KR900005214B1 - 자동 비디오 신호 피이킹 제어 시스템 - Google Patents

자동 비디오 신호 피이킹 제어 시스템 Download PDF

Info

Publication number
KR900005214B1
KR900005214B1 KR828201726A KR820001726A KR900005214B1 KR 900005214 B1 KR900005214 B1 KR 900005214B1 KR 828201726 A KR828201726 A KR 828201726A KR 820001726 A KR820001726 A KR 820001726A KR 900005214 B1 KR900005214 B1 KR 900005214B1
Authority
KR
South Korea
Prior art keywords
signal
peaking
circuit
video signal
control
Prior art date
Application number
KR828201726A
Other languages
English (en)
Other versions
KR840000135A (ko
Inventor
엘리스 할랜 웨인
Original Assignee
글렌 에이치. 브르스틀
알.씨.에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 글렌 에이치. 브르스틀, 알.씨.에이 코포레이션 filed Critical 글렌 에이치. 브르스틀
Publication of KR840000135A publication Critical patent/KR840000135A/ko
Application granted granted Critical
Publication of KR900005214B1 publication Critical patent/KR900005214B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

내용 없음.

Description

자동 비디오 신호 피이킹 제어 시스템
제1도는 본 발명에 따른 자동 피이킹(Peaking)제어 회로망을 포함하고 있는 칼라 텔레비젼 수신기의 일부를 도시한 계통도.
제2도는 자동 피이킹 제어 회로망을 포함하고 있는 제1도의 시스템의 일부를 상세하게 도시한 도면.
* 도면의 주요부분에 대한 부호의 설명
10 : 합성 칼라 텔레비젼 신호원 15 : 빗살형 휠터
22 : 저역 통과 휠터 30 : 신호 합성 회로
35 : 저역 통과 수직 상세 휠터 45 : 자동 피이킹 제어 회로
50 : 비선형 수직 상세 신호 처리 회로 64 : 색도 신호 처리 유니트
68 : 매트릭스
본 발명은 예를 들어 텔레비젼 수신기에 의해 처리된 비디오 신호에 나타나는 피이킹 양을 자동적으로 제어하기 위한 시스템에 관한 것이다.
텔레비젼 수신기에 의해 처리된 비디오 신호에 응답하여 생긴 재생 영상은 비디오 신호 진폭 변화의 기울기 즉 "가파름(steepness)"을 증가시키므로써 개량될 수 있다. 통상적으로 신호 "피이킹"이라고 불리우는 이러한 개선은 전형적으로 비디오 신호의 고주파수 정보에 관련되어 있으며, 수직 및 수평 영상 상세 정보에 관련해서 이루어질 수 있다. 예를 들어, 수평 피이킹은 진폭 변화 직전에 신호 "프리슈트(preshoot)"를 발생시키고 진폭 전이 직후에 신호 "오버슈트(overshoot)"를 발생 시키므로써 성취되어, 흑색-대-백색 및 백색-대-혹색 전이가 강하게 된다.
텔레비젼 수신기에 의해 처리된 비디오 신호에 의해 표시되는 피이킹 양은 다수의 소오스에 의해 변할 수 있다. 수평 및 수직 피이킹은 방송국 송신기에서 제공될 수 있고, 고정 또는 제어 가능한 양으로 텔레비젼 수신기 내의 회로에 의해 제공될 수도 있다. 신호 피이킹 또는 디피이킹(depeaking)은 케이블 비디오 신호 분배 통로 내의 신호 "오정합"으로 인해 생길 수도 있다. 신호 피이킹은 비디오 신호의 고주파수 응답을 강조시키기 때문에, 비디오 신호에 부과될 피이킹 양을 결정할때 고주과수 잡음이 존재하는 것을 고려해야 한다. 예를 들어, 강한 비디오 신호에 비해 비교적 대량의 잡음을 포함하는 약한 비디오 신호가 존재할때 피이킹 양을 감소시키는 것이 좋다. 약한 잡음 신호가존재할 때의 과대 피이킹은 재생된 영상질에 해가 되게 고주파수 잡음 성분을 강조시키는 작용을 한다.
따라서, 다수의 신호 상태하에서 비디오 신호 피이킹 양이 최적화되어 양호한 영상 상세를 갖는 재생 영상이 제공되도록 하기 위해 다수의 소오스로부터 부과된 피이킹 성분들을 포함하고 있는 비디오 신호의 고주파수 내용에 따라서 비디오 신호 피이킹 양을 자동적으로 제어하는 겻이 바람직하다.
텔레비젼 수신기 시스템에는 비디오 신호의 피이킹 내용과 시청자의 선택에 따라 표시된 화상을 시청자가 수동으로 제어할 수 있는 장치를 설치하는 것이 바람직하다. 따라서, 이 형태의 시스템에서 자동 피이킹 제어 기능은 퍼이킹 선택 제어 회로의 셋팅에 의해 결정된 바와 같이 시청자의 선택에 일치하는 피이킹 레벨을 유지시키도록 동작해야 한다.
본 발명에 따른 장치는 영상 표시 명도 및 색도 성분을 가진 비디오 신호를 처리하기 위한 시스템에 설치되어 명도 신호의 고주파수 피이킹 내용을 자동으로 계어하는 작용을 한다. 이 장치는 강조된 고주파수 성분을 가진 피이크 명도 신호를 만들도록 명도 신호와 합성되는 피이킹 신호 성분을 밭생시키기 위해서 명도 신호에 응답하는 신호 피이킹 회로를 포함하고 있다. 피이크된 명도 신호에 응답하는 감지 회로망은 퍼이크된 명도 신호의 고주파수 성분의 크기에 따라서 재어 신호를 발생시킨다. 신호 피이킹 회로에 결합되어 제어 신호에 응답하는 제어 회로망은 피이킹 성분의 크기를 제어하므로써 제어 신호의 레벨에 따라서 강조된 고주파수 명도 성분의 크기를 제어한다.
본 발명의 특징에 따르면, 제어 회로망은 제어 가능한 도전 장치와, 이 제어 가능한 도전 장치의 도전 레벨을 제어하기 위한 조절 가능한 피이킹 제어 장치를 포함한다.
본 발명의 또 한특징에 따르면, 자동 피이킹 제어 장치는 텔레비젼 신호의 명도 및 색도 성분을 분리시키기 위해 빗살형 필터를 사용하는 칼라 텔레비젼 수신기내에 설이된다. 콤된(combed ; 빗살형 휠터틀 통한)명도 신호는 제1빗살형 휠터 출력에서 나타난다. 제2빗살형 휠터 출력은 제1빗살형 휠터 출력에서의 유도된 명도 신호에 없는 수직 영상 상세 정보를 나타내는 신호 주파수를 포함한다. 회복된 명도 신호는 제2빗살형 휠터 출력에서 유도된 수직 상세 신호 성분과 콤된 명도 신호를 합성하므로서 나타나고, 이 회복된 명도 신호는 신호 피이킹 회로에 의해 수평 피이킹된다. 수직 상세 퍼이킹 성분은 유도된 수직 상세 성분에 응답하는 수직 피이킹 회로망에 의해 나타나고, 이 수직 상세 피이킹 성분은 수평 피이크된 명도 신호와 결합되어 수평 및 수직 피이크된 출력 명도 신호가 발생된다. 상기 감지 회로망은 수평 피이킹 성분의 크기를 제하기 위해 사용되는 비례 제어 전압을 발생시키기 위해 상기 출력 명도 신호의 고주파수 내용에 응답한다.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 기술하겠다.
제1도에서, 명도 및 색도 성분을 포함하고 있는 합성 칼라 텔레비젼 신호원(10)은 미합중국 특허 제4,096,516호에 도시한 것과 같은 전하 결합 소자(CCD)를 사용하는 빗살형 휠터와 같은 공지된 빗살형 휠터(15)의 입력부로 비디오 신호를 공급한다. 명도 및 색도 성분은 주파수가 인터리브되는 식으로 비디오 신호 주파수 스펙트럼내에 배열된다. 명도 성분은 비교적 넓은 대역폭(D.C 또는 0주파수로부터 약 4㎒까지 연장됨)을 갖고 있다. 명도 성분의 상부 주파수 범위는 칼라 정보로 변조된 3.58㎒ 진폭 및 외상의 부반송파 신호를 포함하는 색도 성분이 공유하고 있다. 명도 코밍(combing) 작용에 관하여 빗살형 휠터(IS)의 진폭-대-주파수 응답은 D.C 또는 0주파수로부터 연장된 수평 라인 주사 주파수(약 15.734㎒)의 정수배에서 피이킹 진폭 응답을 나타내고, 3.58㎒ 색도 부반송파 주파수를 포함하는 라인 주사 주파수의 절반의 홀수배에서 0을 나타낸다. 색도 코밍 작용에 관하여 빗살형 휠터(15)의 진폭-대-주파수 응답은 3.58㎒를 포항하는 라인 주파수의 절반의 홀수배에서 피이크 진폭 응답을 나타내고, 라인 주파수의 정수배에서 진폭 0을 나타낸다.
빗살형 휠터(15)의 제1출력으로부터의 "콤된"명도 신호(Y)는 저역 통과 휠터(22)를 통해 신호 합성 회로(30)의 입력에 결합된다. 휠터(22)는 약 4㎒의 컷-오프 주파수 이하에서 모든 명도 신호들을 통과시키도록 배열되어, CCD 형태로된 빗살형 휠터(15)의 스위칭 동작에 관련된 스위칭 신호의 잡음 및 출력 주파수 성분을 제거하는 작용을 한다.
빗살형 휠터(15)의 제2출력은 R-Y, B-Y 및 G-Y색차 신호를 발생시키기 위해 색도 신호 처리 유니트(64)에 인가되고, 또한 저역 통과 수직 상세 휠터(35)의 입력에도 인가된다. 유니트(64)는 색도 신호 주파수의 대역을 점유하는 빗살형 휠터(15)로부터의 신호 주파수만을 통과시키기 위한 적합한 입력 휠터를 포함하고 있다. 휠터(35)는 약 1.5㎒의 컷-오프 주파수를 나타내고, 이 컷-오프 주파수 이하에 있는 빗살형 휠터(15)의 제2신호 출력에 나타나는신호 주파수들만을 선택적으로 통과시킨다. 이 영역에의 신호 주파수는 수직 상세 명도 정보를 나타낸다. 이 수직 상세 명도 정보는 콤된 명도 신호에는 없는 것으로서 표시된 영상의 명도 내용의 수직 해상도가 손실되지 않도록 명도 신호로 회복되어야만 하는 정보이다. 이러한 수직 상세 회복은 합성 회로(30)에서 휠터(22)로부터 여파되고 콤된 명도 신호와 휠터(35)로부터의 적당한 선형 수직 상세 신호량(선형 진폭 이송 응답을 나타냄)을 합성하므로써 이루어진다. 합성 회로(30)의 출력으로부터 회복된 명도 신호는 유니트(32)에 의해 반전되고, 수평 피이킹 회로(40)에 의해 수평 상세 처리되며 그후에 신호 합성기(42)의 입력에 인가된다.
휠터(35)로부터의 수직 상세 신호는 선정된 신호 진폭 범위내의 수직 상세 신호들에 상이한 신호 이득량이 부과되도륵 비선형 수직 상세 신호 처리 회로(50)에 공급된다. 특히, 적당한 진폭 수직 상세 신호는 피이크 즉, 개선되고, 커다란 진폭 수직 상세 신호는 불필요 부분이 삭제되거나 감쇠된다. 회로(50)로부터 처리된 신호는 합성 회로(42)의 다른 입력부에 공급되어 수평 피이킹 회로(40)로부터의 신호와 합성된다. 비선형 수직 상세 신호 처리 회로(50)와 수평 피이킹 회로(40)의 배열에 관한 설명은 1981년 4월 20일자로 더블유. 에이. 라고니가 "칼라 텔레비젼 신호의 수평 및 수직 영상 상세 처리 시스템"이란 제목으로 출원한 미합중국 특허출원 제255,375호에 기재되어 있다. 신호 합성기(42)로부터의 출력 신호에 응답하는 자동 피이킹 제어 회로(45)는 수평 피이킹 회로(40)에 의해 발생된 피이킹 신호의 크기를 자동으로 제어하는 작용을 한다.
신호 합성기(42)로부터의 출력 신호는 후술 하는 바와 같이 피이크된 수평 상세 정보와, 상술한 더블유. 에이. 라고니의 미합중국 특허출원서에 기재된 바와 같이 회복되고, 개선되고(피이크됨), 삭제(감쇠)된 수직 상세 정보를 포함하는 칼라 텔레비젼 신호의 재구성된 명도 성분에 대응한다. 그후에 재구성된 명도 성분은 명도 신호 처리 유니트(58)에 인가된다. 유니트(58)로부터의 증폭된 명도 신호(Y)와 색도 신호 처리 유니트(64)로부터의 색차 신호 R.B 및 G칼라 영상 표시 출력 신호를 제공하기 위해 매트릭스(68)내에서 합성된다. 이때 이 신호들은 칼라 키네스코프(70)의 영상 강도 제어 전극에 적합하게 결합된다.
제2도는 제1도의 수평 피이킹 회로(40)와 자동 피이킹 제어 회로(45)가 상세하게 도시된 회로도이다.
회복된 콤된 명도 신호들은 신호 합성 회로(30)의 출력으로부터 트랜지스터(33)를 포함하고 있는 신호반전기(32)와 입력 신호 변환 회로(75)를 통해 수평 피이킹 회로(40)의 입력에 인가된다. 피이킹 회로(40)는 트랜지스터(86과 88)를 포함하고 있는 차동 증폭기의 입력부들 사이에 결합된 지연선(85)을 포함한다. 증폭기(86,88)를 작동시키는 전류는 트랜지스터(90)를 포함하고 있는 DC 전류원으로부터 제공된다. 피이킹 회로(40)는 또한 지연선(85)의 출력에 결합된 출력 트랜지스터(92)를 포함한다.
명도 신호는 입력 신호 변환 회로(75)를 통해 트랜지스터(86)의 베이스에 있는 차동 증폭기의 제1입력부로 인가된다. 지연된 명도 신호는 지연선(85)를 통해 트랜지스터(88)의 베이스에 있는 차동 중폭기의 제2입력부로 인가된다. 지연선이 반사 모우드로 동작하므로써 반사되어 2배로 지연된 명도 신호가 트랜지스터(86)의 베이스 입력에서 나타나도록 트랜지스터(88 및 92)의 고입력 임피던스 베이스 전극에 결한된 지연선(55)의 출력 단자는 종료되지 않는다. 지연된 신호와 2배로 지연된(반사된)신호는 차동 중폭기가 트랜지스터(88)의 콜렉터 회로내에 프리슈트 및 오버슈트 피이킹 신호 성분을 나타내게 한다. 프리슈트 및 오버슈트 피이킹 성분들은 피이크된 명도 신호를 나타내기 의해 트랜지스터(88 및 92)의 콜렉터 회로내에서 전위 차계(95)를 포함하는 공통 부하 임피던스내의 지연된 명도 신호와 합성 된다. 피이킹 회로의 상세한 설명은 다음과 같다.
이 예에서, 지연선(85)은 명도 신호 대역폭(O㎐ 내지 약 4.0㎒)에 걸쳐서 선형 위상 응답을 나타낸다. 지연선(85)는 회로(40)의 진폭-대-주파수 응답이 약 3.5㎒에서 피이크 진폭 응답을 갖도록 140ns 정도의 신호 지연을 제공한다. 좀더 상세하게 말하자면, 지연선 회로 응답은 신호 피이킹 주파수 범위가 3.5㎒(-6db점)에서 최대 진폭 응답을 갖게 되는 1.75㎒에서 5.25㎒까지 주파수를 차지하는 정현파-제곱 함수와 비슷하다. 지연선(85)의 출력은 트랜지스터(88 및 92)의 고입력 임피던스에 위해 종료되므로, 지연선 출력은 이것의 특성 임피던스(이 예에서는 680Ω)에 관련해서는 종료되지 않는다. 그러므로써 지연선은 대략 일정한 반사 계수를 가진 반사 모우드로 동작하게 된다. 지연선(85)의 입력은 입력 회로(75)에 의해 그것의 특성 임피던스에서 종료된다.
피이킹 성분은 트랜지스터(88)의 콜렉터 전류로 발생된 피이킹 전류 Ip에 비례한다. 이 피이킹 전류는 신호 합성 부하 임피던스(95)양단에서 비례 피이킹 전압을 발생시킨다. 따라서, 전위 차계(95)의 와이퍼에서 발생된 출력 신호는 피이킹 전류 Ip에 응답하여 발생된 프리슈트 및 오버슈트에 위해 진폭 변화가 강조되는 피이크된 명도 신호에 대응한다. 전위 차계(95)의 와이퍼로부터의 출력 신호들은 버퍼 트랜지스터(99)를 통해 명도 처리기(58)로 공급된다. 이 출력 신호들은 상술한 바와 같이 발생된 수평 피이크된 신호와, 저항기(97)를 통해 트랜지스터 (88 및 92)의 접합 콜렉터의 합성 지점에 결합되는 처리기(50,제1도)로부터의 비선형 처리된(즉, 피이크되고 삭제된)수직 상세 신호를 포함한다. 피이킹 회로(40)에 대한 좀더 상세한 동작 설명은 1981년 4월 20일자로 더블유. 이. 하랜이 "자기-제한 비디오 신호 피이킹 회로"란 제목으로 출원한 미합중국 특허원 제255,982호에 기재되어 있다.
피이킹 회로(40)에 의해 발생된 피이킹 성분의 크기는 피이킹 전류 Ip의 크기에 의해 결정된다. 이 피이킹 전류 레벨은 후술하는 바와 같이 전류원 트랜지스터(90)의 도전 레벨을 제어하므로써 제어될 수 있다.
제2도에는 피이킹 회로(40)와 폐쇄 제어 루우프 궤환 관계로 배열된 자동 피이킹 제어 회로가 도시되어 있다. 이 피이킹 제어 회로는 고역 통과 휠터(110), 진폭 검파기(120) 및 임계 회로(130)를 포함한다. 즉 구체적으로는 트랜지스터(90)와 임계 회로(130)가 제어기를 구성하며 고역 통과 휠터(110)와 진폭 검파기(120)가 제어 신호 발생기를 구성한다. 시청자가 조절할 수 있는 피이킹 선택 제어 회로(140)는 제어 루우프내의 회로(130)에 연결되어 있다. 피이킹 제어 회로는 전위 차계(95)의 와이퍼와 트랜지스터(99)를 통해 명도 처리기(58)로 공급되는 비디오 신호내에 나타나는 피이킹 성분을 포함하고 있는 고주파수 정보량을 감지한다. 제어 회로는 전류원 트랜지스터(90)의 도전 상태를 자동적으로 제어하여 회로(40)에 의해 발생된 신호 피이킹 양을 제어하기 위해서, 검파된 고주파수 정보량에 비례하는 제어 신호를 발생시킨다. 결과적으로 처리기(58)에 공급되어 명도 신호에 부가된 피이킹 양은, 시청자가 피이킹 선택 제어 회로를 셋팅한 것에 일치되어, 바람직한 한계내에 유된다. 자동 피이킹 선택 제어 회로의 구조 및 동작에 대해서는 이하 상세하게 기술하겠다.
전위 차계(95)의 와이퍼로부터외 명도 신호는 트랜지스터(99)의 콜렉터를 통과 고역 통과 필터(110)에 결합된다. 이 신호는 상술한 바와 같이 다수의 소오스로부터 유도될 고주파수 피이킹 성분을 포함한다. 이 신호는 휠터(110)에 의해 고역 통과 휠터되고, 그후에 트랜지스터(122), 정류 다이오드(123 및 124), 및 피이크 응답 휠터 캐패시터(127)로 구성된 검파기(120)에 의해 피이크 검파된다.
캐패시터(127)상에 발생된 것과 같은, 검파기(120)로부터 검파된 출력 신호는 주어진 주파수 범위에 걸친 명도 신호의 고주파수 정보 내용을 나타낸다. 이 예에서 휠터(110)과 검파기(120)를 포함하고 있는 회로의 검파 주파수 응답은 약 2.0㎒에서 피이크 진폭 응답을 갖는 1.6㎒에서 3.5㎒(-3db 지점)까지의 주파수 범위를 차지한다. 이 주파수 응답은 일부는 1.6㎒이상의 신호들을 통과시키는 횔터(110)의 고역 통과 응답에 의한 것이고 일부는 약 3.5㎒의 고주파수 컷-오프(-3db 지점)를 나타내는 검파기(120)의 저역 통과 주파수 응답에 의한 것이다. 실제로, 일반적인 텔레비젼 수신기 시스템의 전형적인 주파수 응답과 정상적으로 실험된 명도 신호의 주파수 내용을 상술한 검파 주파수 응답이 피이킹 성분을 포함하고 있는 명도 신호 고주파수 정보를 적당하게 가리키게 할 수 있을 정도의 주파수 응답과 내용이다. 그러나. 다른 검파 주파수 응답도 특정 시스템의 필요에 따라 가능하다.
피이크 검파된 고주파수 정보는 저항기(125)를 통해 회로(130)내의 트랜지스터(132)로 결합된다. 트랜지스터(132)의 콜렉터에 나타난 신호는 피이킹 회로(40)의 전류원 트랜지스터(90)의 바이어스를 제어하는 작용을 한다. 트랜지스터(90)의 전류 도전과 이 전류 도전에 의해 회로(40)에 의해 발생된 피이킹 성분의 크기는 트랜지스터(132)의 도전 레벨에 따라서 변한다.
피이킹 선택 제어 회로(140)의 와이퍼는 후술하는 바와 같이 트랜지스터(132)의 바이어스를 제어하기 위해 트랜지스터(132)의 베이스에 결합된다. 이 제어 회로는 궤환 제어 루우프내에 포함되어 있고, 이 제어 회로는 최소 레벨(MIN 셋팅)과 최대 레벨(MAX 셋팅)사이에서 제어가능한 피이킹 양을 제공하도륵 셋트될 수 있다. 트랜지스터(132)는 전류 이득이 약 100인 고이득 장치이고, 이 트랜지스터(132)는 그의 베이스 전압이 약 +1.0V의 임계 전압과 같거나 이 임계 전압을 초과할 때는 비교적 낮은 전류 레벨(예, 100μA 정도)을 도통시키도록 바이어스되어 있다. 이 임계 전압은 순방향 바이어스된 에미터 다이오드(132)외 오프 셋트 전압(+0.5V)와 트랜지스터(132)의 베이스-에미터 접합 오프 셋트 전압(+0.5V)를 합한 것에 대응한다. 트랜지스터(132)는 폐쇄 제어 루우프 모우드에서 제어가능한 도전 장치로서 동작하고 비교기로서도 동작한다. 비교기로서 동작할때, 트랜지스터(132)의 베이스 전압은 에미터 전압에 비교되어 이 베이스 전압이 +0.5V이상 에미터 전압을 초과할 때는 트랜지스터(132)가 도전 상태로 된다.
자동 피이킹 제어 루우프는 전위 차계(95), 트랜지스터(99), 휠터(110), 검파기(120), 회로망(130) 및 회로망(140)의 트랜지스터(90 및 88)로 구성된다. 트랜지스터(132)가 피이킹 선택 제어 회로(140)로부터 바이어스 되면, 궤환 제어 통로는 피이킹 센터 제어 회로의 셋팅동안 트랜지스터(132)는 도전 상태로 되고 궤환 제어 통로는 폐쇄(즉 작동)된다. 특히, 피이킹 선택 제어 회로(140)틀 구성하는 전위 차계의 와이퍼로부터 유도된 것과 같은 트랜지스터(132)의 베이스 바이어스 전압이 +1.0V임계 도전 레벨 이하로 얻어지는 경우에, 피이킹 선택 제어 회로(140)를 MAX위치 부근에 셋팅시키는 것에 응답하여 트랜지스터(132)가 바이어스"오프"될때 제어 루우프는 개방된다.
명도 신호의 고주파수 내용이 일정하고 피이킹 선택 제어 회로(140)가 시청자가 원하는 피이킹 양에 대응하는 대략 중간 위치에 셋트되어 있다고 가정하면, 검파기 캐패시터(172)의 전압 트랜지스터(132)와 입력 바이어스 된 회로망(40)에 의해 제공된 피이킹 양에 관련해서 평형 상태가 이루어진다. 폐쇄 제어 루우프는 고주파수 내용이 변할때 상기와 같이 바람직한 피이킹 레벨을 유지시키는(즉, 선택 제어 회로(140)의 셋팅에 일치되게)작용을 한다. 예를 들어, 비디오 신호 고주파수 내용이 증가하는 것은 검파기(120)에 의해 검파되고, 이 겅우에, 검파기 캐패시터(127)의 전압은 트랜지스터(132)의 도전상대를 증가시키는 것에 비례하여 증가하게 된다. 이 트랜지스터(132)의 증가된 도전 상태는 전류원 트랜지스터(90)를 구동시키는 베이스 전류를 감소시킨다. 이것은 트랜지스터(90)의 콜렉터 전류를 감소시키므로 트랜지스터(88)의 콜렉터 피이킹 전류 Ip의 크기를 감소시킨다. 따라서, 전위 차계(95)의 와이퍼에서 발생된 신호의 고주파수 내용을 피이킹 선택 제어 회로(140)의 셋팅에 일치하는 바람직한 비디오 신호 및 영상 피이킹 레벨에 대응하는 레벨로 감소한다. 이때 새로운 평형 상태가 생기게 되고(즉, 캐패시터(127)의 전압의 새로운 평형 상태와 트랜지스터 (132)의 콜렉터 전류의 새로운 평형 상태), 이러한 평행 상태는 제어 루우프가 비디오 신호 고수파수 내용이 변함에 따라 다시 작동할 때까지 또는, 피이킹 제어 회로(140)가 시청자에 의해 조정될 때까지 유지된다. 상술한 것과 비슷한 관찰은 제어 루우프가 피이킹 양을 자동적으로 증가시키는 작용을 할 때에도 응용된다.
신호 피이킹 양은 트랜지스터(132)의 새로운 평형 전류 도전 레벨을 결정하는 피이킹 선택 제어 회로(140)를 조정하므로써 변화시킬 수 있다. 예를 들어, 이 경우에 피이킹은 제어 회로(140)를 MIN 위치를 향해 조절하므로써 감소된다. 이것은 트랜지스터(132)의 베이스 바이어스를 증가시키어, 이 트랜지스터(132)의 도전 상태가 증가되고 회로망(40)으로부터의 피이킹 성분의 크기가 감소되게 한다. 이 변화는 검파기(120)에 의해 감지되고 캐패시터(12)의 전압이 새로운 평형 레벨에 비례적으로 감소하게 한다. 그러므로 피이킹 선택 제어 회로(140)는 이 제어 회로(140)의 셋팅에 따라서 바람직한 피이킹 레벨에 관련하여 자동 피이킹 제어를 제공하기 위해 제어 루우프의 응답을 알맞게 할 수 있다. 트랜지스터(132)의 임계 도전 레벨은 트랜지스터(132)의 에미터 임피던스를 수정함으로서 변화될 수 있다. 예로, 트랜지스터(132)의 에미터 회로 임피던스를 증가시키면 트랜지스터(132)의 임계 도전 레벨이 증가한다. 또한, 캐패시터(127)상에 검파기 출력 전압은 저항기(126)의 값을 증가시키므로써 증가될 수 있다. 이것은 트랜지스터(132)가 비디오 신호 고주파수 성분의 저 레벨이 존재할때 제어 루우프를 폐쇄시키자마자 곧 도전 상태로 되게 한다.
상술한 형태 이외에도, 트랜지스터 (90)에 의해 도전된 DC 전류량을 제어하여 피이킹 제어하는 것은 선형 위상 응답 지연선(85)을 포함하는 주요 신호 통로의 신호 처리 파라메타를 방해하지 않는다는 장점을 갖고 있는 것 또한 주목할 만하다. 특히, 회로망(40)에 의해 피이킹되는 신호의 위상은 피이킹 양이 트랜지스터(90)를 포함한 제어 루우프를 통해 제어될때 영향을 받지 않는다.
폐쇄 루우프 동작은 유리하게도 트랜지스터 전류 이득과 같은 회로 파라메타에 거의 관계없이 회로가 동작한다는 장점이 있다. 제2도의 배열에서, 전위 차계(95)의 와이퍼와 트랜지스터(99)의 콜렉터 출력사이의 회로 통로의 궤환 제어 이득은 유리하게도 폐쇄 루우프 동작중에 피이킹 제어 회로(140)를 셋팅하는 것에 관계가 없다. 이 경우에 피이킹 선택 제어 회로(140)의 셋팅을 변화시키면 차동 증폭기(86,88)를 포함한 피이킹 회로의 이득이 변하게 되고 트랜지스터(88)의 피이킹 성분 출력의 크기가 이에 따라 변하게 된다. 그러나, 궤환 통로 이득은 약간만 변하게 되며, 증폭기(86,88)에 의해 발생한 피이킹 성분의 크기를 제어하는 것은 예상할 수 있다.
상술한 자동 피이킹 제어 배열의 다른 형태가 본 발명의 범위내에서 형성될 수도 있다.
예를 들어, 검파기(120)와 휠터(110)의 낮은 검파주파수 응답(1.6㎒)은 피이킹 수직 상세 정보로 될 수 있는 명도 신호 피이킹 양을 검파하도록 더 낮아질 수 있다(예, 1.5㎒이하).
또한, 검파기(120)는 도시한 바와 같은 피이크 검파기가 아닌 평균적인 검파기로 배열될 수도 있다. 피이크 검파기는 비교적 잡음이 없는 강한 비디오 신호가 나타날때 피이킹을 제어 가능하게 감소시키므로서 바람직한 영상 첨예도 레벨을 유지하기가 좋다. 이 경우에 영상 첨예도는 주로 비디호 신호 진폭 변화의 기능을 한다. 평균 검파기는 약한 잡음 신호 상태하에 신호 피이킹을 제어 가능하게 감소시키기에 좋다. 그러므로 수신기는 평균 및 피이킹 검파기의 출력에 응답하는 스위칭 비교기와 결합하여 이 평균 및 피이킹 검파기를 사용할 수도 있다. 비교기 출력은 제어 루우프가 보다 큰 검파기 출력에 응답할 수 있도록 제어 루우프에 결합될 수 있다. 이것은 강한 신호 상태와 약한(잡음) 신호 상태에 대한 피이킹 제어를 최적화시킨다.

Claims (6)

  1. 영상 표시 명도 및 색도 신호를 갖고 있는 비디오 신호원, 상기 비디오 신호로부터 상기 명도 신호를 분리하는 수단, 및 상기 명도 신호의 신호 전이에서 프리슈트 및 오버슈트의 형태로 피이킹 신호 성분을 자동으로 제어하는 장치로 구성되는 비디오 신호 처리 시스템이 상기 비디오 신호원(10)에 결합되어 있는 입력부와 결합기(42)의 제1입력부에 결합되어 있는 출력부를 갖고 있는 수평 신호 피이킹 회로(40)와, 상기 비디오 신오원에 결합되어 있는 제2입력부를 갖고 있는 결합기(42)와, 상기 수평 신호 피이킹 회로의 제어 신호 입력부에 연결되어 있는 출력부 및 제어 신호 발생기(110,120)로부터 제어 신호를 수신하도록 결합되어 있는 입력부를 갖고 있는 제어기(90,130)를 포함하는 이러한 비디오 신호 처리 시스템에 있어서, 상기 제어 신호 발생기(110,120)는 결합 회로(42)를 경유하여 상기 수평 신호 피이킹 회로(40)의 출력부에 결합되어 있는 입력부를 갖고 있으며 상기 제어 신호를 피이크된 명도 신호의 고주파수 성분의 크기에 따라서 발생시키고, 이 제어 신호는 상기 제어기(90,130)를 통하여 상기 수평 신호 피이커(40)에 인가되는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스템.
  2. 제1항에 있어어, 상기 제어 신호 발생기는 상기 피이크된 명도 신호의 고주파 성분을 선택적으로 통과시키는 고역 통과 휠터(110)와, 상기 휠터에 의해 선택적으로 통과된 고주파 성분에 응답하여 제어 신호를 발생시키는 진폭 검파기(120)를 포함하는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스탬.
  3. 제2항에 있어서, 상기 검파기(120)는 피이크 진폭 검파기를 포함하는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스템.
  4. 제2항에 있어서, 상기 검파기(120)는 평균 진폭 검파기를 포함하는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스템.
  5. 제1항에 있어서, 상기 제어기(90,130)는 제어 가능한 도전 소자인 트랜지스터(132)를 포함하는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스템.
  6. 제5항에 있어서, 상기 트랜지스터(132)의 도전 레벨을 부가적으로 제어하는 피이킹 선택 제어 회로(140)를 포함하는 것을 특징으로 하는 자동 비디오 신호 피이킹 제어 시스템.
KR828201726A 1981-04-20 1982-04-19 자동 비디오 신호 피이킹 제어 시스템 KR900005214B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/255,609 US4351003A (en) 1981-04-20 1981-04-20 Automatic video signal peaking control
US255.609 1981-04-20
US255609 1988-10-11

Publications (2)

Publication Number Publication Date
KR840000135A KR840000135A (ko) 1984-01-30
KR900005214B1 true KR900005214B1 (ko) 1990-07-21

Family

ID=22969101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR828201726A KR900005214B1 (ko) 1981-04-20 1982-04-19 자동 비디오 신호 피이킹 제어 시스템

Country Status (14)

Country Link
US (1) US4351003A (ko)
JP (1) JPS57181282A (ko)
KR (1) KR900005214B1 (ko)
AT (1) AT384700B (ko)
AU (1) AU548733B2 (ko)
CA (1) CA1175561A (ko)
DE (1) DE3214607A1 (ko)
ES (1) ES8304398A1 (ko)
FI (1) FI76230C (ko)
FR (1) FR2504339B1 (ko)
GB (1) GB2097222B (ko)
HK (1) HK17987A (ko)
IT (1) IT1150845B (ko)
MY (1) MY8700371A (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386370A (en) * 1981-09-22 1983-05-31 Rca Corporation Clamping arrangement for a video signal peaking system
US4386369A (en) * 1981-09-22 1983-05-31 Rca Corporation Compensated clamping circuit in a video signal peaking system
US4399460A (en) * 1981-10-09 1983-08-16 Rca Corporation Video signal peaking control system with provision for automatic and manual control
US4430665A (en) * 1981-12-14 1984-02-07 Rca Corporation Automatic video signal peaking and color control
SE453246B (sv) * 1982-11-26 1988-01-18 Rca Corp Anordning och sett for bild-till-bildkamfiltrering av en sammansatt televisionssignal
US4623924A (en) * 1985-02-19 1986-11-18 Rca Corporation Video signal auto peaking circuitry
JPS62133878A (ja) * 1985-12-05 1987-06-17 Sony Corp 映像信号記録装置
JP2783696B2 (ja) * 1991-05-31 1998-08-06 シャープ株式会社 画質補正装置
KR0130814B1 (en) * 1993-12-18 1998-04-11 Samsung Electronics Co Ltd A contour correction method and apparatus of video signal
JPH09322019A (ja) * 1996-05-30 1997-12-12 Matsushita Electric Ind Co Ltd ノイズ抑圧回路
US10682331B2 (en) 2012-02-24 2020-06-16 Nasoneb, Inc. Nasal drug delivery and method of making same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800077A (en) * 1971-10-15 1974-03-26 Columbia Broadcasting Syst Inc Automatic sharpness-enhancing equipment for television picture signals
NL7407839A (ko) * 1973-06-13 1974-12-17
US3919714A (en) * 1974-10-21 1975-11-11 Rca Corp Automatic peaking apparatus
US3938181A (en) * 1974-10-21 1976-02-10 Rca Corporation Automatic luminance channel frequency response control apparatus
US3984631A (en) * 1975-02-24 1976-10-05 Warwick Electronics Inc. Automatic peaking control circuit for low level T.V. signal reception
US4075661A (en) * 1976-08-19 1978-02-21 The Magnavox Company Automatic peaking circuit
US4090217A (en) * 1976-08-23 1978-05-16 Gte Laboratories Incorporated Automatic sharpness control circuit for a television receiver
US4081836A (en) * 1976-11-30 1978-03-28 The Magnavox Company Luminance signal processor for providing signal enhancement
US4080627A (en) * 1977-01-19 1978-03-21 Gte Sylvania Incorporated Aperture correction circuitry for a video correction system
US4263612A (en) * 1979-08-01 1981-04-21 Rca Corporation Comb filter equalization circuit
DE2937958C2 (de) * 1979-09-20 1982-03-25 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur horizontalen und vertikalen Konturkorrektur

Also Published As

Publication number Publication date
FR2504339B1 (fr) 1987-11-20
KR840000135A (ko) 1984-01-30
ES511372A0 (es) 1983-02-16
FR2504339A1 (fr) 1982-10-22
ES8304398A1 (es) 1983-02-16
DE3214607C2 (ko) 1988-06-30
FI76230B (fi) 1988-05-31
JPS57181282A (en) 1982-11-08
CA1175561A (en) 1984-10-02
GB2097222B (en) 1984-12-12
DE3214607A1 (de) 1982-11-11
IT1150845B (it) 1986-12-17
FI821279L (fi) 1982-10-21
AT384700B (de) 1987-12-28
AU548733B2 (en) 1986-01-02
FI76230C (fi) 1988-09-09
GB2097222A (en) 1982-10-27
IT8220809A0 (it) 1982-04-19
FI821279A0 (fi) 1982-04-13
MY8700371A (en) 1987-12-31
AU8255182A (en) 1982-10-28
ATA153182A (de) 1987-05-15
US4351003A (en) 1982-09-21
HK17987A (en) 1987-03-06

Similar Documents

Publication Publication Date Title
US4536796A (en) Non-linear dynamic coring circuit for video signals
US4599643A (en) Apparatus responsive to plural color video signals for amplitude limiting the video signals to assist beam current limiting
US5003394A (en) Dynamic video system including automatic contrast and "white-stretch" processing sections
US4680624A (en) Signal processing circuit for a color video camera providing shading correction by varying the black clamping level
KR900005214B1 (ko) 자동 비디오 신호 피이킹 제어 시스템
CA2047897C (en) Beam scan velocity modulation apparatus
JPS5829033B2 (ja) 自動ピ−クビ−ム電流制限器
US4631589A (en) Dark level restoring circuit
US4399460A (en) Video signal peaking control system with provision for automatic and manual control
CA1197609A (en) Dynamic coring circuit
US5196941A (en) Beam scan velocity modulation apparatus
JPH0424910B2 (ko)
US4075661A (en) Automatic peaking circuit
US4106054A (en) Automatic chroma level system
US4350995A (en) Self-limiting video signal peaking circuit
US4454533A (en) Vertical detail coring circuit to track a gain adjusted signal
US4207591A (en) Gated automatic beam current limiter in a video signal processing system
US4388648A (en) Frequency selective DC coupled video signal control system insensitive to video signal DC components
KR920010938B1 (ko) 화면 밝기에 따른 수직 윤곽조정 회로
US4338630A (en) One-chip chroma/luma IC: D.C. coupling reduction circuit
US3542944A (en) Automatic brightness control system
US4388647A (en) Predictably biased DC coupled video signal peaking control system
US4635118A (en) Interface circuit for video signal peaking control
US2872617A (en) Color television receiver brightness control
US3637921A (en) Luminance amplifier with black level stabilization control

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
J2X1 Appeal (before the patent court)

Free format text: TRIAL NUMBER: 1989201000069; APPEAL AGAINST DECISION TO DECLINE REFUSAL

G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000607

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee