KR20240067053A - Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste - Google Patents

Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste Download PDF

Info

Publication number
KR20240067053A
KR20240067053A KR1020240007786A KR20240007786A KR20240067053A KR 20240067053 A KR20240067053 A KR 20240067053A KR 1020240007786 A KR1020240007786 A KR 1020240007786A KR 20240007786 A KR20240007786 A KR 20240007786A KR 20240067053 A KR20240067053 A KR 20240067053A
Authority
KR
South Korea
Prior art keywords
ceramic filter
filter media
porous ceramic
sludge
weight
Prior art date
Application number
KR1020240007786A
Other languages
Korean (ko)
Inventor
이강훈
위영민
Original Assignee
가톨릭대학교 산학협력단
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of KR20240067053A publication Critical patent/KR20240067053A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1355Incineration residues
    • C04B33/1357Sewage sludge ash or slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Abstract

본 발명은 유기성 슬러지를 재활용한 비점오염용 다공성 세라믹 여과재 제조방법에 관한 것으로, 유기성 슬러지와 점토광물을 혼합하여 이를 성형, 건조 및 소성시켜, 다량의 열린 기공이 있어 파쇄공정을 거치지 않고도 높은 비표면적과 미세부유물의 흡착능력이 우수한 비점오염용 다공성 세라믹 여과재를 제조할 수 있다.The present invention relates to a method of manufacturing a porous ceramic filter material for non-point pollution by recycling organic sludge, by mixing organic sludge and clay minerals and molding, drying, and firing them to form a high specific surface area without a crushing process due to the large amount of open pores. It is possible to manufacture a porous ceramic filter medium for non-point pollution with excellent adsorption capacity for gases and fine suspended particles.

Description

재난폐기물을 재활용한 비점오염 저감용 다공성 세라믹 여과재의 제조방법{Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste}Method of manufacturing porous ceramic filter media for reducing non-point pollution by recycling disaster waste {Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste}

본 발명은 유기성 슬러지 폐기물을 활용한 비점오염 저감용 다공성 세라믹 여과재의 제조방법에 관한 것으로, 보다 상세하게는 유기성 슬러지와 점토광물을 혼합하고, 이를 성형, 건조 및 소성하여 비점오염 저감용 다공성 세라믹 여과재를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a porous ceramic filter medium for reducing non-point pollution using organic sludge waste. More specifically, it relates to a method of manufacturing a porous ceramic filter medium for reducing non-point pollution by mixing organic sludge and clay minerals, molding, drying and firing the mixture. It relates to a method of manufacturing.

공공하수처리시설의 확충에 따라 2017년 기준 하수도 보급률은 93.6%를 달성하였다. 그렇지만 강우 시 우수의 오수관 유입과 오수의 우수관 유입이 발생하여 미처리 하수가 방류수역으로 방류되어 강우 시 2배 이상의 초과 용량이 발생하게 되었다. 이처럼 강우 시 발생하는 미처리 오수를 월류수라고 하며 이런 월류수의 방류로 인하여 하천의 오염이 심화된다. 강우 시 월류수를 처리하기 위하여 각 지자체는 비점오염 시설을 운영하고 있고, 여기에는 섬유상 여과재와 세라믹 여과재들이 사용되고 있으며, 현장에서는 다양한 여과재들을 병행하여 여과장치를 설계하여 사용하고 있다.With the expansion of public sewage treatment facilities, the sewerage penetration rate reached 93.6% in 2017. However, during rainfall, rainwater flows into sewage pipes and sewage flows into rainwater pipes, causing untreated sewage to be discharged into the discharge water area, resulting in an excess capacity of more than two times during rainfall. In this way, untreated sewage generated during rainfall is called overflow water, and the discharge of such overflow water intensifies river pollution. In order to treat overflow water during rainfall, each local government operates a non-point pollution facility, where fibrous filter media and ceramic filter media are used, and filtration devices are designed and used in the field by combining various filter media.

세라믹 여과재를 제조하는 공정은 소성과 비소성 방식으로 나눌 수 있는데 비소성 방식의 경우 시멘트와 혼합하여 포졸란반응을 유발하거나 사용하거나 강한 알칼리를 활성화제로 첨가하여 지오폴리머의 형태로 제조하는 방식이 활용되고 있다. 대한민국 공개특허 제10-2018-0161671호에서는 정수슬러지와 유동층 슬러지를 혼합하여 유동층 슬러지에 포함되어 있는 유리석회를 활용하여 포졸란반응을 유도하고 이를 양생하여 비점오염용 여과재를 제조하였다. 그리고 대한민국 등록특허 제10-1854127호에서는 용융슬래그를 알칼리 활성화제와 발포재를 혼합하여 지오폴리머 반응을 일으키고 발포시켜 다공성 여과재를 얻는 방법에 대하여 기술하였다. 그러나 이러한 비소성 방식으로 제조한 여과재의 경우 강한 알칼리 특성을 가지고 있고, 환경오염을 야기할 가능성이 있다.The process of manufacturing ceramic filter media can be divided into calcination and non-calcination methods. In the case of the non-calcination method, mixing with cement to induce a pozzolanic reaction or using a strong alkali as an activator to manufacture it in the form of a geopolymer is used. there is. In Republic of Korea Patent Publication No. 10-2018-0161671, purified sludge and fluidized bed sludge were mixed to induce a pozzolanic reaction using free lime contained in the fluidized bed sludge and cured to produce a filter medium for non-point pollution. And, Republic of Korea Patent No. 10-1854127 describes a method of obtaining a porous filter medium by mixing molten slag with an alkali activator and a foaming material to cause a geopolymer reaction and foaming the molten slag. However, filter media manufactured using this non-calcining method have strong alkaline characteristics and have the potential to cause environmental pollution.

소성 방식으로 제조된 여과재의 경우 주로 황토볼을 수입산 경량골재와 같은 재료들이 활용되어 왔다. 대한민국 등록특허 제10-1678283호에서는 황토볼을 활성탄과 혼합하고 고온에서 활성화하여 비점오염 저감용 여과재를 제조하였다. 높은 활성탄의 함량으로 인하여 기존의 세라믹 여과재와 비교하여 높은 여과성능을 갖는다. 그렇지만 여과재 제조에 필요한 천연자원의 채광이 점차 어려워짐에 따라 황토볼 등의 제조를 위한 천연원료의 가격이 높아지고 제조공정에서 높은 에너지 비용의 발생하기 때문에, 대체원료의 개발 및 공정에서의 원가절감이 필요하다. 그리고 이와 유사하게 수입산 인공경량골재를 파쇄하여 여과재로 활용하는 경우도 있다. 그러나 이 경우 황토볼과 수입산 인공경량골재의 가격이 높고 천연원료인 팽창점토를 이용하여 제조되기 때문에 환경적으로 바람직하지 않으며, 열린 기공의 함량이 낮기 때문에 여과성능을 높이기 위해서 파쇄 공정이 필요하게 된다. 천연원료를 대체하기 위하여 대한민국 등록특허 10-1690639호에서는 폐기물을 활용하여 저온에서 소성하여 여과재를 생산하였지만 사용 시 낮은 강도때문에 내구성이 떨어져 수명이 낮은 단점이 있다. In the case of filter media manufactured by the firing method, materials such as red clay balls and imported lightweight aggregates have been mainly used. In Korean Patent No. 10-1678283, red clay balls were mixed with activated carbon and activated at high temperature to produce a filter medium for reducing non-point pollution. Due to the high content of activated carbon, it has high filtration performance compared to existing ceramic filter media. However, as mining of natural resources necessary for manufacturing filter media becomes increasingly difficult, the price of natural raw materials for manufacturing red clay balls, etc. increases, and high energy costs occur in the manufacturing process. Therefore, the development of alternative raw materials and cost reduction in the process are important. need. And similarly, there are cases where imported artificial lightweight aggregate is crushed and used as a filter material. However, in this case, the price of red clay balls and imported artificial lightweight aggregate is high, and it is environmentally undesirable because it is manufactured using expanded clay, a natural raw material, and the content of open pores is low, so a crushing process is necessary to increase filtration performance. . In order to replace natural raw materials, Republic of Korea Patent No. 10-1690639 used waste and fired it at low temperature to produce a filter medium, but it has the disadvantage of low durability due to low strength when used and a low lifespan.

이에, 본 발명자들은 상기 종래기술의 문제점을 해결하고자 예의 노력한 결과, 유기성 하·폐수 슬러지와 점토광물을 혼합하여, 이를 성형, 건조 및 소성하여 부유물 흡착을 위한 여과재를 제조하고, 소성공정 직후 다량의 열린 기공을 함유하여 여과성능이 향상되며, 파쇄 공정을 거치지 않고도 높은 비표면적과 흡착능력을 가지며, 기존의 여과재와 유사하거나 뛰어난 성능을 가진 세라믹 여과재를 제조할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, as a result of diligent efforts to solve the problems of the prior art, the present inventors mixed organic sewage and wastewater sludge with clay minerals, molded, dried and fired them to produce a filter medium for adsorbing suspended matter, and produced a large amount of filter media immediately after the firing process. It was confirmed that filtration performance is improved by containing open pores, a ceramic filter medium with high specific surface area and adsorption capacity without a crushing process, and a ceramic filter medium with similar or superior performance to existing filter media can be manufactured, and the present invention was completed. I did it.

본 발명의 목적은 비점오염 저감을 위해 사용되고 있는 여과재의 낮은 내구성 그리고 제조 과정에서 천연자원을 다량 소비하며 제조원가가 높은 점, 그리고 제조 시 파쇄 공정이 필요한 점 등의 문제를 해결하기 위하여 폐기물을 이용하여 세라믹 여과재를 제조하는 방법을 제공하는 데에 있다.The purpose of the present invention is to solve problems such as the low durability of filter media used to reduce non-point pollution, the consumption of a large amount of natural resources during the manufacturing process, the high manufacturing cost, and the need for a crushing process during manufacturing, by using waste. The object is to provide a method for manufacturing a ceramic filter medium.

