KR890002091B1 - Method for removing iron from aluminate solution - Google Patents
Method for removing iron from aluminate solution Download PDFInfo
- Publication number
- KR890002091B1 KR890002091B1 KR1019860006181A KR860006181A KR890002091B1 KR 890002091 B1 KR890002091 B1 KR 890002091B1 KR 1019860006181 A KR1019860006181 A KR 1019860006181A KR 860006181 A KR860006181 A KR 860006181A KR 890002091 B1 KR890002091 B1 KR 890002091B1
- Authority
- KR
- South Korea
- Prior art keywords
- aluminum
- iron
- formula
- acid salt
- precipitate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/68—Aluminium compounds containing sulfur
- C01F7/74—Sulfates
- C01F7/746—After-treatment, e.g. dehydration or stabilisation
- C01F7/748—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/48—Halides, with or without other cations besides aluminium
- C01F7/56—Chlorides
- C01F7/62—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/66—Nitrates, with or without other cations besides aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/34—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing sulfur, e.g. sulfonium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Removal Of Specific Substances (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
본 발명은 보티사이트, 고령토, 알루나이트, 몬트모릴로나이트, 반토혈암 등과 같은 알루미늄을 함유하는 점토광물을 산처리하여 얻어지는 황산알루미늄과, 염화 알루미늄 또는 질산알루미늄과 같은 알루미늄의 산성염으로부터 철을 제거하여 순수한 알루미늄 산성염을 제조하는 새롭고도 진보된 제조방법에 관한 것이다.The present invention removes iron from aluminum sulfates obtained by acid treatment of clay minerals containing aluminum such as vortisite, kaolin, aluminite, montmorillonite, alumina shale, and aluminum acid salts such as aluminum chloride or aluminum nitrate. A new and advanced process for producing pure aluminum acid salts.
일반적으로 자연산 알루미늄 광으로부터 알루미늄 성분을 추룰하는 방법은 크게 두가지 공정으로 분류된다. 즉 가성소다 또는 소다회와 같은 알칼리로 추출하는 알칼리 추출법과 황산, 염산과 같은 산으로 추출하는 산 추출법등이 있는데 특히 보키사이트를 알칼리 용액으로 가압, 가온하여 추출하는 소위 바이에르(Bayer)법이 공업적으로 가장 널리 이용되고 있다. 반면에 알루미늄광의 산 추출법이 보편화되지 못하는 가장 큰 이유는 산처리시 알루미늄광중에 함유되어 있는 철분과 그외에 망간, 크롬등의 중금속이 알루미늄성분과 함께 공침출되므로 이들 불순물의 제거가 용이하지 않기 때문이다.In general, a method of inferring an aluminum component from natural aluminum light is largely classified into two processes. In other words, there are alkali extraction methods that extract with alkali such as caustic soda or soda ash, and acid extraction methods that extract with acids such as sulfuric acid and hydrochloric acid. Especially, so-called Bayer method which extracts bokisite by pressurizing and warming with alkaline solution is industrial. It is the most widely used. On the other hand, the main reason why acid extraction method of aluminum ore is not common is that it is not easy to remove these impurities because iron and other heavy metals such as manganese and chromium are co-leached together with aluminum component during acid treatment. to be.
알루미늄 함유 점토광물중 대표적인 보키사이트의 조성을 보면 산지에 따라 차이가 있으나 대개 알루미나(Al2O3)함량이 52-57%, 산화철(Fe2O3)이 1-10%, 실리카(SiO2)가 5-20%이고 그외에 소량의 나트륨, 칼슘과 같은 알칼리 및 알칼리토금속, 그리고 티탄, 아연, 구리, 닉켈등과 같은 중금속이 미량 함유되어 있다. 한편 대표적인 고령토의 조성을 보면 알루미나의 함량이 35-39%, 실리카가 40-50%, 산화철이 2-3%이고 소량의 나트륨, 칼륨, 칼슘과 함께 티탄, 크롬, 망간등의 중금속도 미량 함유되어 있다. 이러한 알루미늄 점토광물을 산으로 추출하면 알킬리로 추출할때에 비하여 광물중의 불순금속 성분이 다량으로 공침출되며 특히 알루미늄 추출액중에 철분함량(0.1-0.5%)이 높아져 제품자체의 착색은 물론 용도상 철분의 규제때문에 제품의 용도가 극히 제한되므로 대부분의 순수한 알루미늄 산성염은 알칼리법에 의존해 오고 있다. 그러므로 알루미늄의 산 추출액중의 철분을 제거하기 위한 연구가 지난 수십년간 진행되어 왔으나 아직 공업적으로 실용화되지 못하고 있다.The composition of representative Bokisite among aluminum-containing clay minerals varies depending on the place of origin, but alumina (Al 2 O 3 ) is 52-57%, iron oxide (Fe 2 O 3 ) is 1-10%, silica (SiO 2 ) 5-20%, and other small amounts of alkali and alkaline earth metals such as sodium and calcium, and trace metals such as titanium, zinc, copper, and nickel. On the other hand, the representative kaolin composition contains 35-39% of alumina, 40-50% of silica, 2-3% of iron oxide, and contains a small amount of heavy metals such as titanium, chromium and manganese together with a small amount of sodium, potassium and calcium. have. Extracting these aluminum clay minerals with acid co-leachs out the impurities in the minerals in a large amount compared to the extraction with alkylli, and in particular, the iron content (0.1-0.5%) in the aluminum extract is increased, so that the product itself can be colored and used for Most pure aluminum acid salts have been relied on by the alkali method because the use of the product is extremely limited due to iron restrictions. Therefore, researches for removing iron in the acid extract of aluminum have been conducted for several decades, but it has not been industrially applied yet.
알루미늄의 산 추출액으로부터 철분을 제거하기 위한 현재까지 시도된 방법은 침전법, 용매추출법, 용매석출법등 크게 세가지로 구분되는데 이중 어느방법도 실용화다 되지 못하고 있다. 그 이유는 기술자체가 공업화에 문제가 있거나 또는 경제성에 있어서 알칼리 추출법보다 불리하기 때문이다. 황산알루미늄의 경우를 예로들면 용매석출법(Belg. pat. 423,079(1937)에서는 황산알루미늄 수용액에 에탄올을 가하여 황산알루미늄염을 결정화, 석출시키고 불순물인 철을 모액에 남게하여 정제하여야 하는데 이 방법으로는 우선 철분등의 불순물이 만족할만한 정도로 제거되지 않을 뿐만 아니라 용매인 고가의 에탄올의 회수가 힘들어 기술적으로 실용화가 매우 힘들다. 또한 용매추출법(U.S.Pat. 3,479,136(1969); Brit. 1,037,869(1966)에서는 황산 알루미늄액중에 +2가의 철을 모두 +3가의 철로 산화시킨 후 Amberlite LA-1과 같은 아민 추출제로 철을 용매추출하여 정재한다. 이때 상의 분리, 추출제의 회수, 최종 철함유 폐황산의 처리문제등 기술적인 문제외에도 고가의 산화제를 사용하여야 하는등 실용화가 역시 어려운 것으로 알려져 있다. 끝으로, 기술적으로는 가장 간편한 침전법을 보면 침전제의 종류에 따라 페로시안산소다(Na4[Fe(CN)6])법(U.S.Pat.3,141,733(1964), 페리시안산연(K3(Fe(CN)6)법 (Fe. 837,280(1937)), 크산테이트염(RO.CS2.M,M=Na,K)법(U.S.Pat.2,416,508(1947))등 여러가지 방법이 소개되고 있다. 그러나 이들 침전제에 의한 철침전은 침전물의 입자가 미세한 콜로이드 상태로 생성되므로 여과가 힘들며 또 응집제를 별도로 첨가한다 하여도 공업적으로 여과가 아주 어려운 기술적 문제외에 이들 침전제 자체가 고가일뿐만 아니라 용매추출법에서와 같이 철이온을 전부 +3가 상태로 산화 시키거나 또는 전부 +2가로 환원시킨 후 침전시켜야 하므로 경제성을 도저히 맞출수가 없어 실용화되지 못하고 있다.The attempted methods for removing iron from the acid extract of aluminum are divided into three methods, precipitation method, solvent extraction method, and solvent precipitation method. None of these methods has been put to practical use. The reason for this is that the technical bodies have problems in industrialization or are disadvantageous in terms of economic efficiency than the alkali extraction method. For example, in the case of aluminum sulfate, the solvent precipitation method (Belg. Pat. 423,079 (1937) adds ethanol to an aqueous solution of aluminum sulfate to crystallize and precipitate the aluminum sulfate salt and leave impurities as iron in the mother liquor. First of all, impurities such as iron are not removed to a satisfactory level, and it is difficult to practically use them due to the difficulty in recovering expensive ethanol, which is a solvent, and in the solvent extraction method (US Pat. 3,479,136 (1969); Brit. 1,037,869 (1966)). After oxidizing all of the + 2-valent iron to + 3-valent iron, the iron is extracted by solvent extraction with an amine extractant such as Amberlite LA-1, where phase separation, recovery of the extractant, and treatment of the spent iron-containing sulfuric acid are performed. In addition to the technical problems, it is also known to be difficult to use, such as the use of expensive oxidizing agents. According to the precipitation method, sodium ferrocyanate (Na 4 [Fe (CN) 6 ]) method (US Pat. 3,141,733 (1964)) and ferricyanic acid (K 3 (Fe (CN) 6 ) method (Fe) 837,280 (1937)), xanthate salt (RO.CS 2. M, M = Na, K) method (US Pat. 2,416,508 (1947)), etc. However, iron precipitation by these precipitants has been introduced. Particles are produced in a fine colloidal state, which is difficult to filter and the addition of coagulant is very difficult to industrially filter the technical problem. These precipitants are not only expensive but also all iron ions +3 as in the solvent extraction method. It must be oxidized to a state or reduced to +2 valence and then precipitated, so it is hard to realize economic feasibility.
본 발명자는 이러한 철분제거를 위한 기술적, 경제적 문제를 해결하기 위하여 여러가지 방법을 시도하던 중 우연히 새롭고도 우수한 철분제거 방법을 발견하게 되었다. 다시 말하면 현재까지 철분제거에 전혀 시도된 바 없는 디티오 카르바메이트 계 리간드가 알루미늄 산성염 용액(pH=0.5-3.0)에서 알루미늄과 같은 주족 금속원소와는 전혀 반응을 하지 않고 철, 크롬과 같은 전이금속 이온과는 선택적이면서도 정량적으로 결합하여 안정한 결정성 침전물을 형성하는 것을 발견하였다. 특히 이 철-디티오카르밤산 염 침전물은 상술한 공지의 침전물과는 달리 침전입자가 아주 커서 여과가 아주 용이함을 알게되었다. 더욱 놀라운 그리고 중요한 본 발명의 또 다른 요지는 이렇게 생성된 철-디티오카르밤산 염 침전물을 알칼리로 비교적 간단히 화학 처리함으로써 디티오카르바메이트 침전제를 80% 이상 회수하여 재사용할 수 있다는 사실이다. 따라서 본 발명은 종래의 기술적 경제적 문제점을 동시에 해결할 수 있는 것이 장점이면서도 특징이라 하겠다.The present inventors accidentally found a new and superior iron removal method while trying various methods to solve the technical and economic problems for iron removal. In other words, a dithiocarbamate-based ligand, which has never been attempted to remove iron, does not react at all with a main metal element such as aluminum in an aluminum acid salt solution (pH = 0.5-3.0) and transfers such as iron and chromium. It has been found to bind selectively and quantitatively with metal ions to form stable crystalline precipitates. In particular, the iron-dithiocarbamic acid salt precipitates were found to be very easy to filter, due to their large precipitated particles, unlike the known precipitates described above. Another surprising and important aspect of the present invention is the fact that the iron-dithiocarbamate salt precipitates thus produced can be recovered and reused at least 80% of the dithiocarbamate precipitant by relatively simple chemical treatment with alkali. Therefore, the present invention is an advantage and a feature that can solve the conventional technical and economic problems at the same time.
본 발명의 이해를 돕기 위해 보다 자세히 설명하면, 보키사이트, 고령토. 알루미나이트, 몬트모릴로나이트, 반토혈암등과 같은 알루미늄을 함유한 점토광물을 산처리하여 얻어지는 황산알루미늄, 염화알루미늄 또는 질산알루미늄 수용액중에는 공 침출된 철의 함량이 보통 0.1-0.3%에 이른다. 이들 알루미늄 산성염 수용액에 함유된 철분을 제거하기 위하여 킬레이트 침전제인 일반식(I)로 표시되는 알킬디티오카르밤산 염이나 또는 일반식(II)로 표시되는 알킬렌비스디티오카르밤산 염을 알루미늄 산성염 수용액에 첨가함으로써 철분을 제거하는 것이다.In more detail to help understand the present invention, Bokisite, Kaolin. In aqueous aluminum sulfate, aluminum chloride or aluminum nitrate solution obtained by acid treatment of aluminum-containing clay minerals such as aluminite, montmorillonite, alumina shale, etc., the content of co-leached iron is usually 0.1-0.3%. Alkyl dithiocarbamic acid salt represented by general formula (I) which is a chelating precipitant or alkylenebisdithiocarbamic acid salt represented by general formula (II) is used to remove iron contained in these aluminum acid salt aqueous solution. Iron content is removed by adding to aqueous solution.
일반식(I)에서 R과 R'은 지방족 알킬로서 각각 수소, 메틸, 에틸, 프로필, 이소프로필이며 R과 R'이 서로같거나 다를 수가 있다. 그리고 M은 나트륨, 칼륨 등의 알칼리금속이거나 암모늄기를 나타낸다.In formula (I), R and R 'are aliphatic alkyls, respectively, hydrogen, methyl, ethyl, propyl, and isopropyl, and R and R' may be the same or different. And M is an alkali metal such as sodium or potassium or an ammonium group.
M·S2C-NH-(CH2)n-NH-CS2·M (II) M · S 2 C-NH- ( CH 2) n -NH-CS 2 · M (II)
일반식(II)에서 M은 일반식(I)의 M과 마찬가지로 나트륨, 칼륨 또는 알칼리 금속이거나 또는 암모늄기를 나타내며 n은 2-4의 정수이다.In formula (II), M is sodium, potassium, or an alkali metal or ammonium group, like M in formula (I), and n is an integer of 2-4.
철분을 제거하기 위한 방법으로는 알루미늄 산성염 중에 존재하는 철 당량의 1.0 내지 2.0배 당량에 해당하는 일반식(I)의 알킬디티오카르밤산 염이나 또는 일반식(II)의 알킬렌비스디티오카르밤산 염을 알루미늄산성염 수용액에 첨가하고 교반하면 짙은 갈색 내지 검은색의 철 침전물이 생성된다. 이때 철 침전물은 비콜로이드성이고 입자가 크기 때문에 용이하게 여과할 수 있다. 이렇게 생성된 철-디티오카르밤산 염 침전물을 여과하면 사용한 침전제의 양에 따라 철함량 1-100ppm의 정제 알루미늄 산성염 용액이 얻어진다. 여과된 침전물을 물로 2-3회 세척한 후, 사용한 일반식(I) 또는 일반식(II)의 디티오카르밤산염 침전제의 1.0-2.0배 당량에 해당하는 묽은 알칼리용액, 예컨대 1-5%의 수산화나트륨 수용액, 수산화 칼륨 수용액, 또는 수산화 암모늄 수용액등에 가하고 교반하면 디티오카밤산염 침전제는 알칼리염으로 녹아나와 재생되고 철 성분은 모두 불용성 산화철(Fe2O3·xH2O)로 침전된다. 이때 일반식(I) 또는 일반식(II)의 디티오카르밤산염 침전제의 회수율은 반응조건에 따라 처음 철 침전 반응에 사용한 양에 대하여 80% 이상에 이른다. 회수된 일반식(I) 또는 일반식(II)의 디티오카르밤산 침전제는 다음 철분제거에 계속 사용할 수 있다. 그러므로 본 발명은 기술적인면에서만이 아니라 경제적으로도 실용화가 가능케 하였으며 본 발명의 우수성 및 장점을 상세히 설명하면 다음과 같다.As a method for removing iron, an alkyldithiocarbamic acid salt of formula (I) or an alkylene bis dithiocar of formula (II) corresponding to 1.0 to 2.0 times the equivalent of iron equivalent in the aluminum acid salt Adding the chest acid salt to an aqueous solution of aluminum acid salt and stirring produces a dark brown to black iron precipitate. At this time, the iron precipitate is non-colloidal and can be easily filtered because the particles are large. Filtration of the iron-dithiocarbamic acid salt precipitate thus produced yields a solution of purified aluminum acid salt having an iron content of 1-100 ppm, depending on the amount of precipitant used. After washing the filtered precipitate 2-3 times with water, a dilute alkaline solution corresponding to 1.0-2.0 times the equivalent of the dithiocarbamate precipitate of general formula (I) or general formula (II), such as 1-5% When added to an aqueous sodium hydroxide solution, potassium hydroxide solution, or ammonium hydroxide solution and stirred, the dithiocarbamate precipitant is dissolved and regenerated with an alkali salt, and all iron components are precipitated with insoluble iron oxide (Fe 2 O 3 · xH 2 O). At this time, the recovery rate of the dithiocarbamate precipitate of general formula (I) or general formula (II) reaches 80% or more with respect to the amount used for the first iron precipitation reaction depending on the reaction conditions. The recovered dithiocarbamic acid precipitant of formula (I) or formula (II) may continue to be used for the next iron removal. Therefore, the present invention enables practical application not only in terms of technology but also economically, and the superiority and advantages of the present invention will be described in detail as follows.
첫째, 본 발명의 디티오카르밤산 염 침전법은 알루미늄 산성염용액(pH=0.5-3)에 대하여 종래에 시도된 어떤 침전법 보다도 철분 침전물의 크기가 굵고 비콜로이드성 이어서 여과성이 우수할 뿐 아니라 철분 제거율이 뛰어나다.First, the dithiocarbamate salt precipitation method of the present invention is larger in size and non-colloidal in iron precipitate than any precipitation method conventionally attempted with respect to an aluminum acid salt solution (pH = 0.5-3), and thus has excellent filterability as well as iron powder. Excellent removal rate
둘째, 대부분의 종래의 침전법에서는 철분제거를 위하여 알루미늄 용액중에 Fe2+및 Fe3+이온상태로 공존하는 철성분을 전부 Fe2+이온상태로 환원시키거나 또는 대부분의 경우 Fe3+이온상태로 산화시키는 등전처리 공정을 거친 후 철분을 침전시켜야 한다. 그러나 본 발명의 디티오 카르밤산 염 침전체는 Fe2+이온이나 Fe3+이온 어느것과도 산성에서 안정하게 철침전물을 만듬으로 전처리 공정이 필요없고 고가의 산화제 또는 환원제가 추가로 필요하지 않다.Second, in most conventional precipitation methods, all iron components coexisting in the Fe 2+ and Fe 3+ ions in the aluminum solution are reduced to Fe 2+ ions in order to remove iron or in most cases Fe 3+ ions. Iron should be precipitated after an isothermal treatment process with oxidation. However, the dithio carbamate salt precipitate of the present invention does not require a pretreatment process and does not require expensive oxidizing agents or reducing agents by making iron precipitates stably in acid with either Fe 2+ ions or Fe 3+ ions.
세째, 알루미늄광의 산처리시에는 철분 외에도 망각, 크롬, 아연 등 중금속 이온이 공침출되는데 페로시안산염등 공지의 침전제는 물론, 심지어 용매추출법, 알코올 염석법등의 공지방법들은 어느정도 철성분을 제거할 수 있으나 이들 중금속의 제거는 잘되지 않는다. 그러나 본 발명의 디티오 카르밤산 염 침전제는 철이온과 함께 이들 중금속 이온의 제거 효과도 아주 뛰어나기 때문에 고순도의 정제 알루미늄 산성염 용액을 얻을 수 있다는 사실이다.Third, during acid treatment of aluminum ore, heavy metal ions such as forgetfulness, chromium, and zinc are co-leached in addition to iron. However, the removal of these heavy metals is not good. However, since the dithio carbamic acid salt precipitant of the present invention is very excellent in removing these heavy metal ions together with iron ions, it is a fact that a highly purified purified aluminum acid salt solution can be obtained.
끝으로 이상에서 설명된 획기적인 본 발명의 우수성 외에 본 발명을 실용화할 수 있게 한 또 다른 획기적인 발명소지는 철-디티오카르밤산 염 침전물을 간단한 알칼리로 처리함으로써 대부분이 디티오카르밤산염 침전제를 다시 회수하여 재사용할 수 있다는 사실이다.Finally, in addition to the breakthrough superiority described above, another breakthrough invention that makes the present invention practical is that most of the dithiocarbamate precipitants are retreated by treating the iron-dithiocarbamate salt precipitate with a simple alkali. The fact is that it can be recovered and reused.
이상에서 설명된 본 발명의 디티오카르밤산 염 침전법은 반드시 알루미늄광을 산처리하여 얻어지는 알루미늄 산성염 용액에 국한하지 않고 유사한 어떤 알루미늄 산성염중의 철부등 중금속 이온을 제거하는데 효과적으로 활용할 수가 있으므로 본 발명은 상술한 그리고 다음에 예시될 실시예에 국한되지 않는다.The dithiocarbamate salt precipitation method of the present invention described above is not necessarily limited to the aluminum acid salt solution obtained by acid treatment of aluminum ore, and thus can be effectively utilized to remove heavy metal ions such as iron in any similar aluminum acid salt. It is not limited to the embodiments described above and illustrated next.
[실시예 1]Example 1
고령토를 황산처리하여 얻은 Al2(SO4)3농도 20%, Fe함량 2050ppm(3.67m mole)인 황산알루미늄 수용액 100g을 세게 저으면서 여기에 30%의 디메틸디티오카르밤산 나트륨((CH3)2NCS2.Na) 수용액 6.0g(12.6m mole)을 천천히 가한 다음 5분간 더저어 주었다. 이때 생성된 검은색 철침전물을 여과하여 분리하였더니 철함량 39ppm인 순수한 정제 황산알루미늄 용액이 얻어졌다. 철 침전물은 물로 3회 세척한 후 2% 수산화나트륨 수용액 30g(15.0m mole)에 넣은 다음 서서히 저어주었더니 검은색 철침전물은 분해하여 갈색 산화철 침전물로 변화되었다. 이렇게 생긴 산화철 침전물을 여과하고 여과액을 표준방법(Official Methods of Analysis of the Association of Official Analytical Chemists, 12th Ed.(1975)6.310-6.313)으로 분석하였더니 디메틸디티오카르밤산 나트륨 1.6g(약 90%)이 회수되었다. 위와 똑같은 황산 알루미늄 용액에 대하여 디메틸디티오카르밤산 나트륨 대신 다음의 여러가지 알킬디티오카르밤산의 나트륨염 또는 칼륨염을 사용하여 똑같은 방법으로 철분제거 실험을 한 결과는 다음과 같다.30% of sodium dimethyldithiocarbamate ((CH 3 ) 2 was added to the mixture of 100% Al 2 (SO 4 ) 3 concentration and 2050 ppm Fe (3.67m mole) solution of aluminum sulfate 6.0 g (12.6 m mole) of NCS 2 .Na) aqueous solution was added slowly, followed by stirring for 5 minutes. The produced black iron precipitate was separated by filtration to obtain a pure purified aluminum sulfate solution having an iron content of 39 ppm. The iron precipitate was washed three times with water and then poured into 30 g (15.0 m mole) of 2% aqueous sodium hydroxide solution and then stirred slowly. The black iron precipitate was decomposed to a brown iron oxide precipitate. The iron oxide precipitate thus obtained was filtered and the filtrate was analyzed by standard methods (Official Methods of Analysis of the Association of Official Analytical Chemists, 12th Ed. (1975) 6.310-6.313) and found 1.6 g of sodium dimethyldithiocarbamate (about 90 %) Was recovered. The same result of iron removal experiment was performed using the same sodium sulfate or potassium salt of various alkyldithiocarbamic acid instead of sodium dimethyldithiocarbamate with respect to the same aluminum sulfate solution as described above.
[실시예 2]Example 2
고령토를 황산 처리하여 얻은 Al2(SO4)3농도 20%, Fe함량 2050ppm(3.67m mole)인 황산알루미늄 수용액 100g을 세게 저으면서 여기에 30%의 디메틸디티오카르밤산 나트륨((CH3)2NCS2.NH4) 수용액 6.2g(13.5m mole)을 질소 분위기에서 천천히 가한 다음 5분간 더 저어주었다. 이때 생선된 철 침전물을 여과하여 분리하였더니 철함량 5ppm의 정제 황산알루미늄 용액이 얻어졌다. 철 침전물은 물로 3회 세척한 후 2% 수산화 암모늄 용액 28g에 넣은다음 35℃에서 서서히 저어주었더니 검은색 철 침전물은 분해하여 적갈색 산화철 침전으로 변화되었다. 이렇게 생긴 산화철 침전물을 여과하고 여과액을 실시예 1의 표준방법으로 분석하였더니 디메틸디티오 카르밤산 암모늄 1.7g(91%)이 회수되었다.30% of sodium dimethyldithiocarbamate ((CH 3 ) 2 was added to the solution of kaolin, which was then stirred with 100 g of an aqueous solution of aluminum sulfate having a concentration of 20% Al 2 (SO 4 ) 3 and 2050 ppm (3.67 m mole) of Fe. 6.2 g (13.5 m mole) of NCS 2 .NH 4 ) aqueous solution was slowly added in a nitrogen atmosphere, followed by further stirring for 5 minutes. At this time, the fish precipitate was separated by filtration to obtain a purified aluminum sulfate solution of 5ppm iron content. The iron precipitate was washed three times with water and then placed in 28 g of a 2% ammonium hydroxide solution and then stirred slowly at 35 ° C., and the black iron precipitate was decomposed to red brown iron oxide precipitate. The iron oxide precipitate thus formed was filtered and the filtrate was analyzed by the standard method of Example 1, and 1.7 g (91%) of ammonium dimethyldithiocarbamate was recovered.
[실시예 3]Example 3
고령토를 염산으로 처리하여 얻은 AlCl3농도 22%, Fe함량 1680ppm(3.0m mole), Mn함량 42ppm, Cu함량 33ppm, Zn함량 45ppm, Cr함량 35ppm인 염화알루미늄 용액 100g을 세게 저으면서 여기에 20%디메틸디티오카르밤산 나트륨 수용액 8.5g(11.9m mole)을 질소분위기에서 천천히 가한 다음 5분간 더 저어 주었다. 이때 생긴 침전물을 여과, 분리하였더니 Fe함량 41ppm, Mn함량 18ppm, Cu함량 5ppm, Zn함량 7ppm, Cr함량 3ppm의 순수한 염화 알루미늄 용액이 얻어졌다. 철 침전물은 물로 3회 세척한 후 2% 수산화나트륨 30g에 넣은 다음 상온에서 천천히 저어 주었더니 검은색 침전물이 적갈색 산화철 침전물로 변하였다. 이렇게 생긴 산화철 침전물을 여과하고 여과액을 실시예 1의 표준방법으로 분석하였더니 디메틸디티오카르밤산 나트륨 1.5(88%)이 회수되었다.Kaolin was treated with hydrochloric acid, and the resulting solution was subjected to 20% dimethyl alumina solution with 22% AlCl 3 concentration, Fe content 1680ppm (3.0m mole), Mn content 42ppm, Cu content 33ppm, Zn content 45ppm, Cr content 35ppm 8.5 g (11.9 m mole) of sodium dithiocarbamate was slowly added in a nitrogen atmosphere, followed by stirring for 5 minutes. The precipitate thus produced was filtered and separated to obtain a pure aluminum chloride solution containing 41 ppm of Fe, 18 ppm of Mn, 5 ppm of Cu, 7 ppm of Zn, and 3 ppm of Cr. The iron precipitate was washed three times with water, added to 30 g of 2% sodium hydroxide, and then stirred slowly at room temperature. The black precipitate turned into a reddish brown iron oxide precipitate. The iron oxide precipitate thus formed was filtered and the filtrate was analyzed by the standard method of Example 1, whereupon 1.5 (88%) of sodium dimethyldithiocarbamate was recovered.
[실시예 4]Example 4
고령토를 질산으로 처리하여 얻은 AlCl3)3농도 35%, Fe함량 1510ppm(2.70m mole)인 질산 알루미늄 용액 100g을 세게 교반하면서 여기에 30% 디메틸디티오카르밤산 나트륨 수용액 5.0g(10.5m mole)을 질소분위기에서 가한 다음 5분간 더 저어주었다. 이때 생성된 검은 침전물을 여과하였더니 철함량 23ppm의 순수한 질산알루미늄 용액이 얻어졌다. 철침전물은 물로 3회 세척한 후 2% 수산화나트륨 25g에 넣은 다음 상온에서 서서히 저어 주었더니 검은색 침전물은 갈색 산화철 침전물로 변화되었다. 이렇게 생긴 산화철 침전물을 걸러버리고 여과액을 실시예 1의 표준방법으론 분석하였더니 디메틸디티오카르발산 나트륨 1.3g(87%)이 회수 되었다.AlCl 3) is obtained by processing the kaolin with nitric acid concentration of 3 35%, Fe content of 1510ppm (2.70m mole) of aluminum nitrate solution with stirring 100g hard here 30% dimethyl dithiocarbamic acid in an aqueous solution of sodium 5.0g (10.5m mole) Was added in a nitrogen atmosphere and then stirred for another 5 minutes. The produced black precipitate was filtered to obtain a pure aluminum nitrate solution having an iron content of 23 ppm. The iron precipitate was washed three times with water, added to 25 g of 2% sodium hydroxide, and then stirred slowly at room temperature. The black precipitate turned into a brown iron oxide precipitate. The iron oxide precipitate thus formed was filtered off and the filtrate was analyzed by the standard method of Example 1, whereby 1.3 g (87%) of sodium dimethyldithiocarborate was recovered.
[실시예 5]Example 5
보키사이트를 황산처리하여 얻은 농도 21%, 철 함량 2085ppm(3.73m mole)인 황산알루미늄 용액 100g에 황산바륨 1g을 넣고 105℃에서 1시간 반응시켜 Fe3+이온을 모두 Fe2+로 환원시킨 후 실온으로 냉각시켰다. 이렇게 환원시킨 황산알루미늄 용액을 질소분위기에서 저으면서 30%의 에틸렌비스티오카르밤산 나트륨((CH2NHCS2Na)2) 수용액 3.9g(4.56m mole)을 서서히 가한 다음 5분간 더 저어주었다. 이때 생성된 검은색 철 침전물을 여과 분리하였더니 철함량 81ppm의 정제 황산알루미늄 용액이 얻어졌다. 걸러진 철침전물을 물로 3회 씻은 후 2% 수산화나트륨 수용액 20ml에 넣은 다음, 상온, 질소분위기하에서 서서히 저어 주었더니 철 침전물은 분해하여 적갈색 산화철 침전물로 변하였다. 이렇게 생긴 산화철 침전물을 걸러버리고 여과액을 실시예 1의 표준방법으로 분석하였더니 에틸렌비스디티오카르밤산 니트륨 0.94g(80%)이 회수되었다. 위와 똑같은 황산 알루미늄 용액에 대하여 에틸렌비스디티오카르밤산 나트륨 대신 여러가지 알킬렌비스디티오카르밤산 염들을 똑같은 방법으로 철제거 실험을 실시한 결과 다음과 같은 결과를 얻었다.1 g of barium sulfate was added to 100 g of aluminum sulfate solution having a concentration of 21% and 2085 ppm (3.73 m mole) iron obtained by sulfuric acid treatment, and reacted at 105 ° C. for 1 hour to reduce all Fe 3+ ions to Fe 2+ . Cool to room temperature. The reduced aluminum sulfate solution was stirred in a nitrogen atmosphere, and 3.9 g (4.56 m mole) of 30% sodium ethylenebisthiocarbamate ((CH 2 NHCS 2 Na) 2 ) aqueous solution was slowly added thereto, followed by further stirring for 5 minutes. The produced black iron precipitate was separated by filtration to obtain a purified aluminum sulfate solution having an iron content of 81 ppm. The filtered iron precipitate was washed three times with water and then placed in 20 ml of a 2% aqueous sodium hydroxide solution, and then stirred slowly at room temperature and under a nitrogen atmosphere. The iron precipitate was decomposed into a reddish brown iron oxide precipitate. The iron oxide precipitate thus formed was filtered off and the filtrate was analyzed by the standard method of Example 1, and 0.94 g (80%) of ethylene bis dithiocarbamate was recovered. Iron removal experiments were performed on the same aluminum sulfate solution using various alkylene bis dithiocarbamate salts instead of sodium ethylene bis dithiocarbamate in the same manner, and the following results were obtained.
[실시예 6]Example 6
알루나이트를 황산처리하여 Al2(SO4)3농도 18%, Fe함량 1800ppm(3.22m mole)인 황산 알루미늄용액 100g을 세게 저으면서 여기에 30%디메틸디티오카르밤산 칼륨 수용액 6.9g(13.0m mole)을 서서히 가하고 5분간 더 저어주었다. 이때 생성된 검은색 침전물을 여과 분리하였더니 철함량이 2ppm인 순수한 황산 알루미늄 용액이 얻어졌다. 철침전물을 물로 3회 세척한 후 2% 수산화칼륨 용액 45g에 가하고 서서히 저어 주었더니 검은 색 침전물은 적갈색 침전물로 변하였다. 이렇게 생긴 산화철 침전물을 여과, 분리한 후 여과액을 실시예 1의 표준방법으로 분석하였였더니 디메틸디티오카르밤산 칼륨 1.8g(87%)이 회수되었다.Aluminite was treated with sulfuric acid to stir 100 g of an aluminum sulfate solution containing 18% Al 2 (SO 4 ) 3 concentration and 1800 ppm (3.22 m mole) of Fe, and 6.9 g (13.0 m mole) of 30% dimethyldithiocarbamate aqueous solution. ) Was added slowly and stirred for another 5 minutes. The produced black precipitate was separated by filtration to obtain a pure aluminum sulfate solution having an iron content of 2 ppm. The iron precipitate was washed three times with water, added to 45 g of 2% potassium hydroxide solution, and stirred slowly to turn the black precipitate into a reddish brown precipitate. The iron oxide precipitate thus formed was filtered and separated, and the filtrate was analyzed by the standard method of Example 1, whereby 1.8 g (87%) of dimethyldithiocarbamate was recovered.
[실시예 7]Example 7
몬트모릴로나이트를 황산 처리하여 얻은 Al2(SO4)3농도 10%, Fe함량 1020ppm(1.83m mole)인 황산알루미늄 용액 100g을 세게 교반하면서 여기에 20% 디메틸디티오카르밤산 나트륨 수용액 5.0g(6.98m mole)을 서서히 가하고 5분간 더 저어주었다. 생성된 검은색 철 침전물을 여과하였더니 철함량 12ppm인 순수한 황산 알루미늄 용액이 얻어졌다. 철 침전물을 물로 3회 세척한 후 2% 수산화 나트륨 용액 20g에 가하고 저어주었더니 검은색 침전물이 산화철 침전물로 변하였다. 산화철 침전물을 여과하고 여과액을 실시예 1의 표준방법으로 분석하였더니 디메틸디티오카르밤산 나트륨 0.9g(90%)이 회수되었다.10 g of Al 2 (SO 4 ) 3 concentration obtained by treating montmorillonite with sulfuric acid and 100 g of aluminum sulfate solution containing 1020 ppm (1.83 m mole) of Fe, while stirring vigorously, 5.0 g of 20% aqueous sodium dimethyldithiocarbamate solution (6.98m mole) was added slowly and stirred for another 5 minutes. The resulting black iron precipitate was filtered off to obtain a pure aluminum sulfate solution having an iron content of 12 ppm. The iron precipitate was washed three times with water and added to 20 g of 2% sodium hydroxide solution and stirred to turn the black precipitate into an iron oxide precipitate. The iron oxide precipitate was filtered off and the filtrate was analyzed by the standard method of Example 1 to recover 0.9 g (90%) of sodium dimethyldithiocarbamate.
[실시예 8]Example 8
알루미나(Al2O3) 함량이 15.6%이고 철분 함량 120ppm인 공업용고체 황산 알루미늄용액 100g을 물 200ml에 용해시킨 다음 저으면서 여기에 10%디메틸디티오카르밤산 나트륨 수용액 1.2g을 가하고 5분간 더 저어주었다. 이때 생성된 검은 침전물을 여과 분리한 다음 가열하여 수분을 날려 보냈더니 철함량 1ppm이하의 순수한 고형 황산알루미늄이 얻어졌다.100 g of an industrial solid aluminum sulfate solution containing 15.6% of alumina (Al 2 O 3 ) and 120 ppm of iron was dissolved in 200 ml of water, and then stirred. Then, 1.2 g of a 10% aqueous dimethyldithiocarbamate solution was added thereto, followed by stirring for 5 minutes. . The produced black precipitate was separated by filtration and then heated to blow water to obtain pure aluminum sulfate having an iron content of 1 ppm or less.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019860006181A KR890002091B1 (en) | 1986-07-28 | 1986-07-28 | Method for removing iron from aluminate solution |
JP62009164A JPS63182390A (en) | 1986-07-28 | 1987-01-20 | Chelate agent for removing transition metal element and removal of transition metal element using the same |
DE3706736A DE3706736C1 (en) | 1986-07-28 | 1987-03-02 | Process for removing iron and/or transition metal impurities from aqueous aluminium salt solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019860006181A KR890002091B1 (en) | 1986-07-28 | 1986-07-28 | Method for removing iron from aluminate solution |
Publications (2)
Publication Number | Publication Date |
---|---|
KR880001528A KR880001528A (en) | 1988-04-23 |
KR890002091B1 true KR890002091B1 (en) | 1989-06-18 |
Family
ID=19251381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019860006181A KR890002091B1 (en) | 1986-07-28 | 1986-07-28 | Method for removing iron from aluminate solution |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS63182390A (en) |
KR (1) | KR890002091B1 (en) |
DE (1) | DE3706736C1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2204861A (en) * | 1987-04-24 | 1988-11-23 | Central Glass Co Ltd | Preparation of inorganic metal compounds of ultrahigh purity |
JPH01313333A (en) * | 1988-06-13 | 1989-12-18 | Central Glass Co Ltd | Production of niobium hydroxide or tantalum hydroxide having high purity |
CN105063357A (en) * | 2015-08-04 | 2015-11-18 | 贵州远盛钾业科技有限公司 | Method for separating ferrum and aluminum from potassium-bearing rock intermediate solution |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2416508A (en) * | 1944-05-13 | 1947-02-25 | American Cyanamid Co | Separation of iron from aluminum sulphate solutions |
-
1986
- 1986-07-28 KR KR1019860006181A patent/KR890002091B1/en not_active IP Right Cessation
-
1987
- 1987-01-20 JP JP62009164A patent/JPS63182390A/en active Granted
- 1987-03-02 DE DE3706736A patent/DE3706736C1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS63182390A (en) | 1988-07-27 |
DE3706736C1 (en) | 1988-02-11 |
KR880001528A (en) | 1988-04-23 |
JPH0233753B2 (en) | 1990-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4123499A (en) | Recovering metal values from marine manganese nodules | |
US4150976A (en) | Method for the recovery of metallic copper | |
US5061460A (en) | Method for manufacturing titanium oxide | |
US3206276A (en) | Process for recovery of pure v2o5 from vanadium bearing materials | |
US2997368A (en) | Production of manganese hydroxide | |
KR890002091B1 (en) | Method for removing iron from aluminate solution | |
GB2171686A (en) | Purification of molybdenum trioxide | |
US4004990A (en) | Process for separating and recovering nickel and cobalt | |
US3988151A (en) | Liquid ion exchange process for the recovery of copper and nickel | |
US4435368A (en) | Hydrometallurgical process for selective dissolution of mixtures of oxy compounds | |
CA1230976A (en) | Process for producing and purifying metals of the platinum metals (ii) | |
JPS6160692A (en) | Separation and purification of diphenylphosphine phenyl-m-sulfonic acid, phenylphosphine- di(m-phenylsulfonicacid) and/or triphenylphosphine-tri(m-sulfonic acid) salt | |
SU619532A1 (en) | Method of obtaining lead | |
US3821354A (en) | Method for selectively abstracting nickel from an aqueous ammoniacal solution | |
US4053552A (en) | Solvent extraction of zinc from sulfite-bisulfite solution | |
US4888207A (en) | Recovery of arsenic from ores and concentrates | |
CA2036379A1 (en) | Method for the recovery of zinc, copper and lead of oxidized and/or sulfurized ores and materials | |
US2676096A (en) | Process for the recovery of cadmium from cadmium containing residues | |
US2096847A (en) | Metallurgy of molyboenum | |
US3796787A (en) | Metal extraction process | |
US4330509A (en) | Separation of zirconium and uranium | |
US3870779A (en) | Process of recovering rhenium values from complex industrial solutions | |
KR790001661B1 (en) | Method for decomposition nitrosonaphtol cobalt salts | |
US3351423A (en) | Process for producing molybdic oxide from molybdate solutions | |
US3259456A (en) | Process for producing basic beryllium material of high purity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G160 | Decision to publish patent application | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 19961204 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |