JP2007048471A - Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell - Google Patents

Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell Download PDF

Info

Publication number
JP2007048471A
JP2007048471A JP2005228562A JP2005228562A JP2007048471A JP 2007048471 A JP2007048471 A JP 2007048471A JP 2005228562 A JP2005228562 A JP 2005228562A JP 2005228562 A JP2005228562 A JP 2005228562A JP 2007048471 A JP2007048471 A JP 2007048471A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte membrane
membrane
thin film
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005228562A
Other languages
Japanese (ja)
Inventor
Hiroshige Takase
高瀬  浩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005228562A priority Critical patent/JP2007048471A/en
Publication of JP2007048471A publication Critical patent/JP2007048471A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell restraining cross-leak which deteriorates a membrane, caused by reaction heat of hydrogen and oxygen generated at a part just passed through an electrolyte membrane, having high output and excellent durability. <P>SOLUTION: The electrolyte membrane 3 for fuel cell is reinforced by a porous thin film 5, and fine particle of noble metal 4 is coated and/or deposited on a surface and/or in fine pores of the porous film. Manufacturing method of the same and the membrane-electrode assembly for a furl cell are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池に用いられる補強型電解質膜、その製造方法、燃料電池用膜−電極接合体、及びそれを備えた固体高分子型燃料電池に関する。   The present invention relates to a reinforced electrolyte membrane used for a fuel cell, a method for producing the same, a membrane-electrode assembly for a fuel cell, and a polymer electrolyte fuel cell including the same.

ガスの電気化学反応により電気を発生させる燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ないことから、近年、発電用、低公害の自動車用電源等、種々の用途が期待されている。燃料電池は、その電解質により分類することができ、例えば、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池、固体高分子型燃料電池等が知られている。   Fuel cells that generate electricity through the electrochemical reaction of gas have high power generation efficiency, and the exhausted gas is clean and has very little impact on the environment. Applications are expected. Fuel cells can be classified according to their electrolytes. For example, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, solid polymer fuel cells, and the like are known.

なかでも、固体高分子型燃料電池は、80℃程度の低温で作動させることができるため、他の種類の燃料電池と比較して取扱いが比較的容易であり、また、出力密度が極めて大きいことから、その利用が期待されるものである。固体高分子型燃料電池は、通常、プロトン導電性のある高分子膜を電解質とし、その両側にそれぞれ燃料極、酸素極となる一対の電極を設けた膜−電極接合体(MEA:Membrane−ElectrodeAssembly )を発電単位とする。そして、水素や炭化水素等の燃料ガスを燃料極に、酸素や空気等の酸化剤ガスを酸素極にそれぞれ供給し、ガスと電解質と電極との3相界面において電気化学的な反応を進行させることにより電気を取り出すものである。   In particular, the polymer electrolyte fuel cell can be operated at a low temperature of about 80 ° C., and therefore it is relatively easy to handle and has a very high output density compared to other types of fuel cells. Therefore, its use is expected. A polymer electrolyte fuel cell is usually a membrane-electrode assembly (MEA: Membrane-Electrode Assembly) in which a proton conductive polymer membrane is used as an electrolyte, and a pair of electrodes serving as a fuel electrode and an oxygen electrode are provided on both sides thereof. ) Is the power generation unit. Then, a fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode, and an electrochemical reaction proceeds at the three-phase interface between the gas, the electrolyte, and the electrode. The electricity is taken out by this.

固体高分子型燃料電池は、膜−電極接合体とセパレータとの積層体からなる。膜−電極接合体は、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置された触媒層からなる電極(アノード、燃料極)及び電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)とからなる。膜−電極接合体とセパレータとの間には、アノード側、カソード側にそれぞれ拡散層が設けられる。セパレータには、アノードに燃料ガス(水素)を供給するための燃料ガス流路が形成され、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路が形成されている。また、セパレータには冷媒(通常、冷却水)を流すための冷媒流路も形成されている。膜−電極アッセンブリとセパレータを重ねてセルを構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材とボルト・ナットにて固定して、スタックを構成する。   A polymer electrolyte fuel cell is composed of a laminate of a membrane-electrode assembly and a separator. The membrane-electrode assembly includes an electrolyte membrane composed of an ion exchange membrane, an electrode composed of a catalyst layer disposed on one surface of the electrolyte membrane (anode, fuel electrode), and an electrode composed of a catalyst layer disposed on the other surface of the electrolyte membrane. (Cathode, air electrode). Between the membrane-electrode assembly and the separator, diffusion layers are provided on the anode side and the cathode side, respectively. In the separator, a fuel gas passage for supplying fuel gas (hydrogen) to the anode is formed, and an oxidizing gas passage for supplying oxidizing gas (oxygen, usually air) to the cathode. The separator is also formed with a refrigerant flow path for flowing a refrigerant (usually cooling water). A cell is formed by stacking a membrane-electrode assembly and a separator, a module is formed from at least one cell, a module is stacked to form a cell stack, and terminals, insulators, end plates are formed at both ends of the cell stack in the cell stacking direction. The cell stack is clamped in the cell stacking direction, and is fixed with a fastening member and a bolt and a nut extending in the cell stacking direction outside the cell stacking body to constitute a stack.

各セルの、燃料極(アノード)側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオン及び電子(隣りのMEAの燃料極で生成した電子がセパレータを通して来る、またはセル積層方向一端のセルの燃料極で生成した電子が外部回路を通して他端のセルの空気極(カソード)に来る)から水を生成する次の反応が行われる。
アノード側:H →2H +2e
カソード側:2H +2e +(1/2)O →H
On the fuel electrode (anode) side of each cell, hydrogen is converted into hydrogen ions (protons) and electrons, and the hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions, and electrons on the cathode side. (Electrons generated at the fuel electrode of the adjacent MEA come through the separator, or electrons generated at the fuel electrode of the cell at one end of the cell stacking direction pass through the external circuit to the air electrode (cathode) of the other cell). The next reaction to produce takes place.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

電解質膜はプロトンのみを膜中を膜厚方向に移動させるべきものであるが、微量の水素が燃料極(アノード)側から空気極(カソード)側に、または微量のエアが空気極(カソード)側から燃料極(アノード)側に、膜中を膜厚方向に移動することがある(これをクロスリークという)。   The electrolyte membrane should move only protons through the membrane in the film thickness direction, but a small amount of hydrogen from the fuel electrode (anode) side to the air electrode (cathode) side, or a small amount of air from the air electrode (cathode). The film may move in the film thickness direction from the side to the fuel electrode (anode) side (this is called cross leak).

このように、固体高分子型燃料電池では、上記両極に供給された各々のガスの一部が、電気化学反応に寄与することなく互いに電解質内部を拡散し、対極の電極上でその電極に供給されたガスと混合するという、いわゆるクロスリークの問題がある。クロスリークが生じると、電池電圧の低下や、エネルギー効率の低下を招く。さらには、クロスリークによる燃焼反応で、電解質である高分子膜に孔があき、電池を作動させることができなくなるおそれもある。   As described above, in the polymer electrolyte fuel cell, a part of each gas supplied to both electrodes diffuses inside the electrolyte without contributing to the electrochemical reaction, and is supplied to the electrode on the counter electrode. There is a so-called cross leak problem of mixing with the generated gas. When the cross leak occurs, the battery voltage decreases and the energy efficiency decreases. Furthermore, there is a possibility that the polymer membrane as an electrolyte has a hole due to a combustion reaction due to cross leak, and the battery cannot be operated.

