KR790000886B1 - Oxide megativity resistor - Google Patents

Oxide megativity resistor Download PDF

Info

Publication number
KR790000886B1
KR790000886B1 KR740003132A KR740003132A KR790000886B1 KR 790000886 B1 KR790000886 B1 KR 790000886B1 KR 740003132 A KR740003132 A KR 740003132A KR 740003132 A KR740003132 A KR 740003132A KR 790000886 B1 KR790000886 B1 KR 790000886B1
Authority
KR
South Korea
Prior art keywords
mol
negative
resistor
oxide
zno
Prior art date
Application number
KR740003132A
Other languages
Korean (ko)
Inventor
노보루 치노세
유우지 요코미조
마사키 가츠라
Original Assignee
타마키 케이조오
토오쿄오 시바우라 덴키 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타마키 케이조오, 토오쿄오 시바우라 덴키 가부시기가이샤 filed Critical 타마키 케이조오
Priority to KR740003132A priority Critical patent/KR790000886B1/en
Application granted granted Critical
Publication of KR790000886B1 publication Critical patent/KR790000886B1/en

Links

Images

Abstract

An oxide negative resistor having s-type characteristics of negative resistance was comprised of a sintered body including 20 to 39.9 mol% of ZnO, 10 to 60 mol% of MgO and 0.1 to 20 mol% of MnO2. A prebaked mixture of ZnO, MgO and MnO2 was crushed by a ball mill, so that the compounded powder was obtained. After polyvinyl alcohol(binder) was added to the powder, and molded by a press at 0.8 ton/cm3, the molded powder was sintered in an electric furnace maintained at a temp. of 1100 to 1300≰C for 2hr, and the negative resistor was obtained.

Description

산화물 부성(負性)저항체Oxide negative resistor

제1도는 본 발명 부성저항체의 전류-전압특성을 나타내는 곡선도1 is a curve diagram showing current-voltage characteristics of the negative resistor of the present invention.

제2도는 본 발명 부성저항체의 구성예를 나타낸 평면도2 is a plan view showing a configuration example of the negative resistance of the present invention

본 발명은 산화물 부성저항체에 관한 것이다.The present invention relates to an oxide negative resistor.

종래 부성저항체내지 부성저항체 소자로서는 다이나트론(dynatron)으로 대표되는 N자 특성과, 방전관으로 대표되는 S자형 부성저항 특성의 것이 알려져 있다. 또 반도체 부성저항체에 있어서는 점 접촉트랜지스터, 에사끼(江崎)다이오드(둘다 N자형 부성저항특성)이나, pnpn다이오드 제어정류기, 전자붕괴 다이오드등(모두 S자형 부성저항특성)이 있다. 그러나 이러한 종류의 반도체 계열의 부성저항체는, 온도변화등에 대한 안정성이 떨어질뿐만 아니라, 어느 반도체나 그 반도체중에 p-n접합시켜야 할 필요가 있으며, 따라서 제조상 어려운 처리를 요하고, 또한 제조공정도 복잡하여 가격적으로도 고가인 결점이 있었다 한편 NiO, CuO를 첨가시킨 Fe2O2, Fe3O4등의 산화물 소결체에 있어서도 부성저항특성이 나타나지만 제조방법이 복잡하거나, 안정성, 재현성(再現性)등의 문제가 있어서 실용화되지 않고있다.Conventionally, N-characteristics typified by dynatron and S-shaped negative-resistance characteristic typified by a discharge tube are known as negative-to-negative resistor elements. In addition, in semiconductor negative resistors, there are a point contact transistor, an Esaki diode (both N-type negative resistance characteristics), a pnpn diode controlled rectifier, an electron decay diode (all S-shaped negative resistance characteristics), and the like. However, this type of semiconductor negative resistor is not only inferior in stability to temperature change, but also needs to be bonded to any semiconductor in the semiconductor. Therefore, it is difficult to manufacture, and the manufacturing process is complicated and the price is complicated. On the other hand, there were also expensive defects. On the other hand, in the case of oxide sintered bodies such as Fe 2 O 2 and Fe 3 O 4 containing NiO and CuO, negative resistance characteristics were observed, but the manufacturing method was complicated, and stability, reproducibility, etc. There is a problem and it is not put to practical use.

그리고 부성저항 소자내지 부성저항체로서는, MgF2, MnF2, CdF2등을 0.05∼15.0몰% 함유한 ZnO계열의 소결체도 알려져 있다. 그러나 불화물을 함유한 ZnO계열의 부성저항체는 비교적 불안정한 불화물을 함유하고 있기 때문에, 제조상 재현성의 난점이 있거나, 사용상 안정성에 문제가 있다거나해서, 실용상 아직 충분한 것이라고 할수는 없다.As the negative resistance element or negative resistor, a ZnO series sintered body containing 0.05 to 15.0 mol% of MgF 2 , MnF 2 , CdF 2 and the like is also known. However, since ZnO-based negative resistors containing fluorides contain relatively unstable fluorides, they cannot be said to be sufficient in practical use because of their difficulty in reproducibility in manufacturing or problems in stability in use.

본 발명은 이상과 같은 점을 감안하여, 제조도 용이하고, 재현성이 있으며, 또한 특성이 양호하고 안정성도 뛰어난 S자형 부성저항특성을 가지는 산화물부성 저항체를 제공하려는 것이다. 그런데, S자형의 부성저항체 내지 부성저항소자의 특성은 일반적으로 제1도와 같다. 이런 경우 부성저항체는 다음식으로 나타낸 부성저항 파라미터 n으로 평가되어진다.SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide an oxide negative resistor having an S-shaped negative resistance characteristic which is easy to manufacture, has reproducibility, good characteristics and excellent stability. Incidentally, the characteristics of the S-shaped negative resistance to negative resistance element are generally the same as those in FIG. In this case, the negative resistance is evaluated by the negative resistance parameter n expressed by the following equation.

Figure kpo00001
Figure kpo00001

단, VP, IP는 각각 P점에서 전압, 전류를 나타내고, VQ, IQ는 Q점에서의 전압, 전류를 나타낸다.However, VP and IP represent voltage and current at point P, respectively, and VQ and IQ represent voltage and current at point Q, respectively.

n은 제1도에 있어서 OPQ곡선의 예리한 정도를 나타내는 파라미터이므로, 클수록 좋으며, 여러가지로 응용할 때에는 5이상의 것이 바람직하다.Since n is a parameter representing the sharp degree of the OPQ curve in FIG. 1, the larger the value is, the better the value is.

이하, 본 발명을 상세히 설명하면 본 발명의 부성저항체는 필수성분으로서,Hereinafter, the present invention will be described in detail the negative resistance of the present invention as an essential component,

ZnO가 89.9∼20몰%ZnO is 89.9-20 mol%

MgO가 10.0∼60몰% 및MgO is 10.0-60 mol% and

MnO가 0.1∼20몰%0.1 to 20 mol% MnO

으로 선태된 소결체를 부성저항체의 본체로서 이뤄진 것을 특징으로 하는 것이다.It is characterized in that the sintered body is selected as the main body of the negative resistance.

이와같은, 본 발명의 산화물 부성저항체 본체는, 예를들면 다음과 같은 방법에 의하여 제조할 수 있다. 즉, 소정된 조성비에 대하여 정확한 비율로 평량된 원료산화물을 보올밀에 의해 혼합하고, 비교적 저온 예를들면 600∼900℃로 예비소성시킨 후, 다시 보울밀로서 분쇄하여 조제분말로 한다. 그리고, 이때 사용되는 원료로서는 가열에 의하여, 산화물로 바뀌는 화합물 예를들면 수산화물, 탄산염, 수산염(蓚酸鹽)도 물론 사용할 수 있다. 이렇게하여 얻어진 조제분말에 폴리비닐 알코올등의 점결제(粘結劑)를 첨가하여 100kg/cm2∼1ton/cm2정도의 압력으로 가압 성형을 하고, 직경 20m/m, 두께 1m/m정도의 디스크형으로 마무리한다.Such an oxide negative resistance main body of the present invention can be produced, for example, by the following method. That is, the raw material oxides weighed in the correct proportion with respect to the predetermined composition ratio are mixed by a bowl mill, prebaked at a relatively low temperature, for example, 600 to 900 ° C, and then pulverized as a bowl mill to prepare a powder. In addition, as a raw material used at this time, the compound which turns into an oxide by heating, for example, hydroxide, a carbonate, a oxalate, can also be used. A binder such as polyvinyl alcohol was added to the prepared powder thus obtained and pressure-molded at a pressure of about 100 kg / cm 2 to 1 ton / cm 2 , and a diameter of 20 m / m and a thickness of about 1 m / m. Finish with disc type.

그리고 소성은 1,000∼1,300℃정도로 행하면 충분하고, 또 상기 소성시의 분위기 가스는 일반적으로 공기 분위기로서도, 좋고 최고 온도에서의 유지는 일반적으로 1∼5시간 정도면 된다.The firing is sufficient to be performed at about 1,000 to 1,300 ° C, and the atmosphere gas at the time of the firing is generally an air atmosphere, and the holding at the highest temperature is generally about 1 to 5 hours.

다음에 본 발명에 있어서 산화물 부성저항체 본체의 조성범위를 상기와 같이 한정한 이유는 다음과 같다.Next, the reason for limiting the composition range of the oxide negative resistance main body as described above is as follows.

우선 MnO2의 양이 0.1몰%미만에서는 상기한 부성저항 파라미터 n이 5이하로 되며, 광범위한 분야에서의 응용에 알맞는 부성저항체가 얻어지지 않는다. 같은 이론에 의하여, MnO2가 20몰%를 넘고, ZnO가 20몰%미만에서도, 다시 MgO가 10∼60몰 범위외의 경우에도(따라서 ZnO가 89.9%를 넘은 경우도) n이 5이하로되며, 소망으로하는 부성저항체를 얻을 수 없다. 그런데 본 발명에 관한 부성저항체 본체는 상기한 조성범위내에서 ZnO MgO 및 MnO2를 택하여 이들 3원소만으로서 구성해도 좋지만, 다른 금속산화물 성분을 가해도 좋다.First, when the amount of MnO 2 is less than 0.1 mol%, the above-described negative resistance parameter n becomes 5 or less, and no negative resistor suitable for application in a wide range of fields is obtained. By the same theory, even when MnO 2 is more than 20 mol%, ZnO is less than 20 mol%, and again MgO is outside the range of 10 to 60 mol (and therefore ZnO is more than 89.9%), n is 5 or less. No desired negative resistor can be obtained. By the way, the negative-resistive body according to the present invention may be composed of only these three elements by selecting ZnO MgO and MnO 2 within the composition range described above, but may add other metal oxide components.

이하 본 발명의 실시예에 대해 기술하겠다.Hereinafter, embodiments of the present invention will be described.

ZnO를 90∼18몰%90-18 mol% of ZnO

MgO를 10.0∼62몰%10.0-62 mol% MgO

MnO2를 0∼22몰%0 to 22 mol% MnO 2

로서 합계가 100몰% 되도록 ZnO, MgO, MnO2를 각각 소정의 조성비로 정확하고 평량하고, 이들의 화합물을 보울밀에 의해 혼합하였다. 이어서 이들 혼합물을 800℃에서 1시간 예비소성하고, 다시 보올밀에 의하여 분쇄하고, 원료로하여 참고예를 포함한 30종의 조제분말을 얻었다. 그후 이들의 조제분말에 폴리비닐알코올(점결제)를 첨가배합하고 0.8ton/cm2의 압력으로 가압성형하고 나서 노내온도를 1,100∼1,300℃로 설정한 전기로 내에 넣고, 그 온도에서 각각 2시간 유지하여 소결시켜 20Φ×0.5cm3의 원상판의 부성저항체 본체 얻었다.As a total of 100 mol%, ZnO, MgO, and MnO 2 were each accurately and basis weight in a predetermined composition ratio, and these compounds were mixed by bowl mill. Subsequently, these mixtures were prebaked at 800 ° C. for 1 hour, ground again by a bowl mill, and 30 kinds of prepared powders including the reference example were obtained as raw materials. Thereafter, polyvinyl alcohol (caking agent) was added to these preparation powders and press-molded at a pressure of 0.8 ton / cm 2 , and then the furnace was placed in an electric furnace at which the furnace temperature was set at 1,100 to 1,300 ° C. The negative electrode body of the circular plate of 20Φ * 0.5cm <3> was obtained by holding and sintering.

상기한 바에 의하여 각각 얻어진 원판상 저항체본체에 대하여 일반적인 방법으로 은 전극을 붙인 저항체를 구성하였다. 그리고, 상기전극의 은(Ag)은 출발물질로서 Ag이거나 Ag2O이거나 결과는 동일하여서, 요컨데 소부후 은의 상태로 되는 것이면 되고 또 전극의 소부 온도는 저항체 본체의 안정성에 뛰어나고 있기 때문에, 예를들면 400∼800℃의 광범위한 온도에서 소부할 수가 있다.The resistive body to which the silver electrode was attached by the general method was comprised with respect to the disk-shaped resistive body obtained by the above, respectively. The silver (Ag) of the electrode is Ag or Ag 2 O as a starting material, and the result is the same, that is, it is only required to be in the state of baking after firing, and the baking temperature of the electrode is excellent in the stability of the resistor body. For example, it can be baked at a wide range of temperatures of 400 to 800 ° C.

제2도는 본 발명의 부성저항체의 구성도로서(1)은 부성저항체 본체이고, (2),(2')는 전극, (3),(3')는 리이드선이다.2 is a configuration diagram of the negative resistor of the present invention, where 1 is a negative resistor main body, (2) and (2 ') are electrodes, and (3) and (3') are lead wires.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

Figure kpo00003
Figure kpo00003

상기와 같이하여 얻어진 각 시료에 대하여 표준회로에 의하여 실온에서의 전압-전류특성을 측정하고, Vp,Ip,VQ,n을 각각 구하고, 그 결과를 소결체(부성저항체 본체)의 조성비와 함께 제1표에 나타내었다.For each sample obtained as described above, voltage-current characteristics at room temperature were measured by a standard circuit, and Vp, Ip, V Q and n were obtained, respectively, and the results were obtained together with the composition ratio of the sintered body (negative resistor body). It is shown in Table 1.

상기 실시예중 몇가지 종류에 대하여 부하수명시험(70℃에서 1,000시간)온도 특성시험(-20∼60℃), 시간의 경과에 따른 특성시험(실온 1년간)을 행하였던바, 그 결과를 제2표∼제4표에 나타냄.The load life test (1000 hours at 70 ° C.) and the temperature characteristic test (-20 to 60 ° C.) and the characteristic test (1 year of room temperature) over time were carried out for some kinds of the above examples. It is shown in-4th table.

부하수명특성Load life characteristic

[표 2]TABLE 2

Figure kpo00004
Figure kpo00004

온도특성Temperature characteristic

[표 3]TABLE 3

Figure kpo00005
Figure kpo00005

시간의 경과에 따른 특성Characteristics over time

[표 4]TABLE 4

Figure kpo00006
Figure kpo00006

부하수명시험에 대하여 설명하면, 종래의 불화물을 포함하는 ZnO계열의 부성저항체가 70℃, 1,000시간 방치상태에서 부성저항 파라미터의 변화율 Δn이 3%이상인데, 대하여, 본 발명에 관한 산화물 부성저항체는 3%이하로 뛰어난 것이었다. 또 Vp의 온도특성에 대하여 종래의 반도체 부성저항체의 온도계수 0.1%/℃에 비하여 제3표에서 명확한 바와같이 -0.05%/℃이하로서, 매우 우수하다. 또 n의 시간의 경과함에 따른 변화도 제4표에서 명확한 바와같이 ±2%이하로서 매우 안정되고 있다.When the load life test is explained, the change rate Δn of the negative resistance parameter is 3% or more when the negative resistance of the ZnO series containing the conventional fluoride is left at 70 ° C. for 1,000 hours. It was excellent at less than 3%. The temperature characteristic of Vp is -0.05% / degrees C or less, as is clear from Table 3, compared with the temperature coefficient of 0.1% / degrees C of the conventional semiconductor negative resistor, which is very excellent. Also, as is clear from Table 4, the change over time of n is also very stable, which is ± 2% or less.

상술한 바와같이 본 발명의 산화물 부성저항체는 종래의 것에 비하여 특성적으로도 매우 우수할뿐만 아니라, 가격면에 있어서도 저렴하고, 또한 제조도 용이하며 공업적으로도 많은 이점을 가지고 있다.As described above, the oxide negative resistance of the present invention is not only superior in characteristics to the conventional one, but also inexpensive in terms of price, easy to manufacture, and industrially advantageous.

Claims (1)

필수 성분으로서As an essential ingredient ZnO가 89.9∼20몰%ZnO is 89.9-20 mol% MgO가 10.0∼60몰% 및MgO is 10.0-60 mol% and MnO2가 0.1∼20몰%MnO 2 0.1-20 mol% 을 함유한 소결체를 저항체 본체로서 이뤄진 것을 특징으로하는 산화물 부성 저항체.An oxide negative resistor, characterized in that the sintered body containing the resin is formed as a resistor body.
KR740003132A 1974-07-23 1974-07-23 Oxide megativity resistor KR790000886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR740003132A KR790000886B1 (en) 1974-07-23 1974-07-23 Oxide megativity resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR740003132A KR790000886B1 (en) 1974-07-23 1974-07-23 Oxide megativity resistor

Publications (1)

Publication Number Publication Date
KR790000886B1 true KR790000886B1 (en) 1979-07-29

Family

ID=19200309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR740003132A KR790000886B1 (en) 1974-07-23 1974-07-23 Oxide megativity resistor

Country Status (1)

Country Link
KR (1) KR790000886B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105955A1 (en) * 2011-02-01 2012-08-09 Hewlett-Packard Development Company L.P. Negative differential resistance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105955A1 (en) * 2011-02-01 2012-08-09 Hewlett-Packard Development Company L.P. Negative differential resistance device

Similar Documents

Publication Publication Date Title
US3496512A (en) Non-linear resistors
JPS6257245B2 (en)
US3903226A (en) Method of making voltage-dependent resistors
US3611073A (en) Diode comprising zinc oxide doped with gallium oxide used as a voltage variable resistor
US3899451A (en) Oxide varistor
KR790000886B1 (en) Oxide megativity resistor
US3687871A (en) Nonlinear resistor and nonlinear resistor composition
US3682841A (en) Voltage dependent resistors in a bulk type
GB1589940A (en) Voltage-dependent resistor and preparation thereof
EP0137044B1 (en) Composition of porcelain for voltage-dependent, non-linear resistor
US3670221A (en) Voltage variable resistors
US4336163A (en) Oxide negative resistance element
JPH0249524B2 (en)
JP3559911B2 (en) Thermistor
JPH0249526B2 (en)
JPH05144611A (en) Manufacture of zno varistor
JPH0214763B2 (en)
SU1138838A1 (en) Material for temperature-sensitive resistors
JPS60105202A (en) Voltage nonlinear resistor
JP3036128B2 (en) Grain boundary oxidation type voltage non-linear resistance composition
JPS62282416A (en) Voltage nonlinear resistance unit
JPH0249522B2 (en)
JPH06204003A (en) Negative characteristic thermistor material
JPS589562B2 (en) Manufacturing method of voltage nonlinear resistor
JPS589563B2 (en) Manufacturing method of voltage nonlinear resistor