KR20240051499A - 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 - Google Patents
비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 Download PDFInfo
- Publication number
- KR20240051499A KR20240051499A KR1020220131236A KR20220131236A KR20240051499A KR 20240051499 A KR20240051499 A KR 20240051499A KR 1020220131236 A KR1020220131236 A KR 1020220131236A KR 20220131236 A KR20220131236 A KR 20220131236A KR 20240051499 A KR20240051499 A KR 20240051499A
- Authority
- KR
- South Korea
- Prior art keywords
- face
- interview
- artificial intelligence
- applicant
- analyzing
- Prior art date
Links
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 76
- 230000007115 recruitment Effects 0.000 title claims abstract description 57
- 238000004458 analytical method Methods 0.000 claims abstract description 45
- 238000012545 processing Methods 0.000 claims description 35
- 238000001914 filtration Methods 0.000 claims description 11
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 238000007726 management method Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 18
- 230000010365 information processing Effects 0.000 description 14
- 238000012216 screening Methods 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 11
- 238000012790 confirmation Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000003058 natural language processing Methods 0.000 description 9
- 230000008520 organization Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000002996 emotional effect Effects 0.000 description 4
- 230000008921 facial expression Effects 0.000 description 4
- 210000001097 facial muscle Anatomy 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 206010028347 Muscle twitching Diseases 0.000 description 3
- 230000009193 crawling Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 238000013439 planning Methods 0.000 description 3
- 238000012358 sourcing Methods 0.000 description 3
- QVFWZNCVPCJQOP-UHFFFAOYSA-N chloralodol Chemical compound CC(O)(C)CC(C)OC(O)C(Cl)(Cl)Cl QVFWZNCVPCJQOP-UHFFFAOYSA-N 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 231100000279 safety data Toxicity 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
- G06Q10/105—Human resources
- G06Q10/1053—Employment or hiring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/60—Information retrieval; Database structures therefor; File system structures therefor of audio data
- G06F16/68—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/683—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/73—Querying
- G06F16/732—Query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/9032—Query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/9032—Query formulation
- G06F16/90332—Natural language query formulation or dialogue systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
- G06F40/35—Discourse or dialogue representation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/16—Speech classification or search using artificial neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/22—Procedures used during a speech recognition process, e.g. man-machine dialogue
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/63—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Evolutionary Computation (AREA)
- Human Resources & Organizations (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Mathematical Physics (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Economics (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Library & Information Science (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Child & Adolescent Psychology (AREA)
Abstract
본 명세서에 개시된 내용은 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법에 관한 것이다. 본 발명에 의하면 인공지능 분석 및 직무별 질문을 통해 면접 연습 실력을 향상시킬 수 있고, 인터뷰 등록 시 기업으로부터 면접제의로 추가적인 취업 기회를 제공받을 수 있다.
Description
본 명세서에 개시된 내용은 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법에 관한 것이다.
본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.
일반적으로, 최근에 들어서 채용자는 채용 업무를 더 빠르고 쉽게 수행할 수 있으며 기존에는 주관적 판단에 의존해야 했던 부분을 객관화하여 더 많은 데이터를 바탕으로 인재를 채용하고자 한다.
그런데, 하나의 채용공고에는 많은 예를 들어, 평균 약 250명의 지원자가 지원하고, 수집 채용데이터를 처리하는 데에는 막대한 시간과 비용이 발생한다. 그래서, 지원자들의 이력사항 등을 빠르게 분석해야 하기도 한다.
예를 들어, 이러한 지원자들은 개인의 스마트폰에 응용프로그램을 설치하여 속도가 빠르고 안정적으로 시간에 구애받지 않고 어디서든 원활한 면접 진행 등을 할 수도 있을 것이다.
그리고, 이러한 스마트폰 내에 캘린더와 주소록, 카메라 등 스마트폰 고유기능을 원활하게 사용함으로써 쉽게 개인의 채용관리를 가능할 수도 있을 것이다.
또한, 한편으로는 기존 채용의사결정은 하드스킬에만 의존해서, 채용의사결정 근거의 폭이 좁아지므로, 이러한 내용을 측정하는 도구를 제공하여 보다 넓은 데이터에 의해 채용 여부를 결정할 수도 있다.
그런데, 이러한 선행기술을 살펴보면, 이를 해결할 수도 있는 선제적 직접채용 기능과 소프트 스킬을 평가하는 기능이 없으며, 그래서, 이러한 기능과 스크리닝/필터링 기능, 지원자 추적 관리/관계 관리 기능, 화상 면접생성 공유 기능 등을 제공하는 채용에 관한 기능을 제공할 수 있도록 한다.
이러한 배경의 선행기술문헌은 아래의 특허문헌이 나올 정도일 뿐이다.
(특허문헌 1) KR1022811610 Y1
참고적으로, 이러한 특허문헌 1의 기술은 비대면 면접에 관한 것으로, 자기소개서를 기반으로 면접 질문을 만들어서 면접관의 단말로 서비스를 제공해 주는 것이다.
개시된 내용은, 인공지능 분석 및 직무별 질문을 통해 면접 연습 실력을 향상시키고 지원자의 인터뷰 영상을 AI이미지, 스피치 분석 등 알고리즘을 활용하여 분석함으로써 비대면으로 맞춤형 인재를 채용할 수 있도록 한 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법을 제공하고자 한다.
실시예에 따른 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법은,
채용공고에 지원한 지원자의 스킬과 이력사항을 분석 및 가공한 후 시각화하여 제공하는 단계; 상기 지원자에 대한 인공지능 인터뷰를 진행하는 단계; 상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계; 상기 지원자의 인공지능 인터뷰 점수를 측정하는 단계; 및 상기 지원자의 인터뷰 영상에서 이미지, 음성, 태도를 분석하여 인공지능 분석 보고서를 제공하는 단계를 포함할 수 있다.
상기 채용공고에 지원한 지원자의 스킬과 이력사항을 분석 및 가공한 후 시각화하여 제공하는 단계에서, 상기 지원자의 이력서의 텍스트를 추적하여 인공지능을 통해 회사가 원하는 스펙으로 필터링 및 가중치를 부여하여 서류통과 여부를 결정하거나 순위별로 정렬하는 단계를 더 포함할 수 있다.
상기 지원자에 대한 인공지능 인터뷰를 진행하는 단계에서, 상기 인터뷰 질문을 위해 참고하거나 활용할 수 있는 직무별 인터뷰 질문 템플릿을 제공하는 단계를 더 포함할 수 있다.
상기 지원자에 대한 인공지능 인터뷰를 진행하는 단계에서, 하드 스킬이 중요한 직군에 대해서는 해당 직군에 특화된 테스트를 진행하는 단계를 더 포함할 수 있다.
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서, 상기 지원자의 실시간 인터뷰 내용을 음성인식을 통해 분석하여 상호작용이 가능한 추가 질문을 생성하는 단계를 더 포함할 수 있다.
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서, 상기 지원자의 말 빠르기, 사용 단어 분석, 방언 인식을 하여 오디오 데이터를 실시간으로 처리하여 분석하는 단계를 더 포함할 수 있다.
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서, 상기 지원자의 인터뷰 영상에서 단어와 문장을 포함한 언어 분석을 하고 긍정과 부정의 의미를 분석하는 단계를 더 포함할 수 있다.
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서, 상기 지원자의 얼굴 근육 인식을 통해 표정과 눈 떨림을 분석하고 피부톤의 미세한 변화 감지를 통해 상기 지원자의 긴장도를 파악하는 단계를 더 포함할 수 있다.
상기 지원자의 인공지능 인터뷰 점수를 측정하는 단계에서, 실제 면접과 유사하게 다양한 관점의 면접관 패턴을 학습시켜 나온 결과를 하나로 취합하여 인공지능 인터뷰 점수를 측정할 수 있다.
실제 면접과 동일하게 면접 점수를 예측하기 위하여 해당 직무의 필요 적성과 적합한 면접관의 점수 및 기업의 인재상에 맞는 평가값에 가중치를 부여할 수 있다.
상기 지원자의 인터뷰 영상에서 이미지, 음성, 태도를 분석하여 인공지능 분석 보고서를 제공하는 단계 이후에, 채용공고, 면접 진행 상태, 주소록, 인터뷰 결과 통보를 포함한 채용 전 과정에 있어 지원자를 추적하여 통합 관리하는 단계를 더 포함할 수 있다.
실시예들에 의하면, 인공지능 분석 및 직무별 질문을 통해 면접 연습 실력을 향상시킬 수 있고, 인터뷰 등록 시 기업으로부터 면접제의로 추가적인 취업 기회를 제공받을 수 있다.
또한, 채용 공고, 인터뷰 수행, 주소록 정리, 결과 공유 등 채용 전 과정에 걸쳐 지원자 추적 기능을 제공할 수 있으며, 개발자, 콘텐츠 제작, 디자이너 등 하드스킬이 중요한 직군에 특화된 테스트를 진행하여 해당 직군에 적합한 맞춤형 인재를 비대면으로 채용할 수 있다.
도 1은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 개념적으로 설명하기 위한 도면
도 2는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 적용한 시스템을 전체적으로 도시한 도면
도 3은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 적용한 관리 정보처리장치의 구성을 도시한 블록도
도 4는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 순서대로 도시한 플로우 차트
도 5는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 선제적 직접채용을 설명하기 위한 도면
도 6은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 지원자 스크리닝 및 필터링 흐름도
도 7은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 데이터 가공 프로세스를 설명하기 위한 도면
도 8은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접자용 UI화면을 보여주는 도면
도 9는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접관용 UI화면을 보여주는 도면
도 10은 면접자의 얼굴 검출, 자연 언어 처리 및 음성인식/음성합성의 일예를 나타내는 도면
도 11은 인공지능 면접 서비스의 일예를 나타내는 도면
도 12는 면접자/면접관용 AI기반 비대면 취업 플랫폼 이미지의 일예를 나타내는 도면
도 13은 인공지능 분석을 통한 비대면 맞춤형 인재 채용을 위한 클라이언트 서버 구성을 나타내는 도면
도 14는 비대면 맞춤형 인재 채용 서비스를 위한 인터페이스 구성의 일예를 나타내는 도면
도 2는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 적용한 시스템을 전체적으로 도시한 도면
도 3은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 적용한 관리 정보처리장치의 구성을 도시한 블록도
도 4는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 순서대로 도시한 플로우 차트
도 5는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 선제적 직접채용을 설명하기 위한 도면
도 6은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 지원자 스크리닝 및 필터링 흐름도
도 7은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 데이터 가공 프로세스를 설명하기 위한 도면
도 8은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접자용 UI화면을 보여주는 도면
도 9는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접관용 UI화면을 보여주는 도면
도 10은 면접자의 얼굴 검출, 자연 언어 처리 및 음성인식/음성합성의 일예를 나타내는 도면
도 11은 인공지능 면접 서비스의 일예를 나타내는 도면
도 12는 면접자/면접관용 AI기반 비대면 취업 플랫폼 이미지의 일예를 나타내는 도면
도 13은 인공지능 분석을 통한 비대면 맞춤형 인재 채용을 위한 클라이언트 서버 구성을 나타내는 도면
도 14는 비대면 맞춤형 인재 채용 서비스를 위한 인터페이스 구성의 일예를 나타내는 도면
도 1은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 개념적으로 설명하기 위한 도면이다.
도 1에 도시된 바와 같이, 일실시예의 데이터 가공을 통한 비대면 면접 방법은 여러 업체에서 다양한 직무를 위한 채용 서비스를 제공할 경우에, 채용자가 방대한 채용데이터를 보다 쉽게 접근하고 활용하는 것에 도움을 줄 수 있도록 한다.
구체적으로는, 이러한 데이터 가공을 통한 비대면 면접 방법은 아래와 같이 수행한다.
먼저, 이러한 비대면 면접 방법은 모바일 단말기를 사용한 면접자용 서비스로는(Native App), 비대면 면접 진행 및 결과확인을 제공하고, 비대면 인터뷰 유형을 선택하도록 하며, 이의 면접 질문에 쉽게 대응할 수 있도록 한다.
그리고, 또한 이러한 경우에, 미리 특정한 개인 버전(면접자용)의 화상 인터뷰를 통해 모의 면접 서비스를 진행한다.
이때, 이러한 모의 면접 등을 할 경우에, 인터뷰 유형에서는 공통질문과 마케팅ㅇ광고ㅇ홍보, ITㅇ인터넷, 디자인, 구매ㅇ물류ㅇ유통, 영업ㅇ고객상담, 생산ㅇ품질관리 등으로 구분하기도 한다.
그리고, 예를 들어, 사용자 스마트폰 등으로 개인 버전을 다운받아 코드를 입력하면 간편하게 면접에 응시한다. 그리고, 또한 사전 입풀기 테스트와 스피드게임 등으로 긴장을 푼 뒤 원하는 직무를 선택해 자기소개 및 질문에 응답한다.
다음으로, 이에 더하여 상기 비대면 면접 방법은 면접관용으로는(PC(SW)), 기업별로 상이한 코드를 제공하고, 여러 직군별로 지원자에 관한 데이터를 확인하며, 면접에 관한 결과 등의 리포트 제공 및 면접 데이터 제공을 수행한다.
그리고, 이러한 경우에 특히나, 기업 버전(면접관용)의 화상 인터뷰를 통해서는 직무 역량에 맞는 질문을 자유자재로 설정해 찾고자 하는 인재상에 맞게 원하는 대로 커스터마이징한다.
예를 들어, 면접자별 영상 및 음성 데이터를 분석해 도출해낸 종합 리포트를 제공하고, 면접자를 정량적으로 한눈에 비교 가능하며, 모집 단위별로 지원자의 데이터를 한 곳에서 확인할 수 있어 더 빠르고 정확하게 합격자를 파악한다.
또한 추가적으로는, 상기 비대면 면접 방법은 채용자의 소프트스킬을 측정하는 도구를 제공하여 보다 넓은 데이터에 의해 채용 여부를 결정한다. 그리고, 채용인은 지원자의 데이터를 대시보드 형태의 보고서로 확인이 가능하고, 지원자도 자신의 평가 결과를 보고서의 형태로 확인할 수 있어 합리적으로 채용의사결정을 한다. 아울러서, 비대면 하드스킬 테스트 및 소프트 스킬 테스트를 통해 데이터에 기반한 객관적 의사결정한다.
도 2는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 시스템을 전체적으로 도시한 도면이다.
도 2에 도시된 바와 같이, 일실시예의 시스템은 여러 장소 내에 다수의 상이한 (예비) 지원자들이 지니는 모바일 단말기(100과 110)와 이러한 지원자들의 데이터를 일괄 수집하여 비대면 면접을 수행하는 관리 정보처리장치(200)(관리자 단말기(210)도 포함)를 포함한다.
추가적으로, 일실시예에 따른 시스템은 상기 관리 정보처리장치(200)와 외부연계하는 곳으로, 학원 정보처리장치(300-1)와 병원 정보처리장치(건강 진단용)(300-2), 의류와 헤어 등의 정보처리장치(미도시) 등을 포함하기도 한다.
부가해서, 이때 이러한 시스템은 전술한 각 장치 간에 자가망을 통해 연결한다. 예를 들어, 무선통신 방식으로 와이파이 또는 LTE를 사용하고, 근접한 관리자 단말기(210) 등과는 무선(LoRA, RF, BT, BLE) 또는, 유선으로 연결한 장치 간에는 시리얼(RS232, RS485) 중에서 어느 하나로 연결한다.
상기 모바일 단말기(100과 110)는 여러 장소(a, b, ... , n) 내에 다수의 상이한 (예비) 지원자들이 지니는 것으로, 면접자용으로(Native App), 면접을 진행하고 결과확인을 제공하며, 면접 질문에 쉽게 대응할 수 있도록 한다. 그리고, 또한 상기 모바일 단말기(100과 110)는 미리 특정한 개인 버전(면접자용)의 화상 인터뷰를 통해 모의 면접 서비스를 진행한다. 이때, 모바일 단말기(100과 110)는 인터뷰 유형을 선택하며, 이를 통해 (예비) 지원자들이 쉽고 편리하게 면접 또는 예비 면접을 받을 수 있도록 도와준다.
