KR870001377B1 - 인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process) - Google Patents

인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process) Download PDF

Info

Publication number
KR870001377B1
KR870001377B1 KR8205633A KR820005633A KR870001377B1 KR 870001377 B1 KR870001377 B1 KR 870001377B1 KR 8205633 A KR8205633 A KR 8205633A KR 820005633 A KR820005633 A KR 820005633A KR 870001377 B1 KR870001377 B1 KR 870001377B1
Authority
KR
South Korea
Prior art keywords
phosphoric acid
slurry
anhydrous gypsum
acid
sulfuric acid
Prior art date
Application number
KR8205633A
Other languages
English (en)
Other versions
KR840002738A (ko
Inventor
워드 파머 제이
찰스 게이너 죤
Original Assignee
원본미기재
유나이티드 스테이트 집섬 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원본미기재, 유나이티드 스테이트 집섬 캄파니 filed Critical 원본미기재
Publication of KR840002738A publication Critical patent/KR840002738A/ko
Application granted granted Critical
Publication of KR870001377B1 publication Critical patent/KR870001377B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/223Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen only one form of calcium sulfate being formed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/223Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen only one form of calcium sulfate being formed
    • C01B25/2235Anhydrite processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/22Preparation by reacting phosphate-containing material with an acid, e.g. wet process
    • C01B25/222Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen
    • C01B25/228Preparation by reacting phosphate-containing material with an acid, e.g. wet process with sulfuric acid, a mixture of acids mainly consisting of sulfuric acid or a mixture of compounds forming it in situ, e.g. a mixture of sulfur dioxide, water and oxygen one form of calcium sulfate being formed and then converted to another form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

내용 없음.

Description

인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process)
제1도는 1.5%의 황산존재하에서, 온도와 인산농도에 따른 황산칼슘의 수화상태를 나타내는 상평형도.
제2도는 본 발명의 공정도.
제3도-제4도는 본 발명의 공정에 의하여 산출된 황산칼슘들의 전자현미경 사진.
본 발며은 인산의 제조방법, 특히, 인산염 암을 진한 인산 및 부산물로 생성듸는 황산칼슘(석고)으로 전환시키는 개선된 습식공정(wet process)에 관한 것이다. 인산제조를 위한 공지의 습식공정에서는, 인산염 암을 인산-황산-물의 혼합물에 침지시켜 염암내의 인산칼슘과의 반응을 유도하여 인산과 황산칼슘(CaSO4의 무수석고,
Figure kpo00001
의 반수석고 또는 CaSO4·2H2O의 석고 중 한 형태)을 제조하였다.
상기 방법에 대한 다양한 개량이 제안되어 왔는데, 그중 여러 가지 개량방법이 "인산"이란 책자(A.V.Slack, 1968, 뉴욕 마르셀 데카 출판사)에 기재되어 있다. 대부분의 개량 방법들은 여러 형태의 황산칼슘 공동산출물(co-product) 제조에 관한 것이다.
대부분의 선행 습식공정은 이수화물(dihydrate)이나 포스포집섬(phosphogypsum) 형태의 황산칼슘을 제조하는데 관한 것이다. 대부분의 실제공정에 있어서, 플랜트 설비는 약 75-85℃의 온도 및 30% P2O5수준에서 가동된다. 여기서, 황산과 인산염암의 반응은 약 15분내에 종결된다.
그러나, 석고(gypsum) 결정이 여과가능한 정도로 충분히 성장되기 위해서는 약 4시간이 소요된다. 일반적으로, 이수화물공정(dihydrate process)에 있어서, P2O5의 최대농도는 약 29-30%(즉, 40-41% H3PO4)이며, 공정온도는 약 75-80℃이다. 이러한 온도 및 P2O5농도 한계점 이상에서는 포스포집섬이 불안정하게 듸어 준안정성인 반수물(hemihydrate)의 형성이 증가되고, 포스포집섬이 경화되어 혼합조내에서 고화되므로 반응시간이 매우 길어지게 된다. 습식 공정중에서 다소 경제성이 낮은 것이 반수물 공정(hemihydrite process)이다. 이 공정은 건축 자재를 위한 황산칼슘을 얻는데는 유용할지 모르나, 반수물(hemihydrate)이 석고(gypsum)로 고형화되지 않도록 주의하여야 한다.
또한 원광석내의 라듐과 방사능 오염물 및 잉여 인산이 반수물 내부로 옮겨가기 때문에 결과 산출물이 바람직하지 못하다. 여기서 생산되는 인산 역시 약 32% P2O5이므로 비료생산을 위하여는 농축되어져야 한다.
피. 엠. 알. 버스티그(P.M.R. Versteegh) 및 제이. 티이. 분체(J.T. Boontje)의 "반수공정 및 무수공정"(Slack text, vol.1, Part1)에 공개된 데이타에 의하면, 무수석고는 충분히 높은 온도 및 인산농도 개시 시스템(약 105℃ 및 80% H3PO4)에서 얻어질 수 있다고 되어 있다.
예로서, 42% P2O5와 3-3.5% 황산의 혼합액에서 95-100℃의 온도로 처리하거나, 또는 48-52% P2O5에서 85-90℃로 처리하여 무수석고를 제조하는 것이 제안되어 있다.
그러나 상기 참고문헌에서는, 공정에 무수석고 종자결정(seed crystal)을 사용하는 방법에 대한 언급은 없다.
미국특허 제2, 531, 957호에는 생성되는 석고를 약 60℃의 온도로부터 황산용액의 비등점까지 30분 이상(일반적으로는 2-3시간) 15-33% 황산으로 처리하여 무수석고를 제조하는 습식공정에 개시되어 있다. 그러나 산출된 무수석고의 순도나 경제성에 대한 언급은 없다.
보다 높은 P2O5함량을 갖는 인산 생성물을 산출하는 경제적인 공정 및 상기 황산칼슘 부산물을, 석고판 및 다른 산업자재로서, 경제성이 있는 물질로 전환하는 공정이 기대되고 있다.
본 발명의 목적은 진한 인산을 고수율로 제조할 수 있는 새로운 습식공정을 제공하고자 하는 것이다. 여기서 언급하는 진한 인산은 35% P2O5(45% H3PO4), 바람직하게는 42% P2O5(60% H3PO4) 이상의 인산을 의미한다.
본 발명에 따라서, 특정영역의 반응온도 및 특정농도의 인산과 황산용액을 공정조건으로 채택함으로서 매우 안정된 불용성 무수석고를 제조하는 공정, 더 나아가서는, 재순환 무수 석고 종자 결정을 사용하여 무수석고 결정화를 신속하게 하는 공정에 제공된다.
본 발명의 공정에서는, 우선, 인산염암(phosphate rock)을 인산, 황산, 물 및 재순환 무수석고 종자결정과 함께 침지시킨다. 여기서, 잘게 분쇄된 인산염암, 황산, 인산, 물 및 무수석고 종자결정은 60-110℃, 바람직하게는 75-95°온도의 1차 혼합대(mixing zone)에서 슬러리화된다. 1차혼합대에서, 황산과 인산은 슬러리중의 총산분(total acid content)이 1-4wt%의 황산 및 62-73wt%의 인산을 포함하게 되도록 공급된다. 슬러리는 분쇄 인산염암을 기준으로 약 10-100배의 무수석고 종자결정을 포함하며, 총 고체함량이 20-50%가 되도록 조절된다. 혼합 슬러리는 공정에 따라 처리되어 인산추출물(35-45% P2O5) 및 재순환 슬러리로 분류된다.
한편, 재순환 슬러리로부터 분리된 무수석고(anhydrite)를, 방사능 오염물이 환원제거된 석고 생성물로 전환시키기 위하여, 황산이나 황산염 수화촉진제 및 이수화물(dihydrate) 종자결정과 함께 혼합처리 할 수도 있다.
모든 습식공정은 황산칼슘의 안정한 형태인 불용성 무수석고 산출조건에서 행하여지는 것이 이론적이다. 그러나 대부분의 실용 습식공정에 있어서, 실질적인 침전 결정상태는 준안정성 산물인 반수물 및 이수화물이다.
선행 습식공정에서 실시되는 일반적인 조건하에서, 상기 반수물 및 이수화물이 안정한 무수석고로 전환되는 것은 매우 느린데, 이는 에너지장벽을 넘는데 소요되는 활성화 에너지가 너무 높기 때문이다.
제1도에서 보듯이, 인산제조를 위한 습식공정의 실제공정조건하에서, 황산칼슘 결정의 성장률은 반응칼슘과 황산이온의 고농도 과포화 수준에 비례한다. 단위시간당 침전된 고체는 존재하는 결정 표면적(혹은 주어진 종자결정의 비(比)표면적), 낮은 함수율(즉, 높은 P2O5인산농도) 및 높은 온도에 비례한다.
영역 Ⅰ에서, 잘게 분쇄된 인산염암의 용해는 인산의 용해작용(일부는 황산의 용해작용)에 의하여 일어난다.
영역 Ⅰ에서, 용액내부로 전달된 칼슘이온은 황산이온과 결합하여 불안정한 반수물(hemihydrate)로 침전된다.
이 반수물은 다시 용해되어, 특히 이수화물(dihydrate) 종자 결정이 표면침전에 사용되면, 이수화물로서 재결정화된다. 이 영역이 대부분의 상업적 공정이 운용되는 영역이다.
그러나 실제의 선행공정에 있어서, 28-32% P2O5및 75-80℃ 온도 이상에서 이수화물은 불안정하게 되어 준안정성인 반수물의 형성이 증가된다. 특히 다량의 반수물 종자결정이 있으면 더욱 그렇게 된다. 한편, 안정한 불용성 무수석고로의 반수물의 전환은 느리다.
제1도의 영역 Ⅲ의 경제면을 따라 영역 Ⅱ에 있어서, 불용성 무수석고 종자결정에 무수석고를 침전시키는 조건은 충족되어 있으며, 반수물 상(phase)은 불안정하기 때문에 어떠한 반수물도 쉽게 무수석고로 전환될 것이다. 침전률은 온도, 용액교반, 종자결정의 표면적, 혼합물의 고체함량, 황산농도, 인산염암의 산성화 및 무수석고 재결정화 시간에 좌우된다.
본 발명의 공정은 60-110℃, 바람직하게는 75-95℃ 사이에서 침지조내에서 행하여진다. 실제에 있어서, 75℃에 이하에서는 냉각장치가 부수적으로 더 필요하며 다량의 반수물이 형성되어 공정을 방해한다. 그리고 95℃ 이상에서는 반응을 유지시키기 위하여 여분의 에너지(열)가 필요하기 때문에 바람직하지 못하다. 인산염암 침지물의 충분한 교반은 통상의 혼합조내에서 행하여진다. 공정은 멀티탱크 침지장치 또는 여러대(zone)로 이루어진 탱크 시스템등에서 이루어진다.
본 공정에 사용되는 무수석고 종자결정의 입자크기는 약 1-10 미크로미터이고, 가장 바람직하게는 1-4 미크로미터이다. 종자결정은 특정한 곳으로부터 유도되는 것은 아니나, 바람직하게는 연속공정을 위한 재순환 산물로부터 유도된다.
만약 소량의 반수물이 형성되는 속도보다 원광석의 공급속도가 더 빠르면, 준안정상태의 반수물이 무수석고로 변환하는데 필요한 에너지에 있어서 반응조건의 균형이 맞지 않게 된다.
본 발명의 공정에 있어서, 유리황산 농도의 범위는 약 1-4%이며 최적의 농도는 1.5-2%이다. 황산농도가 1% 미만인 경우에는, 원광석의 산성화률이 감소하고 원광석 입자가 비교적 불용성인 디칼슘 오르도포스페이트로 캡슐화되는 경향이 있다.
또한 규산염 겔 형성량이 증가되어 황산칼슘 결정의 성장을 방해한다. 유리황산의 농도가 4% 이상이 되면, 원광석의 산성화률이 역시 감소되고 원광석 입자는 황산칼슘 피막과 함께 캡슐화되는 경향이 있다.
제2도에서 보듯이, 본 발명의 실제적용에 있어서, 침지조는 3-10개의 혼합셀(cell)로서 구성된다. 침지조의 슬러리는 인산염암을 포함하여 20-50%의 총 고체함량을 갖도록 구성된다.
고체함량이 20% 미만인 경우에는 보다 많은 인산이온이 황산칼슘과 함께 공동침전되어 공정상 인산의 손실을 초래하며 50% 이상인 경우에는 슬러리의 혼합이 어렵다.
슬러리중의 총산분(acid content)은 1-4wt%의 황산 및 62-73wt%의 인산을 포함하도록 조절된다. 43% P2O5(58% H3PO4) 및 4% H2SO4이하에서는 유리수분이 이수화물을 형성하도록 하므로 공정이 제1도의 영역 Ⅱ와 동떨어지게 된다. 그리고 50% P2O5(71.5% H3PO4) 및 1.5% H2SO4이상에서는 슬러리의 점도가 커지고 무수석고와 공동침전하는 인산이온의 양이 증가하여 공정상 인산의 손실을 초래한다.
침지조내에서의 체류시간은 일반적으로 약 1-4시간인데, 이것은 온도, 무수석고 종자결정의 재순환률, 특정 셀(cell)의 크기 등에 좌우된다.
침지조에서의 처리후, 슬러리는 여과기를 통과하고, 무수석고 여과물(filter cake)-재순환 슬러리로부터 소망인산 산출물이 분리회수된다. 재순환 슬러리의 일부분은 여과세척 및 수화제로서의 처리에 의하여 산업상 유용한 석고(gypsum)로 전환될 수 있다.
수화조는 1-3개의 혼합실로 구성되는데, 일련의 연속분리에 의하여 유용한 이수화물, 불순물을 함유한 작은 크기의 무수석고 잔류물 및 재순환 정제 여과물로서 슬러리를 분류 산출한다.
이하 실시예와 함께 본 발명을 좀더 상세히 설명한다.
[실시예]
본 공정에 따라서, 인산염암을 무수석고 종자결정을 함유한 인산-황산 혼합물과 함께 침지조에서 혼합처리하였다.
침지조에 공급한 반응혼합물중의 인산및 황산 함량을 각각 45% P2O5(62.7% H3PO4) 및 1.5% H2SO4로 조절하였다. 상기한 산농도에서는 본질적으로 모든 수분이 수소결합에 의하여 산에 밀착되므로 황산칼슘 수화물을 형성하는 수분이 없게 된다.
혼합물 중에 25%의 무수석고 종자결정을 함유시키고 반응온도는 85℃로 하였다. 혼합물에서 무수석고 종자결정과 인산염암의 중량비는 최소 20 : 1이 되도록 하였다. 혼합물의 혼합침지완료후 무수석고의 완전한 결정화를 위하여 약 2시간동안 방치한 후 여과하고 더운물로 세척한 다음 건조시켰다. 결과의 여과산출물을 분석한 결과는 다음과 같았다.
38.05% CaO, 52.24% SO3,
0.04% Fe2O3, 0.09% Al2O3,
0.08% F, 0.58% P, 0.52% H2O,
0.027% Mg 및 5.75% SiO2
X-선 회절분석은 단지 불용성 무수석고 및 알파석영만을 보여주었다. 무수석고의 주사전자현미경 사진이 제3도에 도시되어 있다. 본공정에서 44% P2O5농도의 농인산이 산출되었다. 공동산물인 무수석고는 유용한 석고(집섬)산물로서 전환될 수 있다.
무수석고의 방사능 오염수준에 따라, 슬러리중 무수석고의 약 30-75%가 수회되도록 처리하여 제4도에 도시한 바와같은 석고결정을 산출하였다. 산출되는 석고결정의 크기는 30-100미크로미터인데, 바람직한 것은 50-100미크로미터이다. 이들은 통상의 방법에 의하여 쉽게 분리되며, 여러가지 적용에 사용된다.

Claims (2)

  1. 다음 단계들을 포함하여 구성된 인산염암으로부터 인산과 황산칼슘을 제조하는 공정.
    (a) 분쇄된 인산염암, 황산, 인산, 물 및 무수석고 종자결정을 혼합조에 공급하고 60-110℃의 온도에서 혼합하여, 슬러리중의 총산분으로서 1-4wt%의 황산 및 62-73wt%의 인산을 포함하며 중량비의 10 : 1-100 : 1의 무수석고 종자결정과 분쇄 인산염암을 포함하여 총고체함량이 20-50%인 슬러리를 형성함.
    (b) 상기 혼합조에서 형성한 슬러리를 일차여과 분리조에 통과시켜 무수석고 함유 슬러리와 인산으로 분류한 다음 산출된 농인산을 회수함.
    (c) 상기 여과분리조에서 분류 산출한 무수석고 슬러리를 상기 혼합조에 재순환시킴.
  2. 제1항에 있어서, 혼합조가 75-95℃로 유지됨을 특징으로 하는 공정.
KR8205633A 1981-12-14 1982-12-14 인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process) KR870001377B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US06/330,529 US4452770A (en) 1981-12-14 1981-12-14 Phosphoanhydrite process
US330529 1981-12-14
US330592 1994-10-28

Publications (2)

Publication Number Publication Date
KR840002738A KR840002738A (ko) 1984-07-16
KR870001377B1 true KR870001377B1 (ko) 1987-07-24

Family

ID=23290163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR8205633A KR870001377B1 (ko) 1981-12-14 1982-12-14 인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process)

Country Status (6)

Country Link
US (1) US4452770A (ko)
EP (1) EP0096069B1 (ko)
KR (1) KR870001377B1 (ko)
AU (1) AU574321B2 (ko)
DE (1) DE3275536D1 (ko)
WO (1) WO1983002107A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402922A (en) * 1981-12-14 1983-09-06 United States Gypsum Company Process for rapid conversion of fluoroanhydrite to gypsum
EP0181029B1 (fr) * 1984-11-05 1991-06-12 Prayon Développement Société anonyme Procédé continu de préparation d'acide phosphorique et de sulfate de calcium
TNSN92119A1 (fr) * 1992-02-07 1993-06-08 Ct D Etudes Et De Rech S Des Phosphates Mineraux Cerphos Procede de fabrication d'acide phosphorique marchand a tres basse teneur en cadmium
US6409824B1 (en) 2000-04-25 2002-06-25 United States Gypsum Company Gypsum compositions with enhanced resistance to permanent deformation
WO2006043769A1 (en) * 2004-10-18 2006-04-27 Yeun-Wook Jeung Phosphoniter and confirmatory and quantitative methods of phosphoric acid and nitrogen contained in phosphoniter
US20120039785A1 (en) * 2010-08-10 2012-02-16 Wellthought Products, Inc. Process for Producing Products Under Very Low Supersaturation
CN108773964A (zh) * 2018-06-15 2018-11-09 烟台金正环保科技有限公司 一种高钙废水的零排放和资源化方法
CN115583666B (zh) * 2022-10-25 2024-03-29 宜都兴发化工有限公司 一种半水-二水湿法磷酸工艺生产磷石膏的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1154231A (en) * 1914-12-30 1915-09-21 Radium Therapy Corp Process of concentrating radium ores and residues.
US2006342A (en) * 1934-05-18 1935-07-02 Krebs Pigment & Color Corp Process of making anhydrite
US2531977A (en) * 1948-01-22 1950-11-28 Allied Chem & Dye Corp Process for manufacture of phosphoric acid
US2710247A (en) * 1950-12-29 1955-06-07 Knowles Associates Treatment of phosphate rock
DE1027647B (de) * 1955-02-16 1958-04-10 Nordengren & Co Ab Verfahren zur Herstellung von Phosphorsaeure
US2885263A (en) * 1955-06-10 1959-05-05 Chemical Construction Corp Anhydrite process for phosphoric acid manufacture
BE756759A (fr) * 1969-09-30 1971-03-29 Pechiney Saint Gobain Procede de fabrication d'acide phosphorique de voie humide et de sulfate de calcium de qualite amelioree
US3792151A (en) * 1971-10-18 1974-02-12 Atlantic Richfield Co Process for producing phosphoric acid
GB1429187A (en) * 1972-05-11 1976-03-24 Bpb Industries Ltd Process for the conversion of anhydrite into gypsum
US4146568A (en) * 1977-08-01 1979-03-27 Olin Corporation Process for reducing radioactive contamination in waste product gypsum
NL7812109A (nl) * 1978-12-13 1980-06-17 Stamicarbon Werkwijze voor het bereiden van calciumsulfaat- anhydriet en calciumsulfaatanhydriet verkregen volgens deze werkwijze.
US4328193A (en) * 1980-02-27 1982-05-04 Olin Corporation Process for removing radium from monocalcium phosphate solutions by centrifugation
NL8004058A (nl) * 1980-07-15 1982-02-16 Stamicarbon Werkwijze voor het bereiden van fosforzuur en calciumsulfaatanhydriet, alsmede fosforzuur en calciumsulfaatanhydriet verkregen volgens deze werkwijze.

Also Published As

Publication number Publication date
EP0096069A4 (en) 1984-02-16
EP0096069A1 (en) 1983-12-21
KR840002738A (ko) 1984-07-16
AU574321B2 (en) 1988-07-07
US4452770A (en) 1984-06-05
DE3275536D1 (en) 1987-04-09
EP0096069B1 (en) 1987-03-04
AU1150883A (en) 1983-06-30
WO1983002107A1 (en) 1983-06-23

Similar Documents

Publication Publication Date Title
US3949047A (en) Method of precipitating radium to yield high purity calcium sulfate from phosphate ores
PL155815B1 (pl) Sposób wydzielania lantanowców z fosfogipsu
EP0012487B1 (en) Process for the preparation of calcium sulphate anhydrite and calcium sulphate anhydrite obtained by this process
US3632307A (en) Process for the preparation of phosphoric acid and gypsum from phosphate rock
KR870001377B1 (ko) 인산염암으로부터 인산과 황산칼슘을 제조하는 공정(Phosphoanhydrite Process)
US4424196A (en) Phosphohemihydrate process for purification of gypsum
US4029743A (en) Phosphoric acid manufacture
JPS60500909A (ja) リン酸及び硫酸カルシウムの製法
US4222990A (en) Production of fluoride-free phosphates
US4421731A (en) Process for purifying phosphogypsum
US4388292A (en) Process for reducing radioactive contamination in phosphogypsum
US3718453A (en) Production of potassium dihydrogen phosphate fertilizers
EP0044120B1 (en) Process for the preparation of phosphoric acid and calcium sulphate anhydrite
US4086322A (en) Production of fluoride-free phosphates
US3708275A (en) Manufacture of alkali metal phosphates
US3984525A (en) Manufacture of phosphoric acid
US4402922A (en) Process for rapid conversion of fluoroanhydrite to gypsum
US3645677A (en) Production of gypsum
CA1168418A (en) Process for reducing radioactive contamination in phosphogypsum
US4505884A (en) Process for producing HF from impure phosphoric acids
EP0076551B1 (en) Process for the preparation of calcium sulphate anhydrite
CA1186867A (en) Phosphoanhydrite process
US3345153A (en) Solubilizing phosphate rock with an ammonium phosphate-ammonium bisulfate melt
IL29380A (en) Manufacture of phosphoric acid
US4636372A (en) Aluminum fluorophosphates made from impure phosphoric acids and conversion thereof to alkalimetal phosphates