KR920006197B1 - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell Download PDF

Info

Publication number
KR920006197B1
KR920006197B1 KR1019880015631A KR880015631A KR920006197B1 KR 920006197 B1 KR920006197 B1 KR 920006197B1 KR 1019880015631 A KR1019880015631 A KR 1019880015631A KR 880015631 A KR880015631 A KR 880015631A KR 920006197 B1 KR920006197 B1 KR 920006197B1
Authority
KR
South Korea
Prior art keywords
amorphous silicon
silicon layer
solar cell
type amorphous
type
Prior art date
Application number
KR1019880015631A
Other languages
Korean (ko)
Other versions
KR900008716A (en
Inventor
홍성호
Original Assignee
삼성전자 주식회사
안시환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 안시환 filed Critical 삼성전자 주식회사
Priority to KR1019880015631A priority Critical patent/KR920006197B1/en
Publication of KR900008716A publication Critical patent/KR900008716A/en
Application granted granted Critical
Publication of KR920006197B1 publication Critical patent/KR920006197B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The amorphous silicon solar cell having ITO/p-i-N/Al laminating structure is produced by depositing P-type, i-type and N- type amorphous silicon layer on the transparent conductive layer-coated glass substrate, in order. Pref. for the improvement of the ohmic contact characteristic in the boundary surface between N-type layer and Al-metal electrode, the first part and the second part of the N-type layer are doped with 0.1-0.5 wt.% and 1-2 % PH3 w.r.t. SiH4 respectively.

Description

비정질 실리콘 태양전지Amorphous silicon solar cell

제1도는 본 발명에 따른 비정질 실리콘 태양전지의 단면도.1 is a cross-sectional view of an amorphous silicon solar cell according to the present invention.

제2도는 종래의 비정질 실리콘 태양전지의 단면도.2 is a cross-sectional view of a conventional amorphous silicon solar cell.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 유리기판 2 : 투명전도막1: glass substrate 2: transparent conductive film

3 : P형 비정질 실리콘층 4 : i형 비정질 실리콘층3: P-type amorphous silicon layer 4: i-type amorphous silicon layer

5 : N형 비정질 실리콘층 5a : PH3가 헤비도핑된 부분5: N-type amorphous silicon layer 5a: PH 3 heavy doped portion

6 : A1금속전극6: A1 metal electrode

본 발명은 비정질 실리콘 태양전지에 관한것으로, 특히 ITO(투명전도막)/P-i-N비정질 실리콘층/A1금속전극의 적층구조를 갖는 태양전지에 있어서, N형 비정질 실리콘층과 A1금속전극 사이의 계면(界面)에서의 저항층 접촉(Ohmic Contact)특성을 향상시키기 위하여 N형 비정질 실리콘층의 후반부 일정두께에 PH3(포스핀 : 인화수소)를 SiH4(모노실란)유량의 1-2%로 도핑(Doping)한 비정질 실리콘 태양전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous silicon solar cell. In particular, in a solar cell having a laminated structure of an ITO (transparent conductive film) / PiN amorphous silicon layer / A1 metal electrode, an interface between an N-type amorphous silicon layer and an A1 metal electrode ( In order to improve the ohmic contact characteristics of the N-type amorphous silicon layer, PH 3 (phosphine: hydrogen phosphide) is doped at 1-2% of the SiH 4 (monosilane) flow rate in order to improve ohmic contact characteristics. (Doping) relates to an amorphous silicon solar cell.

일반적으로, 제2도에 도시된 바와 같이 ITO/P,i,N/A1의 적층구조를 갖는 비정질 실리콘 태양전지(30)은 유리기판(31)과 ITO(투명전도막)(32) 및 P형 비정질 실리콘층(33)을 통하여 입사된 빛(광신호)이, 대부분 활성층(Active Layer)인 i형 비정질 실리콘층(34)에 흡수되어 전자와 정공의 캐리어(Carrier)를 발생시키고, 발생된 캐리어들은 내부전계에 의하여 각각 N형 비정질 실리콘층(35)과 P형 비정질 실리콘층(33)으로 이동하여 Al금속전극(36) 및 ITO투명전도막(32)을 통하여 외부회로로 연결되면서 상기 광신호를 전기적으로 변환시키는 기능을 하는 것으로서, 상기 i형 비정질 실리콘층(34)에서 발생되는 캐리어(전자와정공)들의 이동율을 양호하게 하기 위하여 P형 비정질 실리콘층(33)에는 B2H6(디브란)를 일정한 농도로 도핑하고 N형 비정질 실리콘층(35)에는 일정농도의 PH3(포스핀)을 도핑하는데, 종래의 경우, N형 비정질실리콘층(35)에 PH3가 과다하게 도핑필경우 박막상에서 결합수가 증가할 우려가 있기 때문에 N형 비정질실리콘층(35)에 도핑되는 PH3의 농도를 SiH4(실란)의 0.1-0.5%로 한정 하였다.In general, the amorphous silicon solar cell 30 having the laminated structure of ITO / P, i, N / A1 as shown in FIG. 2 has a glass substrate 31, an ITO (transparent conductive film) 32, and P. Light (optical signal) incident through the amorphous silicon layer 33 is absorbed by the i-type amorphous silicon layer 34, which is mostly an active layer, to generate carriers of electrons and holes. Carriers are moved to the N-type amorphous silicon layer 35 and the P-type amorphous silicon layer 33 by an internal electric field, respectively, and are connected to an external circuit through the Al metal electrode 36 and the ITO transparent conductive film 32. In order to improve the transfer rate of carriers (electrons and holes) generated in the i-type amorphous silicon layer 34, the P-type amorphous silicon layer 33 has a B 2 H 6 ( Dibranes) at a constant concentration and the N-type amorphous silicon layer 35 has a constant concentration of P. H 3 (phosphine) is doped, but in the conventional case, when the PH 3 is excessively doped to the N-type amorphous silicon layer 35, the number of bonds may increase on the thin film, so that the N-type amorphous silicon layer 35 The concentration of doped PH 3 was limited to 0.1-0.5% of SiH 4 (silane).

그러나 상기한 바와 같이 PH3를 낮은 농도로 N형 비정질 실리콘층(35)에 도핑하면 N형 비정질 실리콘층(35)과 A1금속전극(36)사이의 계면접속 상태가 충분한 저항성 접촉을 이루지 못하여 접촉저항(ContactResistance)이 증가하므로 캐리어(전자)의 A1금속전극(36)에 대한 효율적인 수집이 불가능하고 결과적으로 태양전지의 광전변환효율(FF)이 감소한다는 문제점이 제기되었다.However, as described above, when the pH 3 is doped to the N-type amorphous silicon layer 35 at a low concentration, the interface connection state between the N-type amorphous silicon layer 35 and the A1 metal electrode 36 does not make a sufficient ohmic contact. Since the resistance (ContactResistance) is increased, the efficient collection of the A1 metal electrode 36 of the carrier (electron) is impossible, and consequently, the photoelectric conversion efficiency (FF) of the solar cell has been raised.

본 발명은 이러한 문제점을 개선하기 위하여 N형 비정질 실리콘층의 후반부 일부에 PH3를, SiH4유량의 1-2%로 헤비도핑(Heavy Doping)하므로써 상기 N형 비정질 실리콘층과 금속전극 계면의 저항성 접촉특성을 향상시키고자 하는데 목적이 있다.In order to solve this problem, the present invention has a resistance of the N-type amorphous silicon layer and the metal electrode interface by heavy doping PH 3 to a part of the latter part of the N-type amorphous silicon layer at 1-2% of the SiH 4 flow rate. The purpose is to improve the contact characteristics.