상기와 같은 목적을 달성하기 위하여, 본 발명은 (a) 유기성 슬러지 건조분말 100중량부 및 점토광물 50~250중량부를 혼합하여 혼합물을 수득하는 단계; (b) 상기 혼합물을 성형하고 건조하여 성형체를 수득하는 단계; 및 (c) 상기 성형체를 800~1100℃에서 소성시키는 단계를 포함하는 세라믹 여과재의 제조방법을 제공한다.In order to achieve the above object, the present invention includes the steps of (a) mixing 100 parts by weight of organic sludge dry powder and 50 to 250 parts by weight of clay mineral to obtain a mixture; (b) forming and drying the mixture to obtain a molded body; and (c) calcining the molded body at 800-1100°C.

본 발명에 의한 다공성 세라믹 여과재의 제조방법은 다음과 같은 효과를 갖는다.The method for manufacturing a porous ceramic filter medium according to the present invention has the following effects.

(1) 다양한 형태의 폐기물을 재활용하여 세라믹 여과재를 제조함으로써 세라믹 여과재의 제조 시 발생하는 공정비용을 저감할 수 있다.(1) By manufacturing ceramic filter media by recycling various types of waste, the process costs incurred in manufacturing ceramic filter media can be reduced.

(2) 유기물을 고온에서 연소시켜 여과재 내부에 다량의 열린 기공을 형성시켜 비표면적을 증가시킨 세라믹 여과재를 제조한다. (2) A ceramic filter medium is manufactured in which the specific surface area is increased by burning organic matter at high temperature to form a large amount of open pores inside the filter medium.

(3) 내부의 발열로 세라믹 여과재를 소성시켜 열효율을 높이고 소성온도를 100~150℃ 낮출 수 있기 때문에, 제조 시 사용되는 연료비를 절감시킬 수 있다.(3) By firing the ceramic filter media with internal heat, thermal efficiency can be increased and the firing temperature can be lowered by 100-150℃, thus reducing fuel costs used during manufacturing.

(4) 기존 기술로 제조된 여과재는 고가의 천연원료를 다량 사용하지만 본 발명에 의한 방법에는 천연원료의 상당량을 폐기물로 대체하기 때문에 친환경적이며, 원료에 대한 비용도 낮다.(4) Filter media manufactured with existing technology use a large amount of expensive natural raw materials, but the method according to the present invention is environmentally friendly because a significant amount of natural raw materials are replaced with waste, and the cost of raw materials is low.

(5) 기존의 세라믹 여과재와 대비하여 파쇄공정이 필요하지 않기 때문에 공정비용을 절감할 수 있다.(5) Compared to existing ceramic filter media, process costs can be reduced because a crushing process is not required.

도 1은 본 발명의 일 실시예에 제조된 따른 다공성 세라믹 여과재의 여과성능을 모래 여과재와 수입산 경량골재 여과재와 비교한 실험결과이다.
도 2는 본 발명의 일 실시예에 따라 제조된 따른 다공성 세라믹 여과재 와 수입산 경량골재의 기공의 누적 분포를 수은압입법으로 측정한 결과이다.
도 3은 본 발명의 실시예 2에 따른 하수 슬러지 여과재의 사진(a)과 비교예 2의 상용 경량골재 여과재의 사진(b)이다.
Figure 1 shows the results of an experiment comparing the filtration performance of a porous ceramic filter medium manufactured in an embodiment of the present invention with a sand filter medium and an imported lightweight aggregate filter medium.
Figure 2 shows the results of measuring the cumulative distribution of pores of a porous ceramic filter medium manufactured according to an embodiment of the present invention and imported lightweight aggregate using a mercury intrusion method.
Figure 3 is a photograph (a) of the sewage sludge filter medium according to Example 2 of the present invention and a photograph (b) of the commercial lightweight aggregate filter medium of Comparative Example 2.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명에서는 하수 슬러지 또는 정수 슬러지와 같은 유기성 슬러지와 점토광물을 혼합하여, 이를 성형, 건조 및 소성할 경우 현재 대부분 건조 후 매립되고 있는 하수 슬러지를 비롯한 다양한 유기성 슬러지를 재활용함과 동시에 세라믹 여과재의 제조 시 요구되는 높은 에너지 비용을 절약하고, 기존의 상용화된 모래 여과재와 경량골재 여과재보다 더 뛰어난 성능의 세라믹 여과재를 제조할 수 있고, 파쇄공정을 거치지 않고도 높은 비표면적과 흡착능력을 갖고, 다회사용 시에도 형태를 유지할 수 있도록 적절한 강도를 확보할 수 있다는 것을 확인하였다.In the present invention, when organic sludge such as sewage sludge or water purification sludge is mixed with clay minerals, and the mixture is molded, dried, and fired, various organic sludges, including sewage sludge, which are currently mostly dried and then landfilled, are recycled and at the same time, ceramic filter media can be manufactured. It saves the high energy costs required for filtering, can manufacture ceramic filter media with better performance than existing commercialized sand filter media and lightweight aggregate filter media, has high specific surface area and adsorption capacity without going through the crushing process, and can be used multiple times. It was confirmed that appropriate strength could be secured to maintain its shape.

따라서, 본 발명은 일 관점에서, (a) 유기성 슬러지 건조분말 100중량부 및 점토광물 50~250중량부를 혼합하여 혼합물을 수득하는 단계; (b) 상기 혼합물을 성형하고 건조하여 성형체를 수득하는 단계; 및 (c) 상기 성형체를 800~1100℃에서 소성시키는 단계를 포함하는 세라믹 여과재의 제조방법에 관한 것이다.Therefore, in one aspect, the present invention includes the steps of: (a) mixing 100 parts by weight of organic sludge dry powder and 50 to 250 parts by weight of clay minerals to obtain a mixture; (b) forming and drying the mixture to obtain a molded body; and (c) calcining the molded body at 800-1100°C.

이하, 본 발명을 상세하게 기술한다.Hereinafter, the present invention will be described in detail.

본 발명에 사용되는 용어, "유기성 슬러지"는 하·폐수 처리공정에서 발생하는 폐활성 슬러지를 의미한다. The term "organic sludge" used in the present invention refers to waste activated sludge generated in sewage and wastewater treatment processes.

본 발명에 사용되는 용어, "정수 슬러지"는 음용수의 정수 과정에서 발생한 슬러지를 의미한다.The term "water purification sludge" used in the present invention refers to sludge generated during the purification process of drinking water.

본 발명에 사용되는 용어, "하수 슬러지"는 하수 처리공정에서 발생하는 폐활성 슬러지를 의미한다.The term "sewage sludge" used in the present invention refers to waste activated sludge generated in a sewage treatment process.

본 발명에 따른 유기성 슬러지를 이용한 다공성 세라믹 여과재의 제조방법은 (a) 유기성 슬러지 건조분말 100중량부 및 점토광물 50~250중량부를 혼합하여 건조 혼합물을 수득하는 단계; (b) 상기 혼합물을 성형하고 건조하여 성형체를 수득하는 단계; 및 (c) 상기 성형체를 소성시키는 단계를 포함할 수 있다.The method for producing a porous ceramic filter medium using organic sludge according to the present invention includes the steps of (a) mixing 100 parts by weight of organic sludge dry powder and 50 to 250 parts by weight of clay minerals to obtain a dry mixture; (b) forming and drying the mixture to obtain a molded body; and (c) sintering the molded body.

구체적으로, 본 발명에 따른 하수 슬러지 건조분말과 적점토를 이용한 다공성 세라믹 여과재 제조방법은 건조 슬러지와 점토를 혼합하는 원료혼합단계; 준비된 원료를 토련기를 통하여 실린더 형태로 성형하는 성형단계; 성형체를 100~600℃로 건조하는 건조단계; 건조체를 950~1050℃로 소성하여 목표 기공을 형성하고, 소지를 경량화하는 소성단계를 포함할 수 있다.Specifically, the method for manufacturing a porous ceramic filter material using dried sewage sludge powder and red clay according to the present invention includes a raw material mixing step of mixing dried sludge and clay; A molding step of molding the prepared raw material into a cylinder shape through a clay pot; A drying step of drying the molded body at 100 to 600°C; It may include a firing step of firing the dried body at 950 to 1050°C to form target pores and to reduce the weight of the material.

본 발명에 있어서, 상기 유기성 슬러지는 하수 슬러지, 폐수 슬러지 또는 정수 슬러지일 수 있다.In the present invention, the organic sludge may be sewage sludge, wastewater sludge, or purified water sludge.

본 발명에 있어서, 유기성 슬러지 건조분말 100중량부에 대해 점토광물 50~250중량부를 혼합하는데, 점토광물이 50중량부 미만일 경우에는 제품 생산 후 제품의 형태 및 강도의 유지가 매우 어렵다는 문제점이 있고, 250중량부를 초과할 경우에는 열린 기공의 양이 줄어들어 흡착 특성이 나빠지는 문제점이 있다.In the present invention, 50 to 250 parts by weight of clay minerals are mixed with 100 parts by weight of organic sludge dry powder. If the clay minerals are less than 50 parts by weight, there is a problem in that it is very difficult to maintain the shape and strength of the product after production. If it exceeds 250 parts by weight, there is a problem in that the amount of open pores decreases and the adsorption characteristics deteriorate.

본 발명에 있어서, 상기 (b) 단계 후에 상기 성형체를 0.3~0.5 mm 직경의 모래로 코팅하는 단계를 추가로 포함할 수 있다.In the present invention, the step (b) may further include coating the molded body with sand having a diameter of 0.3 to 0.5 mm.

본 발명에 있어서, 상기 점토광물은 벤토나이트, 제올라이트, 적점토, 백토 및 산성백토로 구성된 군에서 1종 이상 선택될 수 있다.In the present invention, the clay mineral may be one or more selected from the group consisting of bentonite, zeolite, red clay, white clay, and acidic white clay.

본 발명에 있어서, 상기 (b) 단계의 건조는 600℃ 이하의 온도, 바람직하게는 100~600℃의 온도에서 수행될 수 있다. 100℃ 미만의 온도에서 건조할 경우 건조속도가 느리기 때문에 공정시간이 현저하게 증가하는 문제점이 있다. In the present invention, the drying in step (b) may be performed at a temperature of 600°C or lower, preferably 100 to 600°C. When drying at a temperature below 100°C, there is a problem in that the process time increases significantly because the drying speed is slow.

본 발명에 있어서, 상기 (c) 단계의 소성은 800~1100℃의 온도에서 수행될 수 있으며, 바람직하게는 950~1050℃ 온도에서 수행될 수 있다. 800℃ 미만의 온도에서 소성하면 입자간의 물질 이동이 충분히 일어나지 않아 여과재의 강도가 현저하게 낮아지는 문제점이 있고, 1100℃ 초과의 온도에서 소성하면 표면의 액상화로 인한 융착 현상이 발생하는 문제점이 있다.In the present invention, the firing in step (c) may be performed at a temperature of 800 to 1,100°C, and preferably at a temperature of 950 to 1,050°C. When fired at a temperature below 800°C, there is a problem in that material transfer between particles does not occur sufficiently and the strength of the filter medium is significantly lowered. When fired at a temperature exceeding 1100°C, there is a problem where a fusion phenomenon occurs due to liquefaction of the surface.

본 발명에 있어서, 상기 (a) 단계 이후에 분쇄 공정을 추가로 포함할 수 있다.In the present invention, a grinding process may be additionally included after step (a).

본 발명에 있어서, 상기 (b) 단계의 성형은 토련기 및 펠레타이저를 이용하여 실린더 또는 구형의 형태로 성형할 수 있다.In the present invention, the molding in step (b) can be performed into a cylinder or spherical shape using a clay pot and a pelletizer.

본 발명의 바람직한 일 실시예에 따르면, 하수 슬러지 건조분말 100중량부와 점토광물(벤토나이트, 제올라이트, 적점토, 백토, 산성백토 등) 50~250중량부의 혼합물을 제조하는 제1 단계; 상기 혼합물을 토련기에 투입하여 실린더형으로 성형하는 제2 단계; 성형체의 구형화 및 소성 중 융착 방지를 위하여 0.3~0.5㎜ 직경의 모래를 코팅하는 제3 단계; 성형체를 소성하기 전 고온에서 건조시키는 제4 단계; 골재의 강도 향상 및 기공형성을 위하여 소성하는 제5 단계를 포함하는 유기성 슬러지를 다량 함유한 다공성 세라믹 여과재의 제조방법을 제공한다.According to a preferred embodiment of the present invention, a first step of preparing a mixture of 100 parts by weight of dried sewage sludge powder and 50 to 250 parts by weight of clay minerals (bentonite, zeolite, red clay, white clay, acid white clay, etc.); A second step of putting the mixture into a clay pot and molding it into a cylinder shape; A third step of coating sand with a diameter of 0.3 to 0.5 mm to spheroidize the molded body and prevent fusion during firing; A fourth step of drying the molded body at a high temperature before firing it; A method for manufacturing a porous ceramic filter medium containing a large amount of organic sludge including a fifth step of firing to improve the strength of the aggregate and form pores is provided.

상기 제1 단계에서는 하수 슬러지는 폐수 슬러지, 음식물 찌꺼기, 정수 슬러지 등으로 대체될 수 있고, 점토광물은 점결재로서 작용하고, 일례로 적점토, 벤토나이트, 제올라이트 등을 포함한다.In the first step, sewage sludge can be replaced with wastewater sludge, food waste, water purification sludge, etc., and clay minerals act as coking agents, and examples include red clay, bentonite, and zeolite.

상기 제2 단계에서 성형될 수 있는 골재의 직경은 5~15 ㎜의 범위를 갖는다.The diameter of the aggregate that can be molded in the second step ranges from 5 to 15 mm.

상기 제3 단계에서 코팅을 위한 모래의 입도는 0.3~0.5 ㎜로 하고, 코팅을 위한 모래는 규석, 석회석, 백운석 등을 포함할 수 있다. In the third step, the particle size of the sand for coating is set to 0.3 to 0.5 mm, and the sand for coating may include silica, limestone, dolomite, etc.

상기 제4 단계에서 건조온도는 600℃ 이하의 온도에서 30분 내지 60분 동안에, 수분 15중량% 이하로 건조시키는 것을 특징으로 한다.In the fourth step, the drying temperature is 600°C or lower for 30 to 60 minutes and the moisture content is 15% by weight or lower.

상기 제5 단계에서 소성온도는 950~1050℃로 소성하는 과정을 포함하는 것을 특징으로 한다.In the fifth step, the sintering temperature is characterized in that it includes a process of sintering at 950 to 1050°C.

상기 제조방법을 통하여 얻어진 다공성 세라믹 여과재는 20~50중량%의 흡수율을 가지며 내부에 미세기공을 다량 함유하고 있어 부유물의 여과성능이 뛰어나다.The porous ceramic filter medium obtained through the above manufacturing method has an absorption rate of 20 to 50% by weight and contains a large number of micropores inside, so it has excellent filtration performance of suspended matter.

본 발명에서는 하수 슬러지를 포함한 다양한 유기성 슬러지를 재활용함과 동시에 강도를 증진시켜 재활용이 용이한 다공성 세라믹 여과재를 생산하는 방법을 제시하고 있다.The present invention proposes a method for producing a porous ceramic filter medium that is easy to recycle by recycling various organic sludges, including sewage sludge, and improving its strength at the same time.

또한 본 발명에서 제시하고 있는 방법은 하수 슬러지를 포함한 다량의 폐기물을 활용하여 세라믹 여과재의 제조 시 활용되는 천연원료의 양을 절감할 수 있고, 유기성 슬러지를 포함하여 내부 소결하기 때문에 공정에 필요한 연료의 양을 절감하여 환경적으로 바람직하며, 때문에 공정에서의 원가절감을 실현할 수 있기 때문에 경제적으로도 바람직하다. 또한 기존의 폐기물을 재활용한 세라믹 여과재보다 높은 강도로 제작되기 때문에 수명이 길다.In addition, the method presented in the present invention can reduce the amount of natural raw materials used in the production of ceramic filter media by utilizing a large amount of waste including sewage sludge, and because it internally sinters organic sludge, it can reduce the amount of fuel required for the process. It is environmentally desirable as it reduces the amount, and is also economically desirable because it can realize cost reduction in the process. In addition, it has a longer lifespan because it is manufactured with higher strength than existing ceramic filter media made from recycled waste.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

[실시예][Example]

실시예 1: 하수 슬러지 및 적점토의 화학조성 분석Example 1: Analysis of chemical composition of sewage sludge and red clay

실시예에 사용된 하수 슬러지는 양산 하수처리장에서 발생된 것으로, 그 혐기소화 하수 슬러지와 적점토의 화학조성(단위: 중량%)을 XRF(ZSX-100e, Rigaku, Japan)로 분석하여 표 1에 나타내었다.The sewage sludge used in the examples was generated at the Yangsan sewage treatment plant, and the chemical composition (unit: weight %) of the anaerobic digestion sewage sludge and red clay was analyzed by XRF (ZSX-100e, Rigaku, Japan) and is shown in Table 1. It was.

일반적으로 하수 슬러지의 유기물 함량은 50~70중량%로 알려져 있으며, 다량의 유기물을 함유하고 있기 때문에 세라믹 여과재의 제조 시 고온에서 유기물의 제거에 의한 기공 형성이 용이할 수 있음을 알 수 있다.In general, the organic matter content of sewage sludge is known to be 50 to 70% by weight, and since it contains a large amount of organic matter, it can be seen that pores can be easily formed by removing organic matter at high temperatures when manufacturing ceramic filter media.

하수 슬러지 및 적점토의 화학조성Chemical composition of sewage sludge and red clay SiOSiO 22 AlAl 22 OO 33 FeFe 22 OO 33 CaOCaO MgOMgO NaNa 22 OO KK 22 OO TiOTiO 22 PP 22 OO 55 CrCr 22 OO 33 MnOMnO LOILOI 하수 슬러지sewage sludge 9.59.5 3.13.1 7.97.9 1.81.8 0.60.6 0.30.3 0.40.4 0.40.4 5.15.1 0.10.1 0.10.1 70.670.6 적점토red clay 67.367.3 12.912.9 2.92.9 2.82.8 2.42.4 1.61.6 1.81.8 0.60.6 00 00 00 7.77.7

실시예 2-1 내지 2-5: 다공성 세라믹 여과재의 제조 및 비점오염 제거 실험Examples 2-1 to 2-5: Preparation of porous ceramic filter media and non-point pollution removal experiment

건조된 하수 슬러지 100중량부에 적점토 50~250중량부를 혼합하고, 준비된 원료를 토련기를 통하여 실린더 형태로 성형한 다음, 성형체를 100~600로 건조하고, 건조체를 950~1050℃로 소성하여 기공을 형성된 다공성 세라믹 여과재를 제조하였다. 제조된 여과재의 비점오염 제거 실험을 실시하여 그 결과를 표 2와 도 1에 나타내었다.Mix 50 to 250 parts by weight of red clay with 100 parts by weight of dried sewage sludge, mold the prepared raw materials into a cylinder shape through a clay pot, and then grind the molded body with 100 to 600 parts by weight. After drying, the dried body was fired at 950-1050°C to prepare a porous ceramic filter medium with pores. A non-point pollution removal experiment was conducted on the manufactured filter medium, and the results are shown in Table 2 and Figure 1.

비교예 1Comparative Example 1

기존 여과재인 모래를 사용하여 비점오염 제거 실험을 실시하여 그 결과를 표 2에 나타내었다.A non-point pollution removal experiment was conducted using sand, an existing filter material, and the results are shown in Table 2.

비교예 2Comparative Example 2

일반적으로 상용화된 인공경량골재는 다공성을 가지고 있으며 이를 사용하여 비점오염 제거 실험을 실시하여 그 결과를 표 2에 나타내었다.In general, commercially available artificial lightweight aggregates have porosity, and non-point contamination removal experiments were conducted using them, and the results are shown in Table 2.

비교예 3Comparative Example 3

건조된 하수 슬러지 100중량부에 적점토 300중량부를 혼합하고, 준비된 원료를 토련기를 통하여 실린더 형태로 성형한 다음, 성형체를 100~600℃로 건조하고, 건조체를 950~1050℃로 소성하여 기공을 형성된 다공성 세라믹 여과재를 제조하였다300 parts by weight of red clay are mixed with 100 parts by weight of dried sewage sludge, the prepared raw materials are molded into a cylinder shape through a kneading machine, the molded body is dried at 100~600℃, and the dried body is fired at 950~1050℃ to form pores. A porous ceramic filter medium was manufactured.

하수 슬러지로 제조된 다공성 세라믹 여과재, 모래 여과재 및 경량골재 여과재의 여과성능 비교Comparison of filtration performance of porous ceramic filter media made from sewage sludge, sand filter media, and lightweight aggregate filter media. 샘플명sample name 항목item 시료채취 시간(min)Sample collection time (min) 00 55 1010 1515 2020 3030 4545 <비교예 1><Comparative Example 1>
모래 여과재sand filter
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 14.814.8 20.120.1 27.427.4 37.337.3 42.142.1 40.140.1
제거율removal rate
(wt%)(wt%)
100100 9494 9292 8989 8585 8383 8484
<비교예 2><Comparative Example 2>
경량골재 여과재Lightweight aggregate filter media
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 17.217.2 25.625.6 30.130.1 42.342.3 44.844.8 47.347.3
제거율removal rate
(wt%)(wt%)
100100 9393 9090 8888 8383 8282 8181
<비교예 3><Comparative Example 3>
하수 슬러지 100중량부 + 적점토 300중량부100 parts by weight of sewage sludge + 300 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 20.320.3 23.523.5 28.228.2 36.736.7 42.542.5 43.543.5
제거율removal rate
(wt%)(wt%)
100100 9292 9191 8989 8585 8383 8383
<실시예 2-1><Example 2-1>
하수 슬러지 100중량부 + 적점토 50중량부100 parts by weight of sewage sludge + 50 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 6.56.5 7.87.8 15.815.8 22.722.7 27.527.5 28.928.9
제거율removal rate
(wt%)(wt%)
100100 9797 9797 9494 9191 8989 8888
<실시예 2-2><Example 2-2>
하수 슬러지 100중량부 + 적점토 100중량부100 parts by weight of sewage sludge + 100 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 6.96.9 8.38.3 16.316.3 23.823.8 30.530.5 30.830.8
제거율removal rate
(wt%)(wt%)
100100 9797 9797 9393 9090 8888 8888
<실시예 2-3><Example 2-3>
하수 슬러지 100중량부 + 적점토 150중량부100 parts by weight of sewage sludge + 150 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 7.27.2 9.29.2 16.916.9 24.824.8 32.632.6 33.833.8
제거율removal rate
(wt%)(wt%)
100100 9797 9696 9393 9090 8787 8686
<실시예 2-4><Example 2-4>
하수 슬러지 100중량부 + 적점토 220중량부100 parts by weight of sewage sludge + 220 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 7.47.4 9.89.8 17.317.3 29.829.8 35.135.1 35.235.2
제거율removal rate
(wt%)(wt%)
100100 9797 9696 9393 8888 8686 8686
<실시예 2-5><Example 2-5>
하수 슬러지 100중량부 + 적점토 250중량부100 parts by weight of sewage sludge + 250 parts by weight of red clay
여과수 농도Filtered water concentration
(㎎/L as SS)(mg/L as SS)
00 7.57.5 9.89.8 17.517.5 30.130.1 35.535.5 36.136.1
제거율removal rate
(wt%)(wt%)
100100 9797 9696 9393 8888 8686 8686

실시예 3: 세라믹 여과재의 흡수율 측정Example 3: Measurement of water absorption rate of ceramic filter media

실시예 2에서 제작된 세라믹 여과재와 비교예 2의 상용 경량골재 여과재의 흡수율 측정결과를 도 2에 나타냈다. 실시예 2에서 제작된 세라믹 여과재의 흡수율은 40.2% 정도를 보였고, 비교예 2의 상용 경량골재는 15.3% 정도의 흡수율을 나타냈다.The absorption rate measurement results of the ceramic filter medium manufactured in Example 2 and the commercial lightweight aggregate filter medium of Comparative Example 2 are shown in Figure 2. The water absorption rate of the ceramic filter material produced in Example 2 was about 40.2%, and the commercial lightweight aggregate of Comparative Example 2 showed an water absorption rate of about 15.3%.

실시예 2에서 제작된 세라믹 여과재의 흡수율은 35~40% 정도를 보였고, 비교예 2의 상용 경량골재는 12~15% 정도의 흡수율을 나타냈다. 이것은 여과재 내부의 열린 기공의 절대량이 기존의 상용화된 경량골재 여과재보다 더 많다는 것을 의미한다.The ceramic filter material produced in Example 2 showed an absorption rate of about 35 to 40%, and the commercial lightweight aggregate of Comparative Example 2 showed an absorption rate of about 12 to 15%. This means that the absolute amount of open pores inside the filter media is greater than that of existing commercially available lightweight aggregate filter media.

실시예 4: 세라믹 여과재의 3D-CT 관찰Example 4: 3D-CT observation of ceramic filter media

실시예 2에서 제작된 세라믹 여과재와 비교예 2의 상용 경량골재 여과재의 3D-CT 관찰 결과를 도 3에 나타냈다. 비교예 2의 상용 경량골재의 경우(도 3b) 내부 껍질 부분에는 액상형성으로 치밀하고 내부에 폐기공이 다량 존재하는 것이 관찰되었고, 실시예 2에서 제조된 세라믹 여과재(도 3a)의 경우 미세기공 형태의 열린 기공이 존재하였다.The 3D-CT observation results of the ceramic filter medium manufactured in Example 2 and the commercial lightweight aggregate filter medium of Comparative Example 2 are shown in Figure 3. In the case of the commercial lightweight aggregate of Comparative Example 2 (FIG. 3b), it was observed that the inner shell part was dense due to liquid formation and that there were a large number of closed pores inside, and in the case of the ceramic filter medium manufactured in Example 2 (FIG. 3a), the shape of micropores was observed. Open pores existed.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (1)

세라믹 여과재의 제조방법.Manufacturing method of ceramic filter medium.
KR1020240007786A 2024-01-18 Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste KR20240067053A (en)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220147650A Division KR102628977B1 (en) 2022-11-08 2022-11-08 Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste

Publications (1)

Publication Number Publication Date
KR20240067053A true KR20240067053A (en) 2024-05-16

Family

ID=

Similar Documents

Publication Publication Date Title
JP5658270B2 (en) Manufacturing method of lightweight construction materials using sludge waste
CN107459364B (en) High-strength ceramsite prepared by using yellow river sludge and sludge as binder and preparation method thereof
CN110078530B (en) Preparation method of high-performance sintered insulating brick
CN110862252A (en) River and lake sludge-based non-fired ultra-light ceramsite as well as preparation method and application thereof
CN106518150B (en) A kind of composite haydite of clean water sludge and diatomite preparation
CN110698174A (en) Lightweight sludge ceramsite, and preparation method and application thereof
Zhang et al. Solidification/stabilization of landfill leachate concentrate contaminants using solid alkali-activated geopolymers with a high liquid solid ratio and fixing rate
KR101216411B1 (en) The method of preparing lightweight-aggregate for concrete products using sludge of dyeing-waste water
CN108751968B (en) Preparation method of intrinsic pore-forming porous ceramic material
CN111875274A (en) Method for preparing ceramsite and ceramsite prepared by same
KR101235251B1 (en) Cement using waterworks sludge and mathod for manufacturing the same
KR100678367B1 (en) Light-weight clay bricks and pavers and method of preparation thereof using water-sludge
CN113562999A (en) Light ceramsite prepared from incineration fly ash of waste power plant and preparation method thereof
CN109133683B (en) Comprehensive and integrated utilization method of coal gangue
KR101066193B1 (en) Carbonized lightweight aggregate be made from organic sludge
KR102628977B1 (en) Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste
CN110683858A (en) Method for preparing autoclaved aerated concrete block by compounding ceramic polishing mud and copper tailings and product thereof
CN116253555B (en) Industrial sludge-based full-solid waste water permeable brick and preparation method thereof
KR20190014396A (en) Blocks recycled from wastes generated during stone processing and their manufacturing methods
KR20240067053A (en) Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste
KR20240067054A (en) Method of Preparing Porous Ceramic Filter Media for Reducing Non-Point Pollution by Recycling Disaster Waste
KR102372282B1 (en) Method of Preparing Artificial Lightweight Aggregate by Recycling Anaerobic Digested Organic Sludge
CN106316382A (en) Spinel prepared with waterworks sludge and preparing method thereof
KR102351167B1 (en) Continuous porous architectural ceramic panel for recycling purified water sludge and its manufacturing method
CN115321948A (en) Method for preparing ceramic filtering membrane by using wulan thea-crystal stone