KR20240069108A - A method for enhancing the performance of GDL through electroless composite plating - Google Patents

A method for enhancing the performance of GDL through electroless composite plating Download PDF

Info

Publication number
KR20240069108A
KR20240069108A KR1020220150281A KR20220150281A KR20240069108A KR 20240069108 A KR20240069108 A KR 20240069108A KR 1020220150281 A KR1020220150281 A KR 1020220150281A KR 20220150281 A KR20220150281 A KR 20220150281A KR 20240069108 A KR20240069108 A KR 20240069108A
Authority
KR
South Korea
Prior art keywords
nickel
gdl
plating
composite
composite plating
Prior art date
Application number
KR1020220150281A
Other languages
Korean (ko)
Inventor
송신애
김기영
임성남
우주영
이덕현
한창기
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020220150281A priority Critical patent/KR20240069108A/en
Publication of KR20240069108A publication Critical patent/KR20240069108A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemically Coating (AREA)

Abstract

본 발명은 니켈테프론 복합도금 코팅 방법을 통해 고성능 고내구성 GDL 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 PEMFC GDL 표면에 1차 니켈 무전해 도금 후 2차 니켈 테프론 복합도금 또는 2차 니켈 TiO2 복합도금의 복합도금을 이용한 소수성 및 친수성 강화를 통한 내구성이 향상된 PEMFC GDL 및 이의 제조방법에 관한 것이다.The present invention relates to high-performance, high-durability GDL and a method of manufacturing the same through a nickel-Teflon composite plating coating method. More specifically, the first electroless nickel plating on the surface of PEMFC GDL is followed by secondary nickel-Teflon composite plating or secondary nickel TiO 2 This relates to a PEMFC GDL with improved durability through strengthening hydrophobicity and hydrophilicity using composite plating and a method of manufacturing the same.

Description

무전해 복합도금을 통한 GDL 성능 강화 방법{A method for enhancing the performance of GDL through electroless composite plating}A method for enhancing the performance of GDL through electroless composite plating}

본 발명은 고내구성 PEMFC GDL 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 PEMFC GDL 표면에 1차 니켈무전해도금 후 2차 니켈테프론복합도금 또는 2차 니켈TiO2복합도금의 복합도금을 이용한 소수성 및 친수성 강화를 통한 내구성이 향상된 PEMFC GDL 및 이의 제조방법에 관한 것이다.The present invention relates to a highly durable PEMFC GDL and a manufacturing method thereof. More specifically, the present invention relates to a highly durable PEMFC GDL and a method of manufacturing the same. More specifically, the first nickel electroless plating on the surface of the PEMFC GDL is followed by a hydrophobic plating using a secondary nickel Teflon composite plating or a secondary nickel TiO 2 composite plating. and PEMFC GDL with improved durability through enhanced hydrophilicity and a method of manufacturing the same.

연료전지는 연료(수소 또는 메탄올)와 산화제(산소)를 전기화학적으로 반응시켜 생기는 화학적 에너지를 직접 전기적 에너지로 변환시키는 발전 시스템으로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 차세대 에너지원으로 연구 개발되고 있다. 연료전지는 적용분야에 따라 고온용 및 저온용 연료전지를 선택하여 사용할 수 있으며, 통상적으로 전해질의 종류에 따라 분류되고 있는데, 고온용에는 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC), 용융탄산염 연료전지(Molten Carbonate Fuel Cell, MCFC) 등이 있고, 저온용에는 알칼리 전해질 연료전지(Alkaline Fuel Cell, AFC) 및 고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC) 등이 대표적으로 개발되고 있다.A fuel cell is a power generation system that directly converts chemical energy generated by electrochemically reacting fuel (hydrogen or methanol) and an oxidizing agent (oxygen) into electrical energy. It is a next-generation energy source with high energy efficiency and eco-friendly characteristics with low pollutant emissions. Research and development are underway. Fuel cells can be used by selecting high-temperature or low-temperature fuel cells depending on the field of application, and are usually classified according to the type of electrolyte. For high-temperature use, solid oxide fuel cells (SOFC) and molten carbonate fuel cells are used. There are fuel cells (Molten Carbonate Fuel Cell, MCFC), and for low temperature applications, alkaline electrolyte fuel cells (AFC) and polymer electrolyte membrane fuel cells (PEMFC) are being developed.

고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC)를 세분하면 수소 가스를 연료로 사용하는 수소이온 교환막 연료전지(Proton Exchange Membrane Fuel Cell, PEMFC)와, 액상의 메탄올을 직접 연료로 산화극(Anode)에 공급하여 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등이 있다. Polymer Electrolyte Membrane Fuel Cell (PEMFC) can be subdivided into Proton Exchange Membrane Fuel Cell (PEMFC), which uses hydrogen gas as fuel, and Proton Exchange Membrane Fuel Cell (PEMFC), which uses liquid methanol as fuel directly. There is a direct methanol fuel cell (DMFC) that is supplied and used for.

고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC)는 100℃ 미만의 낮은 작동온도, 고체 전해질 사용으로 인한 누수문제 배제, 빠른 시동과 응답 특성, 및 우수한 내구성 등의 장점으로 휴대용, 차량용, 및 가정용 전원장치로 각광을 받고 있다. 특히 다른 형태의 연료전지에 비하여 전류밀도가 큰 고출력 연료전지로서, 소형화가 가능하기 때문에 휴대용 연료전지로의 연구가 계속 진행되고 있다.Polymer Electrolyte Membrane Fuel Cell (PEMFC) has advantages such as a low operating temperature of less than 100°C, exclusion of water leakage problems due to the use of solid electrolytes, fast start-up and response characteristics, and excellent durability, making it a portable, automotive, and home power source. The device is in the spotlight. In particular, it is a high-output fuel cell with a higher current density than other types of fuel cells, and because it can be miniaturized, research into portable fuel cells continues to progress.

고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC)는 가장 안쪽에 주요 구성 부품인 막-전극 접합체(Membrane-Electrode Assembly, MEA)가 위치하고, 통상 전해질막을 중심으로 그 양면에 연료극 및 공기극을 위한 촉매층이 위치된 상태를 3-레이어 막-전극 접합체라 칭하고, 상기 촉매층의 바깥쪽 부분에 가스확산층(Gas Diffusion Layer, GDL)이 더 적층된 상태를 5-레이어 막-전극 접합체라 칭한다. 이렇게 구성된 막-전극 접합체의 가스확산층의 바깥 부분에 연료를 공급하고 반응에 의해 발생된 물을 배출하도록 유로(Flow Field)가 형성된 분리판이 적층되면 하나의 단위전지가 되고, 이러한 단위전지를 여러개 적층하면 원하는 규모의 연료전지 스택이 된다.In a polymer electrolyte membrane fuel cell (PEMFC), the main component, the membrane-electrode assembly (MEA), is located at the innermost part, and catalyst layers for the fuel electrode and air electrode are usually placed on both sides around the electrolyte membrane. The positioned state is referred to as a 3-layer membrane-electrode assembly, and the state in which a gas diffusion layer (GDL) is further laminated on the outer portion of the catalyst layer is referred to as a 5-layer membrane-electrode assembly. When separators with a flow field are stacked to supply fuel to the outer part of the gas diffusion layer of the membrane-electrode assembly constructed in this way and discharge water generated by the reaction, it becomes one unit cell, and several such unit cells are stacked. This creates a fuel cell stack of the desired size.

가스확산층(Gas Diffusion Layer, GDL)은 연료가스의 확산 전달 뿐만아니라 운전중에 발생하는 물 배출을 용이하게 하거나, 막가습에 영향을 주는 등 물 관리 시스템에 매우 중요한 구성요소 이다. 생성된 물배출을 용이하게 하기 위해 소수성을 가지도록 PTFE 코팅을 하는데 기존 소수성 코팅의 경우에는 운전 중 카본 및 PTFE 손실이 일어나는 큰 문제점이 있다. The Gas Diffusion Layer (GDL) is a very important component in the water management system, not only for the diffusion and delivery of fuel gas, but also for facilitating the discharge of water generated during operation or affecting membrane humidification. In order to facilitate the discharge of generated water, PTFE coating is applied to make it hydrophobic. However, in the case of existing hydrophobic coatings, there is a major problem of carbon and PTFE loss during operation.

기존 PTFE 코팅 방법은 전류량이 낮고 가습량이 낮은 조건에서 카본 부식에 의해 발수성이 감소하여 접촉각이 감소하며, 전류량이 높고 가습량이 높은 조건에서 PTFE 손실에 의해 발수성이 감소하여 플러딩(Flooding) 발생하는 단점이 있다.The existing PTFE coating method has the disadvantage of reducing water repellency due to carbon corrosion under low current and low humidification conditions, which reduces the contact angle, and under conditions of high current and high humidification, water repellency is reduced due to loss of PTFE, resulting in flooding. there is.

이에 본 발명자들은 기존 GDL의 문제점을 극복하기 위해, 니켈테프론 복합도금 코팅 방법을 통해 고성능 고내구성 GDL을 개발하였다. 구체적으로, GDL에 니켈 무전해도금 후 니켈테프론 복합도금 2단계 방식으로 기존 GDL 표면에 소수성 부여하거나, 또는 니켈 무전해도금 후 니켈TiO2 복합도금 2단계 방식으로 기존 GDL 표면에 친수성 부여함으로써, 금속 및 소수성(친수성)코팅을 동시에 진행하여 전기전도성을 증가시키고, 소수성 및 친수성을 자유롭게 표면 물성 제어가 가능하며, 물 관리가 용이하며, 도금 공정으로 인한 코팅막 밀착력을 증가시킬 수 있음을 확인함으로써, 본 발명을 완성하였다.Accordingly, in order to overcome the problems of existing GDL, the present inventors developed a high-performance and highly durable GDL through a nickel Teflon composite plating coating method. Specifically, by imparting hydrophilicity to the surface of existing GDL using a two-step method of nickel Teflon composite plating after nickel electroless plating on GDL, or by imparting hydrophilicity to the surface of existing GDL using a two-step method of nickel TiO 2 composite plating after nickel electroless plating, metal and hydrophobic (hydrophilic) coating at the same time to increase electrical conductivity, allow free control of surface properties of hydrophobicity and hydrophilicity, facilitate water management, and increase coating film adhesion due to the plating process. The invention was completed.

Jayakumar, A. et al., Ionics, 21(1), 1-18, 2015 (https://doi.org/10.1007/s11581-014-1322-x) Jayakumar, A. et al., Ionics, 21(1), 1-18, 2015 (https://doi.org/10.1007/s11581-014-1322-x) Chen, T. et al., International Journal of Heat and Mass Transfer, 128, 1168-1174, 2019 (https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097)Chen, T. et al., International Journal of Heat and Mass Transfer, 128, 1168-1174, 2019 (https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097) Yu, S. et al., RSC Adv., 4(8), 3852-3856, 2014 (https://doi.org/10.1039/c3ra45770b)Yu, S. et al., RSC Adv., 4(8), 3852-3856, 2014 (https://doi.org/10.1039/c3ra45770b)

본 발명의 목적은 니켈테프론 복합코팅법을 통한 고성능 고내구성 GDL 및 이의 제조방법을 제공하는 것이다.The purpose of the present invention is to provide a high-performance, highly durable GDL and a method of manufacturing the same through a nickel-Teflon composite coating method.

구체적으로, 본 발명은 소수성을 부여하는 복합도금코팅 과정은 (1차 무전해 니켈 도금 공정)과 (2차 니켈-PTFE 복합도금 코팅 공정)의 두단계로 이루어지고, 친수성을 부여하는 복합도금 코팅 과정은 (1차 무전해 니켈 도금 공정)과 (2차 니켈-TIO2 복합도금 코팅 공정)의 두단계로 이루어지는 니켈테프론 복합코팅법, 및 상기 니켈테프론 복합코팅법으로 코팅된 고성능 고내구성 GDL을 제공하는 것이다.Specifically, in the present invention, the composite plating coating process that imparts hydrophobicity consists of two steps: (first electroless nickel plating process) and (secondary nickel-PTFE composite plating coating process), and the composite plating coating that imparts hydrophilicity. The process consists of a two-step nickel Teflon composite coating process (primary electroless nickel plating process) and (secondary nickel-TIO 2 composite plating coating process), and high-performance, highly durable GDL coated with the nickel Teflon composite coating method. It is provided.

상기 목적을 달성하기 위하여, 본 발명은 가스확산층(Gas Diffusion Layer, GDL) 표면에 니켈도금 층이 형성되어 있고, 상기 니켈도금 층 상부에 니켈-테프론 복합도금 층이 형성되어 있는 고성능 및 고내구성 가스확산층(GDL)을 제공한다.In order to achieve the above object, the present invention provides a high-performance and high-durability gas in which a nickel plating layer is formed on the surface of a gas diffusion layer (GDL), and a nickel-Teflon composite plating layer is formed on the top of the nickel plating layer. A diffusion layer (GDL) is provided.

또한, 본 발명은 가스확산층(Gas Diffusion Layer, GDL) 표면에 니켈도금 층이 형성되어 있고, 상기 니켈도금 층 상부에 니켈-TiO2 복합도금 층이 형성되어 있는 고성능 및 고내구성 가스확산층(GDL)을 제공한다.In addition, the present invention provides a high-performance and high-durability gas diffusion layer (GDL) in which a nickel plating layer is formed on the surface of the gas diffusion layer (GDL), and a nickel-TiO 2 composite plating layer is formed on the top of the nickel plating layer. provides.

또한, 본 발명은 a) 가스확산층(GDL) 표면에 1차 무전해 니켈 도금을 하는 단계; 및, b) 상기 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅을 하는 단계;를 포함하는 소수성을 부여하는 가스확산층(GDL) 복합도금 코팅 방법을 제공한다.In addition, the present invention includes the steps of a) performing primary electroless nickel plating on the surface of the gas diffusion layer (GDL); and, b) applying a secondary nickel-PTFE composite plating coating after the first electroless nickel plating.

또한, 본 발명은 i) 가스확산층(GDL) 표면에 1차 무전해 니켈 도금을 하는 단계; 및, ii) 상기 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅을 하는 단계;를 포함하는 친수성을 부여하는 가스확산층(GDL) 복합도금 코팅 방법을 제공한다.In addition, the present invention includes the steps of i) performing primary electroless nickel plating on the surface of the gas diffusion layer (GDL); and, ii) applying a secondary nickel-TIO 2 composite plating coating after the first electroless nickel plating.

또한, 본 발명은 상기 본 발명에 따른 고성능 및 고내구성 가스확산층(GDL)을 포함하는 고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC)를 제공한다.In addition, the present invention provides a polymer electrolyte fuel cell (PEMFC) including a high-performance and high-durability gas diffusion layer (GDL) according to the present invention.

아울러, 본 발명은 애노드(anode)에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-테프론 복합도금 층이 형성되어 있는 소수성 복합코팅된 GDL을 포함하고, 캐소드(cathode)에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-TiO2 복합도금 층이 형성되어 있는 친수성 복합코팅된 GDL을 포함하는 고분자 전해질 연료전지(PEMFC)를 제공한다.In addition, the present invention includes a hydrophobic composite coated GDL in which a primary nickel plating layer is formed on the anode and a secondary nickel-Teflon composite plating layer is formed on the first nickel plating layer, and a cathode ( Provides a polymer electrolyte fuel cell (PEMFC) including a hydrophilic composite coated GDL in which a primary nickel plating layer is formed on the cathode and a secondary nickel-TiO 2 composite plating layer is formed on top of the primary nickel plating layer. do.

본 발명에 따른 니켈테프론 복합코팅법을 통한 고성능 고내구성 GDL은 다음과 같은 효과를 가진다.High-performance, high-durability GDL using the nickel Teflon composite coating method according to the present invention has the following effects.

1단계 무전해 니켈도금 과정에서 다공성 탄소 페이퍼의 탄소 표면에 니켈로 수마이크로 두께로 감싸게 된다. 이때 2차 도금시 PTFE나 TiO2가 잘 달라붙을 수 있는 표면을 형성하게 된다. 또한 니켈을 1차 코팅하게 되기 때문에 전도성을 부여할 수 있다. In the first-step electroless nickel plating process, the carbon surface of the porous carbon paper is wrapped with nickel to a thickness of several microns. At this time, during secondary plating, a surface to which PTFE or TiO 2 can adhere well is formed. Additionally, since nickel is applied as a primary coating, conductivity can be imparted.

이로써 기존의 PTFE 코팅 시 탄소표면에서 잘 붙지 않거나 골고루 코팅이 안되는 문제를 해결할 수 있으며, PTFE 코팅은 소수성만 부여가능하지만, PTFE 대신 TiO2를 넣으면 친수성 부여가 가능하여 소수성에서부터 친수성까지 한공정으로 제어가능하다는 장점을 가지고 있다.This solves the problem of existing PTFE coating not adhering well to the carbon surface or not coating evenly. PTFE coating can only impart hydrophobicity, but if TiO 2 is added instead of PTFE, hydrophilicity can be imparted, controlling from hydrophobicity to hydrophilicity in one process. It has the advantage of being possible.

2차 니켈-PTFE 복합도금 코팅 공정이나 2차 니켈-TiO2 복합도금 코팅 공정에서 니켈도금액이 인함량이 높은 고인 함량 니켈 도금액을 사용함으로써 P성분이 함께 넣어준 PTFE나 TiO2의 부착성을 높이기 때문에 기존 dip 코팅방식보다 내구성이 높아진다.In the secondary nickel-PTFE composite plating coating process or the secondary nickel-TiO 2 composite plating coating process, the nickel plating solution uses a high phosphorus content nickel plating solution to increase the adhesion of PTFE or TiO 2 added with the P component. Therefore, durability is higher than that of the existing dip coating method.

기존의 PTFE 딥코팅 GDL도 소수성 부여가 되어 물관리가 가능하지만 본 발명에서 사용한 방법을 통하면 PTFE나 TiO2가 porous 탄소 표면에 골고루 부착하고 뭉침현상이 적으며,부착성도 좋아 내구성을 향상시킬 수 있다.Existing PTFE dip coating GDL also provides hydrophobicity, enabling water management, but through the method used in the present invention, PTFE or TiO 2 adheres evenly to the porous carbon surface, reduces agglomeration, and improves durability with good adhesion. there is.

또한, 니켈 도금도 같이 진행되기 때문에 전기전도성도 크게 향상되어 연료전지의 셀 성능 향상에도 기여할 수 있다.In addition, since nickel plating is also performed, electrical conductivity is greatly improved, which can contribute to improving the cell performance of fuel cells.

또한, 친수성 및 소수성을 한 방법으로 제어가 가능하기 때문에 연료전지에서도 물배출이 용이 해야하는 anode 측은 소수성 복합 코팅한 GDL를 사용하고, 전해막의 가습이 중요한 cathode에는 친수성 GDL를 사용할 수 있다.In addition, because hydrophilicity and hydrophobicity can be controlled in one way, GDL with a hydrophobic composite coating can be used on the anode side where water discharge must be easy in the fuel cell, and hydrophilic GDL can be used on the cathode where humidification of the electrolyte membrane is important.

도 1은 본 발명에 따른 복합도금된 GDL의 모식도를 나타내는 그림이다.
도 2는 본 발명에 따른 GDL의 복합도금의 원리 및 목적을 나타내는 그림이다.
도 3은 본 발명의 한가지 실시예에 따른 1차 무전해 니켈 도금 공정을 나타내는 그림이다.
도 4는 본 발명의 한가지 실시예에 따른 2차 니켈 테프론 복합 도금 코팅 공정(소수성 부여)을 나타내는 그림이다.
도 5는 본 발명의 한가지 실시예에 따른 2차 니켈 TiO2 복합 도금 코팅 공정(친수성 부여)을 나타내는 그림이다.
도 6은 본 발명의 한가지 실시예에 따른 니켈 테프론 복합도금 GDL의 성분 및 모폴로지를 나타내는 그림이다.
도 7은 본 발명의 한가지 실시예에 따른 니켈 테프론 복합도금 GDL의 접촉각을 나타내는 그림이다.
도 8은 본 발명의 한가지 실시예에 따른 니켈 테프론 복합도금 GDL의 전기저항을 나타내는 그래프이다(단계별 GDL전기저항 및 복합도금 시간에 따른 GDL전기전항변화).
도 9는 본 발명의 한가지 실시예에 따른 니켈 테프론 복합도금 GDL의 기체투과도를 나타내는 그래프이다(단계별 기체투과도 및 복합도금 시간에 따른 GDL전기전항변화).
도 10은 본 발명의 한가지 실시예에 따른 니켈 TiO2 복합 도금 GDL의 성분 및 모폴로지를 나타내는 그림이다.
도 11은 본 발명의 한가지 실시예에 따른 니켈 TiO2 복합 도금 GDL의 접촉각을 나타내는 그림이다.
도 12는 본 발명의 한가지 실시예에 따른 니켈 TiO2 복합 도금 GDL의 전기저항을 나타내는 그래프이다(단계별 GDL전기저항)
도 13은 본 발명의 한가지 실시예에 따른 니켈 TiO2 복합 도금 GDL의 전기저항을 나타내는 그래프이다(단계별 기체투과도).
Figure 1 is a schematic diagram of a composite plated GDL according to the present invention.
Figure 2 is a diagram showing the principle and purpose of GDL composite plating according to the present invention.
Figure 3 is a diagram showing the first electroless nickel plating process according to one embodiment of the present invention.
Figure 4 is a diagram showing a secondary nickel Teflon composite plating coating process (providing hydrophobicity) according to an embodiment of the present invention.
Figure 5 is a diagram showing a secondary nickel TiO2 composite plating coating process (imparting hydrophilicity) according to one embodiment of the present invention.
Figure 6 is a diagram showing the components and morphology of nickel Teflon composite plating GDL according to one embodiment of the present invention.
Figure 7 is a diagram showing the contact angle of nickel Teflon composite plating GDL according to one embodiment of the present invention.
Figure 8 is a graph showing the electrical resistance of the nickel Teflon composite plating GDL according to one embodiment of the present invention (GDL electrical resistance by stage and GDL electrical resistance change according to composite plating time).
Figure 9 is a graph showing the gas permeability of nickel Teflon composite plating GDL according to one embodiment of the present invention (change in GDL electric potential according to gas permeability by stage and composite plating time).
Figure 10 is a diagram showing the components and morphology of nickel TiO 2 composite plating GDL according to one embodiment of the present invention.
Figure 11 is a diagram showing the contact angle of nickel TiO 2 composite plating GDL according to one embodiment of the present invention.
Figure 12 is a graph showing the electrical resistance of the nickel TiO 2 composite plating GDL according to one embodiment of the present invention (GDL electrical resistance by stage)
Figure 13 is a graph showing the electrical resistance of nickel TiO 2 composite plating GDL according to one embodiment of the present invention (gas permeability by stage).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 가스확산층(Gas Diffusion Layer, GDL) 표면에 니켈도금 층이 형성되어 있고, 상기 니켈도금 층 상부에 니켈-테프론 복합도금 층 또는 니켈-TiO2 복합도금 층이 형성되어 있는 고성능 및 고내구성 GDL을 제공한다.The present invention is a high-performance and high-durability device in which a nickel plating layer is formed on the surface of a gas diffusion layer (GDL), and a nickel-Teflon composite plating layer or nickel-TiO 2 composite plating layer is formed on the top of the nickel plating layer. Provides GDL.

상기 고성능 및 고내구성 GDL은 GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅 공정, 또는 GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅 공정을 통해 형성될 수 있다.The high-performance and high-durability GDL is produced through a secondary nickel-PTFE composite plating coating process after primary electroless nickel plating on the GDL surface, or a secondary nickel-TIO 2 composite plating coating process after primary electroless nickel plating on the GDL surface. can be formed.

상기 고성능 및 고내구성 GDL은 니켈도금 층 및 복합도금 층은 각각 0.1 ~ 20 μm 두께를 형성하는 것이 바람직하다.In the high-performance and high-durability GDL, it is preferable that the nickel plating layer and the composite plating layer each have a thickness of 0.1 to 20 μm.

또한, 본 발명은 a) 가스확산층(GDL) 표면에 1차 무전해 니켈 도금을 하는 단계; 및, b) 상기 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅을 하는 단계;를 포함하는 소수성을 부여하는 가스확산층(GDL) 복합도금 코팅 방법을 제공한다.In addition, the present invention includes the steps of a) performing primary electroless nickel plating on the surface of the gas diffusion layer (GDL); and, b) applying a secondary nickel-PTFE composite plating coating after the first electroless nickel plating.

또한, 본 발명은 i) 가스확산층(GDL) 표면에 1차 무전해 니켈 도금을 하는 단계; 및, ii) 상기 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅을 하는 단계;를 포함하는 친수성을 부여하는 가스확산층(GDL) 복합도금 코팅 방법을 제공한다.In addition, the present invention includes the steps of i) performing primary electroless nickel plating on the surface of the gas diffusion layer (GDL); and, ii) applying a secondary nickel-TIO 2 composite plating coating after the first electroless nickel plating.

상기 복합도금 코팅 방법에 있어서, 소수성을 부여하는 복합도금코팅 과정은 (1차 무전해 니켈 도금 공정)과 (2차 니켈-PTFE 복합도금 코팅 공정)으로 크게 두단계로 이루어진다.In the above composite plating coating method, the composite plating coating process for imparting hydrophobicity largely consists of two steps: (first electroless nickel plating process) and (secondary nickel-PTFE composite plating coating process).

상기 복합도금 코팅 방법에 있어서, 친수성을 부여하는 복합도금 코팅 과정은 (1차 무전해 니켈 도금 공정)과 (2차 니켈-TIO2 복합도금 코팅 공정)으로 크게 두단계로 이루어진다.In the above composite plating coating method, the composite plating coating process for imparting hydrophilicity largely consists of two steps: (first electroless nickel plating process) and (secondary nickel-TIO 2 composite plating coating process).

상기 복합도금 코팅 방법에 있어서, 1단계 무전해 니켈도금 과정에서 다공성 탄소 페이퍼의 탄소 표면에 니켈로 수마이크로 두께로 감싸게 된다. 이때, 2차 도금시 PTFE나 TIO2가 잘 달라붙을 수 있는 표면을 형성하게 된다. 또한 니켈을 1차 코팅하게 되기 때문에 전도성을 부여할 수 있다. 이로써 기존의 PTFE 코팅 시 탄소표면에서 잘 붙지 않거나 골고루 코팅이 안되는 문제를 해결할 수 있으며, PTFE 코팅은 소수성만 부여가능하지만, PTFE 대신 TIO2를 넣으면 친수성 부여가 가능하여 소수성에서부터 친수성까지 한공정으로 제어가능하다는 장점을 가지고 있다.In the above composite plating coating method, in the first step electroless nickel plating process, the carbon surface of the porous carbon paper is wrapped with nickel to a thickness of several microns. At this time, during secondary plating, a surface to which PTFE or TIO 2 can adhere is formed. Additionally, since nickel is applied as a primary coating, conductivity can be imparted. This solves the problem of existing PTFE coating not adhering well to the carbon surface or not coating evenly. PTFE coating can only impart hydrophobicity, but if TIO 2 is added instead of PTFE, hydrophilicity can be imparted, controlling from hydrophobicity to hydrophilicity in one process. It has the advantage of being possible.

상기 복합도금 코팅 방법에 있어서, 1차 무전해 니켈 도금 과정은 일반적인 무전해 니켈공정을 사용하였으며, 2차 니켈-PTFE 복합도금 코팅 공정에서 소수성을 부여할 수 있는 PTFE나 친수성을 부여할 수 있는 나노 TIO2를 넣어 코팅용액을 제조, 도금 공정을 실시하는 것이 가장 특징적이다.In the above composite plating coating method, the first electroless nickel plating process used a general electroless nickel process, and in the second nickel-PTFE composite plating coating process, PTFE, which can impart hydrophobicity, or nano, which can impart hydrophilicity, was used. The most characteristic feature is that TIO 2 is added to produce a coating solution and a plating process is performed.

상기 복합도금 코팅 방법에 있어서, 2차 니켈-PTFE 복합도금 코팅 공정이나 2차 니켈-TIO2 복합도금 코팅 공정에서 특이사항은 니켈 도금액이 인 함량이 높은 고인 함량 니켈 도금액을 사용하는 것이다. 이로써 P 성분이 함께 넣어준 PTFE나 TIO2의 부착성을 높이기 때문에 기존 dip 코팅방식보다 내구성이 높아진다In the above composite plating coating method, a special feature in the secondary nickel-PTFE composite plating coating process or the secondary nickel-TIO 2 composite plating coating process is that a nickel plating solution with a high phosphorus content is used. This increases the adhesion of the PTFE or TIO 2 added with the P component, thereby increasing durability compared to the existing dip coating method.

상기 복합도금 코팅 방법에 있어서, 기존의 PTFE 딥코팅 GDL도 소수성 부여가 되어 물관리가 가능하지만 본 발명에서 사용한 방법을 통하면 PTFE나 TIO2가 porous 탄소 표면에 골고루 부착하고 뭉침 현상이 적으며,부착성도 좋아 내구성을 향상시킬 수 있다. 또한, 니켈 도금도 같이 진행되기 때문에 전기전도성도 크게 향상되어 연료전지의 셀성능 향상에도 기여할 수 있다.In the above composite plating coating method, the existing PTFE dip coating GDL is also hydrophobic and can manage water, but through the method used in the present invention, PTFE or TIO 2 adheres evenly to the porous carbon surface and agglomeration phenomenon is reduced, It has good adhesion and can improve durability. In addition, since nickel plating is also performed, electrical conductivity is greatly improved, which can contribute to improving the cell performance of fuel cells.

상기 복합도금 코팅 방법에 있어서, 친수성 및 소수성을 한 방법으로 제어가 가능하기 때문에 연료전지에서도 물배출이 용이 해야하는 anode 측은 소수성 복합코팅한 GDL를 사용하고, 전해막의 가습이 중요한 cathode에는 친수성 GDL를 사용할 수 있다.In the above composite plating coating method, since hydrophilicity and hydrophobicity can be controlled in one method, GDL with hydrophobic composite coating is used on the anode side where water discharge must be easy in the fuel cell, and hydrophilic GDL is used on the cathode where humidification of the electrolyte membrane is important. You can.

또한, 본 발명은 상기 본 발명에 따른 고성능 및 고내구성 가스확산층(GDL)을 포함하는 고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC)를 제공한다.In addition, the present invention provides a polymer electrolyte fuel cell (PEMFC) including a high-performance and high-durability gas diffusion layer (GDL) according to the present invention.

상기 고분자 전해질 연료전지은 애노드(anode)에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-테프론 복합도금 층이 형성되어 있는 소수성 복합코팅된 GDL을 포함하고, 캐소드(cathode)에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-TiO2 복합도금 층이 형성되어 있는 친수성 복합코팅된 GDL을 포함하는 것이 바람직하다.The polymer electrolyte fuel cell includes a hydrophobic composite coated GDL in which a primary nickel plating layer is formed on an anode and a secondary nickel-Teflon composite plating layer is formed on the first nickel plating layer, and a cathode ( It is preferable to include a hydrophilic composite coated GDL in which a primary nickel plating layer is formed on the cathode and a secondary nickel-TiO 2 composite plating layer is formed on top of the first nickel plating layer.

이하, 본 발명을 하기 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail through the following examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following examples and experimental examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following examples and experimental examples.

<실시예 1> 1차 무전해 니켈 도금 공정<Example 1> First electroless nickel plating process

<1-1> 공정 1: Alklaine Cleaner/Conditioner<1-1> Process 1: Alklaine Cleaner/Conditioner

도금 소재에 부착된 유기물, 산화물, 금속염 등을 제거하여 깨끗한 표면을 만들어 후도금에서 밀착력과 내식 외관이 좋게하는 전처리 과정이다.It is a pretreatment process that removes organic substances, oxides, and metal salts attached to the plating material to create a clean surface and improves adhesion and corrosion resistance in post-plating.

Alklaine Cleaner/Conditioner 용액 제조: M-Condition HA Part A :50ml/L, M-Condition HA Part B :50ml/LAlklaine Cleaner/Conditioner solution preparation: M-Condition HA Part A :50ml/L, M-Condition HA Part B :50ml/L

DI water 500ml를 비커에 채운 후 Part A 50ml를 넣은 후 마크네틱바 교반기로 5분간 교반한 다음 DI water 400ml를 넣은 다음 5분간 교반한 후 Part B 50ml를 넣고 5분간 교반하여 제조하였다.It was prepared by filling 500ml of DI water in a beaker, adding 50ml of Part A, stirring for 5 minutes with a magnetic bar stirrer, adding 400ml of DI water, stirring for 5 minutes, then adding 50ml of Part B and stirring for 5 minutes.

Alklaine Cleaner/Conditioner 실험 과정: 마그네틱 바 교반을 실시하면서 온도를 서서히 올려 60℃에서 실험을 실시하였다. 아무처리하지 않은 GDL을 5분간 담궈 cleaning을 진행하였다.Alklaine Cleaner/Conditioner experiment process: The experiment was conducted at 60°C by slowly raising the temperature while stirring with a magnetic bar. Cleaning was performed by soaking the untreated GDL for 5 minutes.

<1-2> 공정 2: Hot Rinse<1-2> Process 2: Hot Rinse

염기성 conditioner를 수세하는 과정으로 45℃의 물에서 세척 후 DI water에서 3분간 세척하였다.The basic conditioner was washed in water at 45°C and then washed in DI water for 3 minutes.

<1-3> 공정 3: Predip<1-3> Process 3: Predip

촉매가 잘 흡착이 될수있도록 보조적인역할 촉매 약품의 오염을 방지하는 과정이다.This is a process that prevents contamination of catalyst chemicals that play an auxiliary role so that the catalyst can be well adsorbed.

Predip 용액 제조: M-Predip P100g를 계량한 다음 DI water 500ml에 넣어준 후 마크네틱바 교반을 실시하여M-PredipP를 천천히 녹여가면서 넣었다.Preparation of Predip solution: Weigh 100g of M-Predip P and add it to 500ml of DI water, then stir with a magnetic bar to slowly dissolve M-PredipP.

Predip 실험 과정: 앞에서 cleaning한 GDL 시료를 준비한 pre dip 용액에 1분간 함침시켰다(25℃).Predip experiment process: The GDL sample cleaned previously was immersed in the prepared pre dip solution for 1 minute (25°C).

<1-4> 공정 4: Activator<1-4> Process 4: Activator

작은 고전하의 콜로이드 공급(PdCl2) 흡착시키는 촉매 단계이다.This is a catalytic step that adsorbs small, highly charged colloids (PdCl 2 ).

Activator 용액 제조: M-Activation HA 1.75ml를 500mL DI water에 넣고 450rpm 마그네틱 교반하여 잘 녹여 activation 용액을 준비하였다.Preparation of Activator solution: 1.75ml of M-Activation HA was added to 500mL DI water and stirred magnetically at 450rpm to dissolve well to prepare an activation solution.

Activator 실험 과정: 온도를 30℃에서 까지 올린 후 GDL 시료를 3분간 함침한 후, Rinse 과정을 거쳤다.Activator experiment process: After raising the temperature from 30℃, the GDL sample was impregnated for 3 minutes and then underwent a rinse process.

<1-5> 공정 5: Accelerate<1-5> Process 5: Accelerate

촉매 활성도를 최적화하는 공정이다.This is a process to optimize catalyst activity.

Accelerate 용액 제조: M- Accelerate A 5g의 양을 DI water 500mL에 넣고 300 rpm 5분간 마그네틱바로 용해를 시키고 M-Accelerate B 5ml를 넣은 다음 300rpm 10분간 교반을 하였다.Accelerate solution preparation: 5 g of M-Accelerate A was added to 500 mL of DI water and dissolved with a magnetic bar at 300 rpm for 5 minutes. 5 ml of M-Accelerate B was added and stirred at 300 rpm for 10 minutes.

Accelerate 실험 과정: 핫플레이트로 온도를 50℃까지 올린 후 GDL 시료를 3분간 함침을 하여 accelation시켰다.Accelerate experiment process: After raising the temperature to 50℃ with a hot plate, the GDL sample was impregnated for 3 minutes to accelerate.

<1-6> 공정 6: 무전해 니켈 도금<1-6> Process 6: Electroless nickel plating

약품 Entech MP-909을 사용하여 니켈 무전해를 실시(광택중-인 무전해 니켈 공정)하는 공정이다.This is a process of performing electroless nickel electrolysis (electroless nickel process during polishing) using the chemical Entech MP-909.

무전해 니켈 도금 용액 제조: 250ml DI water에 Entech MP 909 Make up 125ml을 넣었다. 300rpm 조건으로 마그네틱 바를 통한 교반을 5분간 실시 후 DI water 125ml를 넣고 마지막에 Entech 909 starter 0.5ml을 넣고 300rpm 속도로 마그네틱 바를 통한 교반을 5분간 실시하였다.Preparation of electroless nickel plating solution: Add 125ml of Entech MP 909 Make up to 250ml DI water. After stirring using a magnetic bar at 300 rpm for 5 minutes, 125 ml of DI water was added. Finally, 0.5 ml of Entech 909 starter was added and stirring was performed using a magnetic bar at 300 rpm for 5 minutes.

무전해 니켈 실험 과정: 핫플레이트를 통하여 온도를 상승시키고 유리 온도계를 통하여 온도 측정을 실시하였다. 온도는 88℃로 맞추었고, pH 미터기를 통하여 pH를 측정하여 4.7~5.2가 되도록 조절하였다. 10wt% 황산용액, 10wt% 암모니아수를 조금씩 넣어 pH를 조절하였다. 최적 조건에서 10분간 코팅한 뒤 수세로 5회 정도 좌우로 씻은 뒤에 Dry oven에서 60℃의 30분 가량 건조시켰다.Electroless nickel experiment process: The temperature was raised through a hot plate and the temperature was measured through a glass thermometer. The temperature was set to 88°C, and the pH was measured using a pH meter and adjusted to 4.7 to 5.2. The pH was adjusted by adding 10 wt% sulfuric acid solution and 10 wt% ammonia water little by little. After coating for 10 minutes under optimal conditions, it was washed from side to side about 5 times with water and then dried in a dry oven at 60°C for about 30 minutes.

파라미터parameter 범위range 최적optimal 온도 (℃)Temperature (℃) 85 - 92℃85 - 92℃ 88℃88℃ pHpH 4.7 - 5.24.7 - 5.2 4.94.9 용액의 로딩 (dm2/L)Loading of solution (dm 2 /L) 0.3 - 2.50.3 - 2.5 1.21.2 니켈농도 (g/L)Nickel concentration (g/L) 5.3 - 6.25.3 - 6.2 5.85.8

물리적 특성(전형적 결과)Physical Properties (Typical Results) 인 함량(무게 %)Phosphorus content (% by weight) 6 - 9%6 - 9% 경도 (DPH)Hardness (DPH) 도금된 후After being plated 600 - 650600 - 650 열처리 시During heat treatment 850 - 900850 - 900 열팽창계수 m/m/℃Thermal expansion coefficient m/m/℃ 13 - 1513 - 15 열전도도 Cal/cm/sec/CThermal conductivity Cal/cm/sec/C 0.010 - 0.0110.010 - 0.011

<실시예 2> 2차 니켈-PTFE 복합도금 코팅 공정(소수성 부여)<Example 2> Secondary nickel-PTFE composite plating coating process (imparting hydrophobicity)

2차 니켈-PTFE 복합도금 용액 제조: 니켈-PTFE 복합도금용 solution의 용액의 무게를 기준을 넣기 때문에 먼저 20Wt% PTFE 용액을 2.25g을 담고 250ml DI water를 채운 뒤 마그네틱 바교반하면서 Entech 512 HP-A 25ml를 넣고 5분간 교반하였다. Entech 512 HP-B를 60ml를 넣고 5분간 섞은 전체 비이커내 용액이 500ml가 될 때 DI water를 채워 넣고 교반하여 용액을 완성하였다(PTFE 20wt% 코팅기준).Preparation of secondary nickel-PTFE composite plating solution: Since the weight of the nickel-PTFE composite plating solution is used as a standard, first put 2.25g of 20Wt% PTFE solution, fill it with 250ml DI water, and stir with a magnetic bar while stirring with Entech 512 HP- 25ml of A was added and stirred for 5 minutes. 60ml of Entech 512 HP-B was added and mixed for 5 minutes. When the total solution in the beaker reached 500ml, DI water was added and stirred to complete the solution (based on PTFE 20wt% coating).

2차 니켈-PTFE 복합도금 실험 방법: 니켈-PTFE 복합도금용 solution의 온도는 85℃로 올리고,pH는 4.7로 맞추어 도금을 준비하였다. 이때 pH는 10wt% 황산용액, 10wt% 암모니아수를 이용하여 조절하였다. 온도 및 pH가 준비되면 1차 무전해도금 한 GDL를 시료를 10분간 넣어 니켈-PTFE 복합도금을 실시하였다.Secondary nickel-PTFE composite plating experiment method: The temperature of the nickel-PTFE composite plating solution was raised to 85°C and the pH was adjusted to 4.7 to prepare for plating. At this time, the pH was adjusted using 10 wt% sulfuric acid solution and 10 wt% ammonia water. Once the temperature and pH were ready, nickel-PTFE composite plating was performed by placing the first electroless plated GDL sample for 10 minutes.

파라미터parameter 범위range 최적optimal 온도 (℃)Temperature (℃) 82 - 90℃82 - 90℃ 85℃85℃ pHpH 4.4 - 5.04.4 - 5.0 4.74.7 용액의 로딩 (dm2/L)Loading of solution (dm 2 /L) 0.5 - 1.50.5 - 1.5 1.01.0 니켈농도 (g/L)Nickel concentration (g/L) 4.8 - 5.24.8 - 5.2 5.05.0

<실시예 3> 2차 니켈-TiO<Example 3> Secondary nickel-TiO 22 복합도금 코팅 공정(친수성 부여) Composite plating coating process (grants hydrophilicity)

2차 니켈-TiO2 복합도금 용액 제조: 앞서 2차 니켈-PTFE 복합도금 공정에서 PTFE solution 대신 나노 TiO2를 넣었다는 점만 빼고 동일하게 용액을 제조하였다. Preparation of secondary nickel-TiO 2 composite plating solution: The solution was prepared in the same manner as in the secondary nickel-PTFE composite plating process except that nano TiO 2 was added instead of PTFE solution.

2차 니켈-TiO2 복합도금 실험방법: 니켈-TiO2 복합도금용 solution의 온도는 85℃로 올리고, pH는 4.7로 맞추어 도금을 준비하였다. 이때 pH는 10wt% 황산용액, 10wt% 암모니아수를 이용하여 조절하였다. 온도 및 pH가 준비되면 1차 무전해도금 한 GDL를 시료를 10분간 넣어 니켈-PTFE 복합도금을 실시하였다.Secondary nickel-TiO2 composite plating experiment method: The temperature of the nickel- TiO2 composite plating solution was raised to 85°C and the pH was adjusted to 4.7 to prepare for plating. At this time, the pH was adjusted using 10 wt% sulfuric acid solution and 10 wt% ammonia water. Once the temperature and pH were ready, nickel-PTFE composite plating was performed by placing the first electroless plated GDL sample for 10 minutes.

<실험예 1> 니켈 테프론 복합도금 GDL의 성분변화 및 모폴로지 확인<Experimental Example 1> Confirmation of composition changes and morphology of nickel Teflon composite plating GDL

Carbon paper의 GDL인 JNT20 (JNTG)를 PTFE와 MPL 처리를 안한 Bare 상태의 GDL을 무전해 니켈 도금과 복합도금 코팅을 통하여 성분변화와 Morphology를 확인하였다. 그 결과, 도 6과 같이 나타났다(도 6).The composition changes and morphology of JNT20 (JNTG), a carbon paper GDL, were confirmed through electroless nickel plating and composite plating coating on bare GDL without PTFE and MPL treatment. As a result, it appeared as shown in Figure 6 (Figure 6).

<실험예 2> 니켈 테프론 복합도금 GDL의 접촉각 확인<Experimental Example 2> Confirmation of contact angle of nickel Teflon composite plating GDL

기존의 소수성인 GDL 복합도금을 통하여 N slip D 용액의 농도를 변화를 줘서(20wt%->3.0ml/L, 30wt%->4.5ml/L) 5분 10분 15분 시간별로 코팅을 실시하였다. 테프론 농도가 다른 복합도금에 대한 접촉각을 측정하였다. 양에 따라 소수성을 조절이 가능하다. 그 결과, 도 7과 같이 나타났다(도 7).Coating was performed over time for 5 minutes, 10 minutes, and 15 minutes by varying the concentration of the N slip D solution (20wt%->3.0ml/L, 30wt%->4.5ml/L) through the existing hydrophobic GDL composite plating. . Contact angles for composite plating with different Teflon concentrations were measured. Hydrophobicity can be adjusted depending on the amount. As a result, it appeared as shown in Figure 7 (Figure 7).

<실험예 3> 니켈 테프론 복합도금 GDL의 전기저항 및 기체투과도 확인<Experimental Example 3> Confirmation of electrical resistance and gas permeability of nickel Teflon composite plating GDL

테프론 농도가 다른 복합도금에 대한 전기저항 및 기체투과도를 측정하였다. 그 결과, 도 8 및 도 9와 같이 나타났다(도 8 및 도 9). 니켈 테프론 복합도금 GDL은 탄소로 이루어진 GDL 보다 전기저항은 상대적으로 향상이 되었고 코팅에 따른 기체투과도 변화를 볼 수 있었다. 압축률에 따른 전기저항이 낮아져 전기전도도가 증가하였고, 기체투과도는 복합도금시 다소 낮아지나 가스투과에는 문제가 없는 수준임을 확인하였다.Electrical resistance and gas permeability were measured for composite plating with different Teflon concentrations. As a result, the results were shown in Figures 8 and 9 (Figures 8 and 9). The electrical resistance of the nickel Teflon composite plating GDL was relatively improved compared to the carbon GDL, and changes in gas permeability depending on the coating were observed. The electrical resistance decreased according to the compression rate, increasing the electrical conductivity, and gas permeability was slightly lower during composite plating, but it was confirmed that there was no problem with gas permeation.

<실험예 4> 니켈-TiO<Experimental Example 4> Nickel-TiO 22 복합도금 GDL의 성분변화 및 모폴로지 확인 Confirmation of composition changes and morphology of composite plating GDL

Carbon paper의 GDL인 JNT20 (JNTG)를 Bare 상태의 GDL을 무전해 니켈 도금과 복합도금 코팅을 통하여 성분변화와 Morphology를 확인하였다. 그 결과, 도 10과 같이 나타났다(도 10).The changes in composition and morphology of JNT20 (JNTG), a carbon paper GDL, were confirmed through electroless nickel plating and composite plating coating on bare GDL. As a result, it appeared as shown in Figure 10 (Figure 10).

<실험예 5> 니켈-TiO<Experimental Example 5> Nickel-TiO 22 복합도금 GDL의 접촉각 확인 Checking the contact angle of composite plating GDL

니켈 TiO2 GDL을 접촉각을 측정한 결과 흡수가 되어 접촉각 측정이 불가하여 PVC용접기용으로 쓰이는 탄소판을 가지고 복합도금 시간에 따라 친수성 정도를 확인하였다. 그 결과, 도 11과 같이 나타났다(도 11). 이를 통해 10분부터 도금되는 TiO2의 양이 포화가 되었다는 것을 볼 수 있었다.As a result of measuring the contact angle of nickel TiO 2 GDL, it was impossible to measure the contact angle due to absorption, so the degree of hydrophilicity was confirmed according to the composite plating time using a carbon plate used for a PVC welder. As a result, it appeared as shown in Figure 11 (Figure 11). Through this, it was seen that the amount of TiO 2 plated was saturated starting from 10 minutes.

<실험예 6> 니켈-TiO<Experimental Example 6> Nickel-TiO 22 복합도금 GDL의 전기저항 및 기체투과도 확인 Check the electrical resistance and gas permeability of composite plating GDL

복합도금에 대한 전기저항 및 기체투과도를 측정하였다. 그 결과, 도 12 및 도 13과 같이 나타났다(도 12 및 도 13). 니켈 TiO2 복합도금 코팅을 통하여 기존의 GDL 코팅보다 전기전도도 및 기체투과도가 향상되었다. 상용 GDL보다 전체적인 두께가 두꺼운데도 기체투과도가 좋았다. 상용 GDL의 기체투과도가 평균적으로 8 ~ 9 정도 되는데 비해 15 ~ 18 정도의 기체투과도를 보여주었다.Electrical resistance and gas permeability for composite plating were measured. As a result, the results were shown in Figures 12 and 13 (Figures 12 and 13). Nickel TiO 2 composite plating coating improved electrical conductivity and gas permeability compared to the existing GDL coating. Even though the overall thickness was thicker than commercial GDL, gas permeability was good. The gas permeability of commercial GDL was about 8 to 9 on average, but the gas permeability was about 15 to 18.

Claims (8)

가스확산층(Gas Diffusion Layer, GDL) 표면에 니켈도금 층이 형성되어 있고, 상기 니켈도금 층 상부에 니켈-테프론 복합도금 층 또는 니켈-TiO2 복합도금 층이 형성되어 있는 고성능 및 고내구성 GDL.
A high-performance and high-durability GDL in which a nickel plating layer is formed on the surface of the gas diffusion layer (GDL), and a nickel-Teflon composite plating layer or nickel-TiO 2 composite plating layer is formed on the top of the nickel plating layer.
제1항에 있어서,
GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅 공정, 또는 GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅 공정을 통해 형성된 것을 특징으로 하는 고성능 및 고내구성 GDL.
According to paragraph 1,
High performance and high performance, characterized by being formed through a secondary nickel-PTFE composite plating coating process after primary electroless nickel plating on the GDL surface, or a secondary nickel-TIO 2 composite plating coating process after primary electroless nickel plating on the GDL surface. Highly durable GDL.
제1항에 있어서,
니켈도금 층 및 복합도금 층은 0.1 ~ 20 μm 두께를 형성하는 것을 특징으로 하는 고성능 및 고내구성 GDL.
According to paragraph 1,
High-performance and high-durability GDL, characterized by the nickel plating layer and composite plating layer forming a thickness of 0.1 to 20 μm.
a) GDL 표면에 1차 무전해 니켈 도금을 하는 단계; 및
b) 상기 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅을 하는 단계;를 포함하는 소수성을 부여하는 GDL 복합도금 코팅 방법.
a) performing primary electroless nickel plating on the GDL surface; and
b) applying a secondary nickel-PTFE composite plating coating after the first electroless nickel plating; GDL composite plating coating method for imparting hydrophobicity, comprising:
i) GDL 표면에 1차 무전해 니켈 도금을 하는 단계; 및
ii) 상기 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅을 하는 단계;를 포함하는 친수성을 부여하는 GDL 복합도금 코팅 방법.
i) performing primary electroless nickel plating on the GDL surface; and
ii) applying a secondary nickel-TIO 2 composite plating coating after the first electroless nickel plating; GDL composite plating coating method for imparting hydrophilicity, comprising:
GDL 표면에 니켈도금 층이 형성되어 있고, 상기 니켈도금 층 상부에 니켈-테프론 복합도금 층 또는 니켈-TiO2 복합도금 층이 형성되어 있는 복합코팅된 GDL을 포함하는 고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC).
A polymer electrolyte fuel cell (Polymer Electrolyte Membrane Fuel) comprising a composite coated GDL in which a nickel plating layer is formed on the surface of the GDL, and a nickel-Teflon composite plating layer or a nickel-TiO 2 composite plating layer is formed on the top of the nickel plating layer. Cell, PEMFC).
제6항에 있어서,
상기 복합코팅된 GDL은 GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-PTFE 복합도금 코팅 공정, 또는 GDL 표면에 1차 무전해 니켈 도금 후 2차 니켈-TIO2 복합도금 코팅 공정을 통해 형성된 것을 특징으로 하는 고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC).
According to clause 6,
The composite-coated GDL is formed through a secondary nickel-PTFE composite plating coating process after primary electroless nickel plating on the GDL surface, or a secondary nickel-TIO 2 composite plating coating process after primary electroless nickel plating on the GDL surface. A polymer electrolyte fuel cell (PEMFC), characterized in that.
제6항에 있어서,
애노드(anode)는 GDL 표면에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-테프론 복합도금 층이 형성되어 있는 소수성 복합코팅된 GDL을 포함하고,
캐소드(cathode)는 GDL 표면에 1차 니켈도금 층이 형성되어 있고 상기 1차 니켈도금 층 상부에 2차 니켈-TiO2 복합도금 층이 형성되어 있는 친수성 복합코팅된 GDL을 포함하는 것을 특징으로 하는,
고분자 전해질 연료전지(Polymer ElectrolyteMembrane Fuel Cell, PEMFC).
According to clause 6,
The anode includes a hydrophobic composite coated GDL in which a primary nickel plating layer is formed on the surface of the GDL and a secondary nickel-Teflon composite plating layer is formed on top of the first nickel plating layer,
The cathode is characterized in that it includes a hydrophilic composite coated GDL in which a primary nickel plating layer is formed on the surface of the GDL and a secondary nickel-TiO 2 composite plating layer is formed on the first nickel plating layer. ,
Polymer ElectrolyteMembrane Fuel Cell (PEMFC).
KR1020220150281A 2022-11-11 2022-11-11 A method for enhancing the performance of GDL through electroless composite plating KR20240069108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220150281A KR20240069108A (en) 2022-11-11 2022-11-11 A method for enhancing the performance of GDL through electroless composite plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220150281A KR20240069108A (en) 2022-11-11 2022-11-11 A method for enhancing the performance of GDL through electroless composite plating

Publications (1)

Publication Number Publication Date
KR20240069108A true KR20240069108A (en) 2024-05-20

Family

ID=91283025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220150281A KR20240069108A (en) 2022-11-11 2022-11-11 A method for enhancing the performance of GDL through electroless composite plating

Country Status (1)

Country Link
KR (1) KR20240069108A (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chen, T. et al., International Journal of Heat and Mass Transfer, 128, 1168-1174, 2019 (https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.097)
Jayakumar, A. et al., Ionics, 21(1), 1-18, 2015 (https://doi.org/10.1007/s11581-014-1322-x)
Yu, S. et al., RSC Adv., 4(8), 3852-3856, 2014 (https://doi.org/10.1039/c3ra45770b)

Similar Documents

Publication Publication Date Title
CN110148759B (en) Preparation method of high-current-density-oriented proton exchange membrane fuel cell gas diffusion layer
US8148026B2 (en) Multi-layered electrode for fuel cell and method for producing the same
WO2018113485A1 (en) Membrane electrode of high power density proton exchange membrane fuel cell and preparation method therefor
CN1764001B (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuel cell comprising the same
US8597856B2 (en) Direct methanol fuel cell
CN110380060B (en) Preparation method of membrane electrode capable of improving low-humidity operation performance of proton exchange membrane fuel cell
CN105845946B (en) A kind of gas-diffusion electrode and its manufacturing method of the in-situ deposition metal nano catalyst on carbon paper
JP2022553451A (en) Gas diffusion layer, manufacturing method thereof, membrane electrode assembly, and fuel cell
CN1287476C (en) Compound electrolytic film and burning cell contg. such flm
KR101275790B1 (en) Membrane-electrode assembly for fuel cell, methode of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
CN101385179A (en) Reinforced electrolyte membrane comprising catalyst for preventing reactant crossover and method for manufacturing the same
Lin et al. Preparation of graded microporous layers for enhanced water management in fuel cells
CN114420955B (en) Preparation method and application of membrane electrode for improving water management of cathode catalytic layer of proton exchange membrane fuel cell
JP2000357524A (en) Proton conductor, fuel cell, manufacture of electrolyte plate, and manufacture of fuel cell
KR101142235B1 (en) High molecular nano complexe membrane for DMFC, Membrane electrode assembly containg that, and Direct methanol fuel cell
JP2007048471A (en) Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell
WO2009137229A1 (en) Activation method for membrane electrode assembly, membrane electrode assembly, and solid polymer-type fuel cell using same
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
CN114874475B (en) Self-humidifying proton exchange membrane based on hollow polydopamine and preparation method and application thereof
KR20240069108A (en) A method for enhancing the performance of GDL through electroless composite plating
CN101409348A (en) Method for preparing air seal effect resistance anode for direct methanol fuel cell
CN111193053B (en) High-thermal-stability proton exchange membrane and preparation method thereof
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
CN117254081B (en) Anti-aging proton exchange membrane, preparation method thereof and membrane electrode assembly
CN109786763B (en) Composite catalyst layer electrode for phosphoric acid fuel cell and preparation method thereof