一方で、電池の内部抵抗を小さくし、出力をより高くするという観点から、電解質である高分子膜の薄膜化が検討されている。しかし、高分子膜を薄くすると、ガスが拡散し易くなるため、上記クロスリークの問題はより深刻なものとなる。また、薄膜化により高分子膜自体の機械的強度が低下することに加え、高分子膜の製造時にピンホール等が発生し易くなる。これら、高分子膜自体の欠陥もクロスリーク増大の要因の一つとなる。   On the other hand, from the viewpoint of reducing the internal resistance of the battery and increasing the output, it has been studied to reduce the thickness of the polymer film that is an electrolyte. However, if the polymer film is thinned, the gas easily diffuses, so the problem of the cross leak becomes more serious. In addition to the reduction in the mechanical strength of the polymer film itself due to the reduction in thickness, pinholes and the like are likely to occur during the production of the polymer film. These defects in the polymer film itself are one of the causes of increased cross leak.

そこで、クロスリークを抑制すべく、種々の検討がなされている。例えば、下記特許文献1には、電解質として使用する高分子膜を複数積層させることにより、各高分子膜に生じたピンホールの位置をずらし、クロスリークを抑制する試みが開示されている。また、高分子膜自体を強化するという観点からは、例えば、下記特許文献2には、繊維等により補強された高分子膜が開示されている。   Accordingly, various studies have been made to suppress cross leaks. For example, Patent Document 1 below discloses an attempt to suppress the cross leak by shifting the positions of pinholes generated in each polymer film by laminating a plurality of polymer films used as an electrolyte. From the viewpoint of reinforcing the polymer film itself, for example, Patent Document 2 below discloses a polymer film reinforced with fibers or the like.

しかしながら、上記高分子膜を積層させたものは、同じ高分子膜を何枚か積層させているだけであり、単に膜厚を増加させたにすぎない。つまり、高分子膜の機械的強度は充分ではないため、長期間の使用におけるクロスリークを抑制することは困難である。また、繊維等により高分子膜を補強する方法は、その高分子膜の製造プロセスが煩雑であり、コストもかかる。また、高分子膜の強度は向上するものの、クロスリークの抑制は充分とはいえない。   However, a laminate of the above polymer films is merely a stack of several identical polymer films, and is merely an increase in film thickness. That is, since the mechanical strength of the polymer film is not sufficient, it is difficult to suppress the cross leak during long-term use. In addition, the method of reinforcing the polymer film with fibers or the like requires a complicated manufacturing process of the polymer film and costs. Further, although the strength of the polymer film is improved, it cannot be said that suppression of cross leak is sufficient.

下記特許文献3には、クロスリークが少なく安価な燃料電池用膜−電極接合体を提供するとともに、出力が高く、耐久性に優れた固体高分子型燃料電池を提供することを目的として、膜−電極接合体の電解質を、複数の高分子膜が積層されてなり、該複数の高分子膜のうち少なくとも一枚の高分子膜は、少なくとも一方の表面が改質処理された表面改質膜とする発明が開示されている。具体的な高分子膜の表面の改質処理方法としては、架橋処理、グラフト化処理、プラズマ処理が例示されている。電解質として使用される高分子膜の表面の少なくとも一方が改質処理されていることにより、高分子膜は強化され、膜厚が薄くても高分子膜の機械的強度は向上する。燃料電池を作動させると、電解質には、80℃程度の高温下で圧縮や引っ張り等の種々の応力がかかる。表面改質膜は、このような条件においても、膜の機械的強度が大きいためピンホール等の欠陥を生じることはない。したがって、クロスリークは充分抑制される。さらに、高分子膜を複数積層させることで、ガスは拡散し難くなり、クロスリークをより抑制することができる。   Patent Document 3 listed below provides a membrane-electrode assembly for a fuel cell that is low in cross-leakage and inexpensive, and has a high output and a solid polymer fuel cell that is excellent in durability. A surface modified film in which a plurality of polymer films are laminated as an electrolyte of an electrode assembly, and at least one of the plurality of polymer films is modified on at least one surface thereof The invention is disclosed. Specific examples of the method for modifying the surface of the polymer film include crosslinking treatment, grafting treatment, and plasma treatment. Since at least one of the surfaces of the polymer film used as the electrolyte is modified, the polymer film is strengthened, and the mechanical strength of the polymer film is improved even when the film thickness is thin. When the fuel cell is operated, various stresses such as compression and tension are applied to the electrolyte at a high temperature of about 80 ° C. Even under such conditions, the surface-modified film does not cause defects such as pinholes due to the high mechanical strength of the film. Therefore, the cross leak is sufficiently suppressed. Furthermore, by laminating a plurality of polymer films, it becomes difficult for the gas to diffuse, and cross leak can be further suppressed.

下記特許文献3の方法は、高分子膜の表面を改質処理したものである。高分子膜全体ではなく、その表面だけを改質処理しているため、改質処理に要する時間や、処理に使用する試薬等の量も少なくてよい。つまり、簡便に低コストで改質処理することができるという利点を有する。しかし、高分子膜全体ではなく、その表面だけを改質処理しているため、クロスリークの抑制は十分とはいえない。   The method of Patent Document 3 below is a method in which the surface of a polymer film is modified. Since only the surface of the polymer film is modified, not the entire polymer film, the time required for the modification treatment and the amount of reagents used for the treatment may be reduced. That is, there is an advantage that the reforming process can be easily performed at low cost. However, since only the surface of the polymer film is modified, not the entire polymer film, it cannot be said that cross-leakage is sufficiently suppressed.

他方、従来技術の1つに、電解質分散溶液中にPt微粒子を混合した混合液を用いてキャスト製膜した電解質膜がある。クロスリークしたH、OガスをPt微粒子でHO分子に変換する機能を期待したもので、生成した水を燃料電池の加湿剤として使用しようとするものである。しかし、それらの機能は透過したH、OガスがPt微粒子と接触して初めて発現するものであり、この構成ではその透過ガスとPt微粒子の接触確率が低い。透過ガスとPt微粒子の接触確率を増加させるには、Pt粒子径を大きくするか、添加量を増加させる必要があり、コスト面で不利である。 On the other hand, as one of the prior arts, there is an electrolyte membrane formed by casting using a mixed solution in which Pt fine particles are mixed in an electrolyte dispersion solution. It is expected to have a function of converting cross leaked H 2 and O 2 gas into H 2 O molecules with Pt fine particles, and the generated water is intended to be used as a humidifier for a fuel cell. However, these functions appear only when the permeated H 2 and O 2 gas come into contact with the Pt fine particles, and in this configuration, the contact probability between the permeated gas and the Pt fine particles is low. In order to increase the contact probability between the permeated gas and the Pt fine particles, it is necessary to increase the Pt particle diameter or increase the addition amount, which is disadvantageous in terms of cost.

特開平6−84528号公報JP-A-6-84528 特開2001−35508号公報JP 2001-35508 A 特開2003−272663号公報JP 2003-272663 A

本発明は、上記実状に鑑みてなされたものであり、電解質膜を通過した所で水素が酸素と反応し熱を生じて膜を劣化させるクロスリークを抑制するとともに、貴金属の析出による短絡を抑制し、燃料電池の耐久性、寿命を低下させることを課題とする。又、クロスリークが抑制された燃料電池用膜−電極接合体を提供することを課題とする。更に、そのような膜−電極接合体を用いることにより、出力が高く、かつ耐久性に優れた固体高分子型燃料電池を提供することを課題とする。   The present invention has been made in view of the above-mentioned circumstances, and suppresses cross-leakage that causes hydrogen to react with oxygen and generate heat when it passes through an electrolyte membrane, thereby degrading the membrane, and suppresses short-circuiting due to precious metal deposition. The object is to reduce the durability and life of the fuel cell. It is another object of the present invention to provide a fuel cell membrane-electrode assembly in which cross leak is suppressed. Furthermore, it is an object of the present invention to provide a polymer electrolyte fuel cell having high output and excellent durability by using such a membrane-electrode assembly.