상기 관리 정보처리장치(200)는 면접관용으로(PC(SW)), 다수의 상이한 기업별로 상이한 코드를 제공하고, 여러 직군별로 지원자에 관한 데이터를 확인하도록 하며, 면접에 관한 결과 등의 리포트 제공 및 면접 데이터 제공을 수행한다. 그리고, 상기 관리 정보처리장치(200)는 이러한 경우에 특히나, 기업 버전(면접관용)의 화상 인터뷰를 통해서는 직무 역량에 맞는 질문을 자유자재로 설정해 찾고자 하는 인재상에 맞게 원하는 대로 커스터마이징한다. 이를 위해, 예를 들어, 스킬셋과 경력, 소양을 포함하여 구직자 평가기준을 커스터마이징해서 선제적 직접 채용(Proactive Direct Sourcing)을 제공한다(보다 상세한 다른 내용은 아래에서 계속 설명함). 그리고, 또한 채용자의 소프트스킬을 측정하는 도구를 제공하여 보다 넓은 데이터에 의해 채용 여부를 결정하고, 아울러서, 비대면 하드스킬 테스트 및 소프트 스킬 테스트를 통해 데이터에 기반한 객관적 의사결정을 제공한다.
도 3은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 적용한 관리 정보처리장치의 구성을 도시한 블록도이다.
도 3에 도시된 바와 같이, 일실시예의 관리 정보처리장치(200)는 (예비) 지원자의 모바일 단말기(100) 등과 연결하는 인터페이스부(201)와 지원자 모바일 단말기(100)에서 지원자 데이터를 수급받아 채용공고/비대면 면접 등을 수행하는 메인 제어부(202) 및, 이에 관한 데이터베이스(203)를 포함한다.
추가적으로, 일실시예에 따른 관리 정보처리장치(200)는 사용자 키 조작에 따라 비대면 면접에 관한 각종 설정정보를 입력받는 키신호 입력부(204)와 각종 서비스음성을 출력하는 음성출력부(205) 및 각종 서비스UI를 표시하는 표시부(206)를 포함한다.
상기 인터페이스부(201)는 (예비) 지원자의 모바일 단말기 등과 연결하여 지원자에 관한 데이터와 면접 정보 또는, 예비 면접 정보 등을 제공받고, 다양한 면접에 관한 추천 정보와 모범 답안, 면접 실제정보, 예비 면접정보 등을 제공한다. 예를 들어, 와이파이 또는 LTE를 사용하여 연결하거나 또는, 무선(LoRA, RF, BT, BLE) 등을 통해 관리자 단말기 등과도 연결하기도 한다.
상기 메인 제어부(202)는 다수의 상이한 지원자 모바일 단말기에서 지원자 데이터를 일괄 수급받아 채용공고/비대면 (예비)면접 등을 수행한다. 예를 들어, 상기 메인 제어부(202)는 다수의 상이한 기업별로 상이한 코드를 제공하고, 여러 직군별로 지원자에 관한 데이터를 수집, 확인하며, 면접에 관한 결과 등의 리포트를 제공하고 면접 데이터도 제공한다. 그리고, 이러한 경우에 메인 제어부(202)는 면접자별 영상 및 음성 데이터를 분석해 도출해낸 종합 리포트를 제공하고, 면접자를 정량적으로 한눈에 비교하는 서비스를 제공하며, 모집 단위별로 지원자의 데이터를 한 곳에서 확인하여, 더 빠르고 정확하게 합격자를 파악한다.
상기 데이터베이스(203)는 이렇게 비대면 면접을 할 경우에, 상기 메인 제어부(202)의 제어에 의해 (예비) 지원자의 사용자 정보와 스피치 분석정보 등을 등록, 관리한다.
도 4는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법을 순서대로 도시한 플로우 차트이다(도 3 참조).
도 4에 도시된 바와 같이, 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법은 먼저 각각의 업체에서 직무를 위해 채용을 할 경우에, 관리 정보처리장치에서 지원자의 데이터를 수집하여 채용 서비스를 제공하는 것을 전제로 한다(종래 기술에 속함).
A) 이러한 상태에서, 이러한 비대면 면접 방법은 먼저 상기 채용 서비스를 위한 채용공고 게시 전에, 다수의 상이한 업체와 직무별로 스킬셋과 경력, 소양을 포함하여 구직자 평가기준을 커스터마이징해서 선제적 직접 채용(Proactive Direct Sourcing) 스크리닝/필터링 포맷을 설정한다(S401).
그리고, 이러한 경우에, 상기 구직자 평가기준은 다수의 상이한 직군별/직무별 직무 기술 템플릿(Job Description Template)으로 필수 요소(Must have)와 선택 요소(Nice to have)를 구분, 작성한다. 이때, 각 스킬에 점수를 차등 지정하여 스코어링 커스터마이징을 제공하기도 한다.
B) 다음, 여러 장소의 (예비) 지원자의 데이터를 수집하며, 이때 (예비) 지원자의 빅데이터를 다수의 상이한 웹크롤링 및 채용협력업체 API(Application Programming Interface)별로 수집해서(S402), 상기 선제적 직접 채용 스크리닝/필터링 포맷에 따라 직무 적합도를 가진 지원자를 후보로 선별하여(S403), 각각의 업체에 서비스로 제공한다(S404).
추가적으로, 이러한 경우에 상기 선제적 직접 채용 스크리닝/필터링 포맷은 아래와 같다.
a) 즉, 이러한 포맷은 먼저 상기 웹크롤링과 채용협력업체 API별 (예비) 지원자 데이터와 채용공고별 지원자 데이터, 비디오 인터뷰별 지원자 데이터를 수집하여, (예비) 지원자 데이터를 수급, 데이터 유형을 분석한다.
b) 그리고 또한, 이러한 데이터를 수급할 경우에는, (예비) 지원자의 학점과 이름을 포함한 정형 데이터와 감성수준과 열정을 포함한 비정형 데이터로 분류하고, 상기 정형 데이터는 텍스트 인덱싱(Text Indexing)하고, 상기 비정형 데이터는 텍스트 기반 데이터와 동영상 이미지 데이터로 구분하여 추출하고, 또한 각각의 상이한 데이터별로 구문 분석기의 프레임워크(SyntaxNet)와 그랩컷을 사용해서, 지원자의 채용 데이터를 분석한다.
c) 그래서, 이를 통해 상기 지원자의 채용 데이터 정보를 상기 채용자 평가기준 지원자 스크리닝 및 필터링 포맷에 따라 적극성 데이터와 안전성 데이터, 신뢰성 데이터, 긍정성 데이터, 대응성 데이터, 의지력 데이터, 능동성 데이터, 매력도 데이터를 포함한 가공 서비스로 수행하여 시각화한다.
C) 한편으로, 이러한 비대면 면접 방법은 채용공고 게시 후에는, 지원자의 이력서 및 자기소개서를 설정 자연어 처리 엔진을 통해 분석 및 분류하여 점수화하고, 채용공고와의 일치율을 비교하여 직무 적합도를 검출함으로써, 초기 선별(Initial Screening) 심사를 수행한다(S405).
D) 그리고, 또한 이러한 초기 선별 심사를 한 후에는, 각각의 업체별 직무마다 질문 유형과 대답 시간을 포함한 요소를 가진 화상면접 정보를 생성한다(S406). 그리고, 이러한 화상면접 질문 구성 시에는 인터뷰 질문 템플릿을 만들어 화상면접 질문 템플릿을 작성한다.
E) 그래서, 상기 화상면접 영상을 이미지 인식과 스피치 분석하여 화상면접을 평가하며(S407), 개발자와 데이터 분석가, 디자이너를 포함한 하드 스킬용 직군과 협동심과 조직문화 적합도, 시간 관리를 포함한 소프트 스킬 직군별로 상이하게 스킬을 비교분석한다.
이상과 같이, 일실시예는 먼저 모바일 단말기를 사용한 면접자용 서비스로는(Native App), 비대면 면접 진행 및 결과확인을 제공하고, 비대면 인터뷰 유형을 선택하도록 하며, 이의 면접 질문에 쉽게 대응할 수 있도록 한다.
그리고, 또한 이러한 경우에 미리 특정한 개인 버전(면접자용)의 화상 인터뷰를 통해 모의 면접 서비스를 진행한다.
그리고, 이에 더하여 PC(SW)를 사용한 면접관용 서비스로는, 여러 기업별로 비대면 면접에 관한 상이한 코드를 제공하고, 여러 직군별로도 지원자에 관한 데이터를 수집 확인하며, 이 면접에 관한 결과 등의 리포트 제공 및 면접 데이터 제공을 수행한다.
또한, 아울러 기업 버전(면접관용)의 화상 인터뷰를 통해서는 직무 역량에 맞는 질문을 자유자재로 설정해 찾고자 하는 인재상에 맞게 원하는 대로 커스터마이징한다.
추가적으로 또한, 채용자의 소프트스킬을 측정하는 도구를 제공하여 보다 넓은 데이터에 의해 채용 여부를 결정하고, 아울러서, 비대면 하드스킬 테스트 및 소프트 스킬 테스트를 통해 데이터에 기반한 객관적 의사결정을 제공한다.
따라서, 이를 통해 기업에 필요한 전문가들을 효율적으로 채용할 수 있어 기업들은 본인들의 핵심업무에 집중할 수 있다.
그리고, 또한 수많은 지원 서류들을 일관성 있고, 객관적인 방식으로 스크리닝 할 수 있으며 인재를 모으고 선별하는 작업에 있어서 기업이 관심을 가질 수 있는 인재풀의 다양성을 크게 확대해 주고 결과적으로 우수한 역량의 인재를 채용한다.
이에 더하여, 면접 시 채용담당자가 지원자의 채용점수를 조작하거나, 추가점수를 부여하는 불공정한 행위가 없는 채용절차를 이루어지게 함으로써 공정한 채용이 가능하다.
그리고, 면접종료 후에는 인사팀에서 면접위원이 작성한 면접평가표를 수정하거나 면접결과를 요약한 서면을 허위로 작성하여 면접결과와 다른 내용으로 합격자를 결정하는 행위가 불가하여 공정한 채용이 가능하다.
한편, 추가적으로 이러한 비대면 면접 방법은 이렇게 비대면 면접을 할 경우에, (예비) 지원자들에게 아래의 부가 서비스를 더 제공함으로써, 지원자들이 조금 더 편리하게 면접을 받을 수 있도록 하여준다.
A) 이를 위해, 이러한 비대면 면접 방법은 먼저 전술한 채용 서비스와 화상면접을 평가할 경우에, (예비) 지원자 모바일 단말기로부터 다수의 상이한 (예비) 지원자별 (예상) 면접정보를 상이한 인터뷰 유형별로 일괄 제공받아서, 빅데이터를 분석한다. 그리고 나서, 이러한 정보를 활용하여 여러 사용자별로 적합하게 사용자 스피치 분석과 타 사용자 분석결과 비교, 업체별 면접 질문 분석 정보를 제공하고, 면접 결과를 각기 회신한다.
B) 또한, 추가적으로 이러한 분석 정보를 기반으로 상이한 업체별 인터뷰 유형마다 추천 유형과 모범 답안, 예상질문을 포함한 면접 스피치 정보를 각기 산출해서 제공한다.
C) 그리고, 아울러 이렇게 (예상) 면접을 수행할 경우에는, (예비) 지원자에 관한 각각의 사용자 정보와 스피치 분석정보를 상이한 개인버전별로 분류하여 등록, 관리한다.
도 5는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 선제적 직접채용을 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, 일실시예에 따른 선제적 직접채용은 전술한 바와 같이, 채용공고 게시 전에 여러 업체에 서비스를 제공한다.
구체적으로는 아래와 같다.
* 채용공고 게시 전
1) Candidate Criteria Customization 구직자 평가기준 설정
가) 채용자 - 해당 직무를 위해 갖춰야 할 스킬셋과 경력, 소양 등을 명시하여 (예비) 지원자의 직무 적합도 제고
나) 지원자 - 회사와 직무에 대해 명확히 이해한 후 지원하여 채용 과정에 적극적 참여 가능
2) Job Description Template 직무 기술 템플릿 제공
가) 직군별/직무별 Job Description 및 채용공고 작성 템플릿 제공
나) 필수 요수 즉, Must have와 선택 요소 즉, Nice to have를 구분하여 채용 공고를 작성할 수 있다. 특히, 프리미엄(Premium) 요금제의 경우 채용자가 각 스킬에 점수를 차등 지정하여 스코어링 커스터마이징이 가능하다.
3) Proactive Direct Sourcing 선제적 직접 채용
가) 웹 크롤링 및 채용플랫폼 파트너쉽을 통해 지원자의 빅데이터를 수집한다.
나) 그리고, 수집 빅데이터는 스크리닝/필터링 알고리즘을 거쳐 가공하여, 최적의 직무 적합도를 가진 지원자를 후보로 선별한다.
다) 필요시 지원자에 메일 발송 및 화상면접 제의 등을 통해 채용을 빠르게 진행한다.
도 6은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 지원자 스크리닝 및 필터링을 설명하기 위한 흐름도이다.
도 6에 도시된 바와 같이, 일실시예에 따른 지원자 스크리닝 및 필터링은 채용공고 게시 후에 여러 업체에 적합한 서비스를 제공한다.
구체적으로는 아래와 같다.
* 채용공고 게시 후
1) Initial Screening 최초 심사
가) 이력서 및 자기소개서를 자연어 처리 엔진을 통해 분석 및 분류하여 점수화를 진행한다.
나) 채용공고와의 일치율을 비교하여 직무 적합도를 숫자로 표현하고, 빠르게 확인 가능하다.
2) Video Interview Making 화상면접 생성
가) 질문 유형, 대답 시간 등 다양한 요소를 자유롭게 설정 가능하다.
3) Video Interview Question Template 화상면접 질문 템플릿 제공
가) 비디오인터뷰 질문 기획 시 참고하거나 활용 가능한 직무별 인터뷰 질문 템플릿을 제공한다.
4) Video Interview Scoring 화상면접 평가
가) 지원자의 비디오 인터뷰 영상을 인공지능 이미지 인식, 스피치 분석 등의 알고리즘을 활용하여 분석한다.
5) Hard Skillset Test 하드 스킬 비교분석 알고리즘
가) 개발자와 데이터 분석가, 디자이너 등 하드 스킬이 중요한 직군에 적합한 특화 테스트를 진행한다.
6) Soft Skillset Test 소프트 스킬 비교분석 알고리즘
가) 협동심과 조직문화 적합도, 시간 관리 등 예상하기 어려운 소프트 스킬을 평가하는 데에 효과적인 알고리즘을 제공한다.
나) 특히, 조직문화 적합도 테스트의 경우 회사에서 자체 평가기준을 선정하고 기존 직원들의 데이터를 활용하여, 성향, 문화 등 기존 직원들과 지원자의 데이터를 비교 분석한다.
* 일반적 기능
1) Talent Dashboard 대시보드
가) 직접채용기능을 통해 추출한 예비지원자와 채용공고를 통해 유입된 지원자 모두의 스킬셋 및 경력 등을 시각화한 대시보드를 제공한다.
나) 방대한 채용 데이터를 손쉽게 활용 및 분석하여 데이터에 기반한 의사결정이 가능하다.
2) Applicant Tracking System 지원자 추적 시스템
가) 채용공고와 주소록 정리, 이메일 연락, 인터뷰 수행, 결과 공유 등 채용전 과정에 걸쳐 지원자 추적이 가능하다.
3) Collaborative Workspace 협업툴
가) 다수의 팀 멤버가 동시에 작업할 수 있는 관리자 권한을 부여한다.
나) 영상과 이력서, 스킬셋 테스트 등 각 지원자의 자료에 코멘트 게시가 가능하다.
도 7은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 데이터 가동 프로세스를 설명하기 위한 도면이다.
도 7에 도시된 바와 같이, 일실시예에 따른 데이터 가동 프로세스는 가공 서비스의 상세 정보를 사용하여 아래와 같이 수행한다.
① 즉, 먼저 상담을 통해 상호간의 협의를 하여 업무협약을 체결한다.
② 다음, 요건정의 및 확정을 위한 분석요건도출과 수행방안설계를 수행한다.
③ 그리고 나서, 모델링 성능평가를 위해 상호협업을 통해 모델링 설계를 하여 모델링을 완성한다.
④ 그리고, 완성 모델링을 실제 테스트를 하고 비즈니스적 영향도를 평가하여 검증을 완료한다.
⑤ 가공 데이터 자체 검수
⑥ 검수 완료 데이터를 제공
⑦ 그래서, 기업의 서비스 기술을 지원 및 관리함으로써 지속적인 사후관리를 제공한다.
도 8은 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접자용 UI화면을 보여주는 도면이다.
도 8에 도시된 바와 같이, 일실시예에 따른 면접자용 UI화면은 예를 들어, 비대면 면접 진행 및 결과 확인을 제공한다. 그리고, 인터뷰 유형 선택용 UI 화면을 제공한다. 이때, 인터뷰 유형은 공통질문과 마케팅ㅇ광고ㅇ홍보, ITㅇ인터넷, 디자인 등이다. 또한, 면접 질문에 대응할 수 있는 UI 화면과 직군별 면접 질문에 관한 UI 화면을 제공하기도 한다.
도 9는 일실시예에 따른 데이터 가공을 통한 비대면 면접 방법에 적용한 면접관용 UI화면을 보여주는 도면이다.
도 9에 도시된 바와 같이, 일실시예에 따른 면접관용 UI화면은 예컨대, 주요기능(서비스)으로는 기업별 코드제공 UI화면과 직군별 지원자 데이터 확인용 UI화면, 비대면 면접용 결과 등의 리포트 제공 및 면접 데이터 제공 UI화면을 제공한다.
다른 한편으로는 추가적으로, 이러한 데이터 가공을 통한 비대면 면접 방법은 이렇게 관리자 단말기를 통해 채용 서비스 등을 제공할 경우에, 관리자 단말기에 실시간으로 데이터베이스를 일치하고 연결도 확보하므로, 신속하고 손쉽게 실제 정보를 관리자에게 전달하도록 한다.
이를 위해서, 상기 메인 제어부는 아래의 동작을 수행한다.
A) 먼저, 데이터베이스를 일치하도록 하기 위해서, 채용 서비스를 제공할 경우에는, 상기 관리 정보처리장치의 장치등록 정보와 데이터를 저장한 테이블을 지원자의 모바일 단말기와 상호 간에 동일하게 구비하고, 테이블에 대한 정합 관계를 미리 설정 등록한다.
B) 상기 테이블 내에 콘텐츠를 변경할 경우, 상기 정합 관계에 따라서 상대 테이블에 동기화한다.
C) 그리고, 상기 테이블을 동기화할 경우에, 상이한 채용 서비스(또는, 기능) 유형별 데이터 유형마다 콘텐츠를 다원화하여 수행함으로써, 상호 간에 데이터베이스를 실시간 일치한다.
A) 다음으로, 이러한 경우에, 관리자 단말기와의 연결을 확보하기 위해서, 1차적으로 등록 로컬 통신망의 연결 여부를 확인해서, 상기 확인 결과 상기 로컬 통신망을 연결한 경우에는 상이한 관리 작업위치별로 대응하는 설정 관리자 공용 계정으로서 연결한다.
B) 상기 확인 결과, 상기 로컬 통신망을 연결하지 않은 경우에는 2차적으로 등록 무선 통신망의 연결 여부를 확인한다.
C) 상기 확인 결과 상기 무선 통신망을 연결한 경우에는 개별 IP 주소로 연결한다. 반면에, 상기 무선 통신망을 연결하지 않은 경우에는 등록 이동 통신망의 단말기 식별 번호로 연결하므로, 상기 관리자 단말기와 실시간 연결을 확보한다.
한편으로, 이렇게 관리자 단말기와 실시간으로 연결을 할 경우에, 연결의 보안을 위해서 IP테이블을 이용하여 등록 IP의 감시 및 비인가자의 접속에 따른 모니터링(또는, 로그)을 관리하도록 한다.
A) 구체적으로는, 이를 위해 먼저 상기 로컬 통신망의 관리자 공용 계정과 상기 무선 통신망의 개별 IP(Internet Protocol) 주소를 등록한 IP 테이블을 미리 구성한다.
B) 그리고, 이렇게 관리자 단말기로 알람을 제공할 경우에, 해당하는 통신망의 헬로우(HELLO) 메시지를 송신해서 응답 결과 내의 다음 홉(next hop) 스위치 IP 주소를 추출한다.
C) 다음, 이러한 다음 홉 스위치 IP 주소와 동일한 스위치 IP 주소를 스위치 인접지 연결 관계 리스트에서 확인한다.
D) 상기 확인 결과, 상기 다음 홉 스위치 IP 주소와 동일한 스위치 IP 주소가 있는 경우, 해당하는 관리자 공용 계정 또는, 개별 IP 주소가 상기 IP 테이블에도 있는지 확인하므로, 비인가자의 접속 여부를 확인한다.
E) 상기 확인 결과, 해당하는 관리자 공용 계정 또는, 개별 IP 주소가 상기 IP 테이블에도 있는 경우에 조인/정리(JOIN/PRUNE) 메시지를 송신하므로, 해당하는 통신망과 연결한다.
한편으로, 이러한 비대면 면접 방법은 이렇게 채용 서비스를 수행할 경우에, 아래의 구성으로부터 지원자에 관한 정보를 학습하여 원활하게 추천 유형 등을 제공할 수 있도록 한다.
즉 추가적으로, 이러한 비대면 면접 방법은 학점과 이름을 포함한 정형 데이터와 감성수준과 열정을 포함한 비정형 데이터 등의 실제 주변상태 또는 상황을 감안하여 모니터링용 학습모델을 생성해서, 양호한 서비스를 제공해 준다.
이러한 경우, 이러한 학습모델은 다양한 장소(예: 수료 장소 등)와 시간대(예: 수료 시기 등) 등으로 데이터를 속성화하므로, 처리율을 보다 높이기도 한다.
a) 먼저, 이를 위해서 예를 들어, 면접에 관한 추천 유형을 제공할 경우에, 학점과 이름을 포함한 정형 데이터와 감성수준과 열정을 포함한 비정형 데이터 등의 실제 주변상태 또는 상황을 포함한 정보를 시간대와 장소 등으로 분류하여 학습하는 모델을 정의한다.
b) 다음, 다수의 상이한 주변상태 또는 상황 정보에 대한 기본적인 데이터셋을 추출한다.
c) 그리고 나서, 이러한 데이터셋을 다수의 상이한 장소와 시간대 등을 반영하여 속성화한다.
d) 그래서, 이러한 속성화 결과를 기초로 한 다수의 상이한 학습 모델별로 상태정보의 속성을 결정한다.
e) 그런 후에, 상기 결정된 결과를 정규화한다.
f) 그리고, 이러한 정규화 결과를 기초로 해서 다수의 상이한 학습 모델별로 상태정보를 설정한다. 그래서, 다수의 상이한 주변상태/상황 정보를 사용하여 면접에 관한 추천 유형을 제공하는 정보를 생성하기 위한 독립(추천 유형) 및 종속(주변상태/상황 정보) 변수로 설정한다.
g) 다음, 상기 설정 결과를 학습 및 훈련 데이터로 생성한다.
h) 그래서, 이를 통해 이러한 결과로부터 딥러닝 기반의 모니터링용 학습모델을 생성한다.
그래서, 이러한 비대면 면접 방법은 전술한 바대로 채용 서비스를 제공할 경우에, 이러한 내용으로부터 면접에 관한 추천 유형을 제공하므로, 실제적으로 도움을 주는 서비스를 제공하기도 한다.
즉, 이상과 같이 이러한 비대면 면접 방법은 전술한 실시예에 따른 채용 서비스를 수행할 경우에, 아래의 구성으로부터 지원자에 관한 정보를 학습하여 원활하게 추천 유형 등을 제공한다.
그리고, 또한 이러한 비대면 면접 방법은 학점과 이름을 포함한 정형 데이터와 감성수준과 열정을 포함한 비정형 데이터 등의 실제 주변상태 또는 상황을 감안하여 모니터링용 학습모델을 생성해서, 양호한 서비스를 제공해 준다.
