of SiO2
and, under stirring, add 85% by weight phosphoric acid 1.73
Then add 32.07 g of ammonium hepta-molybdate [(NH 4 ) 6 Mo 7 O 24・4H 2 O] to 80 g of water.
Finally, add 29.83g of bismuth nitrate to 33g of 13% by weight nitric acid in advance.
(NO 3 ) 3・5H 2 O] 43.93 g of ferric nitrate [Fe
(NO 3 ) 3 ·9H 2 O] and 0.070 g of palladium nitrate [Pd(NO 3 ) 2 ] were added.
The raw material slurry obtained here was sent to a co-current spray dryer and dried at about 200°C. Atomization of the slurry was performed using an atomization device equipped with a dish-shaped rotor installed in the center of the upper part of the dryer. The obtained dry powder was transferred to a tunnel kiln and heated at 400 m
The catalyst was pre-calcined at 690°C for 1 hour and then 2 hours at 690°C. This catalyst is designated as 5-A. A catalyst having the same composition as Catalyst 5-A except that it did not contain Pd was prepared in the same manner as above. 20 g of the obtained catalyst was placed in a beaker, and 3 ml of an aqueous solution in which 0.014 g of palladium nitrate [Pd(NO 3 ) 2 ] was dissolved was added to impregnate the beaker.Finally, the beaker was calcined at 500° C. for 2 hours to obtain a catalyst. This catalyst is designated as 5-B. A catalyst of the present invention and a comparative catalyst were prepared in the same manner as Catalyst 5-A, and their compositions are shown in Table 1. If platinum, iridium or osmium is used as a catalyst component,
[ H2PtCl6.6H2O ], [ IrCl4.H2O ] or [ OsCl3 ] was used. For other metals, ammonium salts, nitrates, or chlorides were used as appropriate. Further, the firing temperature of the catalyst was changed as appropriate depending on the catalyst as shown in Table 1.

【表】【table】

【表】 (2) 不飽和ニトリル合成反応 (2‐1) アクリロニトリルの合成 表1記載の本発明の触媒5−Aと比較触媒
3について下記のプロピレンのアンモ酸化反
応を行つた。各触媒2gを内径8mmのバイコ
ールガラス反応管に充填し、温度460℃、常
圧下にプロピレン、アンモニア、酸素、水蒸
気および窒素の混合ガスを毎時1.2(NTP
換算)の流速で通過させた。なお混合ガスの
組成は酸素のプロピレンに対する容積比を
1.9、および水蒸気のプロピレンに対する容
積比を1.0に固定し、アンモニアのプロピレ
ンに対する容積比Rを0.95から1.25の範囲で
変えた。また混合ガス中のプロピレンの容積
濃度は常に6%になるよう窒素で希釈調整し
た。この反応の結果得られたアクリロニトリ
ルの収量を下記式で定義されるプロピレン収
率(Y〔C3H6〕)とアンモニア収率(Y
〔NH3〕)の二つの指標によつて評価した。 Y〔NH3〕=生成アクリロニトリルのモル数/供給プロピレンのモル数×100 Y〔NH3〕=生成アクリロニトリルのモル数/供給アンモニアのモル数×100 上記定義からY〔C3H6〕とY〔NH3〕はR
をアンモニアのプロピレンに対する供給比率
として、Y〔NH3〕=Y〔C3H6〕/Rの関係
にある。 上記二つの触媒の反応結果を下記表2に示
す。
[Table] (2) Unsaturated nitrile synthesis reaction (2-1) Synthesis of acrylonitrile The following propylene ammoxidation reaction was carried out using catalyst 5-A of the present invention and comparative catalyst 3 shown in Table 1. 2 g of each catalyst was packed into a Vycor glass reaction tube with an inner diameter of 8 mm, and a mixed gas of propylene, ammonia, oxygen, water vapor, and nitrogen was fed at a rate of 1.2 (NTP) per hour at a temperature of 460°C and under normal pressure.
It was passed at a flow rate of (converted). The composition of the mixed gas is determined by the volume ratio of oxygen to propylene.
1.9, and the volume ratio of water vapor to propylene was fixed at 1.0, and the volume ratio R of ammonia to propylene was varied in the range of 0.95 to 1.25. Further, the volume concentration of propylene in the mixed gas was adjusted to be diluted with nitrogen so that it was always 6%. The yield of acrylonitrile obtained as a result of this reaction is defined as the propylene yield (Y[C 3 H 6 ]) and the ammonia yield (Y
Evaluation was made using two indicators: [NH 3 ]). Y [NH 3 ] = Number of moles of acrylonitrile produced / Number of moles of propylene supplied × 100 Y [NH 3 ] = Number of moles of acrylonitrile produced / Number of moles of ammonia supplied × 100 From the above definition, Y [C 3 H 6 ] and Y [NH 3 ] is R
The relationship is Y[NH 3 ]=Y[C 3 H 6 ]/R, where is the supply ratio of ammonia to propylene. The reaction results of the above two catalysts are shown in Table 2 below.

【表】【table】

【表】 表2はR=NH3/C3H6比を小さくすると
Y〔C3H6〕は減少するが、一方Y〔NH3〕は
増大することを示す。 第1図は表1の結果をもとに、Y
〔C3H6〕とY〔NH3〕の関係を図示したもので
触媒5−Aは比較触媒3に対してアンモニア
収率が極めて優れていることを示している。
例えば、Y〔C3H6〕=84.0%一定下に触媒1
−AのY〔NH3〕は比較触媒のそれに対して
12%大きい。 表1記載の本発明の触媒および比較触媒に
ついて上記方法に従つてプロピレンのアンモ
酸化反応を行つた。但し反応温度および原料
混合ガス流速は各触媒に応じて適宜変更し
た。結果を表3に示した。
[Table] Table 2 shows that when the R=NH 3 /C 3 H 6 ratio is decreased, Y[C 3 H 6 ] decreases, while Y[NH 3 ] increases. Figure 1 shows Y based on the results in Table 1.
This diagram illustrates the relationship between [C 3 H 6 ] and Y[NH 3 ], and shows that catalyst 5-A has an extremely superior ammonia yield compared to comparative catalyst 3.
For example, when Y[C 3 H 6 ]=84.0% constant, catalyst 1
-Y[NH 3 ] of A is compared to that of the comparative catalyst
12% larger. A propylene ammoxidation reaction was carried out using the catalyst of the present invention and comparative catalyst shown in Table 1 according to the above method. However, the reaction temperature and raw material mixed gas flow rate were changed as appropriate depending on each catalyst. The results are shown in Table 3.

【表】【table】

【表】 触媒2は、本発明の触媒の主たる構成成分
であるモリブデン、ビスマス、鉄、燐および
微量成分Aからなるものであり、成分Aを含
まない比較触媒1に対して、顕著なアンモニ
ア収率の向上をもたらすことを示す。モリブ
デン、ビスマス、鉄および燐以外にさらに任
意成分を含む公知触媒においても、微量成分
Aを含むことによつて同様の効果が発現す
る。これは比較触媒3と触媒4〜9、比較触
媒10と触媒11、比較触媒12と触媒13、比較触
媒14と触媒15および比較触媒16と触媒17の関
係において示されている。 (2‐2) メタクリロニトリルの合成 表1記載の本発明の触媒43と比較触媒41に
ついて下記のイソブチレンのアンモ酸化反応
を行つた。各触媒1gを内径8mmのバイコー
ルガラス反応管に充填し、温度420℃、常圧
下にイソブチレン、アンモニア、酸素、水蒸
気および窒素の混合ガスを毎時1.2(NTP
換算)の流速で通過させた。なお混合ガスの
組成は酸素のイソブチレンに対する容積比を
2.5、および水蒸気のイソブチレンに対する
容積比を1.0に固定し、アンモニアのイソブ
チレンに対する容積比R′を1.2から1.5の範囲
で変えた。また混合ガス中のイソブチレンの
容積濃度は常に6%になるよう窒素で希釈調
整した。この反応の結果得られたメタクリロ
ニトリルの収量を下記式で定義されるイソブ
チレン収率(Y〔C4H8〕)とアンモニア収率
(Y′〔NH3〕)の二つの指標によつて評価し
た。 Y〔C4H8〕=生成メタクリロニトリルのモル数/供給イソブチレンのモル数×100 Y′〔NH3〕=生成メタクリロニトリルのモル数/供給アンモニアのモル数×100 上記定義からY〔C4H8〕とY′〔NH3〕は
R′をアンモニアのイソブチレンに対する供
給比率として、Y′〔NH3〕=Y〔C4H8〕/
R′の関係にある。 上記二つの触媒の反応結果を下記表4に示
す。
[Table] Catalyst 2 consists of molybdenum, bismuth, iron, phosphorus, which are the main components of the catalyst of the present invention, and a trace component A, and has a remarkable ammonia yield compared to Comparative Catalyst 1 which does not contain component A. shown to result in improved rates. Even in known catalysts containing optional components in addition to molybdenum, bismuth, iron, and phosphorus, the same effect is exhibited by including trace component A. This is shown in the relationships between comparative catalyst 3 and catalysts 4 to 9, comparative catalyst 10 and catalyst 11, comparative catalyst 12 and catalyst 13, comparative catalyst 14 and catalyst 15, and comparative catalyst 16 and catalyst 17. (2-2) Synthesis of methacrylonitrile The following isobutylene ammoxidation reaction was carried out using catalyst 43 of the present invention and comparative catalyst 41 shown in Table 1. 1 g of each catalyst was packed into a Vycor glass reaction tube with an inner diameter of 8 mm, and a mixed gas of isobutylene, ammonia, oxygen, water vapor, and nitrogen was fed at a rate of 1.2 (NTP) per hour at a temperature of 420°C and under normal pressure.
It was passed at a flow rate of (converted). The composition of the mixed gas is determined by the volume ratio of oxygen to isobutylene.
2.5, and the volume ratio of water vapor to isobutylene was fixed at 1.0, and the volume ratio R' of ammonia to isobutylene was varied in the range of 1.2 to 1.5. Further, the volume concentration of isobutylene in the mixed gas was adjusted to be diluted with nitrogen so that it was always 6%. The yield of methacrylonitrile obtained as a result of this reaction is determined by two indicators: isobutylene yield (Y[C 4 H 8 ]) and ammonia yield (Y′[NH 3 ]) defined by the following formula. evaluated. Y [C 4 H 8 ] = Number of moles of methacrylonitrile produced / Number of moles of isobutylene supplied × 100 Y' [NH 3 ] = Number of moles of methacrylonitrile produced / Number of moles of supplied ammonia × 100 From the above definition, Y [ C 4 H 8 ] and Y′ [NH 3 ] are
where R′ is the supply ratio of ammonia to isobutylene, Y′[NH 3 ]=Y[C 4 H 8 ]/
The relationship is R′. The reaction results of the above two catalysts are shown in Table 4 below.

【表】 表1記載の本発明の触媒および比較触媒に
ついて上記方法に従つてイソブチレンのアン
モ酸化反応を行つた。但し反応温度および原
料混合ガス流速は各触媒に応じて適宜変更し
た。結果を表5に示した。
[Table] Isobutylene ammoxidation reaction was carried out using the catalyst of the present invention and comparative catalyst shown in Table 1 according to the above method. However, the reaction temperature and raw material mixed gas flow rate were changed as appropriate depending on each catalyst. The results are shown in Table 5.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプロピレン収率とアンモニア収率との
相関関係を示す図である。
FIG. 1 is a diagram showing the correlation between propylene yield and ammonia yield.

Claims (1)

【特許請求の範囲】[Claims] 1 プロピレンまたはイソブチレンを触媒の存在
下アンモニアおよび酸素と高温で気相接触させ
て、アクリロニトリルまたはメタクリロニトリル
を製造するに当り、少くともモリブデン、ビスマ
ス、鉄および成分A(Aはパラジウム、白金、オ
スミウムおよびイリジウムから選択された一種ま
たは一種以上の元素である)を含み、かつモリブ
デン12原子当り成分Aが0.002〜0.2原子である酸
化物触媒を用いることを特徴とする方法。
1. In producing acrylonitrile or methacrylonitrile by contacting propylene or isobutylene with ammonia and oxygen in the presence of a catalyst in the gas phase at high temperatures, at least molybdenum, bismuth, iron and component A (A is palladium, platinum, osmium) and iridium) and in which Component A is 0.002 to 0.2 atoms per 12 molybdenum atoms.
JP58078290A 1983-05-06 1983-05-06 Production of unsaturated nitrile Granted JPS59204164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58078290A JPS59204164A (en) 1983-05-06 1983-05-06 Production of unsaturated nitrile
DE8484302869T DE3460545D1 (en) 1983-05-06 1984-04-27 Process for the preparation of acrylonitrile or methacrylonitrile
EP84302869A EP0127942B1 (en) 1983-05-06 1984-04-27 Process for the preparation of acrylonitrile or methacrylonitrile
US06/794,323 US4600541A (en) 1983-05-06 1985-11-01 Process for the preparation of acrylonitrile or methacrylonitrile
SU864027925A SU1496631A3 (en) 1983-05-06 1986-08-08 Method of producing acrylonitrile or metacrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078290A JPS59204164A (en) 1983-05-06 1983-05-06 Production of unsaturated nitrile

Publications (2)

Publication Number Publication Date
JPS59204164A JPS59204164A (en) 1984-11-19
JPS6158462B2 true JPS6158462B2 (en) 1986-12-11

Family

ID=13657803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078290A Granted JPS59204164A (en) 1983-05-06 1983-05-06 Production of unsaturated nitrile

Country Status (5)

Country Link
US (1) US4600541A (en)
EP (1) EP0127942B1 (en)
JP (1) JPS59204164A (en)
DE (1) DE3460545D1 (en)
SU (1) SU1496631A3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520279B2 (en) * 1988-03-03 1996-07-31 日東化学工業株式会社 Method for producing acrylonitrile
US4981670A (en) * 1989-12-15 1991-01-01 Bp America Inc. HCN from crude aceto
GB9226453D0 (en) * 1992-12-18 1993-02-10 Johnson Matthey Plc Metal oxide catalyst
US5877377A (en) * 1993-08-14 1999-03-02 Johnson Matthey Public Limited Company Metal oxide catalyst and use thereof in chemical reactions
GB9316955D0 (en) 1993-08-14 1993-09-29 Johnson Matthey Plc Improvements in catalysts
US5780664A (en) * 1993-08-17 1998-07-14 Asahi Kasei Kogyo Kabushi Kaisha Ammoxidation catalyst composition
CN1108865C (en) * 1997-09-03 2003-05-21 中国石油化工集团公司 Catalyst for production of acrylonitrile
US6037304A (en) * 1999-01-11 2000-03-14 Saudi Basic Industries Corporation Highly active and selective catalysts for the production of unsaturated nitriles, methods of making and using the same
US6017846A (en) * 1999-01-11 2000-01-25 Saudi Basic Industries Corporation Highly active and selective catalysts for the production of unsaturated nitriles, methods of making and using the same
US6284196B1 (en) * 1999-04-01 2001-09-04 Bp Corporation North America Inc. Apparatus for monitor and control of an ammoxidation reactor with a fourier transform infrared spectrometer
US6486091B1 (en) 2000-03-14 2002-11-26 Saudi Basic Industries Corporation Process for making highly active and selective catalysts for the production of unsaturated nitriles
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6441227B1 (en) * 2000-06-23 2002-08-27 Saudi Basic Industries Corporation Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
US8507404B2 (en) 2005-07-12 2013-08-13 Exxonmobil Research And Engineering Company Regenerable sulfur traps for on-board vehicle applications
KR101086731B1 (en) * 2008-10-17 2011-11-25 금호석유화학 주식회사 THE COMPLEX OXIDE CATALYST OF Bi/Mo/Fe FOR THE OXIDATIVE DEHYDROGENATION OF 1-BUTENE TO 1,3-BUTADIENE AND PROCESS THEREOF

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904530A (en) * 1956-08-17 1959-09-15 Gen Aniline & Film Corp Curing agents for epoxy resins
IT660336A (en) * 1960-12-07
US3156735A (en) * 1960-12-12 1964-11-10 Shell Oil Co Oxidative dehydrogenation using goldplatinum group metal catalyst
DE1221637B (en) * 1964-04-16 1966-07-28 Hoechst Ag Process for the production of vinyl compounds
BE663698A (en) * 1964-05-09
GB1110682A (en) * 1965-04-02 1968-04-24 Asahi Chemical Ind Process for producing saturated aliphatic nitriles
GB1127355A (en) * 1965-08-09 1968-09-18 Asahi Chemical Ind Process for producing unsaturated aliphatic nitriles
US3412136A (en) * 1965-10-11 1968-11-19 Nat Distillers Chem Corp Process for the preparation of aliphatic nitriles
US3415886A (en) * 1967-02-07 1968-12-10 Du Pont Heat treated bismuth molybdate on silica catalysts
US3625867A (en) * 1967-06-02 1971-12-07 Takachika Yoshino Process for production of metal oxide-antimony oxide catalysts
US3499025A (en) * 1967-09-06 1970-03-03 Sun Oil Co Method for producing acrylonitrile and methacrylonitrile
BE756878A (en) * 1969-03-04 1971-03-30 Stamicarbon PROCESS FOR THE PREPARATION OF A CATALYST SYSTEM FOR THE AMMOXIDATION OF OLEFINS
JPS4843096B1 (en) * 1970-01-31 1973-12-17
GB1426254A (en) * 1972-10-06 1976-02-25 Sumitomo Chemical Co Process for preparing hydrogen cyanide
US4139552A (en) * 1974-01-04 1979-02-13 The Standard Oil Company Production of unsaturated nitriles
JPS582232B2 (en) * 1977-12-31 1983-01-14 旭化成株式会社 Method for producing acrylonitrile
JPS5867349A (en) * 1981-10-20 1983-04-21 Asahi Chem Ind Co Ltd Catalyst composition

Also Published As

Publication number Publication date
SU1496631A3 (en) 1989-07-23
DE3460545D1 (en) 1986-10-02
EP0127942B1 (en) 1986-08-27
EP0127942A1 (en) 1984-12-12
US4600541A (en) 1986-07-15
JPS59204164A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
US3766092A (en) Catalyst for preparation of unsaturated nitriles
JP3214975B2 (en) Ammoxidation catalyst composition and production method
JP4030740B2 (en) Method for producing ammoxidation catalyst
US6965046B2 (en) Catalyst for the manufacture of acrylonitrile
JPS6158462B2 (en)
JP3819192B2 (en) Production method of acrylonitrile
JPS6126419B2 (en)
RO115333B1 (en) Catalyst composition used for preparing acrylonitrile and hydrocyanic acid
JP3534431B2 (en) Production of unsaturated nitrile
JP3680115B2 (en) Catalyst composition for producing unsaturated nitrile
JPH07328441A (en) Catalyst composition used for ammoxidation and production of acrylonitrile or methacrylonitrile using same
JPH0764555B2 (en) Prussic acid manufacturing method
JP4159729B2 (en) Method for producing acrylonitrile
JP3751043B2 (en) Ammoxidation catalyst composition and method for producing nitrile compound using the same
EP0000564B1 (en) Catalysts containing iron and molybdenum and the use of these catalysts in the preparation of acrylonitrile or methacrylonitrile
JP3872269B2 (en) Method for producing hydrogen cyanide
US4965393A (en) Process for producing acrylonitrile
JP3796132B2 (en) Preparation of composite oxide catalyst for gas phase ammoxidation reaction
US3875204A (en) Process for the production of acrylonitrile
JP3505547B2 (en) Method for producing acrylonitrile
US3338953A (en) Preparation of unsaturated nitriles
JP2002097015A (en) Method for producing hydrogen cyanide
JP3403464B2 (en) Ammoxidation method
JP4565712B2 (en) Nitrile production catalyst and nitrile production method using the same
JPH04227072A (en) Reactivation method of ammoxidation catalyst