KR920007797B1 - Manufacturing method of amorphous silicon solar cell - Google Patents

Manufacturing method of amorphous silicon solar cell Download PDF

Info

Publication number
KR920007797B1
KR920007797B1 KR1019890018587A KR890018587A KR920007797B1 KR 920007797 B1 KR920007797 B1 KR 920007797B1 KR 1019890018587 A KR1019890018587 A KR 1019890018587A KR 890018587 A KR890018587 A KR 890018587A KR 920007797 B1 KR920007797 B1 KR 920007797B1
Authority
KR
South Korea
Prior art keywords
solar cell
amorphous silicon
silicon solar
film
depositing
Prior art date
Application number
KR1019890018587A
Other languages
Korean (ko)
Other versions
KR910013597A (en
Inventor
권오균
Original Assignee
삼성전관 주식회사
김정배
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전관 주식회사, 김정배 filed Critical 삼성전관 주식회사
Priority to KR1019890018587A priority Critical patent/KR920007797B1/en
Publication of KR910013597A publication Critical patent/KR910013597A/en
Application granted granted Critical
Publication of KR920007797B1 publication Critical patent/KR920007797B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The solar cell is mfd. by (a) forming a concave groove (5) on the glass substrate (1) by the wet etching or the dry etching, (b) depositing a low resistance metal (Ag,Cu) in the inside of the groove (5) by the thermal evaporator or the E-beam evaporator, and then patterning it to form a current collecting electrode (6), (c) wholly depositing a transparent electroconductive layer (2) on the substrate (1), and then depositing an amorphous silicon layer (3) by the plasma enhanced chemical vapor deposition (PECVD), and (d) depositing a rear electrode (4) and Al on the layre (3).

Description

비정질 실리콘 태양전지의 제조방법Manufacturing method of amorphous silicon solar cell

제1a도는 종래의 비정질 실리콘 태양전지의 단면도.1A is a cross-sectional view of a conventional amorphous silicon solar cell.

제1b도는 종래의 대면적 비정질 실리콘 태양전지의 개략도.1B is a schematic diagram of a conventional large area amorphous silicon solar cell.

제2a도는 본 발명의 대면적 비정질 실리콘 태양전지의 일부 단면도.2A is a partial cross-sectional view of a large area amorphous silicon solar cell of the present invention.

제2b도는 본 발명의 대면적 비정질 실리콘 태양전지의 전체구성도이다.2b is an overall configuration diagram of the large-area amorphous silicon solar cell of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 유리기판 2 : 투명도전막1: glass substrate 2: transparent conductive film

3 : a-Si막 4 : 배면전극(Al)3: a-Si film 4: back electrode (Al)

5a : 횡적구조의 凹형 홈 5b : 종적갈등의 凹형홈5a: Lateral grooves 5b: Longitudinal conflict

6 : 집전전극 7 : 단위셀6: current collecting electrode 7: unit cell

본 발명은 비정질 실리콘 태양전지의 제조방법에 관한 것으로서, 특히 투명도전막에서의 전력 손실을 줄이고, 저전류, 고전압에 적합하도록 PECVD(Plasma Enhanced Chemical Vapor Deposition)법에 의해 비정질 실리콘(이하 a-Si로 표기함) 태양전지를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an amorphous silicon solar cell. In particular, the present invention relates to amorphous silicon (hereinafter referred to as a-Si) by PECVD (Plasma Enhanced Chemical Vapor Deposition) to reduce power loss in a transparent conductive film and to be suitable for low current and high voltage. The present invention relates to a method of manufacturing a solar cell.

현재 사용되고 있는 태양전지에서는 단결정(簞結晶) 실리콘(Si) 공정에 의한 단결정 실리콘 태양전지, 리본상 결정 실리콘 공정에 의한 리본 결정 태양전지, 다결정(多結晶) 실리콘 공정에 의한 다결정 실리콘 태양전지등이 있다.Currently used solar cells include single crystal silicon solar cells using a single crystal silicon (Si) process, ribbon crystal solar cells using a ribbon crystal silicon process, and polycrystalline silicon solar cells using a polycrystalline silicon process. have.

그런데 이와 같은 공정으로 태양전지를 제조하는 경우에는 제조 에너지가 크고, 소자화(素子化) 공정도 복잡하고, 태양전지 가격이 비싼 결점이 있다. 이러한 결점은 해소할 수 있는 가능성을 갖고 있는 것으로 플라즈마 반응에 의한 a-Si 태양전지가 주목되고 있다.However, in the case of manufacturing a solar cell by such a process, there is a drawback that the manufacturing energy is large, the demagnetization process is complicated, and the solar cell is expensive. This drawback has the possibility of eliminating the problem, and a-Si solar cells by a plasma reaction are attracting attention.

플라즈마 반응에 의한 a-Si 태양전지는 SiH4를 진공실로 도입하여 고주파방전을 수행함으로써 a-Si를 형성하는 것이다. a-Si 태양전지는 기판 온도가 200 내지 400℃, 고주파 주파수가 13.56MHZ, 고주파 출력이 20 내지 150W, 가스압이 0.4Torr, 유량속도가 400cc/min, 성장속도가 1μm/hr인 표준 제조 조건하에서 태양전지의 기본 구성인 p-n 접합을 연속적으로 형성할 수 있다.The a-Si solar cell by the plasma reaction forms a-Si by introducing SiH 4 into a vacuum chamber to perform high frequency discharge. a-Si solar cell has standard substrate condition of 200-400 ℃, high frequency frequency 13.56MH Z , high frequency output 20-150W, gas pressure 0.4Torr, flow rate 400cc / min, growth rate 1μm / hr It is possible to continuously form a pn junction, which is the basic configuration of a solar cell, under the following conditions.

더욱이 최근에는 p층 또는 n층의 형성시 불순물인 붕소 또는 인이 반응조내의 전극이나 진공실 벽에 잔류하여 막 특성에 악영향을 미치기 때문에, p, I(중간층), n 각 층을 일체로 형성하여 제조한다.Furthermore, in recent years, boron or phosphorus, which is an impurity in the formation of the p layer or the n layer, remains on the electrode or the wall of the vacuum chamber in the reaction tank and adversely affects the film properties. Thus, p, I (intermediate layer) and n are formed by integrally forming each layer. do.

제1a도는 종래의 비정질 실리콘 태양전지의 단면도이고, 제1b도는 그 개략도로서, 그 제조방법 및 작용 원리는 다음과 같다.FIG. 1A is a cross-sectional view of a conventional amorphous silicon solar cell, and FIG. 1B is a schematic view thereof, and a manufacturing method and a working principle thereof are as follows.

먼저 투명도전막(ITO; 2)이 코팅된 유리기판(1)의 상부에 감광제 도포, 노광, 현상 및 식각 공정의 차례에 따라 투명도전막(ITO; 2) 패턴을 형성한다. 형성된 투명도전막(2)의 상부에 PIN a-Si막(3)을 형성하는데, 이는 PECVD 장치를 사용하여 증착에 의해 연속 성막 작업한 후, 감광제 도포, 노광, 현상 및 식각 공정의 차례에 따라 패턴을 형성함으로 제조한다. 배면적극(4) 패턴은 열증착기(thermal evaporator)를 사용하여 Al을 증착한 후 감광제 도포, 노광, 현상 및 식각 공정에 따라 형성한다.First, a transparent conductive film (ITO) pattern is formed on the glass substrate 1 coated with the transparent conductive film (ITO) 2 in accordance with a photoresist coating, exposure, development, and etching process. A PIN a-Si film 3 is formed on the formed transparent conductive film 2, which is formed by continuous deposition using a PECVD apparatus, followed by a pattern according to a sequence of photoresist application, exposure, development and etching processes. Prepared by forming. The rear positive electrode 4 pattern is formed by depositing Al using a thermal evaporator, followed by a photoresist coating, exposure, development, and etching process.

완성된 a-Si 태양전지에 있어서, 광기전력의 발생원리는 다음과 같다.In the completed a-Si solar cell, the principle of generation of photovoltaic power is as follows.

광이 비정질 실리콘 태양전지의 a-Si막(3)인 반도체층(p,i,n층), 특히 진성 반도체층(i층)에 입사되면 광자(photon)에 의하여 i층내의 안정된 전자-정공쌍(EHP ; Electron Hole Pair)이 각각 전자(-)와 정공(+)으로 분해, 생성된다. 이때 생성된 전자(-)와 정공(+)은 각각 n,p층을 통과하여 외부전극(Al 및 ITO)으로 전달되며 이들의 이동으로 인하여 얻어지는 전위차(또는 광기전력)가 태양전지의 출력 전력이 되는 것이다.When light is incident on a semiconductor layer (p, i, n layer), particularly an intrinsic semiconductor layer (i layer), which is an a-Si film 3 of an amorphous silicon solar cell, stable electron-holes in the i layer by photons Electron Hole Pair (EHP) is decomposed and generated into electron (-) and hole (+), respectively. At this time, the generated electrons (-) and holes (+) pass through the n and p layers, respectively, and are transferred to the external electrodes Al and ITO, and the potential difference (or photovoltaic power) obtained by these movements is the output power of the solar cell. Will be.

그런데 제1도에서 a-Si 태양전지의 수광면적이 커지면 a-Si막(3)에서 발생하는 전류는 증가하지만, 유리기판(1)위에 형성된 투영도전막(2)에서의 저항이 커져 전력 손실이 커지게 되기 때문에 a-Si 태양전지의 대면적화가 어렵게 된다. 이 문제점을 보완하기 위해 제1도와 같은 구조의 태양전지를 단위 셀(unit cell)로 하고, 이를 직렬, 병렬로 연결함으로써 대면적 태양전지를 제조하였다.However, in FIG. 1, when the light receiving area of the a-Si solar cell increases, the current generated in the a-Si film 3 increases, but the resistance in the projection conductive film 2 formed on the glass substrate 1 increases, resulting in power loss. As it becomes larger, the large area of the a-Si solar cell becomes difficult. To solve this problem, a large area solar cell was manufactured by using a solar cell having a structure as shown in FIG. 1 as a unit cell and connecting them in series and in parallel.

그러나 상기와 같이 셀을 직렬, 병렬로 연결하여 사용하게 되면 내부 출력선으로 박막(thin film)이 사용되기 때문에 단선(open), 단락(short)에 의한 불량이 발생하므로 이로 인해 효율이 저하되는 문제가 있다. 그리고 이와 같이 제조된 대면적 a-Si 태양전지를 구성하는 단위 셀(7)에 있어서도 크기가 커지면 셀내에서의 태양전지의 효율이 감소하므로 그 크기를 제안하고 있는 실정이다.However, when the cells are connected in series and in parallel as described above, a thin film is used as an internal output line, which causes defects due to open and short circuits, thereby reducing efficiency. There is. Also, even in the unit cell 7 constituting the large-area a-Si solar cell manufactured as described above, the size of the unit cell 7 decreases the efficiency of the solar cell in the cell.

더욱이 종래의 a-Si 태양전지에서는 전지를 구성하고 있는 투명도전막, a-Si막 및 배면전극을 형성하기 위해 미세 패턴(pattern)을 사용하였기 때문에 3회의 사진식각 공정(photo lithogrphy 공정)이 수반되어 공정이 복잡하고 수율이 저하되며 각 공정마다 다른 광마스크를 필요로 하기 때문에 그로 인한 제조 단가가 높아지게 된다.Furthermore, in the conventional a-Si solar cell, since a fine pattern was used to form the transparent conductive film, the a-Si film, and the back electrode constituting the battery, three photolithography processes were involved. The process is complicated, the yield is lowered, and each process requires a different photomask, thereby increasing the manufacturing cost.

또한 수광면적을 작게 하여 전력손실을 최소로 하고 저항을 낮게 하기 위해 수 μm의 두께가 필요하지만 실제 태양전지의 두께는 1μm 정도이므로 태양전지의 구성과 직, 병렬 접속의 문제도 있다.In addition, in order to minimize the power loss and reduce the resistance by reducing the light receiving area, the thickness of several μm is required. However, since the thickness of the actual solar cell is about 1 μm, there is a problem in the construction of the solar cell, the direct and the parallel connection.

본 발명의 목적은 상기 문제를 감안하여 유리기판위에 별도의 집전전극을 형성하고 그 상부에 투명도전막, a-Si막 및 배면전극을 형성하여, 투명도전막에서의 전력손실을 줄이고 저전류, 고전압에 적합하도록한, PECVD 법에 의한 a-Si 태양전지의 제조방법을 제공하는 것이다.In view of the above problems, an object of the present invention is to form a separate current collecting electrode on a glass substrate and to form a transparent conductive film, an a-Si film, and a back electrode on the top thereof, thereby reducing power loss in the transparent conductive film, and The present invention provides a method for producing an a-Si solar cell by PECVD.

상기 목적을 달성하기 위해 본 발명에서는 유리기판위에 凹형 홈을 형성하고, 형성된 凹형의 홈내에 집전전극(예컨대, 은(Ag))을 형성하고, 그 위에 투명도전막, a-Si막 및 배면전극을 순차적으로 적층하는 것을 특징으로 하는 비정질 실리콘 태양전지를 제공한다.In order to achieve the above object, in the present invention, a U-shaped groove is formed on a glass substrate, and a collecting electrode (for example, silver (Ag)) is formed in the U-shaped groove formed thereon, and a transparent conductive film, an a-Si film, and a back surface are formed thereon. It provides an amorphous silicon solar cell, characterized in that the electrode is sequentially stacked.

이하, 첨부된 도면을 통해 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제2a도는 본 발명의 대면적 a-Si 태양전지의 단면도되고, 제2b도는 전체 구성도이다.FIG. 2A is a cross-sectional view of the large-area a-Si solar cell of the present invention, and FIG. 2B is an overall configuration diagram.

먼저, 유리기판(1)상에 불산(HF)을 사용한 습식식각(wet etching) 또는 플라즈마(plasma)를 이용한 건식식각(dry etching)에 의하여 凹형의 홈(5)을 형성한다. 제조된 凹형의 홈(5)내에 열증착기(thermal evaporator) 또는 전자빔 증착기(E-beam evaporator)를 사용하여 은(Ag), 구리(Cu)등의 저저항 금속을 증착한 후 패터닝함으로 집전전극(6)을 형성한다. 이때 형성되는 凹형의 홈 내에 집전전극이 형성되므로, 감광제의 타입(네가티브 또는 포지티브 타입)만 변경시키면 凹형 홈과 집전전극을 형성하는데 있어서, 동일한 마스크를 사용하는 것이 가능하다. 형성된 凹형 홈은 바람직하게는 상호 평행하게 여러개의 종적구조(5b)와 이에 직교방향으로 배열된 여러 개의 횡적구조(5a)로 형성한다.First, the U-shaped groove 5 is formed on the glass substrate 1 by wet etching using hydrofluoric acid (HF) or dry etching using plasma. Collecting electrode by depositing a low resistance metal such as silver (Ag), copper (Cu), etc. using a thermal evaporator or an E-beam evaporator in the fabricated groove 5 (6) is formed. At this time, since the current collecting electrode is formed in the X-shaped groove to be formed, it is possible to use the same mask in forming the X-type groove and the current collecting electrode only by changing the type (negative or positive type) of the photosensitive agent. The formed grooves are preferably formed of several longitudinal structures 5b parallel to each other and several transverse structures 5a arranged perpendicularly thereto.

집전전극(6)이 형성된 유리기판(1)의 상부에 a-Si막(3)에서 발생하는 광기전력의 출력을 위한 투명도전막(2)을 전면증착하여 형성하고 그 위에 a-Si막을 PEVCD 법으로 순차적으로 전면증착하여 적층한다. 계속해서 a-Si막의 상부에 제2의 전극인 배면전극(4), Al을 증착함으로 형성하여 본 발명의 방법에 따른 비정질 실리콘 태양전지를 제조한다.The transparent conductive film 2 is formed on the glass substrate 1 on which the current collecting electrode 6 is formed by depositing the entire surface of the transparent conductive film 2 for outputting photovoltaic power generated from the a-Si film 3, and the a-Si film is formed on the PEVCD method. Sequentially deposit the entire surface by lamination. Subsequently, the back electrode 4, which is the second electrode, Al is deposited on the a-Si film to form an amorphous silicon solar cell according to the method of the present invention.

상기 방법으로 제작된 대면적 비정질 실리콘 태양전지에 있어서 凹형 홈(5)을 깊게 형성시키면 단면적이 큰 집전전극(6)을 얻을 수 있으므로 저항이 감소하고 전력손실이 줄어든다.In the large-area amorphous silicon solar cell fabricated by the above method, the deep grooves 5 are formed to obtain the current collecting electrodes 6 having a large cross-sectional area, thereby reducing resistance and reducing power loss.

집전전극의 작용효과를 상세히 설명하면 다음과 같다. a-Si막내에서 광자(photon)에 의해 분해, 생성된 각각의 전자(-), 정공(+)이 각각 Al 과 ITO 전극층으로 전달되어 하나의 태양전지를 구성한다. 이때 ITO 전극으로 집속되는 정공(+)은 ITO의 저항(저항율 200μΩ·cm) 때문에 그 전도가 용이하지 않아 태양전지에서 발생된 광기전력의 손실이 유발된다. 여기에 은(저항율 1.59구리μΩ·cm),(저항율 1.7μΩ·cm)등 저저항 금속을 사용하여 집속전극을 형성하게 되면 1층으로부터의 정공(+)의 전달저항이 감소되므로 변환 효율이 증대하게 되는 것이다.Referring to the effect of the current collector in detail as follows. In the a-Si film, each electron (-) and hole (+) decomposed and generated by photons are transferred to the Al and ITO electrode layers, respectively, to form a solar cell. At this time, the hole (+) that is focused on the ITO electrode is not easy to conduct due to the resistance of the ITO (resistance of 200 μΩ · cm), causing a loss of photovoltaic power generated in the solar cell. In addition, when a focusing electrode is formed using a low resistance metal such as silver (resistance of 1.59 copper μΩ · cm) or (resistance of 1.7 μΩ · cm), the transfer resistance of holes (+) from one layer is reduced, thereby increasing conversion efficiency. Will be done.

또한 태양전지의 기판을 대면적화시켜 주요부분인 투명도전막(ITO), a-Si막 및 배면전극(Al전극)을 평면적으로 순차 적층하기 때문에 투명전극, a-Si막, 배면전극의 사진식각 공정을 이용한 복잡한 매세패턴 형성공정이 필요하지 않고 전체막 두께를 얇게 할 수 있다.In addition, the photolithography process of transparent electrode, a-Si film, and back electrode is performed because the large area of the solar cell substrate is used to sequentially stack the main parts of the transparent conductive film (ITO), a-Si film and back electrode (Al electrode). It is possible to reduce the overall film thickness without the need for a complicated patterning process using the.

이상에서 설명한 바와 같이, 본 발명의 방법에 의하여 비정질 실리콘 태양전지를 제조하게 되면 동일한 광마스크를 사용하여 유리기판위에 凹형의 홈을 형성하고, 홈내에 집전전극을 형성한 후, 그 위에 미세패턴의 형성공정없이 투명도전막, a-Si막 및 배면전극을 평면적으로 순차적층하여 제조하게 되므로 공정이 간단하고 수율이 향상되며 제조단가가 낮을 뿐만 아니라, 단선이나 단락에 의한 불량발생도 현저하게 감소된다. 또한, 본 발명의 방법에 따라 제조된 비정질 실리콘 태양전지는 단위 셀을 사용하는 태양전지에서 문제 되었던 접속문제도 해결하였고 태양전지의 제조시 발생되는 전력손실을 줄임으로써 효율이 향상되고, 수명 연장 및 신뢰성 향상의 효과를 갖는 것이다.As described above, when the amorphous silicon solar cell is manufactured by the method of the present invention, the groove is formed on the glass substrate using the same optical mask, the current collecting electrode is formed in the groove, and then the fine pattern thereon. Since the transparent conductive film, the a-Si film and the back electrode are sequentially manufactured in a planar manner without the formation process, the process is simple, the yield is improved, the manufacturing cost is low, and the occurrence of defects due to disconnection or short circuit is significantly reduced. . In addition, the amorphous silicon solar cell manufactured according to the method of the present invention solves the problem of connection problem in the solar cell using the unit cell and improves efficiency by reducing the power loss generated during the manufacturing of the solar cell, extending the lifespan and It has the effect of improving reliability.

Claims (2)

유리기판의 상부에 凹형의 홈을 형성하고, 형성된 凹형의 홈내에 집전전극을 형성하고, 그 위에 투명도전막, 비정질 실리콘(a-Si)막 및 배면전극을 순차적으로 적층하여 이루어지는 것을 특징으로 하는 비정질 실리콘 태양전지.Forming a U-shaped groove in the upper portion of the glass substrate, forming a current collecting electrode in the U-shaped groove formed thereon, and sequentially laminating a transparent conductive film, an amorphous silicon (a-Si) film, and a back electrode thereon. Amorphous silicon solar cell. 제1항에 있어서, 상기 凹형이 홈이 격자상으로 배열되어 있는 것을 특징으로 하는 비정질 실리콘 태양전지.The amorphous silicon solar cell of claim 1, wherein the X-shaped grooves are arranged in a lattice shape.
KR1019890018587A 1989-12-14 1989-12-14 Manufacturing method of amorphous silicon solar cell KR920007797B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890018587A KR920007797B1 (en) 1989-12-14 1989-12-14 Manufacturing method of amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890018587A KR920007797B1 (en) 1989-12-14 1989-12-14 Manufacturing method of amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
KR910013597A KR910013597A (en) 1991-08-08
KR920007797B1 true KR920007797B1 (en) 1992-09-17

Family

ID=19292923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890018587A KR920007797B1 (en) 1989-12-14 1989-12-14 Manufacturing method of amorphous silicon solar cell

Country Status (1)

Country Link
KR (1) KR920007797B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108801A3 (en) * 2008-02-28 2009-11-12 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108801A3 (en) * 2008-02-28 2009-11-12 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices

Also Published As

Publication number Publication date
KR910013597A (en) 1991-08-08

Similar Documents

Publication Publication Date Title
US6825408B2 (en) Stacked photoelectric conversion device
US6870088B2 (en) Solar battery cell and manufacturing method thereof
WO2010013972A2 (en) Solar cell and method for manufacturing the same
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
CN109216509A (en) A kind of interdigitation back contacts heterojunction solar battery preparation method
US20120325309A1 (en) Solar cell and solar cell manufacturing method
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
WO2019105085A1 (en) Heterojunction solar cell and method for fabrication thereof
KR101053790B1 (en) Solar cell and manufacturing method thereof
KR20240022536A (en) Selective contact area buried solar cell and its back contact structure
US20080241356A1 (en) Photovoltaic devices manufactured using crystalline silicon thin films on glass
JP2016015529A (en) Photoelectric conversion device
JPH11251612A (en) Manufacture of photovoltaic element
CN108461554A (en) Full back-contact heterojunction solar battery and preparation method thereof
JPH05299677A (en) Solar battery and its manufacture
KR100741306B1 (en) High efficiency solar cells and manufacturing method the same
WO2023098038A1 (en) Method for preparing columnar electrode structure of perovskite solar cell
KR920007797B1 (en) Manufacturing method of amorphous silicon solar cell
WO2022052534A1 (en) Solar cell and manufacturing method therefor
JP5645734B2 (en) Solar cell element
CN116110996A (en) Solar cell and preparation method thereof
CN114744077A (en) Manufacturing method of N-type TBC crystalline silicon solar cell
JPS6213829B2 (en)
US20230307573A1 (en) Low-cost passivated contact full-back electrode solar cell and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090826

Year of fee payment: 18

EXPY Expiration of term