추가적으로, 이러한 방식을 사용하여 일실시예에 따른 비대면 면접 방법을 설명한다(동작 설명).
a) 먼저, 이러한 구성을 사용하여 화상면접을 평가하는 등의 서비스를 수행하며, 이러한 경우에, 1차로 (예비) 지원자 모바일 단말기로부터 다수의 상이한 (예비) 지원자별 (예상) 면접정보를 상이한 업체마다의 인터뷰 유형별로 일괄 제공받는다.
b) 그래서, 이러한 요청을 받을 경우에, 전술한 구성으로부터 상이한 업체별 인터뷰 유형마다 추천 유형과 또는, 모범 답안, 예상질문을 포함한 면접 스피치 정보를 각기 추출해서 제공한다.
한편으로, 이때 상기 구성은 이러한 인터뷰 유형별 면접 정보에 관한 빅데이터를 분석하여 사용자 스피치 분석과 타 사용자 분석결과 비교, 업체별 면접 질문 분석 정보를 산출, 제공하도록 하기도 한다.
c) 그리고 나서, 이러한 (예상) 면접을 수행할 경우에, (예비) 지원자에 관한 각각의 사용자 정보와 스피치 분석정보를 상이한 개인버전별로 분류하여 등록, 관리한다.
부가적으로, 이러한 학습모델을 생성하는 방식에 대해서 조금 더 설명한다.
먼저, 이러한 학습모델은 다수의 상이한 장소와 시간대, 시기 등에 따라 패턴이 달라서 데이터셋을 구분하여 모델을 생성한다. 따라서, 모델은 각기 새로 생성할 수도 있고 기준을 잡아 몇 개의 묶음으로 모델을 생성할 수도 있다. 이러한 것은 데이터의 특성에 따라 적합한 방법을 결정하도록 한다.
다음, 이렇게 수집한 데이터에서 오류로 인하여 다수 데이터를 수집하지 않을 경우와 예약이 특이하게 많은 이상치 등이 발생할 경우 등에, 해당하는 데이터 파일을 제거한다.
그리고, 간혹 데이터의 끊김 현상으로 일부 데이터가 미수집한 경우 해당하는 데이터를 제거한다.
다음으로 상이한 모델별로 유효한 속성을 결정하고 정규치를 생성한 후 독립 및 종속 변수를 결정한다.
그리고 나서, 학습 모델을 생성하기 위해서는 전체 데이터 중에서 학습과 훈련 데이터를 생성한다. 일반적으로 전체 데이터셋에서 70%를 학습데이터로 30%를 모델 생성후 모델을 시험하기 위해 훈련데이터로 사용한다.
다음으로 학습 모델을 생성한다. 이 단계에서 어떠한 학습모델을 사용할 것인지 결정한다. 예를 들어, 딥러닝 기반에서 필요한 레이어를 구성하여 입력과 출력층을 구성하여 최정 출력 개수를 설정하는 구성을 말한다. 그리고 나서, 이렇게 생성된 모델을 평가하고 이 모델을 오차율에 만족하면 새로운 데이터로 모델을 시뮬레이션 한 후, 모델 갱신이 필요하지 않으면 학습 모델을 저장한 후 예측 모델로 사용한다.
도 10은 면접자의 얼굴 검출, 자연 언어 처리 및 음성인식/음성합성의 일예를 나타내는 도면이고, 도 11은 인공지능 면접 서비스의 일예를 나타내는 도면이다.
도시된 바와 같이, 음성인식/음성합성 시스템(STT/TTS)은 면접자의 말 빠르기, 사용 단어 분석, 방언 인식 등 오디오 데이터를 통해 실시간 처리가 가능하며, 120개 이상의 언어를 지원할 수 있다.
자연 언어 처리(NLP)는 면접자의 단어, 문장 등 언어 분석 및 표현을 자동으로 처리 가능하고, 긍정과 부정의 의미분석을 할 수 있다.
얼굴 검출(Face-Detection)은 면접자의 얼굴 근육 인식을 통해 표정분석, 눈 떨림 등을 분석할 수 있으며 피부톤의 미세한 변화 감지를 통해 면접자의 긴장도를 파악할 수 있다.
전술한 본 발명의 개인 버전(면접자용) 서비스의 핵심 기능은 다음과 같다.
① 인공지능 분석 및 직무별 질문을 통해 면접 연습 실력을 향상시킨다.
② 기존 대면 면접의 문제점인 시공간 제약에서 벗어나 편리하게 인터뷰가 가능하다
③ 인터뷰 등록 시 기업으로부터 면접제의로 추가적인 취업 기회를 제공받는다.
또한, 본 발명의 기업 버전(면접관용) 서비스의 핵심 기능은 다음과 같다.
① 지원자의 인터뷰 영상을 AI이미지, 스피치 분석 등 알고리즘을 활용하여 분석한다.
② 인터뷰 질문 기획 시 참고하거나 활용할 수 있는 직무별 인터뷰 질문 템플릿을 제공한다.
③ 채용 공고, 인터뷰 수행, 주소록 정리, 결과 공유 등 채용 전 과정에 걸쳐 지원자 추적 기능을 제공한다.
④ 개발자, 콘텐츠 제작, 디자이너 등 하드스킬이 중요한 직군에 특화된 테스트를 진행한다.
즉, 본 발명의 서비스는 첨부된 도 11에서와 같이 구분되어 제공될 수 있다.
- 인공지능 면접 점수(A.I. Interview Scoring)
본 발명의 특화된 알고리즘을 통해 지원자들의 인터뷰 영상에서 이미지, 음성, 태도 등을 분석하여 A.I. 분석 리포트를 제공한다.
- 인공지능 면접 질문 템플릿(A.I. Interview Question Template)
본 발명의 질문 템플릿을 참고하여 직무별, 지원자 별로 맞춤형 질문지를 생성 가능하다.
- 지원자 추적 시스템(Applicant Tracking System)
채용공고, 면접 진행 상태, 주소록, 결과 통보 등 채용 전 과정에 있어 지원자 통합관리 기능을 제공한다.
- 하드 스킬셋 테스트(Hard Skillset Test)
개발자, 콘텐츠 제작, 디자인 등 하드 스킬이 필요한 전문 직종에 맞는 특화된 질문자를 제공한다.
도 12는 면접자/면접관용 AI기반 비대면 취업 플랫폼 이미지의 일예를 나타내는 도면이다.
도시된 바와 같이 면접자/면접관용 AI기반 비대면 취업 플랫폼은 WEB과 Native APP의 형태로 서비스가 제공될 수 있다. 플랫폼 이미지는 메인 페이지, 스플래시, 로그인 화면 페이지, 슬라이드 배너 형태로 제공될 수 있다.
최근 포스트 코로나 시대를 대비하여 비대면(언택트) 툴 수요가 급증하고 있다. 따라서, 비대면 모의면접 앱 기능 고도화를 통한 20-30대 청년 사용자 확보가 필요하다. 또한, 언택트로 효과적인 직무 역량 검증이 가능하고, 지원자 불참 비율이 낮아지게 되면서 더불어 면접관들의 만족도도 높아지게 된다.
특히, 인공지능 기술을 활용한 HR(Human Resource) 분야 적용이 가능하다. 즉, 모의 면접을 통하여 면접에 대비하는 훈련을 수행한다면 피면접자의 자신감을 높이고 면접 성과를 높일 수 있다. 더 나아가 인공지능 기술이 HR 분야에 적용되면서 채용을 위해 이를 활용하는 사례가 늘어나고 있으며, 최근 인공지능 기술이 채용과 인사부서를 지원하는데 활용도가 높아지고 있다.
또한, 4차 산업혁명과 디지털 트랜스포메이션, 그리고 인공지능(AI)의 도입 등 디지털 시대로의 전환이 급물살을 타고 있으며, 많은 전문가들은 이러한 변화가 사람들의 일과 기업 경영을 완전히 새롭게 바꿀 것이라고 전망하고 있다. 구체적으로 이러한 전망은 기술적 혁신, 생산성 향상, 신사업 기회의 등장과 같은 긍정적인 측면 뿐만 아니라 인공지능 또는 기계가 사람이 수행하는 일자리를 완전히 대체하는 것과 같은 부정적인 측면도 동시에 포함하고 있으며, 이에 따라 기업들은 이러한 변화에 적응하지 못하면 도태되고 말 것이라는 절박함으로 앞 다투어 새로운 기술을 도입하려고 한다. 이러한 맥락에서 본 발명은 인공지능의 도입이 기업에 가져올 변화에 효과적으로 대처할 수 있는 인재관리방안을 제시하는 것을 목적으로 이를 위해 인공지능 기술과 인간노동 간의 관계에서 기업의 사업 전략을 인공지능 활용전략을 제시한다.
또한, 선발 과정에 대한 입사지원자들의 인식은 입사지원자 개인 뿐 아니라 조직에게도 매우 중요한 요소이다. 선발 과정에서 불공정을 경험하거나 불만을 느낀 입사지원자는 조직에 대한 매력을 덜 느끼고 기업에 대한 반감이 생기게 되며, 직업관련 효능감도 저하되는 것으로 나타났다. 선발과정에 대한 부정적인 인식을 가진 입사지원자는 법적 소송을 제기할 수도 있고, 다른 잠재적 지원자들의 입사의도를 저하시키며, 선발되더라도 입사를 거절할 확률이 높고, 이렇게 되면 조직이 원하는 인재를 선발하는 것이 어려워지고 그것은 조직의 비용손실로 이어지게 된다. 입사지원자들이 선발 과정에서 불만을 느끼지 않고 조직을 매력적으로 인식하고, 선발 결과를 잘 수용하게하기 위해서는 신뢰할 만한 평가자가 공정한 절차를 통해 선발하는 것이 요구된다. 이렇듯 선발과정에 대한 입사지원자들의 인식은 조직의 입장에서 매우 중요한데, 인공지능이 인사선발 과정에 참여하고 입사지원자들이 인간의 인사선발을 하는 절차 보다 인공지능이 인사선발을 하는 절차가 더 만족하는지 혹은 더 공정하다고 인식하는지 알 필요가 있다.
도 13은 인공지능 분석을 통한 비대면 맞춤형 인재 채용을 위한 클라이언트 서버 구성을 나타내는 도면이고, 도 14는 비대면 맞춤형 인재 채용 서비스를 위한 인터페이스 구성의 일예를 나타내는 도면이다.
도시된 바와 같이, 서버에는 인재풀 데이터베이스를 포함하고 있으며, 인재풀 데이터베이스에는 클라이언트로부터 수신한 채용공고 데이터와 지원자 정보와 인터뷰 데이터 및 인공지능 AI 레포트 정보가 저장된다.
클라이언트의 인터뷰 모듈에서 음성인식/음성합성 시스템(STT/TTS)은 면접자의 말 빠르기, 사용단어 분석, 방언 인식 등 오디오 데이터를 통해 실시간 처리 가능하며, 120개 이상의 언어를 지원한다. 또한, 자연 언어 처리(NLP)에 의해 단어, 문장 등 언어 분석 및 표현을 자동으로 처리 가능하고, 긍정과 부정의 의미 분석이 가능하다. 또한, 얼굴 검출(Face Detection)에 의해 면접자의 얼굴 근육 인식을 통해 표정 분석, 눈 떨림 등을 분석할 수 있으며, 피부톤의 미세한 감지를 통해 면접자의 긴장도를 파악할 수 있다.
AI 채점 모듈은 실제 면접과 유사하게 다양한 관점의 면접관 패턴을 학습시켜 여기서 나온 결과를 하나로 취합하여 인공지능 AI면접 점수를 측정한다. 이와 같이 데이터가공법을 다양화하여 현실 면접과 더욱 동일하게 한다. 즉, 실제 면접과 동일하게 면접 점수를 예측하기 위하여 직무의 필요 적성과 적합한 면접관의 점수에 가중치를 둔다. 또한 기업의 인재상에 맞는 평가값에도 가중치를 부여하여 최종적으로 출력되는 값이 사람이 평가하였을 때와 근사하게 조정된다. AI 채점 결과에 따라 면접자의 해당 직무 적합도를 판단한다.
예측/분석 모듈은 면접자의 실시간 인터뷰 내용을 파악하여 음성인식(STT)을 통해 분석하여 면접자와의 상호작용이 가능한 추가 질문을 생성한다. 이와 같이 질의 상호작용이 진행되어 인터뷰 관리가 된다.
또한, 면접자의 성격유형검사를 통해서 직책과 직무의 성격, 성향을 확인하여 적합한 직무를 추천 또는 기업이 판단할 수 있게 한다.
또한, 이력서의 텍스트를 추적하여 인공지능 AI를 통해 회사가 원하는 스펙으로 필터링 및 가중치를 부여하여 서류통과 또는 순위별로 정렬한다. 이때, 인공지능 AI를 통한 저득점을 기록한 이력서는 인사 담당자가 별도로 검증을 가능하게 하여 단점을 보완하도록 한다.
또한, 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 등 알고리즘을 활용하여 분석하고, 인터뷰 질문 기획 시 참고하거나 활용할 수 있는 직무별 인터뷰 질문 템플릿을 제공한다. 특히, 개발자, 콘텐츠 제작, 디자이너 등 하드 스킬이 중요한 직군에 특화된 테스트를 진행한다.
즉, 본 발명의 인공지능 분석을 통한 비대면 맞춤형 인재 채용 방법에 따르면, 채용공고에 지원한 지원자의 스킬과 이력사항을 분석 및 가공한 후 시각화하여 제공하고, 지원자에 대한 인공지능 인터뷰를 진행한다. 이때, 지원자의 이력서의 텍스트를 추적하여 인공지능을 통해 회사가 원하는 스펙으로 필터링 및 가중치를 부여하여 서류통과 여부를 결정하거나 순위별로 정렬한다. 또한, 인터뷰 질문을 위해 참고하거나 활용할 수 있는 직무별 인터뷰 질문 템플릿을 제공하고, 하드 스킬이 중요한 직군에 대해서는 해당 직군에 특화된 테스트를 진행할 수 있다.
이어서, 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하고, 지원자의 인공지능 인터뷰 점수를 측정한다. 이때, 지원자의 실시간 인터뷰 내용을 음성인식을 통해 분석하여 상호작용이 가능한 추가 질문을 생성한다. 또한, 지원자의 말 빠르기, 사용 단어 분석, 방언 인식을 하여 오디오 데이터를 실시간으로 처리하여 분석하고, 지원자의 인터뷰 영상에서 단어와 문장을 포함한 언어 분석을 하고 긍정과 부정의 의미를 분석하며, 지원자의 얼굴 근육 인식을 통해 표정과 눈 떨림을 분석하고 피부톤의 미세한 변화 감지를 통해 지원자의 긴장도를 파악한다. 또한, 실제 면접과 유사하게 다양한 관점의 면접관 패턴을 학습시켜 나온 결과를 하나로 취합하여 인공지능 인터뷰 점수를 측정하고, 실제 면접과 동일하게 면접 점수를 예측하기 위하여 해당 직무의 필요 적성과 적합한 면접관의 점수 및 기업의 인재상에 맞는 평가값에 가중치를 부여한다.
이어서, 지원자의 인터뷰 영상에서 이미지, 음성, 태도를 분석하여 인공지능 분석 보고서를 제공한다.
이어서, 채용공고, 면접 진행 상태, 주소록, 인터뷰 결과 통보를 포함한 채용 전 과정에 있어 지원자를 추적하여 통합 관리한다.
전술한 본 발명의 인공지능 면접 및 채용 서비스 방법에 의하면, 인공지능 채용확대로 인한 고용차별 문제를 해결할 수 있다. 최근 노동관계에서 인공지능 활용이 확대됨으로써 채용 과정에서의 인공지능 활용이 인간의 편견과 주관성에 의한 불공정을 피할 수 있다.
또한, 기업의 채용 담당자는 채용업무를 더 빠르고 쉽게 수행할 수 있으며, 기존에는 주관적 판단에 의존해야 했던 부분을 객관화하여 더 많은 데이터를 바탕으로 인재를 채용할 수 있다. 예를 들어, 하나의 채용공고에는 평균 약 250명의 지원자가 지원하고, 수집된 채용데이터를 처리하는 데에는 막대한 시간과 비용이 발생하지만 NLP 엔진, 인공지능 필터링 스크리닝 기능을 탑재한 인터뷰는 채용 담당자 대비 지원자들의 하드스킬과 이력사항을 빠르게 분석 및 가공하고 이를 시각화하여 제공할 수 있다. 1차 면접으로 서류 전형에서 AI 기술을 활용하면 표절 여부 등 부정행위를 감별하기 쉽고 몇 만 명이 넘는 지원자의 자기소개서를 단 하루 만에 분석할 수 있다. 특히, 네이티브 앱(Native App) 기반의 면접자용은 개인의 스마트폰에 응용프로그램을 설치하여 속도가 빠르고 안정적이기 때문에 시간에 구애받지 않고 어디서든 원활한 면접이 가능하다. 그리고, 각 OS에 최적화된 네이티브 앱(Native App) 기반의 면접자용은 스마트폰에 쉽게 접근할 수 있는 권한을 가질 수 있어 캘린더, 주소록, 카메라 등 스마트폰 고유기능을 원활하게 사용함으로써 쉽게 개인의 채용관리가 가능하다.
결과적으로 기업에 필요한 전문가들을 효율적으로 채용할 수 있어 기업들은 본인들의 핵심업무에 집중할 수 있다. 즉, 수많은 기업의 지원 서류들을 일관성 있고, 객관적인 방식으로 스크리닝 할 수 있으며, 인재를 모으고 선별하는 작업에 있어서 기업이 관심을 가질 수 있는 인재풀의 다양성을 크게 확대해 주고, 우수한 역량의 인재를 채용할 수 있다.
100 : (지원자) 모바일 단말기
200 : 관리 정보처리장치
201 : 인터페이스부 202 : 메인 제어부
203 : 데이터베이스
200 : 관리 정보처리장치
201 : 인터페이스부 202 : 메인 제어부
203 : 데이터베이스
Claims (6)
- 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법에 있어서,
채용공고에 지원한 지원자의 스킬과 이력사항을 분석 및 가공한 후 시각화하여 제공하는 단계;
상기 지원자에 대한 인공지능 인터뷰를 진행하는 단계;
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계;
상기 지원자의 인공지능 인터뷰 점수를 측정하는 단계; 및
상기 지원자의 인터뷰 영상에서 이미지, 음성, 태도를 분석하여 인공지능 분석 보고서를 제공하는 단계를 포함하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법. - 청구항 1에 있어서,
상기 채용공고에 지원한 지원자의 스킬과 이력사항을 분석 및 가공한 후 시각화하여 제공하는 단계에서,
상기 지원자의 이력서의 텍스트를 추적하여 인공지능을 통해 회사가 원하는 스펙으로 필터링 및 가중치를 부여하여 서류통과 여부를 결정하거나 순위별로 정렬하는 단계를 더 포함하는 것을 특징으로 하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법. - 청구항 1에 있어서,
상기 지원자에 대한 인공지능 인터뷰를 진행하는 단계에서,
상기 인터뷰 질문을 위해 참고하거나 활용할 수 있는 직무별 인터뷰 질문 템플릿을 제공하는 단계를 더 포함하는 것을 특징으로 하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법. - 청구항 1에 있어서,
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서,
상기 지원자의 실시간 인터뷰 내용을 음성인식을 통해 분석하여 상호작용이 가능한 추가 질문을 생성하는 단계를 더 포함하는 것을 특징으로 하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법. - 청구항 1에 있어서,
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서,
상기 지원자의 말 빠르기, 사용 단어 분석, 방언 인식을 하여 오디오 데이터를 실시간으로 처리하여 분석하는 단계를 더 포함하는 것을 특징으로 하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법. - 청구항 1에 있어서,
상기 지원자의 인터뷰 영상을 인공지능 이미지, 스피치 분석 알고리즘을 활용하여 분석하는 단계에서,
상기 지원자의 인터뷰 영상에서 단어와 문장을 포함한 언어 분석을 하고 긍정과 부정의 의미를 분석하는 단계를 더 포함하는 것을 특징으로 하는 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220131236A KR20240051499A (ko) | 2022-10-13 | 2022-10-13 | 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 |
PCT/KR2022/015681 WO2024080422A1 (ko) | 2022-10-13 | 2022-10-17 | 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220131236A KR20240051499A (ko) | 2022-10-13 | 2022-10-13 | 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240051499A true KR20240051499A (ko) | 2024-04-22 |
Family
ID=90669741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220131236A KR20240051499A (ko) | 2022-10-13 | 2022-10-13 | 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240051499A (ko) |
WO (1) | WO2024080422A1 (ko) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8112365B2 (en) * | 2008-12-19 | 2012-02-07 | Foster Scott C | System and method for online employment recruiting and evaluation |
KR102255836B1 (ko) * | 2019-01-15 | 2021-05-25 | 주식회사 제네시스랩 | 기계학습을 이용한 온라인 면접을 제공하는 방법, 시스템 및 컴퓨터-판독가능 매체 |
KR102297947B1 (ko) * | 2019-07-25 | 2021-09-03 | 주식회사 제네시스랩 | 온라인 면접을 제공하는 방법, 시스템 및 컴퓨터-판독가능 매체 |
KR20210091967A (ko) * | 2020-01-15 | 2021-07-23 | 주식회사 위드마인드 | 영상데이터의 사용자성향분석 기반 직군적합성 도출 방법 |
KR102178935B1 (ko) * | 2020-02-21 | 2020-11-13 | (주)이음길에이치알 | 인공지능을 이용한 전직지원 관리서버 및 전직지원 관리방법 |
-
2022
- 2022-10-13 KR KR1020220131236A patent/KR20240051499A/ko not_active Application Discontinuation
- 2022-10-17 WO PCT/KR2022/015681 patent/WO2024080422A1/ko unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024080422A1 (ko) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hines et al. | Building foresight capacity: toward a foresight competency model | |
JP6666859B2 (ja) | キャリア分析プラットフォーム | |
Zikic et al. | Job loss as a blessing in disguise: The role of career exploration and career planning in predicting reemployment quality | |
Bayona-Oré et al. | Critical success factors taxonomy for software process deployment | |
KR102370384B1 (ko) | 데이터 가공을 통한 비대면 면접 방법 | |
JP2004503877A (ja) | 人材管理用コンピュータシステム | |
Reynolds et al. | Online recruiting and selection: Innovations in talent acquisition | |
KR102449661B1 (ko) | 인공지능 기반 채용 서비스 제공 방법, 장치 및 시스템 | |
Kyllonen et al. | Introduction: Innovative assessment of collaboration | |
Thakur et al. | Impact of diversity training on employees and consumers: A review and research agenda | |
Garr et al. | Diversity & inclusion technology: The rise of a transformative market | |
US20090094090A1 (en) | Lean staffing methodology | |
Johnson et al. | Identifying “best” applicants in recruiting using data envelopment analysis | |
Thakur et al. | Use of Artificial Intelligence (AI) in recruitment and selection | |
Drydakis | Artificial intelligence capital and employment prospects | |
Hupe | Conceptualizing street-level bureaucracy in context | |
KR102624095B1 (ko) | 인공지능을 이용한 문서 레이아웃 및 폰트 색상 추천 시스템 및 이의 실행 방법 | |
KR102449806B1 (ko) | 인공지능 기반 구성원 평가 피드백 서비스 제공 방법, 장치 및 시스템 | |
Castillo et al. | Using employee‐generated content from digital platforms to understand the luxury culture | |
KR20240051499A (ko) | 비대면 채용 서비스를 제공하는 인공지능 기반의 전문 인적자원 플랫폼 서비스 방법 | |
Ke | Applying Marchand’s information orientation theory to Sigma Kudos—an information product company | |
Jantunen | Making sense of software product requirements | |
KR20240052104A (ko) | 인공지능 알고리즘을 이용한 비대면 면접 방법 | |
Usha | Artificial Intelligence in HR | |
Belova et al. | Modern methods of resume processing in recruiting information systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |