KR20240051374A - 반도체 포토레지스터 장비의 pr 분사품질 자동검출기 - Google Patents

반도체 포토레지스터 장비의 pr 분사품질 자동검출기 Download PDF

Info

Publication number
KR20240051374A
KR20240051374A KR1020220130632A KR20220130632A KR20240051374A KR 20240051374 A KR20240051374 A KR 20240051374A KR 1020220130632 A KR1020220130632 A KR 1020220130632A KR 20220130632 A KR20220130632 A KR 20220130632A KR 20240051374 A KR20240051374 A KR 20240051374A
Authority
KR
South Korea
Prior art keywords
photoresist
deep learning
dvs
supply nozzle
unit
Prior art date
Application number
KR1020220130632A
Other languages
English (en)
Inventor
정원홍
Original Assignee
주식회사 램스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 램스 filed Critical 주식회사 램스
Priority to KR1020220130632A priority Critical patent/KR20240051374A/ko
Publication of KR20240051374A publication Critical patent/KR20240051374A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/161Coating processes; Apparatus therefor using a previously coated surface, e.g. by stamping or by transfer lamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은 스핀 코터의 공급노즐로부터 공급되는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 1 DVS(Dynamic Vision Sensor); 상기 공급노즐로부터 스핀척 상의 웨이퍼 상면에 공급되어 원심력에 의해 퍼져나가는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 2 DVS(Dynamic Vision Sensor); 상기 제 1 및 제 2 DVS로부터 획득되는 이미지로부터 딥러닝 알고리즘에 의해 포토레지스트의 결함 여부를 판별하도록 하는 딥러닝판단부; 상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시 경보 발생을 위한 제어신호를 출력하도록 하는 보조제어부; 및 상기 보조제어부의 제어신호에 따라 경보를 발생시키는 경보발생부;를 포함하고, 상기 제 1 DVS는, 한 쌍으로 이루어져서 상기 공급노즐을 중심으로 90도의 각도로 배치되고, 상기 제 2 DVS는, 상기 공급노즐이 고정된 노즐아암에 하방을 향하도록 설치되고, 상기 보조제어부는, 상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시, 상기 스핀 코터의 동작을 정지시키도록 제어하는, 반도체 포토레지스터 장비의 PR 분사품질 자동검출기가 제공된다.

Description

반도체 포토레지스터 장비의 PR 분사품질 자동검출기{auto system for inspecting PR spread quality of emiconductor photoresist appartus}
본 발명은 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에 관한 것으로서, 보다 상세하게는 반도체 제조공정 중 하나인 포토레지스트(Photo Resist, PR) 코팅에 사용되는 노즐의 상태와 포토레지스트의 코팅 영역을 DVS(Dynamic Vision Sensor) 및 딥러닝 기술을 활용하여 정확한 결함 감지를 가능하도록 하는 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에 관한 것이다.
일반적으로, 반도체소자 제조공정 중 패턴 형성을 위한 포토리소그래피 공정은 웨이퍼에 포토레지스트를 도포하고, 포토마스크를 이용하여 노광하고, 현상액에 현상함으로써, 포토 마스크의 일정 패턴이 포토레지스터 막에 전사되도록 하는 공정이다. 이때, 웨이퍼에 포토레지스트를 도포하는 공정을 수행하게 되는데, 이는 주로 스핀 코터를 이용하여 이루어진다.
이러한 스핀 코터는 웨이퍼를 고정하고 회전할 수 있도록 이루어진 회전척 위에 외부에서 공급된 웨이퍼가 놓이면, 회전척은 웨이퍼를 고정하고 회전을 시작한다. 그리고 포토레지스트의 공급노즐은 대기 위치에서 분사 위치로 이동하여 일정량의 포토레지스트를 회전하는 웨이퍼 중앙부에 뿌려주게 되고, 이 액상의 포토레지스터는 회전하는 웨이퍼 상에서 원심력에 의해 넓게 퍼져나가며 자체의 점성에 의해 웨이퍼에 거의 고른 두께로 분포된다. 이후 액상의 포토레지스터는 베이크 같은 일련의 경화과정을 거쳐 고상을 이루고, 노광공정에 투입된다.
이와 같은 스핀 코터에 의한 웨이퍼의 포토레지스트 코팅에 대한 품질 관리는 웨이퍼 불량률과 밀접한 관계를 가질 뿐만 아니라, 반도체에서의 미세 선폭 구현에 있어서 더욱 중요해지고 있다.
종래 포토레지스트의 코팅 품질 관리를 위한 기술로서, 한국공개특허 제10-2003-0085692호의 "스핀코터의 포토레지스트 센싱장치 및 센싱방법"이 제시된 바 있는데, 이는 구동수단에 의해 회전될 수 있도록 하는 회전척과; 포토레지스트의 양이 감지될 수 있는 제3 센싱부가 구비되고, 상기 회전척의 상부에 위치된 웨이퍼에 일정량의 포토레지스트가 도포되는 포토레지스트 공급용 노즐과; 포토레지스트의 양이 감지될 수 있는 제1 센싱부가 구비되고, 상기 웨이퍼에 분산될 포토레지스트가 담겨져 있는 포토레지스트 용기와; 포토레지스트의 양이 감지될 수 있는 제2 센싱부가 구비되고, 상기 포토레지스트 용기에 담긴 포토레지스트를 상기 포토레지스트 공급용 노즐에 공급될 수 있도록 펌핑시키는 펌핑부과; 상기 회전척이 회전될 수 있도록 구동수단을 콘트롤하고, 상기 포토레지스트 용기에 담긴 포토레지스트를 펌핑하여 포토레지스트 공급용 노즐로 이동되도록 상기 펌핑부를 콘트롤하는 콘트롤러가 구비되어 있다.
그러나, 종래 기술은 포토레지스트의 코팅 품질 불량을 야기하는 결함을 정확하게 판별하는데 한계를 가지고, 이로 인해, 웨이퍼의 불량률 감소에 기여하는 정도가 크지 않다는 문제점을 가지고 있었다.
이와 같은 포토레지스트의 코팅 결함을 검출하기 위한 다른 종래 방안으로서, 머신비전 방식을 이용하는 경우, 정상영역 대비 확연한 형상 차이를 보이는 결함(Defect)을 검출(Detection)하는 방식이며, 조명 대비 배경의 밝기 차이, 그리고 윤곽(Edge)을 이용한 형상 검출, 영상을 주파수 공간으로 변환하는 이산 푸리에 변환 알고리즘을 이용한 결함 검출 방법을 사용하게 되는데, 이 경우, 다음과 같은 문제점이 있다.
머신비전 방식의 첫 번째 제한요소는 영상데이터 배경과 결함요소가 바뀔 때 마다 검출 방법을 다르게 만들어야 한다는 것이며, 검사의 대상이 바뀔 때마다 새로운 특징(Feature)을 갖는 데이터를 수집하고, 그 데이터에서 특징을 추출하여 알고리즘을 적용해야 하기 때문에, 다양한 결함 종류에 대한 통합적인 검사 알고리즘을 구성하기가 어려우며, 추가적인 시간과 비용이 크게 발생되는 문제점을 가진다.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은 반도체 제조공정 중 하나인 포토레지스트(Photo Resist, PR) 코팅에 사용되는 노즐의 상태와 포토레지스트의 코팅 영역을 DVS(Dynamic Vision Sensor) 및 딥러닝 기술을 활용하여 정확한 결함 감지를 가능하도록 하고, 특히 반도체 리소그래피(Lithography) 공정에서 핵심적 공정 장치에 해당하는 포토레지스트 코팅을 위한 노즐의 포토레지스트 공급 상태 검출을 통해, 반도체 업계에서 요구하는 반도체 소자의 고신뢰성 및 수율 증대에 대한 요구를 만족시키는데 목적이 있다.
본 발명의 다른 목적들은 이하의 실시례에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위해, 본 발명의 일측면에 따르면,
스핀 코터의 공급노즐로부터 공급되는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 1 DVS(Dynamic Vision Sensor); 상기 공급노즐로부터 스핀척 상의 웨이퍼 상면에 공급되어 원심력에 의해 퍼져나가는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 2 DVS(Dynamic Vision Sensor); 상기 제 1 및 제 2 DVS로부터 획득되는 이미지로부터 딥러닝 알고리즘에 의해 포토레지스트의 결함 여부를 판별하도록 하는 딥러닝판단부; 상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시 경보 발생을 위한 제어신호를 출력하도록 하는 보조제어부; 및 상기 보조제어부의 제어신호에 따라 경보를 발생시키는 경보발생부;를 포함하고,
상기 제 1 DVS는, 한 쌍으로 이루어져서 상기 공급노즐을 중심으로 90도의 각도로 배치되고, 상기 제 2 DVS는, 상기 공급노즐이 고정된 노즐아암에 하방을 향하도록 설치되고,
상기 보조제어부는, 상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시, 상기 스핀 코터의 동작을 정지시키도록 제어하는, 반도체 포토레지스터 장비의 PR 분사품질 자동검출기가 제공된다.
상기 딥러닝판단부는, 상기 공급노즐의 하단으로부터 수직 하방으로 연장되는 가상의 수직선에 대하여, 상기 공급노즐의 하단으로부터 하방으로 공급되는 포토레지스트의 이격량에 따라 상기 포토레지스트의 결함을 판별하도록 하거나, 상기 포토레지스트가 도포되는 상기 웨이퍼 상에서 중심부와 차별되는 색상이나 형태를 가지는 영역 비율에 따라 상기 포토레지스트의 결함을 판별하도록 할 수 있다.
웨이퍼에 대한 상기 포토레지스트의 도포후, 후속 공정에서 상기 웨이퍼의 다이별로 검사된 프로브 테스트의 데이터를 통해서 상기 웨이퍼의 다이별 불량률을 산출하는 웨이퍼수율관리시스템으로부터 상기 불량률을 수신받도록 하는 불량률수신부를 더 포함하고, 상기 딥러닝판단부는, 상기 딥러닝 알고리즘에 의해 학습된 가중치를 상기 불량률에 비례하도록 수정하여, 상기 포토레지스트의 결함 판별시 사용하도록 할 수 있다.
본 발명에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에 의하면, 반도체 제조공정 중 하나인 포토레지스트(Photo Resist, PR) 코팅에 사용되는 노즐의 상태와 포토레지스트의 코팅 영역을 DVS(Dynamic Vision Sensor) 및 딥러닝 기술을 활용하여 정확한 결함 감지를 가능하도록 하고, 포토레지스트 도포 과정에 대한 영상 상태의 검출 처리능력을 향상시켜 실시간으로 노즐 상태를 감시하며, 비정상적 결함상태가 감지될 경우 해당 유닛에 경보를 울리게 하여 공정불량 예방 및 수율 강화에 따른 생산효율을 극대화할 수 있고, 특히 반도체 리소그래피(Lithography) 공정에서 핵심적 공정 장치에 해당하는 포토레지스트 코팅을 위한 노즐의 포토레지스트 공급 상태 검출을 통해, 반도체 업계에서 요구하는 반도체 소자의 고신뢰성 및 수율 증대에 대한 요구를 만족시키는 효과를 가진다.
도 1은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기가 마련되는 스핀 코터의 내부를 도시한 정면도이다.
도 2는 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기를 도시한 구성도이다.
도 3은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서 제 1 DVS의 배치를 도시한 평면도이다.
도 4는 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기의 결함 판별 기준을 설명하기 위한 측면도이다.
도 5는 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기의 결함 판별 기준의 다른 예를 설명하기 위한 평면도이다.
도 6은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 CNN 하드웨어 가속기의 블록도이다.
도 7은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Convolution Layer 모듈의 블록도이다.
도 8은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Max Pooling Layer 모듈의 블록도이다.
도 9는 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Fully Connected Layer 모듈의 블록도이다.
도 10은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Layer별 입력 행렬과 필터 및 Pooling 구조의 블록도이다.
도 11은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 일례를 도시한 블록도이다.
도 12는 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Faster R-CNN 기반 검출구현 블록도이다.
도 13은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에서, 딥러닝판단부의 Ground-truth and anchor box(Left dispensing 검출의 경우를 설명하기 위한 도면이다.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시례를 가질 수 있는 바, 특정 실시례들을 도면에 예시하고, 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니고, 본 발명의 기술 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 식으로 이해되어야 하고, 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시례에 한정되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시례를 상세히 설명하며, 도면 부호에 관계없이 동일하거나 대응하는 구성요소에 대해서는 동일한 참조 번호를 부여하고, 이에 대해 중복되는 설명을 생략하기로 한다.
도 1은 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기이 마련되는 스핀 코터의 내부를 도시한 정면도이고, 도 2는 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기를 도시한 구성도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기(100)은 제 1 DVS(Dynamic Vision Sensor; 110), 제 2 DVS(Dynamic Vision Sensor; 120), 딥러닝판단부(130), 보조제어부(140) 및 경보발생부(150)를 포함할 수 있다.
제 1 DVS(110)는 스핀 코터(10)의 공급노즐(210)로부터 공급되는 포토레지스트의 이미지를 획득하도록 스핀 코터(10)에 설치된다. 제 1 DVS(110)는 후술하게 될 제 2 DVS(120)와 마찬가지로, 일반 이미지 센서보다 20배 정도 빠르며, 비교적 원거리에서도 움직임을 정확하게 인식하도록 함으로써, 움직이는 물체의 파악에 유용하다.
제 1 DVS(110)는 공급노즐(210)로부터 하방으로 공급되는 포토레지스트가 균일한 두께를 가지고서 수직되게 제대로 공급되는지를 정확하게 검출하기 위하여, 여러 방향에서 이미지를 획득할 필요가 있는데, 이를 위해 가장 적은 개수로서 정확한 결함 검출을 위하여, 도 3에서와 같이, 한 쌍으로 이루어져서 공급노즐(210)을 중심으로 90도의 각도로 배치될 수 있다. 제 1 DVS(110) 각각은 공급노즐(210)로부터 하방으로 공급되는 포토레지스트를 향하도록 스핀 코터(10)의 케이싱(230) 내에 설치될 수 있다.
제 2 DVS(Dynamic Vision Sensor; 120)는 공급노즐(210)로부터 스핀척(220) 상의 웨이퍼 상면에 공급되어 원심력에 의해 퍼져나가는 포토레지스트의 이미지를 획득하도록 스핀 코터(10)에 설치된다. 제 2 DVS(120)는 예컨대 공급노즐(210)이 고정된 노즐아암(211)에 하방을 향하도록 설치될 수 있다.
딥러닝판단부(130)는 제 1 및 제 2 DVS(110,120)로부터 획득되는 이미지로부터 딥러닝 알고리즘에 의해 포토레지스트의 결함 여부를 판별하도록 한다. 딥러닝판단부(130)는 후술하게 될 보조제어부(140), 경보발생부(150), 불량률수신부(160) 등과 함께 스핀 코터(10)의 케이싱(230) 내에 마련되는 콘트롤박스(231)에 수용될 수 있다.
딥러닝판단부(130)는 일례로, 도 4에서와 같이, 공급노즐(210)의 하단으로부터 수직 하방으로 연장되는 가상의 수직선(H)에 대하여, 공급노즐(210)의 하단으로부터 하방으로 공급되는 포토레지스트(P)의 이격량, 예컨대 최대 이격 거리(d)에 따라 포토레지스트의 결함을 판별하도록 할 수 있다. 이러한 이격량은 이미지 프로세싱을 통해 포토레지스트(P)의 정해진 두께를 기준으로 산출하도록 구성될 수 있다. 또한 딥러닝판단부(130)는 다른 예로서, 도 5에서와 같이, 포토레지스트가 도포되는 웨이퍼(W) 상에서 중심부(A1)와 차별되는 색상이나 형태를 가지는 영역(A2) 비율에 따라 포토레지스트의 결함을 판별하도록 할 수 있는데, 이 역시 이미지 프로세스에 의해 픽셀별 색상이나 형태의 차이를 면적 산출 알고리즘을 이용하여, 중심부(A1)를 기준으로 이와는 차별되는 색상이나 형태를 가지는 영역(A2)의 면적 비율을 산출하여 포토레지스트의 결함 판별에 사용하도록 구성될 수 있다.
딥러닝판단부(130)는 딥러닝 알고리즘의 구현을 위해, 일례로, 도 6에서와 같은 CNN 하드웨어 가속기를 가지는데, 이러한 CNN 하드웨어 가속기는 Verilog 기반 PL(Programmable Logic) 하드웨어로 구현될 수 있고, 데이터 전송은 AMBA AXI4 버스를 이용할 수 있으며, 임베디드 환경에서 CNN의 실시간 처리를 위하여 Convolution 연산 및 기타 연산들을 병렬로 처리하여 CNN의 속도를 향상시키는 하드웨어 구조로서 구현될 수 있고, 도 7 내지 도 10에서와 같이, Convolution 모듈, Max Pooling 모듈, Fully Connected 모듈로 구성될 수 있다. 이들의 동작 과정은 Bus Interface를 통해서 CNN 연산에 필요한 weight와 bias, 입력 영상을 Block Memory(weight memory, bias memory, Input image)에 저장하고, Convolution1 모듈부터 순차적으로 동작을 구현하는데, Max Pooling은 모든 feature map에 대해 동시에 수행되고, 각 모듈의 연산 결과는 Block Memory에 저장된다. 여기서 하드웨어 구조는 Convolution Layer의 수행 시간을 최대한 줄이기 위해서 곱셈기를 사용할 수 있고, Convolution 연산이 1 clk에 수행되게 하며, 더블 버퍼를 이용하여 연속적으로 계산이 이루어지도록 구현 처리될 수 있다.
또한 딥러닝판단부(130)는 구체적으로 도 11에서와 같은 구성들을 포함할 수 있는데, 신경망 시스템 개발을 위한 FPGA 보드로서 제작될 수 있고, AXI4 simulation 환경 및 logic 설계, Channel write input arbiter, address/data fifo 설계, Channel write input arbiter, address/data fifo 설계, Boundary write split 설계, AXI I/F write wrapper 설계, AXI Master wrapper I/F, Slave I/F 설계, FPGA top module 설계, 병렬 프로세서를 위한 시뮬레이션 환경 구축 및 모델링, 병렬 프로세서에서 객체인식 알고리즘 매핑 등이 구현되고, 학습된 가중치를 메모리에 저장하도록 함과 아울러, 카메라 인터페이스 설계도 함께 구현된다.
딥러닝판단부(130)에서, 기반 객체검출 알고리즘의 구현은, 도 12에서와 같이, Faster R-CNN을 이용하여 포토레지스트의 공급노즐(210)에서 포토레지스트에 대한 좌,우측 분배 및 드롭, 잔존 등의 결함영역을 검출하는 알고리즘이 구현되고, 제안영역(Region Proposal)은 추출방법을 CNN에 포함하여 입력부터 출력까지 전과정을 하나의 네트워크로 운용할 수 있도록 하여, 처리시간의 단축과 학습의 일관성을 갖도록 구현된다. Fast R-CNN 구성에는 기존 이미지 센서가 측정하기 어려운 1,000rpm 이상의 고속으로 움직이는 피사체에 대해서도 정확한 이미지 획득이 가능하도록 구성될 수 있다.
보조제어부(140)는 딥러닝판단부(130)의 판별 결과에 따라 포토레지스트의 결함 발생시 경보 발생을 위한 제어신호를 출력하도록 한다. 보조제어부(140)는 딥러닝판단부(130)의 판별 결과에 따라 포토레지스트의 결함 발생시, 스핀 코터(10)의 동작을 정지시키도록 제어할 수 있는데, 이를 위해 스핀 코터(10)에 마련되는 결함중단부(250)가 보조제어부(140)의 제어신호를 수신받아 스핀 코터(10)의 동작을 정지시키도록 구성될 수도 있다.
경보발생부(150)는 보조제어부(140)의 제어신호에 따라 경보를 발생시키도록 하는데, 케이싱(230)의 외측에 마련되는 디스플레이부(170)를 통해서 경보 메시지를 디스플레이하도록 하거나, 경보음을 출력하도록 스피커로 이루어지거나, 발광이나 점멸 등에 의해 경보를 제공하도록 발광유닛으로 이루어질 수 있다.
본 발명의 일 실시례에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기(100)에는, 데이터나 명령의 입력을 위한 입력부(180), 동작에 필요한 전원을 분배하는 전원공급부(미도시), 각종 데이터나 프로그램 등의 저장을 위한 메모리부(미도시) 등이 마련될 수도 있고, 웨이퍼에 대한 포토레지스트의 도포후, 후속 공정에서 웨이퍼의 다이(chip)별로 검사된 프로브(probe) 테스트의 데이터를 통해서 웨이퍼의 다이별 불량률을 산출하는 웨이퍼수율관리시스템(300)으로부터 불량률을 유선이나 무선 통신을 이용하여 데이터로서 수신받도록 하는 불량률수신부(160)가 마련될 수 있다.
이때, 딥러닝판단부(130)는 딥러닝 알고리즘에 의해 학습된 가중치를 불량률에 비례하도록 수정하여, 포토레지스트의 결함 판별시 사용하도록 할 수 있다. 여기서 비례 상수로는 0.1~10을 비롯하여, 불량률의 최소화를 위해 실험적으로 구해질 수 있다. 여기서, 웨이퍼수율관리시스템(300)은 웨이퍼의 다이별로 검사된 프로브(probe) 테스트 데이터를 입력받아, 입력된 프로브 테스트 데이터를 이용하여, 정해진 수율 산출 방식에 따라 웨이퍼 각각에 대한 수율을 산출하게 되고, 웨이퍼 각각에 대한 식별정보와 함께 해당하는 수율을 불량률수신부(160)에 제공하도록 한다.
스핀 코터(10)는 공급노즐(210)을 통한 포토레지스의 공급을 개폐시키기 위한 노즐개폐부(212)가 마련될 수 있고, 케이싱(230) 내에 공급노즐(210)이 고정된 노즐아암(211)을 스핀척(220)의 상측에 로딩하도록 하거나, 스핀척(220)의 상측으로부터 언로딩시키는 노즐이송부(213)가 마련될 수 있고, 또한 스핀 코터(10)는 정해진 프로세스를 수행하도록 노즐개폐부(212), 노즐이송부(213) 및 스핀척(220) 등의 제어를 수행하도록 하는 주제어부(240)가 마련될 수 있다.
이와 같은 본 발명에 따른 반도체 포토레지스터 장비의 PR 분사품질 자동검출기에 따르면, 딥러닝(Deep learning) 기술을 활용한 스핀 코터의 공급노즐 상태에 대한 유형 데이터를 정량화하고, 포토레지스트 도포 과정에 대한 영상 상태의 검출 처리능력을 향상시켜 실시간으로 공급노즐 상태를 감시하고, 비정상적 결함상태가 감지될 경우 해당 유닛에 경보를 울리게 하여 공정불량 예방 및 수율 강화에 따른 생산효율을 극대화할 수 있다.
또한, 본 발명에 따르면, 딥러닝 기반 이미지 분석은 육안 검사의 정교함과 유연성을 컴퓨터 비전의 신뢰성, 일관성, 속도와 결합하여, 기존 머신비전으로는 유지관리가 거의 불가능한 까다로운 비전 애플리케이션을 정밀하고, 반복적으로 해결할 수 있으며, 허용되지 않는 결함을 구분하는 동시에 복잡한 패턴의 자연적인 변동을 용인할 수 있으며, 코어 알고리즘을 다시 프로그래밍하지 않고도 새로운 예시에 맞게 바로 조정할 수 있는 장점을 가지도록 한다.
또한, 본 발명에 따르면, 딥러닝 기반 기술은 포토레지스트의 공급노즐 상태의 결함 기준에서 영상을 분류(Classification)하고, 결함영역 구분 및 물체 검출은 컨볼루션신경망(CNN)을 이용하여 입력된 영상의 특징 맵(feature map)을 생성하여, 영상데이터에서 결함영역 구분 및 물체 검출을 수행하는 영상처리 알고리즘을 사용하여, 결함 영상처리 능력을 향상시키고, 검사신뢰성을 높일 수 있다는 점에서 머신비전 방식과 차별성을 가지게 된다.
이와 같이, 웨이퍼 제조공정의 초기단계인 포토리소그래피(Photo-Lithograghy) 공정의 포토레지스트 노즐로부터 공급 결함으로 인한 레지스트 필름의 두께 이상 및 불균일성으로 인한 피해를 예방함으로써, 수입 대체 및 비용 절감에 따른 경제적인 효과를 달성할 수 있다.
이와 같이 본 발명에 대해서 첨부된 도면을 참조하여 설명하였으나, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시례에 한정되어서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이러한 특허청구범위와 균등한 것들에 의해 정해져야 한다.
110 : 제 1 DVS 120 : 제 2 DVS
130 : 딥러닝판단부 140 : 보조제어부
150 : 경보발생부 160 : 불량률수신부
170 : 디스플레이부 180 : 입력부
210 : 공급노즐 211 : 노즐아암
212 : 노즐개폐부 213 : 노즐이송부
220 : 스핀척 230 : 케이싱
231 : 콘트롤박스 240 : 주제어부
250 : 결함중단부 300 : 웨이퍼수율관리시스템

Claims (3)

  1. 스핀 코터의 공급노즐로부터 공급되는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 1 DVS(Dynamic Vision Sensor);
    상기 공급노즐로부터 스핀척 상의 웨이퍼 상면에 공급되어 원심력에 의해 퍼져나가는 포토레지스트의 이미지를 획득하도록 상기 스핀 코터에 설치되는 제 2 DVS(Dynamic Vision Sensor);
    상기 제 1 및 제 2 DVS로부터 획득되는 이미지로부터 딥러닝 알고리즘에 의해 포토레지스트의 결함 여부를 판별하도록 하는 딥러닝판단부;
    상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시 경보 발생을 위한 제어신호를 출력하도록 하는 보조제어부; 및
    상기 보조제어부의 제어신호에 따라 경보를 발생시키는 경보발생부;
    를 포함하고,
    상기 제 1 DVS는,
    한 쌍으로 이루어져서 상기 공급노즐을 중심으로 90도의 각도로 배치되고,
    상기 제 2 DVS는, 상기 공급노즐이 고정된 노즐아암에 하방을 향하도록 설치되고
    상기 보조제어부는,
    상기 딥러닝판단부의 판별 결과에 따라 포토레지스트의 결함 발생시, 상기 스핀 코터의 동작을 정지시키도록 제어하는, 반도체 포토레지스터 장비의 PR 분사품질 자동검출기.
  2. 청구항 1에 있어서,
    상기 딥러닝판단부는,
    상기 공급노즐의 하단으로부터 수직 하방으로 연장되는 가상의 수직선에 대하여, 상기 공급노즐의 하단으로부터 하방으로 공급되는 포토레지스트의 이격량에 따라 상기 포토레지스트의 결함을 판별하도록 하거나, 상기 포토레지스트가 도포되는 상기 웨이퍼 상에서 중심부와 차별되는 색상이나 형태를 가지는 영역 비율에 따라 상기 포토레지스트의 결함을 판별하도록 하는, 반도체 포토레지스터 장비의 PR 분사품질 자동검출기.
  3. 청구항 1에 있어서,
    웨이퍼에 대한 상기 포토레지스트의 도포후, 후속 공정에서 상기 웨이퍼의 다이별로 검사된 프로브 테스트의 데이터를 통해서 상기 웨이퍼의 다이별 불량률을 산출하는 웨이퍼수율관리시스템으로부터 상기 불량률을 수신받도록 하는 불량률수신부를 더 포함하고,
    상기 딥러닝판단부는,
    상기 딥러닝 알고리즘에 의해 학습된 가중치를 상기 불량률에 비례하도록 수정하여, 상기 포토레지스트의 결함 판별시 사용하도록 하는, 반도체 포토레지스터 장비의 PR 분사품질 자동검출기.
KR1020220130632A 2022-10-12 2022-10-12 반도체 포토레지스터 장비의 pr 분사품질 자동검출기 KR20240051374A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220130632A KR20240051374A (ko) 2022-10-12 2022-10-12 반도체 포토레지스터 장비의 pr 분사품질 자동검출기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220130632A KR20240051374A (ko) 2022-10-12 2022-10-12 반도체 포토레지스터 장비의 pr 분사품질 자동검출기

Publications (1)

Publication Number Publication Date
KR20240051374A true KR20240051374A (ko) 2024-04-22

Family

ID=90881456

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220130632A KR20240051374A (ko) 2022-10-12 2022-10-12 반도체 포토레지스터 장비의 pr 분사품질 자동검출기

Country Status (1)

Country Link
KR (1) KR20240051374A (ko)

Similar Documents

Publication Publication Date Title
US9031313B2 (en) Inspection system
TWI721645B (zh) 預測半導體製程良率之方法
US9182680B2 (en) Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US9970885B2 (en) Inspection apparatus and inspection method
CN110969598A (zh) 晶圆检查方法以及晶圆检查系统
KR20190105646A (ko) 생산 공정을 제어 또는 모니터링하기 위한 예상 데이터 생성
US9678442B2 (en) Aerial mask inspection based weak point analysis
KR20190093635A (ko) 측정 방법의 성능을 예측하기 위한 방법 및 장치, 측정 방법 및 장치
EP1110054A4 (en) METHODS AND DEVICES FOR MEASURING THE THICKNESS OF A FILM, IN PARTICULAR A PHOTOSENSITIVE RESIN FILM ON A SEMICONDUCTOR SUBSTRATE
JP4357134B2 (ja) 検査システムと検査装置と半導体デバイスの製造方法及び検査プログラム
JP7471387B2 (ja) モデル作成装置、モデル作成方法及びコンピュータプログラム
JP4126189B2 (ja) 検査条件設定プログラム、検査装置および検査システム
KR102585478B1 (ko) 딥러닝을 이용한 스핀 코터의 포토레지스트 도포 상태 검사 시스템
KR20240051374A (ko) 반도체 포토레지스터 장비의 pr 분사품질 자동검출기
US20150294455A1 (en) Methods of testing pattern reliability and semiconductor devices
KR20240051370A (ko) 반도체 포토레지스트 분사장비의 코팅 품질 검사가 가능한 스핀 코터
CN111426701B (zh) 一种晶圆缺陷检测方法及其装置
KR102324162B1 (ko) 포토레지스트 코팅 품질 검사가 가능한 스핀 코터
KR102368201B1 (ko) 스핀 코터의 포토레지스트 코팅 품질 검사 시스템
KR102327761B1 (ko) Dvs와 딥러닝을 이용한 스핀 코터의 포토레지스트 코팅 품질 검사 시스템
TWI791321B (zh) 用於組態採樣架構產生模型之方法及電腦程式
US6545486B2 (en) Solution and methodology for detecting surface damage on capacitive sensor integrated circuit
KR20240048627A (ko) 반도체 pr장비의 노즐장치에 대한 불량 도포의 ai 검출 및 제어 시스템
CN104167375A (zh) 一种量测宽度的方法
US6339955B1 (en) Thickness measurement using AFM for next generation lithography