첨부된 도면에 의하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 통상의 플라즈마CVD(Plasam Chemical Vapor Deposition)를 이용하여 ITO/P,i,N/A1구조의 비정질 실리콘 태양전지를 제조함에 있어서 N형 비정질 실리콘층 전체의 질(質)저하 없이 N형 비정질실리콘층(5)과 A1금속전극(6)사이에 계면의 저항성이 접속특성을 향상시키기 위하여 N형 비정질 실리콘층(5) 후반부에 일정농도의 PH3를 헤비 도핑하는 것으로서 먼저 투명전도막(2)이 도프된 유리기판(1)상에 P형 비정질 실리콘층(3)과 i형 비정질 실리콘층(4)을 증착한 후, N형 비정질 실리콘층(5)을 증착함에 있어서, 전체두께 500Å인 N형 비정질 실리콘층(5)의 전반부 300Å은 통상적으로 SiH4(실란)유량의 0.1-0.5%로 PH3를 도핑하고, 후반부 200Å를 증착시 플리즈마 상태를 그대로 유지하면서 SiH4와 함께 유입되는 PH3의 량을 PH3MFC(Mass Flow Controller)의 조정에 의하여 상기 SiH4유량의 1-2%가 되도록 하여 N형 비정질 실리콘층(5)의 후반부에 선택적으로 헤비도핑한다.According to the present invention, an amorphous silicon solar cell having an ITO / P, i, N / A1 structure using conventional plasma chemical vapor deposition (PCVD) can be manufactured without deterioration of the entire N-type amorphous silicon layer. In order to improve the connection property of the interface between the amorphous silicon layer 5 and the A1 metal electrode 6, a heavy concentration of PH 3 is heavily doped in the latter part of the N-type amorphous silicon layer 5. 2) is deposited on the P-type amorphous silicon layer 3 and the i-type amorphous silicon layer 4 on the doped glass substrate 1, and then the N-type amorphous silicon layer 5 is deposited. The first 300 Å of the phosphorus N-type amorphous silicon layer 5 is doped with PH 3 at 0.1-0.5% of the SiH 4 (silane) flow rate, and the second 200 유입 is introduced with SiH 4 while maintaining the plasma state as it is deposited. by the amount of PH 3 that is the adjustment of the PH 3 MFC (Mass Flow Controller) the Si It is selectively heavy-doped in the second half of the N-type amorphous silicon layer 5 so as to be 1-2% of the H 4 flow rate.

도면중 미설명부호 5a는 PH3가 헤비도핑된 부분이다.In the figure, reference numeral 5a denotes a heavy doped portion of PH 3 .

이와 같은 본 발명의 작용은 i형 비정질 실리콘층(4)에서 발생되어 N형 비정질 실리콘층(5)으로 이동해 들어오는 캐리어(전자)는, PH3가 SiH4의 0.1-0.5%로 도핑되어 막질이 우수한 N형 비정질 실리콘층(5)의 전반부에서 손실없이 수집되고, PH3가 헤비도핑되어 저항성 접촉특성이 향상되고 직렬저항(SeriesResistance)이 감소된, N형 비정질 실리콘층(5) 후반부에 의하여 보다 효과적으로 A1금속전극(6)에 수집된다.The action of this invention as a carrier are generated in the i-type amorphous silicon layer (4) for moving the incoming N-type amorphous silicon layer 5 (e) is, the PH 3 is doped with 0.1-0.5% of SiH 4 film quality Collected without loss in the first half of the excellent N-type amorphous silicon layer 5, and PH 3 heavy-doped to improve resistive contact characteristics and reduce series resistance, resulting in the latter half of the N-type amorphous silicon layer 5 Effectively collected on the A1 metal electrode 6.

이상과 같은 본 발명의 효과로는 N형 비정질 실리콘층 후반부에 대한 PH3의 헤비도핑에 따라 상기 N형비정질 실리콘층과 A1전극 사이의 계면의 저항성 접촉특성이 향상되면서 A1전극에 대한 캐리어(전자)의 효율적인 수집이 가능하므로 태양전지의 Jsc(단락전류밀도)가 증가하며, 전체적인 직렬저항의 감소에 따라 태양전지의 광전변환효율(FF)이 향상된다는 잇점이 있다.As described above, the effect of the present invention is that the resistive contact characteristic of the interface between the N-type amorphous silicon layer and the A1 electrode is improved according to the heavy doping of PH 3 to the latter part of the N-type amorphous silicon layer. ), The solar cell's Jsc (short-circuit current density) increases, and as the overall series resistance decreases, the photoelectric conversion efficiency (FF) of the solar cell improves.

Claims (3)

ITO/P,i,N/A1의 적층구조를 갖는 비정질 실리콘 태양전지에 있어서, N형 비정질 실리콘층의 전반부와 후반부에 도포되는 PH3및 SiH4의 유량의 비를 각각 다르게 도핑시키는 것을 특징으로 하는 비정질실리콘 태양전지.An amorphous silicon solar cell having a laminated structure of ITO / P, i, N / A1, wherein the ratios of the flow rates of PH 3 and SiH 4 applied to the first half and the second half of the N-type amorphous silicon layer are differently doped. Amorphous silicon solar cell. 제1항에 있어서, N형 비정질 실리콘층 후반부에 선택적으로 헤비도핑되는 PH3의 량은 SiH4유량의1-2%인 것을 하는 비정질 실리콘 태양전지.The amorphous silicon solar cell of claim 1, wherein the amount of PH 3 selectively heavy-doped in the latter portion of the N-type amorphous silicon layer is 1-2% of the SiH 4 flow rate. 제1항에 있어서, PH3가 헤비도핑되는 N형 비정질 실리콘층 후반부의 두께는 200Å이하인 것을 특징으로 하는 비정질 실리콘 태양전지.The amorphous silicon solar cell of claim 1, wherein the thickness of the latter portion of the N-type amorphous silicon layer in which PH 3 is heavily doped is 200 kPa or less.
KR1019880015631A 1988-11-26 1988-11-26 Amorphous silicon solar cell KR920006197B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019880015631A KR920006197B1 (en) 1988-11-26 1988-11-26 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019880015631A KR920006197B1 (en) 1988-11-26 1988-11-26 Amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
KR900008716A KR900008716A (en) 1990-06-03
KR920006197B1 true KR920006197B1 (en) 1992-08-01

Family

ID=19279616

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880015631A KR920006197B1 (en) 1988-11-26 1988-11-26 Amorphous silicon solar cell

Country Status (1)

Country Link
KR (1) KR920006197B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432601B2 (en) * 1994-06-17 2003-08-04 東京エレクトロン株式会社 Film formation method
CN109980020A (en) * 2019-04-23 2019-07-05 通威太阳能(成都)有限公司 A kind of glass substrate heterojunction solar battery and preparation method thereof

Also Published As

Publication number Publication date
KR900008716A (en) 1990-06-03

Similar Documents

Publication Publication Date Title
US9608131B2 (en) Solar cell having doped semiconductor heterojunction contacts
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6878921B2 (en) Photovoltaic device and manufacturing method thereof
JP2589462B2 (en) Photoelectric device
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US20010008295A1 (en) Semiconductor device and manufacturing method thereof
JPS6249672A (en) Amorphous photovoltaic element
US4781765A (en) Photovoltaic device
CN113113502A (en) Heterojunction solar cell and preparation method
AU2023200098B2 (en) Solar cell and photovoltaic module
KR920006197B1 (en) Amorphous silicon solar cell
JPH05102504A (en) Photovoltaic element
GB2047463A (en) Amorphous silicon solar cells
JP2675754B2 (en) Solar cell
CN110383496B (en) Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus
JPH0122991B2 (en)
CN114361281A (en) Double-sided heterojunction solar cell and photovoltaic module
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS636882A (en) Photocell of tandem structure
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH0586677B2 (en)
CN214588873U (en) Heterojunction solar cell
EP2834856B1 (en) Thin film solar cell
JP4124309B2 (en) Photovoltaic device manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020627

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee