JPS60105202A - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JPS60105202A
JPS60105202A JP58212507A JP21250783A JPS60105202A JP S60105202 A JPS60105202 A JP S60105202A JP 58212507 A JP58212507 A JP 58212507A JP 21250783 A JP21250783 A JP 21250783A JP S60105202 A JPS60105202 A JP S60105202A
Authority
JP
Japan
Prior art keywords
varistor
voltage
nonlinear coefficient
varistors
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58212507A
Other languages
Japanese (ja)
Inventor
小森 雅基
勇 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA DENSHI KK
Original Assignee
ISHIZUKA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA DENSHI KK filed Critical ISHIZUKA DENSHI KK
Priority to JP58212507A priority Critical patent/JPS60105202A/en
Publication of JPS60105202A publication Critical patent/JPS60105202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は亜鉛、ニオブ及びマンガンの各酸化物焼結体で
構成される電圧非直線抵抗器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage nonlinear resistor constructed from sintered oxides of zinc, niobium, and manganese.

従来、電圧非直線特性を有する電圧非直線抵抗器(以下
バリスタという。)としては代表的なものに炭化珪素(
5ite )を主成分とし、これに磁器結合剤を添加し
て成形、焼結したSiCバリスタが広く実用に供されて
いる。又、このSiCバリスタの特性を改良するため磁
器結合剤に種々の物質を添加した9、焼成雰囲気を変え
て焼成するなどの方法が試みられている。しかし、Si
Cバリスタの特性は、本来SiG粒子間の粒子接触に基
づく接触抵抗の電圧依存性を利用するものであるだめ、
SiC粒子の大きさ等を考慮するとバリスタ素子の厚さ
を薄くするには限度があり、又、SiG自身極めて硬質
な材料であシかつ焼成温度も高く、その特性を自由に制
御することが不可能であり、その特性改善には限界があ
った。
Conventionally, silicon carbide (
SiC varistors, which are formed by molding and sintering SiC varistors whose main component is 5ite) with the addition of a ceramic binder, are widely used in practice. Further, in order to improve the characteristics of this SiC varistor, methods such as adding various substances to the ceramic binder9 and changing the firing atmosphere have been tried. However, Si
The characteristic of C varistor is that it utilizes the voltage dependence of contact resistance based on particle contact between SiG particles.
Considering the size of SiC particles, there is a limit to how thin the varistor element can be made to be, and SiG itself is an extremely hard material and requires high firing temperatures, making it difficult to freely control its properties. However, there was a limit to the improvement of the characteristics.

一般K バリスタの電圧〜電流jII性は次式の関係式
で示される。
The voltage-current jII characteristic of a general K varistor is expressed by the following relational expression.

α !=Cv 式中工は電流、Vは電圧を表わし、Gとαは定数である
。特にαは非直線係数と呼ばれる指数で、αが大きい程
非直線特性がすぐれている。父、Cは材料等によって定
まる定数であるが、実用的には一定の電流、例えば1m
ムの電流を流した時のバリスタ素子端子間の電圧(バリ
スタ電圧と呼ばれる)V+で表わしている。
α! =Cv In the formula, the symbol represents current, V represents voltage, and G and α are constants. In particular, α is an index called a nonlinear coefficient, and the larger α is, the better the nonlinear characteristics are. C is a constant determined by the material, etc., but in practice it is a constant current, for example 1 m
It is expressed as the voltage (referred to as varistor voltage) V+ between the varistor element terminals when a current flows through the varistor element.

従来から実用に供されてきたSiCバリスタではαは3
〜T程度で6す、又、バリスタ電圧V、を低くするには
素子の厚さを薄くするか、磁器結合剤にカーボン等の導
電性物質を添加して焼結することが行なわれてきた。し
かし乍ら、これらの方法では焼結体の機械的強度が弱く
な9、又、導電性物質を添加すると非直線係数αが一層
小さくなり、バリスタとしての特性上問題があった。
In the SiC varistor that has been put into practical use for a long time, α is 3.
6. In addition, in order to lower the varistor voltage V, it has been done to reduce the thickness of the element or to add a conductive substance such as carbon to the ceramic binder and sinter it. . However, with these methods, the mechanical strength of the sintered body is weak9, and when a conductive substance is added, the nonlinear coefficient α becomes even smaller, which causes problems in terms of properties as a varistor.

一方、両方向性の定電圧ダイオードは比較的低いツェナ
ー電圧を有するものを製作することができ、又、非直線
係数αも大きいので、半導体部品を使用した電子機器等
、低電圧回路に使用した場合に有用であるが、サージ耐
量が素子の体積にほぼ比例するので過大なサージエネル
ギーを吸収させるには無理がある。父、最近開発されて
いるバリスタとして酸化罷鉛バリスタ、即ち、酸化亜鉛
(ZnO)を生成分とし、これに副成分としてビスマス
、マンガン、コバルト、アンチモン等数種の物質の酸化
物を添加した焼結体がある。しかし、この酸化亜鉛バリ
スタは非直線係数αが非常に大きいという長所を有する
反面、ビスマスのような焼成に必要な高温時に極めて蒸
発し易い物質を含有しているため、焼成工程においてこ
れが蒸発してバリスタ特性のバラツキの原因となり、或
は焼結体同志が融着したりして、良好で均一な特性のバ
リスタを歩留よく量産することは困難であるという欠点
がある。又、酸化亜鉛バリスタは一般に比較的高いバリ
スタ電圧(100V以上)を有するものであるため、バ
リスタ電圧を下げるためには素子の厚さを薄くする必要
があるが、薄くすると前述のようにサージ耐量が低下し
て近年の電子機器、装置等の低電圧化に対応し難いとい
う問題点がある。
On the other hand, bidirectional voltage regulator diodes can be manufactured with a relatively low Zener voltage and have a large nonlinear coefficient α, so when used in low voltage circuits such as electronic devices using semiconductor components. However, since the surge resistance is approximately proportional to the volume of the element, it is difficult to absorb excessive surge energy. My father, a recently developed varistor is a sintered lead oxide varistor, which uses zinc oxide (ZnO) as a product and oxides of several substances such as bismuth, manganese, cobalt, and antimony as subcomponents. There is a body. However, although this zinc oxide varistor has the advantage of having a very large nonlinear coefficient α, it also contains substances such as bismuth that evaporate extremely easily at the high temperatures required for firing, so this may evaporate during the firing process. This has the drawback that it is difficult to mass-produce varistors with good and uniform characteristics at a high yield because it causes variations in varistor characteristics or the sintered bodies fuse together. In addition, since zinc oxide varistors generally have a relatively high varistor voltage (100V or more), it is necessary to reduce the thickness of the element in order to lower the varistor voltage, but as mentioned above, reducing the thickness of the element reduces the surge resistance. There is a problem in that the voltage decreases, making it difficult to respond to the recent trend toward lower voltages in electronic devices, devices, and the like.

本発明は、従来のバリスタにおける上記の欠点に着目し
てなされたもので、酸化亜鉛バリスタの非直線係数αが
大きいという本質的長所を生かしつつ、ビスマスのよう
な欠点を伴なう物質を含有させることなく、すぐれた電
気的特性を有し、かつ歩留及び再現性よく量産し得るバ
リスタを提供することを目的とする。
The present invention was made by focusing on the above-mentioned drawbacks of conventional varistors, and while taking advantage of the essential advantage of zinc oxide varistors, which have a large nonlinear coefficient α, the present invention contains materials with drawbacks such as bismuth. It is an object of the present invention to provide a varistor that has excellent electrical characteristics without causing problems and can be mass-produced with high yield and reproducibility.

即ち、本発明は酸化亜鉛(ZnO)を主成分とし、これ
にニオブを五酸化ニオブ(Nb、O,)に換算して0.
05−10 mob%、マンガンを二酸化マンガン(M
nO2)に換算して0.1〜10 rnot% 含有サ
セfc焼結体からなる電圧非直線抵抗器である。
That is, the present invention uses zinc oxide (ZnO) as a main component, and niobium is added to the zinc oxide (ZnO), which is converted into niobium pentoxide (Nb, O,).
05-10 mob%, manganese to manganese dioxide (M
This is a voltage non-linear resistor made of a sintered fc sintered body containing 0.1 to 10 rnot% in terms of nO2).

以下に本発明を構成する焼結体の製法を実施例に基づい
て説明する。
The method for manufacturing the sintered body constituting the present invention will be described below based on Examples.

先ず、酸化亜鉛(ZnO)にニオブ酸化物を五酸化二オ
フ(Nb205) に換算して0.05〜IDmot%
、マンガン酸化物を二酸化マンガン(Mn02 ) K
換Xして0.1〜10moz%の範囲で添加し、znO
+Nb2O,+ Mn0v の総和が100 mot%
になるよう原料酸化物を正確に秤量する。次いで、これ
らの混合物をボールミル等の粉砕混合機で十分に湿式粉
砕混合した後、脱水、乾燥する。この乾燥混合物を約6
00〜950℃で仮焼したのちポリビニルアルコール(
Pvム)等の有機結合剤を添加して造粒粉末を作製する
。この際使用される原料としては、水酸化物、硫化物、
炭化物、炭酸塩等加熱によって酸化物に転する化合物で
あれば酸化物以外の化合物であっても使用し得る。
First, add niobium oxide to zinc oxide (ZnO) at a concentration of 0.05 to IDmot% in terms of dioff pentoxide (Nb205).
, manganese oxide to manganese dioxide (Mn02) K
ZnO is added in a range of 0.1 to 10 moz% by
The sum of +Nb2O, +Mn0v is 100 mot%
Accurately weigh the raw material oxide so that Next, these mixtures are sufficiently wet-pulverized and mixed using a pulverizing mixer such as a ball mill, followed by dehydration and drying. Add this dry mixture to approx.
After calcining at 00 to 950℃, polyvinyl alcohol (
A granulated powder is prepared by adding an organic binder such as Pvm). The raw materials used at this time include hydroxide, sulfide,
Compounds other than oxides can be used as long as they are converted into oxides by heating, such as carbides and carbonates.

の圧力で加圧成形して直径15WKm、厚11.5w程
度の円板に成形する。この成形体を1000〜1400
℃の空気中で1〜4時間焼成して焼結体を侍る。
Pressure molding is performed at a pressure of 15 WKm to form a disc with a diameter of 15 WKm and a thickness of about 11.5 W. This molded body is 1000~1400
The sintered body is heated in air at ℃ for 1 to 4 hours.

次いで、この焼結体の両面に1程極となる銀、銅、ニラ
クル、アルミニウム等の金属膜を形成する。
Next, a metal film of silver, copper, Niracle, aluminum or the like is formed on both sides of this sintered body to serve as a metal layer.

この金属膜は通常銀ペイントの塗布焼付、又は蒸着、ス
パッタリング、メッキ等の方法によって形成される。
This metal film is usually formed by applying and baking silver paint, or by methods such as vapor deposition, sputtering, and plating.

以上のようにして本発明の金属酸化物バリスタが製作さ
れるが、このバリスタは焼結体自身が非直線特性を有す
るものであるため、原料組成や焼成条件を変化させるこ
とによってバリスタ電圧及び非直線係数を広範囲に制御
することが可能である。第1表は上述の方法によりZn
O1Nb、 O,、MnO□の配合比を種々に変えて製
作したバリスタのバリスタ電圧v1及び非直線係数αの
値を示す。
The metal oxide varistor of the present invention is manufactured as described above, but since the sintered body of this varistor itself has non-linear characteristics, the varistor voltage and non-linear characteristics can be adjusted by changing the raw material composition and firing conditions. It is possible to control the linearity coefficient over a wide range. Table 1 shows that Zn
The values of the varistor voltage v1 and the nonlinear coefficient α of varistors manufactured with various blending ratios of O1Nb, O, and MnO□ are shown.

第 1 表 又、第1図は第1表の結果のうち、MnO,の配合比を
1.0 m04%一定とし、Nl:+20.の配合比を
種々に変えた時のバリスタ電圧v1と非直線係数αの飴
をプロットしたグラフ、第2図はNb2O,の配合比を
1.0 m04%一定としMnO2の配合比を種々に変
えた時のバリスタ電圧V、と非直線係数αの値をプロッ
トしたグラフである。なお、バリスタ電圧vlはバリス
タに1m人の電流を流した時のハ+)スタ両端の電圧で
あり、非直線係数αは測定電流1mAと10ff1人を
流した時のバリスタ電圧から計算によってめた値である
Table 1 Also, Figure 1 shows the results in Table 1, with the MnO blending ratio constant at 1.0 m04% and Nl: +20. Figure 2 is a graph plotting the varistor voltage v1 and the nonlinear coefficient α when the mixture ratio of is varied. Figure 2 shows the graph when the mixture ratio of Nb2O is constant at 1.0 m04% and the mixture ratio of MnO2 is varied. It is a graph plotting the varistor voltage V and the value of the nonlinear coefficient α when In addition, the varistor voltage vl is the voltage across the varistor when a current of 1 m is passed through the varistor, and the nonlinear coefficient α is calculated from the measured current of 1 mA and the varistor voltage when 10 ff is passed through the varistor. It is a value.

第1図から明らかなようにNb、O,の配合比が0.0
5mot% 未満及び1o m04%を超える場合には
、バリスタ電圧v1は低くなるが、非直線係数αもそれ
に伴なって小さくなり、特に10111Ot係を超える
場合には急激に小さくなる傾向があり、従来の5iCバ
リスタと同程度の電気的特性しか得られない。又、第2
図から明らかなように、MnO□の配合比が0.1 m
01%未満及び10 m04%を超える場合にも上記と
同様の結果が得られることが判明した。
As is clear from Figure 1, the blending ratio of Nb and O is 0.0.
When it is less than 5 mot% and exceeds 1 o m04%, the varistor voltage v1 becomes low, but the nonlinear coefficient α also becomes small accordingly, and especially when it exceeds 10111 Ot coefficient, it tends to decrease rapidly. The electrical characteristics are comparable to those of the 5iC varistor. Also, the second
As is clear from the figure, the blending ratio of MnO□ is 0.1 m
It has been found that the same results as above can be obtained when the content is less than 0.01% and greater than 10.04%.

従って、バリスタ電圧v1 が低く、シかも非直1線係
数αの大きい電気的特性を有するバリスタは、ZnOに
配合されるニオブ化合物の量はNb、 O,に換話して
0.05〜10 m04%の範囲内、又、マンガン化合
物の量はMnO,に換算して01〜10m1tチの範囲
内にあることがわかる。第1表についてみれば、屋1の
配合比を除く試料が本発明のバリスタの材料組成として
適してお9、バリスタ電圧V、が低く、非直線係数αの
大きいすぐれた電気的特性を有するバリスタが得られる
Therefore, for a varistor having electrical characteristics with a low varistor voltage v1 and a large nonlinear coefficient α, the amount of niobium compound added to ZnO is 0.05 to 10 m04 in terms of Nb and O. It can be seen that the amount of manganese compound is within the range of 0.1 to 10 m1t in terms of MnO. Looking at Table 1, it can be seen that the samples excluding the compounding ratio of Y1 are suitable for the material composition of the varistor of the present invention, and the varistor has a low varistor voltage V and excellent electrical characteristics with a large nonlinear coefficient α. is obtained.

以上説明したように、本発明の金属酸化物バリスタは従
来のバリスタに比しバリスタ電圧が低くかつ非直線係数
が大きい特性を有し、又、焼成によって蒸発し易い酸化
ビスマス等の成分を含まないから焼成に伴なう組成変化
が殆どなく、従って均一で特性のすぐれたバリスタが再
現性及び歩留よく量産することができる利点がある。又
、本発明のバリスタはセラミック体であるため、従来の
低電圧シリコンバリスタに比べて放電耐量も太きく、従
って雷等外部エネルギーのサージを効果的に吸収し電子
機器内の電子部品を十分に保賎する性能をも具有するも
のである。
As explained above, the metal oxide varistor of the present invention has characteristics such as a lower varistor voltage and a larger nonlinear coefficient than conventional varistors, and also does not contain components such as bismuth oxide that easily evaporates during firing. Since there is almost no change in composition due to firing, it has the advantage that varistors that are uniform and have excellent characteristics can be mass-produced with good reproducibility and yield. In addition, since the varistor of the present invention is made of a ceramic body, it has a higher discharge withstand capacity than conventional low-voltage silicon varistors, and therefore effectively absorbs surges of external energy such as lightning and protects electronic components in electronic devices. It also has the ability to protect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZnO、Nb2O,及びMnO2からなる材料
組成のバリスタにおいて、MnO7を1. Om04%
一定として、Nb、O,の配合比を変化させた場合のバ
リスタのバリスタ電圧v1及び非直線係数αの値を示す
グラフ、第2図は、同様組成のバリスタニオイテ、Nb
2O,を1. Om04%一定として、MnO,の配合
比を変化させた場合のバリスタのバリスタ電圧V、及び
非直線係数αの値を示すグラフである。
FIG. 1 shows a varistor with a material composition of ZnO, Nb2O, and MnO2, in which MnO7 is added to 1. Om04%
Figure 2 is a graph showing the values of the varistor voltage v1 and the nonlinear coefficient α when the blending ratio of Nb and O is changed, assuming that the mixture ratio of Nb and O is constant.
2O, 1. It is a graph showing the varistor voltage V of the varistor and the value of the nonlinear coefficient α when the blending ratio of MnO is changed while Om0 is constant at 4%.

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛(ZnO)を主成分とし、これにニオブを五酸
化ニオブ(Nb20. )に換算して0.05〜10m
oL係、マンガンを二酸化マンガン(MnO2)に換算
して0.1〜1omoz%含有させた焼結体から成る電
圧非直線抵抗器。
Zinc oxide (ZnO) is the main component, and niobium is converted into niobium pentoxide (Nb20.).
A voltage nonlinear resistor made of a sintered body containing 0.1 to 1 omoz% of manganese in terms of manganese dioxide (MnO2).
JP58212507A 1983-11-14 1983-11-14 Voltage nonlinear resistor Pending JPS60105202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212507A JPS60105202A (en) 1983-11-14 1983-11-14 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212507A JPS60105202A (en) 1983-11-14 1983-11-14 Voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JPS60105202A true JPS60105202A (en) 1985-06-10

Family

ID=16623809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212507A Pending JPS60105202A (en) 1983-11-14 1983-11-14 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS60105202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107501A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Varistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107501A (en) * 1987-10-20 1989-04-25 Kurasawa Opt Ind Co Ltd Varistor

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
US4839097A (en) Voltage-dependent non-linear resistance ceramic composition
US3899451A (en) Oxide varistor
JPS644322B2 (en)
US3687871A (en) Nonlinear resistor and nonlinear resistor composition
US3682841A (en) Voltage dependent resistors in a bulk type
GB1589940A (en) Voltage-dependent resistor and preparation thereof
US4897219A (en) Voltage-dependent non-linear resistance ceramic composition
US3570002A (en) Non-linear resistor of sintered zinc oxide
JPS60105202A (en) Voltage nonlinear resistor
US3766098A (en) Voltage nonlinear resistors
KR920005155B1 (en) Zno-varistor making method
JP2985559B2 (en) Varistor
JPS62282416A (en) Voltage nonlinear resistance unit
JPS59189604A (en) Method of producing nonlinear resistor
JPS643325B2 (en)
JPS5932043B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPS5932044B2 (en) Manufacturing method of voltage nonlinear resistance element
JPS643326B2 (en)
JPS589563B2 (en) Manufacturing method of voltage nonlinear resistor
JPS589562B2 (en) Manufacturing method of voltage nonlinear resistor
JPH03178101A (en) Voltage non-linear resistor
JPS602764B2 (en) oxide voltage nonlinear resistor
JPS61271802A (en) Voltage non-linear resistor ceramic composition