本発明者は、特定処理した補強型電解質膜を用いることで上記課題が解決されることを見出し、本発明に到達した。   The present inventor has found that the above-mentioned problems can be solved by using a reinforced electrolyte membrane subjected to specific treatment, and has reached the present invention.

即ち、第1に、本発明は、多孔質薄膜で補強された燃料電池用電解質膜の発明であって、該多孔質膜の表面及び/又は細孔内に貴金属が被覆及び/又は析出されていることを特徴とする。   That is, first, the present invention is an invention of an electrolyte membrane for fuel cells reinforced with a porous thin film, wherein a noble metal is coated and / or deposited on the surface and / or pores of the porous membrane. It is characterized by being.

本発明の燃料電池用補強型電解質膜には、大別して下記の2類型がある。
(1)前記多孔質薄膜で補強された燃料電池用電解質膜が、多孔質薄膜に高分子電解質を含浸させた燃料電池用補強型電解質膜である場合。
(2)前記多孔質薄膜で補強された燃料電池用電解質膜が、1組以上の高分子電解質膜と多孔質薄膜を積層させた燃料電池用補強型電解質膜である場合。
The reinforced electrolyte membrane for fuel cells of the present invention is roughly classified into the following two types.
(1) The fuel cell electrolyte membrane reinforced with the porous thin film is a fuel cell reinforced electrolyte membrane in which a porous thin film is impregnated with a polymer electrolyte.
(2) The fuel cell electrolyte membrane reinforced with the porous thin film is a fuel cell reinforced electrolyte membrane in which one or more sets of polymer electrolyte membranes and a porous thin film are laminated.

本発明の燃料電池用補強型電解質膜に用いられる多孔質薄膜としては、多孔質薄膜の平均細孔径が0.1μm以上であること、多孔質薄膜の気孔率が40%以上であることが好ましい。又、多孔質薄膜としては、有機多孔質膜や無機多孔質膜が適用されるが、この中で延伸法によって多孔質化されたポリテトラフルオロエチレン(PTFE)膜が好ましく例示される。   As the porous thin film used in the reinforced electrolyte membrane for fuel cells of the present invention, the porous thin film preferably has an average pore diameter of 0.1 μm or more, and the porous thin film has a porosity of 40% or more. . As the porous thin film, an organic porous film or an inorganic porous film is applied. Among them, a polytetrafluoroethylene (PTFE) film made porous by a stretching method is preferably exemplified.

本発明の燃料電池用補強型電解質膜に用いられる前記貴金属の具体例としては、白金(Pt)が好ましく例示される。   Platinum (Pt) is preferably exemplified as a specific example of the noble metal used in the reinforced electrolyte membrane for fuel cells of the present invention.

第2に、本発明は、上記の燃料電池用補強型電解質膜の製造方法の発明であり、下記の2類型がある。
(1)多孔質薄膜を貴金属イオン種を有する化合物溶液で処理して該多孔質膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程と、該貴金属を被覆及び/又は内包する多孔質薄膜に高分子電解質を充填する工程とを含む場合。
(2)多孔質薄膜を貴金属イオン種を有する化合物溶液で処理して該多孔質膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程と、該貴金属を被覆及び/又は内包する多孔質薄膜に高分子電解質膜を積層する工程とを含む場合。
2ndly, this invention is invention of the manufacturing method of said reinforced electrolyte membrane for fuel cells, and there exist the following 2 types.
(1) A step of coating and / or depositing a noble metal on the surface and / or pores of the porous film by treating the porous thin film with a compound solution having a noble metal ion species, and coating and / or inclusion of the noble metal And a step of filling the porous thin film with a polymer electrolyte.
(2) a step of coating and / or depositing a noble metal on the surface and / or pores of the porous film by treating the porous thin film with a compound solution having a noble metal ion species, and coating and / or inclusion of the noble metal Including a step of laminating a polymer electrolyte membrane on a porous thin film.

本発明の燃料電池用補強型電解質膜の製造方法において、前記多孔質薄膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程としては種々の化学的または物理的処理が採用される。これらの中で、化学めっきまたはスパッタが好ましく例示される。   In the method for producing a reinforced electrolyte membrane for a fuel cell of the present invention, various chemical or physical treatments are employed as a step of coating and / or depositing a noble metal on the surface and / or pores of the porous thin film. The Of these, chemical plating or sputtering is preferably exemplified.

本発明の燃料電池用補強型電解質膜の製造方法に用いられる前記多孔質薄膜の平均細孔径、気孔率、及び具体例、並びに前記貴金属の具体例は上記の通りである。   The average pore diameter, porosity, and specific examples of the porous thin film used in the method for producing a reinforced electrolyte membrane for a fuel cell of the present invention, and specific examples of the noble metal are as described above.

第3に、本発明は、燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜とを含む燃料電池用膜−電極接合体の発明であって、該高分子電解質膜は、上記の表面及び/又は細孔内に貴金属が被覆及び/又は析出されている多孔質薄膜で補強された燃料電池用電解質膜である。   Thirdly, the present invention provides a pair of electrodes composed of a fuel electrode supplied with a fuel gas and an oxygen electrode supplied with an oxidant gas, and a polymer electrolyte membrane sandwiched between the pair of electrodes, The polymer electrolyte membrane is reinforced with a porous thin film in which a noble metal is coated and / or deposited in the surface and / or pores described above. It is an electrolyte membrane for fuel cells.

本発明の燃料電池用膜−電極接合体は、前記高分子電解質膜中に前記燃料電池用補強型電解質膜が1枚含まれていても良く、複数枚含まれていても良い。   In the membrane-electrode assembly for a fuel cell according to the present invention, the polymer electrolyte membrane may include one or more reinforced electrolyte membranes for the fuel cell.

第4に、本発明は、上記の燃料電池用補強型電解質膜を有する膜−電極接合体を備えた固体高分子型燃料電池である。   Fourthly, the present invention is a polymer electrolyte fuel cell comprising a membrane-electrode assembly having the above-described reinforced electrolyte membrane for fuel cells.

本発明の表面及び/又は細孔内に貴金属が被覆及び/又は析出されている多孔質薄膜で補強された燃料電池用電解質膜は、電解質膜を透過したガスと貴金属が接触する確率が高く、透過した水素が酸素と反応し熱を生じて膜を劣化させるクロスリークを抑制するとともに、貴金属の析出による短絡を抑制する。これにより、燃料電池の耐久性、寿命を低下させることが可能となる。又、クロスリークが抑制された燃料電池用膜−電極接合体を用いることにより、出力が高く、かつ耐久性に優れた固体高分子型燃料電池が得られる。   The electrolyte membrane for a fuel cell reinforced with a porous thin film in which a noble metal is coated and / or deposited in the surface and / or pores of the present invention has a high probability that the gas that has permeated the electrolyte membrane and the noble metal are in contact with each other. The permeated hydrogen reacts with oxygen to generate heat and suppress the cross leak that deteriorates the film, and also suppresses the short circuit due to the precious metal deposition. As a result, the durability and life of the fuel cell can be reduced. In addition, by using a fuel cell membrane-electrode assembly in which cross leakage is suppressed, a solid polymer fuel cell having high output and excellent durability can be obtained.

以下、図面を用いて本発明の燃料電池用補強型電解質膜の機能を説明する。
図1に、クロスリークが発生する場合とクロスリークが発生するものの電解質膜中のPt微粒子で抑制される場合を示す。アノード触媒層1とカソード触媒層2に挟まれた電解質膜3中にPt微粒子が分散されている。これは、電解質分散溶液中にPt微粒子を混合した混合液を用いてキャスト製膜した電解質膜を用いるもので、この電解質膜はPt微粒子にクロスリークされたH、Oガスを反応させてHO分子に変換させることを期待したものである。しかし、それらの機能は透過したH、OガスがPt微粒子と接触して初めて発現するものである(図1中のb領域:透過ガスとPt微粒子が接触し、透過ガスが水へ変換)。この構成ではその透過したH、OガスとPt微粒子の接触確率が低い(図1中のa領域:透過ガスとPt微粒子が接触せず、透過ガス変換せず)。接触確率を高めるには、Pt量を増加させることが考えられるが、コストアップとなる。
Hereinafter, the function of the reinforced electrolyte membrane for fuel cells of the present invention will be described with reference to the drawings.
FIG. 1 shows a case in which cross leak occurs and a case in which cross leak occurs but is suppressed by Pt fine particles in the electrolyte membrane. Pt fine particles are dispersed in the electrolyte membrane 3 sandwiched between the anode catalyst layer 1 and the cathode catalyst layer 2. This uses an electrolyte membrane cast by using a mixed liquid in which Pt fine particles are mixed in an electrolyte dispersion solution. This electrolyte membrane reacts with H 2 and O 2 gas cross-leaked into Pt fine particles. It is expected to be converted to H 2 O molecules. However, these functions are not developed until the permeated H 2 or O 2 gas comes into contact with the Pt fine particles (region b in FIG. 1: the permeated gas and the Pt fine particles come into contact with each other, and the permeated gas is converted into water. ). In this configuration, the contact probability between the permeated H 2 and O 2 gas and the Pt fine particles is low (region a in FIG. 1: the permeate gas does not contact the Pt fine particles and the permeate gas is not converted). To increase the contact probability, it is conceivable to increase the amount of Pt, but this increases the cost.

また、図1中のb領域のように、電解質中のいたる所で透過ガスとPt微粒子が接触し、透過ガスが水へ変換するとともに、Pt++イオンが還元されPtが析出すると、析出したPtが連続し、アノード触媒層1とカソード触媒層2が短絡する問題もあった。 Further, as in the region b in FIG. 1, when the permeated gas and Pt fine particles come in contact with each other in the electrolyte and the permeated gas is converted into water, and Pt ++ ions are reduced and Pt is precipitated, the precipitated Pt There is also a problem that the anode catalyst layer 1 and the cathode catalyst layer 2 are short-circuited.

図2は、本発明の補強型電解質膜を用いた場合にクロスリークが抑制される原理の模式図を示す。アノード触媒層1とカソード触媒層2に挟まれた電解質膜3中に、表面及び/又は細孔をPtなどの貴金属の皮膜又は微粒子4で被覆した多孔質膜(例えば、PTFE多孔質膜)5が補強膜として配置されている。また、該細孔中に電解質樹脂を含浸・充填されている。図1中のb領域と比べて、Pt微粒子が該補強膜中、特に細孔中に集中して分散されている。   FIG. 2 shows a schematic diagram of the principle that cross leak is suppressed when the reinforced electrolyte membrane of the present invention is used. A porous membrane (for example, PTFE porous membrane) 5 in which an electrolyte membrane 3 sandwiched between an anode catalyst layer 1 and a cathode catalyst layer 2 is coated with a film of noble metal such as Pt or fine particles 4 on its surface and / or pores. Is arranged as a reinforcing membrane. The pores are impregnated and filled with an electrolyte resin. Compared with the region b in FIG. 1, Pt fine particles are concentrated and dispersed in the reinforcing film, particularly in the pores.

従来技術との大きな相違点は、透過したHやOガスは全てPt被覆された細孔中を通るので、HとOガスが出会う確率が高く、HO分子への変換反応が起こりやすいという機能が発揮される。 The major difference from the prior art is that all the permeated H 2 or O 2 gas passes through the Pt-coated pores, so there is a high probability that H 2 and O 2 gas meet, and the conversion reaction to H 2 O molecules. The function that is easy to occur is exhibited.

また、追加される機能としては、以下のようなものがある。
(1)長時間のON−OFF発電によって触媒層より溶出したPt++イオンはアノード側のHで還元、針状析出してセルの短絡を招く不具合現象を、その細孔でPt++イオンの拡散を抑制し、かつ付近のHで還元されるために、Pt析出場所を多孔質膜付近に集中させることができる。これにより、燃料電池のセル短絡を防止することが可能である。
(2)短絡前に溶出Ptが析出して細孔を閉塞することでシャットダウンして大事に至らない。
(3)多孔質薄膜で補強された燃料電池用電解質膜であるため、多孔質膜が本来有する強度を発揮する上に、Pt被覆することで、補強基材の強度が増して電解質膜の寸法変化率が更に低減される。
(4)補強基材数が増えれば、ガス透過量が抑制されるので、Pt使用量も公知技術よりも少量でよい。
In addition, the following functions are added.
(1) The long ON-OFF Pt ++ ions dissolved from the catalyst layer by the generator reduced at the anode side of the H 2, the defect phenomenon causing a short circuit of acicular precipitated cell, the Pt ++ ions in the pores Since the diffusion is suppressed and reduction is performed with nearby H 2 , the Pt deposition site can be concentrated in the vicinity of the porous film. Thereby, it is possible to prevent the cell short circuit of the fuel cell.
(2) The elution Pt precipitates before the short circuit and closes the pores, thereby shutting down and not important.
(3) Since it is an electrolyte membrane for fuel cells reinforced with a porous thin film, the strength of the reinforcing substrate is increased by covering with Pt in addition to exhibiting the strength inherent in the porous membrane, and the dimensions of the electrolyte membrane The rate of change is further reduced.
(4) If the number of reinforcing bases increases, the amount of gas permeation is suppressed, so the amount of Pt used may be smaller than that of the known technique.

本発明では、化学めっき又はスパッタなどで表面をPt被覆した有機又は無機物の多孔質薄膜(細孔径:0.1μm以上、気孔率:40%以上、膜厚:電解質膜の膜厚未満)を用いることが好ましい。このPt被覆多孔質薄膜の細孔内に電解質を含浸(充填)させて、補強型電解質膜を作製する。電解質膜中には、Pt被覆多孔質膜は何層あっても構わない。多孔質薄膜の構造によって何層も考えられるが、他の膜物性(例えば、イオン伝導性)を低下させない範囲内で、多層あればPt被覆量が少量でも透過ガスとPtとの接触確率が増すので好ましい。用いられる電解質には特に拘らない。   In the present invention, an organic or inorganic porous thin film (pore diameter: 0.1 μm or more, porosity: 40% or more, film thickness: less than the thickness of the electrolyte film) whose surface is coated with Pt by chemical plating or sputtering is used. It is preferable. An electrolyte is impregnated (filled) into the pores of the Pt-coated porous thin film to produce a reinforced electrolyte membrane. There may be any number of Pt-coated porous membranes in the electrolyte membrane. The number of layers can be considered depending on the structure of the porous thin film, but within the range where other film physical properties (for example, ion conductivity) are not deteriorated, the contact probability between the permeated gas and Pt increases even if the Pt coating amount is small if there is a multilayer. Therefore, it is preferable. There is no particular limitation on the electrolyte used.

本発明では、化学めっきで多孔質膜表面をPt被覆する場合に用いるめっき処理液の構成例としては以下のようなものが例示される。
(1)Ptイオン種(例えば、塩化白金酸、ジニトロジアミン白金、テトラアンミンジクロロ白金、ヘキサヒドロキソ白金酸カリウムなど)
(2)炭素粉体(炭素種類は問わない。粒子径<1μm)
(3)酸型電解質微粒子(例えば、ナフィオン溶液(粒子径<1μm))
(4)界面活性剤(例えば、ジメチルスルホオキシド、各種アルコール、各種界面活性剤(カチオン界面活性剤、アニオン界面活性剤、ノ二オン界面活性剤))
(5)pH調整剤(例えば、水酸化ナトリウムや水酸化カリウム)
(6)錯化剤(例えば、クエン酸塩、酒石酸塩等のオキシカルボン酸、マロン酸、マレイン酸等のジカルボン酸、これらの塩、EDTA、トリエタノールアミン、グリシン、アラニン等のアミン類)
(7)還元剤(例えば、次亜リン酸塩類、ヒトドラジン塩類、ホルマリン、NaBH、LiAIH、ジアルキルアミンボラン、亜硫酸塩、アスコルビン酸塩などの通常化学めっきで使用される還元剤のうち1つ以上使用)
In the present invention, examples of the configuration of the plating treatment liquid used when the porous film surface is coated with Pt by chemical plating include the following.
(1) Pt ion species (for example, chloroplatinic acid, dinitrodiamine platinum, tetraamminedichloroplatinum, potassium hexahydroxoplatinate, etc.)
(2) Carbon powder (carbon type does not matter. Particle size <1 μm)
(3) Acid electrolyte fine particles (for example, Nafion solution (particle diameter <1 μm))
(4) Surfactant (for example, dimethyl sulfoxide, various alcohols, various surfactants (cationic surfactant, anionic surfactant, nonionic surfactant))
(5) pH adjuster (for example, sodium hydroxide or potassium hydroxide)
(6) Complexing agents (for example, oxycarboxylic acids such as citrate and tartrate, dicarboxylic acids such as malonic acid and maleic acid, salts thereof, amines such as EDTA, triethanolamine, glycine and alanine)
(7) Reducing agent (for example, one of reducing agents usually used in chemical plating such as hypophosphites, human drazine salts, formalin, NaBH 4 , LiAIH 6 , dialkylamine borane, sulfite, ascorbate, etc. Use more)

用いられる高分子電解質は、例えば電解質樹脂側鎖末端基がスルホニルハライド(−SOFや−SOCl)の撥水性電解質が好ましい。電解質中の側鎖末端基数の指標となるEW値は1500以下が好ましく、800〜1100がより好ましい。用いられる多孔質膜としては、膜表面を金型やブラスト処理などで粗面化したものは好ましい。 The polymer electrolyte used is preferably a water-repellent electrolyte having, for example, a sulfonyl halide (—SO 2 F or —SO 2 Cl) as a side chain terminal group of the electrolyte resin. The EW value serving as an index of the number of side chain terminal groups in the electrolyte is preferably 1500 or less, and more preferably 800 to 1100. As the porous film to be used, a film whose surface is roughened by a mold or a blast treatment is preferable.

これらを材料とする本発明の補強型電解質膜は、少量のPt量で、電解質膜バルクまで透過したHとOをHOへ変換したり、触媒層より溶出、析出、成長したPt針状析出物による燃料電池セルの短絡を防止することができる。 The reinforced electrolyte membrane of the present invention to them as materials, a small amount of Pt amount, or the H 2 and O 2 passing through to the electrolyte membrane bulk is converted to H 2 O, eluted from the catalyst layer, deposited, grown Pt A short circuit of the fuel battery cell due to the acicular precipitate can be prevented.

通常、燃料極および酸素極は、それぞれ、白金等をカーボン粒子に担持させた触媒を含む触媒層と、カーボンクロス等のガスが拡散可能な多孔質材料からなる拡散層との二層から構成される。この場合、本発明の燃料電池用膜−電極接合体は、電解質の両側に触媒層と拡散層とをそれぞれ形成して作製すればよい。例えば、各電極の触媒を、電解質となる高分子膜の材料である高分子を含む液に分散し、その分散液を高分子膜の両表面に塗布、乾燥等して触媒層を形成する。そして、形成した各触媒層の表面に、カーボンクロス等を圧着等することで拡散層を形成し、膜−電極接合体とすればよい。   Usually, the fuel electrode and the oxygen electrode are each composed of two layers: a catalyst layer containing a catalyst in which platinum or the like is supported on carbon particles, and a diffusion layer made of a porous material capable of diffusing a gas such as carbon cloth. The In this case, the fuel cell membrane-electrode assembly of the present invention may be produced by forming a catalyst layer and a diffusion layer on both sides of the electrolyte. For example, the catalyst of each electrode is dispersed in a liquid containing a polymer that is a material of the polymer film that serves as an electrolyte, and the dispersion is applied to both surfaces of the polymer film and dried to form a catalyst layer. Then, a diffusion layer may be formed on the surface of each formed catalyst layer by press-bonding carbon cloth or the like to form a membrane-electrode assembly.

本発明の燃料電池用膜−電極接合体における電解質は、複数の補強用多孔質膜が積層されていても良い。この場合、該複数の多孔質膜のうち少なくとも一枚の多孔質膜は、本発明の補強型電解質膜である。積層される電解質膜は、電解質として使用できる高分子膜であれば、その種類を特に限定するものではない。また、積層される電解質膜は、すべて同じ電解質膜でもよく、また、異なる種類の電解質膜を混合して用いてもよい。例えば、全フッ素系スルホン酸膜、全フッ素系ホスホン酸膜、全フッ素系カルボン酸膜、それらの全フッ素系膜にポリテトラフルオロエチレン(PTFE)を複合化したPTFE複合化膜等の全フッ素系電解質膜や、含フッ素炭化水素系グラフト膜、全炭化水素系グラフト膜、全芳香族膜等の炭化水素系電解質膜等を用いることができる。   The electrolyte in the membrane-electrode assembly for a fuel cell of the present invention may be a laminate of a plurality of reinforcing porous membranes. In this case, at least one porous membrane among the plurality of porous membranes is the reinforced electrolyte membrane of the present invention. The electrolyte membrane to be laminated is not particularly limited as long as it is a polymer membrane that can be used as an electrolyte. The laminated electrolyte membranes may be the same electrolyte membrane, or different types of electrolyte membranes may be mixed and used. For example, perfluorinated sulfonic acid films, perfluorinated phosphonic acid films, perfluorinated carboxylic acid films, and perfluorinated films such as PTFE composite films in which polytetrafluoroethylene (PTFE) is compounded with these perfluorinated films. An electrolyte membrane, a hydrocarbon-based electrolyte membrane such as a fluorine-containing hydrocarbon-based graft membrane, a wholly hydrocarbon-based graft membrane, or a wholly aromatic membrane can be used.

特に、耐久性等を考慮した場合には、全フッ素系電解質膜を用いることが望ましい。なかでも、電解質としての性能が高いという理由から、全フッ素系スルホン酸膜を用いることが望ましい。全フッ素系スルホン酸膜の一例として、「ナフィオン」(登録商標、デュポン社製)の商品名で知られる、スルホン酸基を有するパーフルオロビニルエーテルとテトラフルオロエチレンとの共重合体膜が挙げられる。   In particular, when considering durability and the like, it is desirable to use a perfluorinated electrolyte membrane. Among these, it is desirable to use a perfluorinated sulfonic acid membrane because of its high performance as an electrolyte. As an example of a perfluorinated sulfonic acid membrane, there is a copolymer membrane of perfluorovinyl ether having a sulfonic acid group and tetrafluoroethylene, which is known under the trade name “Nafion” (registered trademark, manufactured by DuPont).

また、コスト等を考慮した場合には、炭化水素系電解質膜を用いることが望ましい。具体的には、スルホン酸型エチレンテトラフルオロエチレン共重合体−グラフト−ポリスチレン膜(以下、「スルホン酸型ETFE−g−PSt膜」という。)、スルホン酸型ポリエーテルスルホン膜、スルホン酸型ポリエーテルエーテルケトン膜、スルホン酸型架橋ポリスチレン膜、スルホン酸型ポリトリフルオロスチレン膜、スルホン酸型ポリ(2、3−ジフェニル−1、4−フェニレンオキシド)膜、スルホン酸型ポリアリルエーテルケトン膜、スルホン酸型ポリ(アリレンエーテルスルホン)膜、スルホン酸型ポリイミド膜、スルホン酸型ポリアミド膜等が挙げられる。特に、安価で性能が高い等の理由から、スルホン酸型ETFE−g−PSt膜を用いることが望ましい。   In consideration of cost and the like, it is desirable to use a hydrocarbon-based electrolyte membrane. Specifically, sulfonic acid type ethylenetetrafluoroethylene copolymer-graft-polystyrene membrane (hereinafter referred to as “sulfonic acid type ETFE-g-PSt membrane”), sulfonic acid type polyethersulfone membrane, sulfonic acid type poly Ether ether ketone film, sulfonic acid type crosslinked polystyrene film, sulfonic acid type polytrifluorostyrene film, sulfonic acid type poly (2,3-diphenyl-1,4-phenylene oxide) film, sulfonic acid type polyallyl ether ketone film, Examples thereof include a sulfonic acid type poly (arylene ether sulfone) film, a sulfonic acid type polyimide film, and a sulfonic acid type polyamide film. In particular, it is desirable to use a sulfonic acid type ETFE-g-PSt membrane for reasons such as low cost and high performance.

本発明の補強型電解質膜における多孔質膜の厚さは、特に限定されるものではない。例えば、両触媒層の厚さを1〜10μmとし、全電解質層の厚さを10〜100μmとし、多孔質膜1層の厚さを1〜10μmとすることがクロスリークの抑制効果上好ましい。   The thickness of the porous membrane in the reinforced electrolyte membrane of the present invention is not particularly limited. For example, the thickness of both catalyst layers is preferably 1 to 10 μm, the thickness of all the electrolyte layers is preferably 10 to 100 μm, and the thickness of one porous membrane layer is preferably 1 to 10 μm from the viewpoint of suppressing cross leaks.

本発明の固体高分子型燃料電池は、上述した本発明の燃料電池膜−電極接合体を用いた固体高分子型燃料電池である。本発明の燃料電池用膜−電極接合体を用いる以外は、一般に知られている固体高分子型燃料電池の構成に従えばよい。上記本発明の燃料電池用膜−電極接合体を用いることで、本発明の固体高分子型燃料電池は、出力が大きく、かつ安価で耐久性の高い固体高分子型燃料電池となる。   The polymer electrolyte fuel cell of the present invention is a polymer electrolyte fuel cell using the above-described fuel cell membrane-electrode assembly of the present invention. Except for using the membrane-electrode assembly for a fuel cell of the present invention, the structure of a generally known polymer electrolyte fuel cell may be followed. By using the fuel cell membrane-electrode assembly of the present invention, the solid polymer fuel cell of the present invention is a solid polymer fuel cell having a large output, low cost and high durability.

本発明の実施例
[実施例1]
厚さ10μm、気孔率70%、細孔径0.3μmのPTFE多孔質薄膜をアセトンに浸して脱脂洗浄した。この薄膜を塩化スズ(II)SnCl/塩酸/メチルスルホオキシド溶液に60秒浸した後、水洗した。次に、塩化パラジウムPdCl酸性水溶液に浸してPdを析出させた。Pd被覆PTFE多孔質薄膜を塩化ヒドラジン/塩化白金酸6水和物HPtCl・6HO/ジメチルスルホオキシド水溶液に浸して40℃、6分間加熱してPtめっきした。この結果、多孔質薄膜の表面から0.2−0.5μmの範囲でPt析出膜(0.02mg/cm)が観察された。
Embodiment of the present invention [Embodiment 1]
A PTFE porous thin film having a thickness of 10 μm, a porosity of 70%, and a pore diameter of 0.3 μm was immersed in acetone and degreased and washed. This thin film was immersed in a tin (II) chloride SnCl 4 / hydrochloric acid / methyl sulfoxide solution for 60 seconds and then washed with water. Next, it was immersed in an aqueous palladium chloride PdCl 4 solution to precipitate Pd. The Pd-coated porous PTFE thin film was immersed in a hydrazine chloride / chloroplatinic acid hexahydrate H 2 PtCl 6 .6H 2 O / dimethylsulfoxide aqueous solution and heated at 40 ° C. for 6 minutes to perform Pt plating. As a result, a Pt deposited film (0.02 mg / cm 2 ) was observed in the range of 0.2 to 0.5 μm from the surface of the porous thin film.

上記の方法で作製したPt被覆PTFE多孔質薄膜にパーフルオロスルホン酸樹脂を分散したアルコール水溶液を塗布(多孔質膜中に電解質を充填)、乾燥を2回繰り返してしてPt被覆PTFE多孔質薄膜(2層)/パーフルオロスルホン酸複合膜を得た。   The Pt-coated PTFE porous thin film prepared by the above method was coated with an aqueous alcohol solution in which perfluorosulfonic acid resin was dispersed (filled with electrolyte in the porous film) and dried twice. (2 layers) / perfluorosulfonic acid composite membrane was obtained.

この膜を用いて定法にてMEA化して長時間に発電試験を行い、クロスリンクするH量を計測した結果、そのリークH量は1000時間の時点で、0.003MPaであった。 Using this membrane, a MEA was formed by a conventional method, and a power generation test was conducted for a long time. As a result of measuring the amount of cross-linked H 2, the amount of leaked H 2 was 0.003 MPa at 1000 hours.

[比較例1]
実施例1のPt微粒子(1μm径)を添加したパーフルオロスルホン酸樹脂を分散したアルコール水溶液を、実施例1と同じPTFE多孔質薄膜に塗布、乾燥してPTFE多孔質薄膜(2層)/パーフルオロスルホン酸複合膜を得た。同様の発電試験を行った結果、そのリークH量は1000時間の時点で、0.03MPa以上であった。
[Comparative Example 1]
An aqueous alcohol solution in which perfluorosulfonic acid resin added with Pt fine particles (1 μm diameter) of Example 1 was dispersed was applied to the same PTFE porous thin film as in Example 1 and dried to obtain a PTFE porous thin film (2 layers) / per A fluorosulfonic acid composite membrane was obtained. As a result of conducting the same power generation test, the amount of leaked H 2 was 0.03 MPa or more at 1000 hours.

[実施例2]
実施例1と同じ基材を用いて、同じ方法でPt被覆PTFE多孔質薄膜(2層)/パーフルオロスルホン酸複合膜を得た。この膜をPt黒電極で挟み、1.25Vvs.NHEで定電圧電解法にて陰極側にPtを析出させていったところ、試験期間中に短絡はなかった。
[Example 2]
Using the same substrate as in Example 1, a Pt-coated PTFE porous thin film (2 layers) / perfluorosulfonic acid composite membrane was obtained by the same method. This film was sandwiched between Pt black electrodes, and 1.25 Vvs. When Pt was deposited on the cathode side by a constant voltage electrolysis method using NHE, there was no short circuit during the test period.

[比較例2]
比較例1のPTFE多孔質薄膜(2層)/パーフルオロスルホン酸複合膜を用いて、実施例2と同じ定電圧電解試験を行った結果、7時間後に短絡した。試験後、試験セルを解体したところ電解質を貫通したPt析出物が観察された。
[Comparative Example 2]
Using the PTFE porous thin film (2 layers) / perfluorosulfonic acid composite membrane of Comparative Example 1, the same constant voltage electrolysis test as in Example 2 was conducted, and as a result, a short circuit occurred after 7 hours. After the test, the test cell was disassembled, and Pt deposits penetrating the electrolyte were observed.

本発明の燃料電池用電解質膜は、電解質膜を透過したガスと貴金属が接触する確率が高く、透過した水素が酸素と反応し熱を生じて膜を劣化させるクロスリークを抑制するとともに、貴金属の析出による短絡を抑制することができ、燃料電池の耐久性、寿命を低下させることが可能となる。又、クロスリークが抑制された燃料電池用膜−電極接合体を用いることにより、出力が高く、かつ耐久性に優れた固体高分子型燃料電池が得られる。これにより、燃料電池の実用化と普及に貢献する。   The electrolyte membrane for a fuel cell of the present invention has a high probability that the gas that has permeated the electrolyte membrane and the noble metal are in contact with each other, and the permeated hydrogen reacts with oxygen to generate heat and degrade the membrane, and also prevents the noble metal. Short circuit due to deposition can be suppressed, and the durability and life of the fuel cell can be reduced. In addition, by using a fuel cell membrane-electrode assembly in which cross leakage is suppressed, a solid polymer fuel cell having high output and excellent durability can be obtained. This contributes to the practical application and spread of fuel cells.

クロスリークが発生する場合とクロスリークが発生するものの電解質膜中のPt微粒子で抑制される場合を示す。A case where cross leak occurs and a case where cross leak occurs but is suppressed by Pt fine particles in the electrolyte membrane are shown. 本発明の補強型電解質膜を用いた場合にクロスリークが抑制される原理の模式図を示す。The schematic diagram of the principle by which cross leak is suppressed when the reinforcement type | mold electrolyte membrane of this invention is used is shown.

符号の説明Explanation of symbols

1:アノード触媒層、2:カソード触媒層、3:電解質膜、4:貴金属微粒子、5:多孔質膜。 1: anode catalyst layer, 2: cathode catalyst layer, 3: electrolyte membrane, 4: noble metal fine particles, 5: porous membrane.

Claims (17)

多孔質薄膜で補強された燃料電池用電解質膜であって、該多孔質膜の表面及び/又は細孔内に貴金属が被覆及び/又は析出されていることを特徴とする燃料電池用補強型電解質膜。   A fuel cell electrolyte membrane reinforced with a porous thin film, wherein a noble metal is coated and / or deposited on the surface and / or pores of the porous membrane. film. 前記多孔質薄膜で補強された燃料電池用電解質膜が、多孔質薄膜に高分子電解質を含浸させた燃料電池用補強型電解質膜であることを特徴とする請求項1に記載の燃料電池用補強型電解質膜。   2. The fuel cell reinforcement according to claim 1, wherein the fuel cell electrolyte membrane reinforced with the porous thin film is a fuel cell reinforced electrolyte membrane in which a porous thin film is impregnated with a polymer electrolyte. Type electrolyte membrane. 前記多孔質薄膜で補強された燃料電池用電解質膜が、1組以上の高分子電解質膜と多孔質薄膜を積層させた燃料電池用補強型電解質膜であることを特徴とする請求項1に記載の燃料電池用補強型電解質膜。   The fuel cell electrolyte membrane reinforced with the porous thin film is a fuel cell reinforced electrolyte membrane in which one or more sets of polymer electrolyte membranes and a porous thin film are laminated. Reinforced electrolyte membrane for fuel cells. 前記多孔質薄膜の平均細孔径が、0.1μm以上であることを特徴とする請求項1乃至3のいずれかに記載の燃料電池用補強型電解質膜。   The reinforced electrolyte membrane for a fuel cell according to any one of claims 1 to 3, wherein an average pore diameter of the porous thin film is 0.1 µm or more. 前記多孔質薄膜の気孔率が、40%以上であることを特徴とする請求項1乃至4のいずれかに記載の燃料電池用補強型電解質膜。   The fuel cell reinforcing electrolyte membrane according to any one of claims 1 to 4, wherein the porosity of the porous thin film is 40% or more. 前記多孔質薄膜が、延伸法によって多孔質化されたポリテトラフルオロエチレン(PTFE)膜であることを特徴とする請求項1乃至5のいずれかに記載の燃料電池用補強型電解質膜。   The reinforced electrolyte membrane for a fuel cell according to any one of claims 1 to 5, wherein the porous thin film is a polytetrafluoroethylene (PTFE) membrane made porous by a stretching method. 前記貴金属が、白金(Pt)であることを特徴とする請求項1乃至6のいずれかに記載の燃料電池用補強型電解質膜。   The reinforced electrolyte membrane for a fuel cell according to any one of claims 1 to 6, wherein the noble metal is platinum (Pt). 多孔質薄膜を貴金属イオン種を有する化合物溶液で処理して該多孔質膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程と、該貴金属を被覆及び/又は内包する多孔質薄膜に高分子電解質を充填する工程とを含むことを特徴とする燃料電池用補強型電解質膜の製造方法。   A step of coating and / or depositing a noble metal on the surface and / or pores of the porous film by treating the porous thin film with a compound solution having a noble metal ion species, and a porous material covering and / or encapsulating the noble metal A method for producing a reinforced electrolyte membrane for a fuel cell, comprising: filling a thin film with a polymer electrolyte. 多孔質薄膜を貴金属イオン種を有する化合物溶液で処理して該多孔質膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程と、該貴金属を被覆及び/又は内包する多孔質薄膜に高分子電解質膜を積層する工程とを含むことを特徴とする燃料電池用補強型電解質膜の製造方法。   A step of coating and / or depositing a noble metal on the surface and / or pores of the porous film by treating the porous thin film with a compound solution having a noble metal ion species, and a porous material covering and / or encapsulating the noble metal A method for producing a reinforced electrolyte membrane for a fuel cell, comprising: laminating a polymer electrolyte membrane on a thin film. 前記多孔質薄膜の表面及び/又は細孔内に貴金属を被覆及び/又は析出する工程が、化学めっきまたはスパッタであることを特徴とする請求項8または9に記載の燃料電池用補強型電解質膜の製造方法。   The reinforced electrolyte membrane for a fuel cell according to claim 8 or 9, wherein the step of coating and / or depositing a noble metal on the surface and / or pores of the porous thin film is chemical plating or sputtering. Manufacturing method. 前記多孔質薄膜の平均細孔径が、0.1μm以上であることを特徴とする請求項8乃至10のいずれかに記載の燃料電池用補強型電解質膜の製造方法。   The method for producing a reinforced electrolyte membrane for a fuel cell according to any one of claims 8 to 10, wherein an average pore diameter of the porous thin film is 0.1 µm or more. 前記多孔質薄膜の気孔率が、40%以上であることを特徴とする請求項8乃至11のいずれかに記載の燃料電池用補強型電解質膜の製造方法。   The method for producing a reinforced electrolyte membrane for a fuel cell according to any one of claims 8 to 11, wherein the porosity of the porous thin film is 40% or more. 前記多孔質薄膜が、延伸法によって多孔質化されたポリテトラフルオロエチレン(PTFE)膜であることを特徴とする請求項8乃至12のいずれかに記載の燃料電池用補強型電解質膜の製造方法。   The method for producing a reinforced electrolyte membrane for a fuel cell according to any one of claims 8 to 12, wherein the porous thin film is a polytetrafluoroethylene (PTFE) membrane made porous by a stretching method. . 前記貴金属が、白金(Pt)であることを特徴とする請求項8乃至13のいずれかに記載の燃料電池用補強型電解質膜の製造方法。   The method for producing a reinforced electrolyte membrane for a fuel cell according to any one of claims 8 to 13, wherein the noble metal is platinum (Pt). 燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜とを含む燃料電池用膜−電極接合体であって、該高分子電解質膜は、請求項1乃至7のいずれかに記載の燃料電池用補強型電解質膜であることを特徴とする燃料電池用膜−電極接合体。   A membrane-electrode for a fuel cell, comprising a pair of electrodes comprising a fuel electrode supplied with fuel gas and an oxygen electrode supplied with oxidant gas, and a polymer electrolyte membrane sandwiched between the pair of electrodes A membrane-electrode assembly for a fuel cell, wherein the polymer electrolyte membrane is a reinforced electrolyte membrane for a fuel cell according to any one of claims 1 to 7. 前記高分子電解質膜中に前記燃料電池用補強型電解質膜が複数枚含まれることを特徴とする請求項15に記載の燃料電池用膜−電極接合体。   16. The fuel cell membrane-electrode assembly according to claim 15, wherein the polymer electrolyte membrane includes a plurality of reinforced electrolyte membranes for the fuel cell. 請求項1乃至7のいずれかに記載の燃料電池用補強型電解質膜を有する膜−電極接合体を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising a membrane-electrode assembly having the reinforced electrolyte membrane for a fuel cell according to any one of claims 1 to 7.
JP2005228562A 2005-08-05 2005-08-05 Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell Withdrawn JP2007048471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228562A JP2007048471A (en) 2005-08-05 2005-08-05 Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228562A JP2007048471A (en) 2005-08-05 2005-08-05 Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell

Publications (1)

Publication Number Publication Date
JP2007048471A true JP2007048471A (en) 2007-02-22

Family

ID=37851149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228562A Withdrawn JP2007048471A (en) 2005-08-05 2005-08-05 Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP2007048471A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022728A1 (en) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JPWO2012026472A1 (en) * 2010-08-24 2013-10-28 旭化成ケミカルズ株式会社 Method and apparatus for reducing nitrogen oxides in internal combustion engines
CN108475801A (en) * 2016-03-31 2018-08-31 株式会社Lg化学 Enhance the preparation method of the electrochemical cell and fuel cell and the enhancing film of film including the enhancing film
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
JP2019220454A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell
JP2019220455A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell
US11411226B2 (en) 2019-11-14 2022-08-09 Hyundai Motor Company Electrode for fuel cells, membrane electrode assembly for fuel cells including the same, and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022728A1 (en) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
US8906573B2 (en) 2007-08-10 2014-12-09 W. L. Gore & Associates, Co., Ltd. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JPWO2012026472A1 (en) * 2010-08-24 2013-10-28 旭化成ケミカルズ株式会社 Method and apparatus for reducing nitrogen oxides in internal combustion engines
JP5778679B2 (en) * 2010-08-24 2015-09-16 旭化成ケミカルズ株式会社 Method and apparatus for reducing nitrogen oxides in internal combustion engines
KR101743336B1 (en) * 2010-08-24 2017-06-15 아사히 가세이 케미칼즈 가부시키가이샤 Method for reducing nitrogen oxides in internal combustion engine and apparatus therefor
JP2019510342A (en) * 2016-02-26 2019-04-11 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University Composite membrane for flow battery
JP7261586B2 (en) 2016-02-26 2023-04-20 ケース ウェスタン リザーブ ユニバーシティ Composite membrane for flow battery
CN108475801A (en) * 2016-03-31 2018-08-31 株式会社Lg化学 Enhance the preparation method of the electrochemical cell and fuel cell and the enhancing film of film including the enhancing film
US10476094B2 (en) 2016-03-31 2019-11-12 Lg Chem, Ltd. Reinforced membrane, electrochemical cell and fuel cell comprising same, and production method for reinforced membrane
JP2019220454A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell
JP2019220455A (en) * 2018-06-15 2019-12-26 日本碍子株式会社 Electrolyte for electrochemical cell and electrochemical cell
US11411226B2 (en) 2019-11-14 2022-08-09 Hyundai Motor Company Electrode for fuel cells, membrane electrode assembly for fuel cells including the same, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7803495B2 (en) Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
US11862803B2 (en) Radical scavenger, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising same
Oshiba et al. Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells
US20090039540A1 (en) Reinforced electrolyte membrane comprising catalyst for preventing reactant crossover and method for manufacturing the same
JP2007048471A (en) Reinforced electrolyte membrane for fuel cell, manufacturing method of the same, and membrane-electrode assembly for fuel cell
JPWO2006006357A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JPWO2006040985A1 (en) Fuel cell system
TW201025711A (en) Membrane-electrode assembly (MEA) structures and manufacturing methods thereof
JP2007188768A (en) Polymer electrolyte fuel cell
JP7204815B2 (en) Reversible Shunt for Overcharge Protection of Polymer Electrolyte Membrane Fuel Cells
JP2008060002A (en) Membrane electrode assembly and fuel cell
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JPH0268861A (en) Liquid fuel battery
US8481225B2 (en) Membrane electrode assembly, manufacturing method thereof and fuel cell
JP2010073587A (en) Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP2006286478A (en) Membrane electrode assembly
JP7307977B2 (en) MEMBRANE-ELECTRODE ASSEMBLY AND FUEL CELL USING THE SAME
JP4632717B2 (en) Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell
JP2005032520A (en) Fuel cell and its manufacturing method
US20230203679A1 (en) Membrane electrode assembly for pem water electrolysis capable of improving the electrical conductivity of the electrode layer and method of manufacturing thereof
JP2009026533A (en) Electrolyte membrane for fuel cell, and manufacturing method thereof
JP2006216404A (en) Fuel cell
JP2004273387A (en) Manufacturing method for gas diffusing layer of membrane-electrode junction body, membrane-electrode junction body, and fuel cell
KR101679185B1 (en) An anode for fuel cell and membrane-electrode assembly for fuel cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322