KR20240048578A - Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng - Google Patents

Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng Download PDF

Info

Publication number
KR20240048578A
KR20240048578A KR1020220127058A KR20220127058A KR20240048578A KR 20240048578 A KR20240048578 A KR 20240048578A KR 1020220127058 A KR1020220127058 A KR 1020220127058A KR 20220127058 A KR20220127058 A KR 20220127058A KR 20240048578 A KR20240048578 A KR 20240048578A
Authority
KR
South Korea
Prior art keywords
gene
ginseng
pggh18
salt stress
genes
Prior art date
Application number
KR1020220127058A
Other languages
Korean (ko)
Inventor
김유진
김선태
노가영
김지현
정주용
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020220127058A priority Critical patent/KR20240048578A/en
Publication of KR20240048578A publication Critical patent/KR20240048578A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 인삼 유전자 PgGH18(Pg_S7804.4)을 이용한 염 스트레스 내성 식물체 제조방법에 대한 것으로서, 인삼에서 처음으로 GH18 계열에 속하는 유전자들의 유연관계를 분석했으며, 이 중 Pg_S7804.4 (PgGH18)을 동정하고 과발현 형질전환을 통해 염 스트레스 내성 기능을 규명하였다. 본 발명의 GH18 유전자는 환경스트레스에서 중요한 역할을 하는 유전자로, 이를 활용하여 비생물적인 스트레스에 저항성을 가지는 식물체로 유도하여 육종산업에 유용하게 적용할 수 있다.The present invention relates to a method for producing salt stress-tolerant plants using the ginseng gene PgGH18 (Pg_S7804.4). For the first time in ginseng, the relationship between genes belonging to the GH18 family was analyzed, and among these, Pg_S7804.4 (PgGH18) was identified. Salt stress tolerance function was identified through overexpression transformation. The GH18 gene of the present invention is a gene that plays an important role in environmental stress, and can be usefully applied to the breeding industry by inducing plants resistant to abiotic stress.

Description

인삼 유전자 PgGH18을 이용한 염 스트레스 내성 식물체 제조방법{Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng}Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng}

본 발명은 인삼 유전자 PgGH18(Pg_S7804.4)을 이용한 염 스트레스 내성 식물체 제조방법에 관한 것이다.The present invention relates to a method for producing salt stress-tolerant plants using the ginseng gene PgGH18 (Pg_S7804.4).

인삼은 4-6년의 긴 재배기간을 가지고 있어 지속적인 환경 스트레스에 노출되어진다. 그로 인해 가장 많이 이용되는 인삼의 뿌리가 썩게 되는 병에 걸리기 쉬워지고 이는 생산량에도 영향을 미치게 된다. 재배 인삼은 비생물적 스트레스(염류, 가뭄, 중금속 스트레스 등)에 매우 취약한 것으로 잘 알려져 있다. 이러한 스트레스 요인들은 4-6 년의 재배 기간 동안 인삼의 질을 저하시킬 수 있는데, 이러한 스트레스의 하나로서 염류 스트레스를 들 수 있다. 토양에 작물을 재배할 경우, 작물의 성장을 촉진하기 위하여 비료를 사용하게 되는데, 이러한 비료의 사용이 과다할 경우, 비료에 포함된 영양염류가 토양에 축적되고, 이처럼 토양에 축적된 염류는 토양의 pH를 변화시켜서, 결과적으로는 작물의 성장을 억제하는 효과를 나타낸다.Ginseng has a long cultivation period of 4-6 years and is exposed to continuous environmental stress. As a result, ginseng, the most commonly used plant, becomes susceptible to diseases that cause its roots to rot, which also affects production. It is well known that cultivated ginseng is very vulnerable to abiotic stress (salt, drought, heavy metal stress, etc.). These stress factors can reduce the quality of ginseng during the 4-6 year cultivation period, and one such stress is salt stress. When growing crops in the soil, fertilizers are used to promote the growth of the crops. If these fertilizers are used excessively, the nutrients contained in the fertilizers accumulate in the soil, and the salts accumulated in the soil are absorbed into the soil. By changing the pH, it ultimately has the effect of inhibiting the growth of crops.

이에, 인삼 생산의 안정성 증대를 위해서는 염류, 수분, 건조 등 환경 스트레스에 저항성을 가진 신품종육성이 필요하다. 인삼의 염류 저항성 유전자를 찾고, 그 유전자가 많을 때 식물에서 저항성을 가짐을 확인함으로써, 신품종 육성을 위하여 육종소재를 선발할 수 있는 평가시스템의 개발에 활용 가능하다. Therefore, in order to increase the stability of ginseng production, it is necessary to breed new varieties that are resistant to environmental stresses such as salt, moisture, and dryness. By finding salt resistance genes in ginseng and confirming that plants have resistance when there are many genes, it can be used to develop an evaluation system that can select breeding materials for cultivating new varieties.

한국공개특허 제10-2021-0085328호 (2021.07.08 공개)Korean Patent Publication No. 10-2021-0085328 (published on July 8, 2021)

본 발명의 목적은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 식물체의 염 스트레스 내성 증진용 조성물을 제공하는 데에 있다.The purpose of the present invention is to provide a composition for enhancing salt stress tolerance in plants containing the Pg_S7804.4 protein, a member of the GH18 series derived from ginseng, or the gene encoding it, as an active ingredient.

또한, 본 발명의 다른 목적은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체에 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 식물체의 염 스트레스 내성을 증진시키는 방법 또는 염 스트레스 내성이 증진된 형질전환 식물체 제조 방법을 제공하는 데에 있다.In addition, another object of the present invention is to transform a plant with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, which is a member of the ginseng-derived GH18 series, and overexpress the Pg_S7804.4 gene. Salt stress tolerance of the plant. The aim is to provide a method for improving or producing a transgenic plant with improved salt stress tolerance.

또한, 본 발명의 또 다른 목적은 상기 방법에 따라 제조된 염 스트레스 내성이 증진된 형질전환 식물체 및 이의 형질전환된 종자를 제공하는 데에 있다.In addition, another object of the present invention is to provide a transgenic plant with improved salt stress tolerance prepared according to the above method and a transformed seed thereof.

상기 목적을 달성하기 위하여, 본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 식물체의 염 스트레스 내성 증진용 조성물을 제공한다.In order to achieve the above object, the present invention provides a composition for enhancing salt stress tolerance in plants containing the ginseng-derived GH18 series Pg_S7804.4 protein or the gene encoding it as an active ingredient.

또한, 본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체에 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 식물체의 염 스트레스 내성을 증진시키는 방법을 제공한다.In addition, the present invention provides a method for improving the salt stress tolerance of plants, which includes the step of transforming plants with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, which is a member of the ginseng-derived GH18 series, and overexpressing the Pg_S7804.4 gene. Provides a method.

또한, 본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체를 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 염 스트레스 내성이 증진된 형질전환 식물체 제조 방법을 제공한다.In addition, the present invention is a transformation with improved salt stress tolerance comprising the step of transforming a plant with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, a ginseng-derived GH18 series, and overexpressing the Pg_S7804.4 gene. Provides a method for producing plants.

또한, 본 발명은 상기 방법에 따라 제조된 염 스트레스 내성이 증진된 형질전환 식물체를 제공한다.Additionally, the present invention provides transgenic plants with improved salt stress tolerance prepared according to the above method.

또한, 본 발명은 상기 염 스트레스 내성이 증진된 형질전환 식물체의 형질전환된 종자를 제공한다.Additionally, the present invention provides transformed seeds of the transgenic plant with improved salt stress tolerance.

본 발명은 인삼 유전자 PgGH18(Pg_S7804.4)을 이용한 염 스트레스 내성 식물체 제조방법에 대한 것으로서, 인삼에서 처음으로 GH18 계열에 속하는 유전자들의 유연관계를 분석했으며, 이 중 Pg_S7804.4 (PgGH18)을 동정하고 과발현 형질전환을 통해 염 스트레스 내성 기능을 규명하였다. 본 발명의 GH18 유전자는 환경스트레스에서 중요한 역할을 하는 유전자로, 이를 활용하여 비생물적인 스트레스에 저항성을 가지는 식물체로 유도하여 육종산업에 유용하게 적용할 수 있다.The present invention relates to a method for producing salt stress-tolerant plants using the ginseng gene PgGH18 (Pg_S7804.4). For the first time in ginseng, the relationship between genes belonging to the GH18 family was analyzed, and among these, Pg_S7804.4 (PgGH18) was identified. Salt stress tolerance function was identified through overexpression transformation. The GH18 gene of the present invention is a gene that plays an important role in environmental stress, and can be usefully applied to the breeding industry by inducing plants resistant to abiotic stress.

도 1은 인삼 유래 GH18 패밀리의 게놈-와이드 동정 결과 및 이의 조직 발현 결과를 나타낸다. 히트맵의 노란색은 높은 수준의 발현을 나타내고, 파란색은 낮은 수준의 발현을 나타낸다. 오른쪽은 표 2에 따른 GH18 패밀리의 분류를 나타낸다. 본 발명에서 기능적 특성을 확인하여 Pg_S7804.4로 명명한 PgGH18는 붉은색 박스로 표시하였다.
도 2는 인삼과 애기장대의 GH18 패밀리의 계통수 및 유전자 구조 분석 결과를 나타낸다. 분홍색은 인삼 유전자이고, 노란색의 애기장대 유전자의 엑손 구조를 나타낸다.
도 3은 인삼과 애기장대 유래 Class III GH18 단백질의 다중 정렬 결과를 나타낸다. 검은색 라인은 신호 펩타이드를 나타내고, 파란색 라인은 촉매 도메인을 나타낸다. 붉은색 박스는 DXDXE 모티프이다.
도 4는 인삼 유래 Class IIIb GH18 멤버의 다중 정렬 결과를 나타낸다. 붉은색 박스는 DXDXE 모티프이고, 상기 클래스의 단백질들은 DIDYE 보존 서열을 포함한다.
도 5는 인삼과 애기장대 유래 Class V GH18 멤버의 다중 정렬 결과를 나타낸다.
도 6은 인삼 내 PgGH18의 발현 프로파일을 나타낸다.
도 7은 PgGH18의 클로닝 및 과발현 애기장대의 생산 결과를 나타낸다.
도 8은 세포 내 위치화 분석 결과를 나타낸다.
도 9는 염 스트레스에 대한 반응에서 WT 및 PgGH18 과발현 라인의 발아 실험 결과를 나타낸다.
도 10은 염 스트레스에 대한 WT 및 PgGH18 과발현 식물의 반응 결과를 나타낸다.
Figure 1 shows the results of genome-wide identification and tissue expression of the ginseng-derived GH18 family. The yellow color of the heatmap indicates high level expression, and the blue color indicates low level expression. The right side shows the classification of the GH18 family according to Table 2. PgGH18, whose functional properties were confirmed in the present invention and named Pg_S7804.4, is indicated with a red box.
Figure 2 shows the results of phylogenetic tree and gene structure analysis of the GH18 family of ginseng and Arabidopsis thaliana. Pink represents the ginseng gene, and yellow represents the exon structure of the Arabidopsis gene.
Figure 3 shows the results of multiple alignment of Class III GH18 proteins derived from ginseng and Arabidopsis thaliana. The black line represents the signal peptide, and the blue line represents the catalytic domain. The red box is the DXDXE motif.
Figure 4 shows the multiple alignment results of the ginseng-derived Class IIIb GH18 member. The red box is the DXDXE motif, and proteins of this class contain the DIDYE conserved sequence.
Figure 5 shows the results of multiple alignment of Class V GH18 members derived from ginseng and Arabidopsis thaliana.
Figure 6 shows the expression profile of PgGH18 in ginseng.
Figure 7 shows the results of cloning and overexpressing PgGH18 and producing Arabidopsis thaliana.
Figure 8 shows the results of intracellular localization analysis.
Figure 9 shows the results of germination experiments of WT and PgGH18 overexpression lines in response to salt stress.
Figure 10 shows the response results of WT and PgGH18 overexpressing plants to salt stress.

본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 식물체의 염 스트레스 내성 증진용 조성물을 제공한다.The present invention provides a composition for enhancing salt stress tolerance in plants containing the ginseng-derived GH18 series protein Pg_S7804.4 or the gene encoding it as an active ingredient.

본 발명에서 사용된 "Pg_S7804.4 단백질"은 서열번호 1의 아미노산 서열로 이루어지며, "Pg_S7804.4 유전자"는 서열번호 2의 핵산 서열로 이루어질 수 있다.The “Pg_S7804.4 protein” used in the present invention may consist of the amino acid sequence of SEQ ID NO: 1, and the “Pg_S7804.4 gene” may consist of the nucleic acid sequence of SEQ ID NO: 2.

또한, 본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체에 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 식물체의 염 스트레스 내성을 증진시키는 방법을 제공한다. In addition, the present invention provides a method for improving the salt stress tolerance of plants, which includes the step of transforming plants with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, which is a member of the ginseng-derived GH18 series, and overexpressing the Pg_S7804.4 gene. Provides a method.

또한, 본 발명은 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체를 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 염 스트레스 내성이 증진된 형질전환 식물체 제조 방법을 제공한다. In addition, the present invention is a transformation with improved salt stress tolerance comprising the step of transforming a plant with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, a ginseng-derived GH18 series, and overexpressing the Pg_S7804.4 gene. Provides a method for producing plants.

바람직하게는, 상기 형질전환 식물체는 애기장대일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the transgenic plant may be Arabidopsis thaliana, but is not limited thereto.

본 명세서의 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한, 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term “recombinant” herein refers to a cell that replicates a heterologous nucleic acid, expresses a heterologous nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by a heterologous nucleic acid. Recombinant cells can express genes or gene segments that are not found in the natural form of the cell, either in sense or antisense form. Additionally, recombinant cells can express genes found in cells in their native state, but the genes have been modified and reintroduced into the cells by artificial means.

본 명세서의 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.The term “recombinant expression vector” herein refers to a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector. Broadly speaking, any plasmid and vector can be used as long as it can replicate and stabilize within the host. Important characteristics of the expression vector are that it has an origin of replication, a promoter, a marker gene, and a translation control element.

본 발명의 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.An expression vector containing the gene sequence of the present invention and appropriate transcription/translation control signals can be constructed by methods well known to those skilled in the art. The methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology. The DNA sequence can be effectively linked to an appropriate promoter within an expression vector to drive mRNA synthesis. The expression vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.

본 발명의 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.Expression vectors of the invention will preferably contain one or more selectable markers. The marker is a nucleic acid sequence that has characteristics that can be generally selected by chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotics such as kanamycin, G418, Bleomycin, hygromycin, and chloramphenicol. Resistance genes, aadA genes, etc. are included, but are not limited to these.

본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS, 히스톤 프로모터, Clp 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant vector of the present invention, the promoter may be CaMV 35S, actin, ubiquitin, pEMU, MAS, histone promoter, or Clp promoter, but is not limited thereto. The term "promoter" refers to the region of DNA upstream from a structural gene and refers to the DNA molecule to which RNA polymerase binds to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. A “constitutive promoter” is a promoter that is active under most environmental conditions and developmental states or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of transformants can be accomplished at various stages and by various tissues. Therefore, constitutive promoters do not limit selection possibilities.

본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vector of the present invention, common terminators can be used, examples of which include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens ), the terminator of the Octopine gene, and the rrnB1/B2 terminator of E. coli, but are not limited thereto. Regarding the necessity of terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly preferred in the context of the present invention.

또한, 본 발명은 상기 방법에 따라 제조된 염 스트레스 내성이 증진된 형질전환 식물체를 제공한다.Additionally, the present invention provides transgenic plants with improved salt stress tolerance prepared according to the above method.

본 발명의 형질전환 식물체는 타겟 유전자의 식물체 내로의 도입을 통해 제조될 수 있는데, 타겟 유전자를 포함하는 벡터를 사용하여 이루어질 수 있으며, 본 발명의 벡터를 식물 숙주세포 내로 운반하는 방법은 당업계에 공지되어 있다. 예를 들면, 유전자총-매개 형질전환 방법 (bombardment), 아그로박테리움-매개 형질전환법, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법 및 DEAE-덱스트란 처리법 등이 있으나, 이에 제한되지 않는다.The transgenic plant of the present invention can be produced through the introduction of a target gene into a plant, which can be done using a vector containing the target gene, and a method of transporting the vector of the present invention into a plant host cell is known in the art. It is known. For example, gene gun-mediated transformation method (bombardment), Agrobacterium-mediated transformation method, microinjection method, calcium phosphate precipitation method, electroporation method, liposome-mediated transfection method, and DEAE-dextran treatment method. However, it is not limited to this.

또한, 본 발명은 상기 염 스트레스 내성이 증진된 형질전환 식물체의 형질전환된 종자를 제공한다.Additionally, the present invention provides transformed seeds of the transgenic plant with improved salt stress tolerance.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

하기의 실험예는 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples commonly applied to each embodiment according to the present invention.

<< 실험예Experiment example > >

1. GH18 계열 유전자 발견 및 서열 분석1. GH18 family gene discovery and sequence analysis

GH18 계열에 속하는 유전자를 찾기 위해 Ginseng genome database (http://ginsengdb.snu.ac.kr/index.php) 에서 GH18의 Pfam (PF00704)을 가지고 있는 단백질 서열을 검색하였고, SMART를 이용하여 도메인 분석을 하였다. 애기장대의 GH18 계열 유전자들은 TAIR (https ://www.arabidopsis.org/) 에서 찾았으며 계통발생분석을 하기 위해 사용되었다. 다중 아미노산 서열은 ClustalX를 사용하여 정렬되었고 계통수는 MEGA4를 사용하여 Neighbor-joining 방법으로 구성되었다. 보존된 모티프는 Multiple Em for Motif Elicitation (MEME) (http://meme-suite.org/tools/meme)를 통해 분석되었다.To find genes belonging to the GH18 family, we searched the Ginseng genome database ( http://ginsengdb.snu.ac.kr/index.php ) for protein sequences containing the Pfam (PF00704) of GH18, and domain analysis was performed using SMART. did. Arabidopsis GH18 family genes were retrieved from TAIR ( https://www.arabidopsis.org/ ) and used for phylogenetic analysis. Multiple amino acid sequences were aligned using ClustalX and a phylogenetic tree was constructed by the neighbor-joining method using MEGA4. Conserved motifs were analyzed through Multiple Em for Motif Elicitation (MEME) ( http://meme-suite.org/tools/meme ).

2. 인삼 재료, 생장 조건 및 처리2. Ginseng materials, growth conditions and processing

P. 인삼 cv. 춘풍종자와 농촌진흥청 인삼 밭에서 재배한 2년, 4년생 식물을 발아 3주 후 각종 조직 채취에 이용하였다. 종자로부터 접합체 배아를 지베렐린 30ppm을 함유하는 Murashige and Skoog(MS) 배지(Duchefa Biochemie, The Netherlands)에서 발아시켰다. 3주 된 인삼 묘목은 100mM NaCl 용액에서 0, 6, 12, 24, 48 시간 동안 처리되었다. 묘목과 각종 인삼 조직은 각 처리 후에 액체 질소에 즉시 동결되었고, RNA 추출을 위해 -80℃에 보관되었다. 인삼 식물의 생장 온도 조건은 22℃로 유지되었다.P. ginseng cv. Chunpung seeds and 2- and 4-year-old plants grown in ginseng fields of the Rural Development Administration were used to collect various tissues 3 weeks after germination. Zygotic embryos from seeds were germinated in Murashige and Skoog (MS) medium (Duchefa Biochemie, The Netherlands) containing 30 ppm gibberellins. Three-week-old ginseng seedlings were treated in 100mM NaCl solution for 0, 6, 12, 24, and 48 hours. Seedlings and various ginseng tissues were immediately frozen in liquid nitrogen after each treatment and stored at -80°C for RNA extraction. The growth temperature conditions for ginseng plants were maintained at 22°C.

3. 애기장대 생장 조건3. Arabidopsis growth conditions

야생형 애기장대는 대조군으로 사용되었다. 애기장대 종자는 sodium hypochlorite와 70% ethanol로 표면 살균되었고 증류수로 5번 헹궈졌다. 종자를 1/2 MS, 1% (w/v) sucrose, MES and 0.8% (w/v) plant agar가 포함된 배지에 파종하였다. 종자는 3일 동안 4℃에서 휴면시킨 후 22℃ 배양기로 옮겼고, 16시간 밝은 조건과 8시간 암 조건하에 두었다. Wild-type Arabidopsis thaliana was used as a control. Arabidopsis seeds were surface sterilized with sodium hypochlorite and 70% ethanol and rinsed five times with distilled water. Seeds were sown on medium containing 1/2 MS, 1% (w/v) sucrose, MES and 0.8% (w/v) plant agar. Seeds were dormant at 4°C for 3 days and then transferred to a 22°C incubator and placed under 16-hour light and 8-hour dark conditions.

4. 4. PgGH18PgGH18 과발현 형질전환 애기장대 식물의 세대 Generation of overexpression transgenic Arabidopsis plants.

GH18 과발현 35S:HA-PgGH18 형질전환체를 만들기 위해, GH18-F(ATGGCAGCCTTGTCACAAG) 및 GH18-R(CTAGATACTGCCTTTGATAGCAGAGCTA) 프라이머를 이용하여 Hemagglutinin (HA) 태그 서열과 linker 서열 (GGGGS)을 CDS 앞에 추가하였다. 클로닝을 위해 HA-GH18 PCR 산물을 pH7WG2 바이너리 벡터에 넣어 35S:HA-GH18 벡터를 제작하였다. GH18 과발현 벡터는 전기천공법을 사용하여 Agrobacterium tumefaciens 균주 GV3101에 도입하였다. Agrobacterium에서 애기장대로 35S:HA-GH18 벡터를 도입하기 위해서 floral dip이라는 형질전환 방법을 이용하였다. floral dip 형질전환 방법은 애기장대의 꽃에 Agrobacterium 균주를 감염시킨 후 형성된 종자를 수확하는 방법이다. 형질전환 식물을 hygromycin이 함유된 배지에서 선별하였고, PgGH18 유전자의 발현 수준을 기준으로 스크리닝하였다.To create a GH18 overexpressing 35S:HA-PgGH18 transformant, a Hemagglutinin (HA) tag sequence and a linker sequence (GGGGS) were added in front of the CDS using GH18-F (ATGGCAGCCTTGTCACAAG) and GH18-R (CTAGATACTGCCTTTGATAGCAGAGCTA) primers. For cloning, the 35S:HA-GH18 vector was created by inserting the HA-GH18 PCR product into the pH7WG2 binary vector. The GH18 overexpression vector was introduced into Agrobacterium tumefaciens strain GV3101 using electroporation. To introduce the 35S:HA-GH18 vector from Agrobacterium to Arabidopsis, a transformation method called floral dip was used. The floral dip transformation method is a method of infecting Arabidopsis flowers with Agrobacterium strains and then harvesting the formed seeds. Transgenic plants were selected on a medium containing hygromycin and screened based on the expression level of the PgGH18 gene.

5. RNA 추출, cDNA 합성 및 유전자 발현 분석5. RNA extraction, cDNA synthesis and gene expression analysis

추가적인 DNase I 처리와 함께 RNeasy 키트(Qiagen)를 사용하여 총 RNA를 추출했다. 그런 다음 PrimeScript 역전사효소(Takara)를 사용하여 cDNA 합성에 총 RNA 1 ㎍을 사용하였다. 정량적 역전사-중합효소 연쇄 반응(qRT-PCR)은 SYBR Green Master Mix(Qiagen)를 사용하여 20㎕ 부피에서 200㎍의 cDNA를 사용하여 CFX96 connect Real-time PCR machine(Bio-Rad)으로 분석되었다. 제조업체에서 권장하는 조건에 따라 95℃에서 2분, 95℃에서 5초, 60℃에서 15초 39회 사이클로 진행하였다. 상대 발현 수준은 의 공식을 사용하여 계산하였다.Total RNA was extracted using the RNeasy kit (Qiagen) with additional DNase I treatment. Then, 1 μg of total RNA was used for cDNA synthesis using PrimeScript reverse transcriptase (Takara). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was analyzed with a CFX96 connect Real-time PCR machine (Bio-Rad) using 200 μg of cDNA in a volume of 20 μl using SYBR Green Master Mix (Qiagen). According to the conditions recommended by the manufacturer, 39 cycles of 95°C for 2 minutes, 95°C for 5 seconds, and 60°C for 15 seconds were performed. The relative expression level is It was calculated using the formula.

PgActin 유전자는 상대적인 유전자 발현 수준을 정상화하고 인삼의 발현 수준을 분석하기 위한 대조군으로 사용되었다. 유전자 특이적 프라이머(qGH18-R, qGH18-F) 서열은 표 1에 설명되어 있다. Arabidopsis에서 AtActin과 IPP2 유전자는 상대적인 발현을 조절하는데 사용되었다. The PgActin gene was used as a control to normalize relative gene expression levels and analyze the expression levels of ginseng. Gene-specific primer (qGH18-R, qGH18-F) sequences are described in Table 1. In Arabidopsis, AtActin and IPP2 genes were used to control their relative expression.

NameName 5’ - Sequence - 3’5’ - Sequence - 3’ NotesNotes GH18-FGH18-F CACCATGTACCCATACGATGTTCCAGATTACGCT
GGAGGAGGAGGAACAATGGCAGCCTTGTCACAAG
CACCATG TACCCATACGATGTTCCAGATTACGCT
GGAGGAGGAGGGAACAATGGCAGCCTTGTCACAAG
HA tag sequence was underlined linker sequence was typed in boldHA tag sequence was underlined linker sequence was typed in bold
GH18-RGH18-R CTAGATACTGCCTTTGATAGCAGAGCTACTAGATACTGCCTTTGATAGCAGAGCTA For gateway cloningFor gateway cloning GH18-pGreen FGH18-pGreen F ATGGCAGCCTTGTCACAAATGGCAGCTTGTCACAA For tobacco infiltraionFor tobacco infiltration GH18-pGreen RGH18-pGreen R GATACTGCCTTTGATAGCGATACTGCCTTTGATAGC For tobacco infiltraionFor tobacco infiltration qGH18-FqGH18-F TCGCCTAAGCGCTGATATTTTCGCCTAAGCGCTGATATTT For qRT_ PCRFor qRT_ PCR qGH18-RqGH18-R AAGTCGATGCCATCCAAAACAAGTCGATGCCATCCAAAAC For qRT_ PCRFor qRT_ PCR qPgActin_FqPgActin_F AGAGATTCCGCTGTCCAGAAAGAGATTCCGCTGTCCAGAA For qRT_ PCRFor qRT_ PCR qPgActin_RqPgActin_R ATCAGCGATACCAGGGAACAATCAGCGATACCAGGGAACA For qRT_ PCRFor qRT_ PCR qAtActin_FqAtActin_F CAGTGTCTGGATCGGAGGATCAGTGTCTGGATCGGAGGAT For qRT_ PCRFor qRT_ PCR qAtActin_RqAtActin_R TGAACAATCGATGGACCTGATGAACAATCGATGGACCTGA For qRT_ PCRFor qRT_ PCR qIPP2-FqIPP2-F GTATGAGTTGCTTCTCCAGCAAAGGTATGAGTTGCTTCTCCAGCAAAG For qRT_ PCRFor qRT_ PCR qIPP2-RqIPP2-R GAGGATGGCTGCAACAAGTGTGAGGATGGCTGCAACAAGTGT For qRT_ PCRFor qRT_ PCR

6. 과발현 및 6. Overexpression and 공초점Confocal 현미경 분석 Microscopic analysis

형광 탐지를 위한 C-말단 녹색 형광 단백질 (GFP)이 포함된 pGreen 벡터는 세포 내 단백질 위치를 관찰하기 위해 유전자 클로닝을 하는 데에 사용되었다. 벡터는 제한 효소인 Hind3와 BamH1에 의해 절단되었고, PgGH18 CDS가 절단된 부위에 클로닝되었다. 과발현을 위해 double 35S 프로모터를 CDS 앞에 붙였다. 이 벡터는 A. tumefaciens 균주 GV3101에 도입되었고 Nicotiana benthamiana에 감염시켰다. 감염시킨 후 24시간 동안 22℃ 암 조건에 놔두었다가 감염시킨 지 3일 후에 공초점 현미경(K1-Fluo, Nanoscope systems, Korea)을 이용하여 GFP를 관찰하였다.The pGreen vector containing C-terminal green fluorescent protein (GFP) for fluorescence detection was used for gene cloning to observe intracellular protein localization. The vector was cut with restriction enzymes Hind3 and BamH1, and PgGH18 CDS was cloned into the cut site. For overexpression, a double 35S promoter was attached in front of CDS. This vector was introduced into A. tumefaciens strain GV3101 and Nicotiana benthamiana was infected. After infection, the cells were left in dark conditions at 22°C for 24 hours, and GFP was observed using a confocal microscope (K1-Fluo, Nanoscope systems, Korea) 3 days after infection.

<< 실시예Example 1> 인삼에서 GH18 계열 유전자 발견 1> Discovery of GH18 family genes in ginseng

인삼에서 GH18 도메인을 가지고 있는 모든 유전자들을 찾기 위해 Ginseng genome database에서 Pfam (PF00704)를 기반으로 단백질 서열을 검색하였다. 28개의 GH18 유전자들을 찾았고, SMART를 통해 26개의 유전자가 GH18 도메인을 가지고 있는 것을 확인하였다. Pg_S 4659.1과 Pg_S3332.5는 스테로이드 결합 도메인을 가지고 있어 표 2에서 이 두 유전자는 제외하였다. 서열 분석은 하나의 유전자를 제외하고 GH18의 아미노산 길이가 189에서 3376으로 다양하며, 평균적으로 284개의 아미노산을 가지고 있음을 보여준다(표 2). 단 한 개의 유전자, Pg_S5173.2는 838개의 아미노산으로 다른 유전자들과의 서열 비교 결과, 잘못된 서열을 가지고 있는 것으로 나타났다. 이 유전자를 제외한 나머지 25개의 유전자들은 20.9에서 41.4kDa 범위의 분자량이 예측되었다. GH18 단백질의 등전점은 4.62에서 8.35로 다양했다. 유사하게, Cucumis sativus의 GH18 계열 유전자의 아미노산 범위는 132에서 429이며 평균은 307이고, 분자량은 14.80 내지 48.5 kDa이며, 등전점은 4.6에서 9.53으로 나타났다(Bartholomew et al. 2019).To find all genes containing the GH18 domain in ginseng, protein sequences were searched based on Pfam (PF00704) in the Ginseng genome database. Twenty-eight GH18 genes were found, and SMART confirmed that 26 genes had a GH18 domain. Pg_S 4659.1 and Pg_S3332.5 have steroid binding domains, so these two genes were excluded from Table 2. Sequence analysis shows that, excluding one gene, the amino acid length of GH18 varies from 189 to 3376, with an average of 284 amino acids (Table 2). Only one gene, Pg_S5173.2, has 838 amino acids, and as a result of sequence comparison with other genes, it was found to have an incorrect sequence. Excluding this gene, the remaining 25 genes had predicted molecular masses ranging from 20.9 to 41.4 kDa. The isoelectric point of GH18 protein varied from 4.62 to 8.35. Similarly, the amino acid range of the GH18 family genes of Cucumis sativus ranged from 132 to 429 with an average of 307, the molecular weight ranged from 14.80 to 48.5 kDa, and the isoelectric point ranged from 4.6 to 9.53 (Bartholomew et al . 2019).

26개의 GH18 계열 유전자들의 전사가 조직마다 다른지 여부를 확인하기위해 ginseng genome database에서 공개된 인삼 전사체 데이터를 사용하여 생물정보학적 발현을 예측하였다. 그 결과는 인삼 유전자들의 발현이 기관, 조직에 따라 다양함을 나타내었다(도 1). 일부 유전자는 드물게 발현되며, 일부는 Pg_S7804.4와 같이 거의 모든 조직에 발현되었다.To determine whether the transcription of 26 GH18 family genes differed between tissues, bioinformatic expression was predicted using ginseng transcriptome data published in the ginseng genome database. The results showed that the expression of ginseng genes varied depending on the organ and tissue (Figure 1). Some genes were expressed rarely, and some were expressed in almost all tissues, such as Pg_S7804.4.

Gene IDGene ID ClassClass Gene positionGene position pfampfam CDS(bp)CDS(bp) Size(aa)Size(aa) MW(kDa)MW(kDa) pIpi StartStart End(+/-)End(+/-) Pg_S0302.44Pg_S0302.44 783515783515 789738(+)789738(+) PF00704PF00704 813813 270270 30.430.4 5.295.29 Pg_S0614.43Pg_S0614.43 685225685225 686693(+)686693(+) PF00704PF00704 11311131 376376 41.441.4 6.996.99 Pg_S0614.44Pg_S0614.44 693046693046 693921(-)693921(-) PF00704PF00704 876876 291291 31.831.8 4.884.88 Pg_S0857.50Pg_S0857.50 736029736029 736937(-)736937(-) PF00704PF00704 909909 302302 33.833.8 5.175.17 Pg_S1047.4Pg_S1047.4 4377543775 44662(+)44662(+) PF00704PF00704 888888 295295 31.731.7 5.395.39 Pg_S1055.35Pg_S1055.35 514307514307 514993(-)514993(-) PF00704PF00704 687687 228228 25.025.0 4.934.93 Pg_S1055.36Pg_S1055.36 528803528803 529489(-)529489(-) PF00704PF00704 687687 228228 25.025.0 4.634.63 Pg_S1055.37Pg_S1055.37 531389531389 532087(-)532087(-) PF00704PF00704 699699 232232 25.625.6 5.185.18 Pg_S3332.3Pg_S3332.3 2098620986 21882(+)21882(+) PF00704PF00704 897897 298298 31.431.4 4.744.74 Pg_S3332.4Pg_S3332.4 2376923769 24665(+)24665(+) PF00704PF00704 897897 298298 31.431.4 4.744.74 Pg_S3580.12Pg_S3580.12 111054111054 112106(-)112106(-) PF00704PF00704 576576 191191 21.121.1 5.895.89 Pg_S3824.11Pg_S3824.11 158989158989 159894(-)159894(-) PF00704PF00704 906906 301301 33.533.5 5.395.39 Pg_S3912.1Pg_S3912.1 5195851958 52770(-)52770(-) PF00704PF00704 813813 270270 30.530.5 4.904.90 Pg_S4646.4Pg_S4646.4 4058540585 41376(-)41376(-) PF00704PF00704 792792 263263 22.822.8 5.875.87 Pg_S4659.2Pg_S4659.2 1758817588 18484(-)18484(-) PF00704PF00704 897897 298298 31.431.4 4.624.62 Pg_S4659.3Pg_S4659.3 2454924549 25445(-)25445(-) PF00704PF00704 897897 298298 31.331.3 4.644.64 Pg_S4975.6Pg_S4975.6 9219492194 98366(-)98366(-) PF00704PF00704 960960 319319 35.435.4 5.975.97 Pg_S5104.4Pg_S5104.4 4264242642 43211(+)43211(+) PF00704PF00704 570570 189189 20.920.9 5.215.21 Pg_S5104.5Pg_S5104.5 4443544435 45355(+)45355(+) PF00704PF00704 921921 306306 33.933.9 4.744.74 Pg_S5104.6Pg_S5104.6 4766347663 48589(+)48589(+) PF00704PF00704 927927 308308 34.034.0 5.075.07 Pg_S5173.2Pg_S5173.2 1232712327 27645(+)27645(+) PF00704PF00704 25172517 838838 91.891.8 8.808.80 Pg_S5375.3Pg_S5375.3 4672446724 48092(-)48092(-) PF00704PF00704 864864 287287 31.131.1 5.755.75 Pg_S6123.6Pg_S6123.6 3875638756 41433(+)41433(+) PF00704PF00704 10591059 352352 37.737.7 7.537.53 Pg_S7269.1Pg_S7269.1 36113611 4507(-)4507(-) PF00704PF00704 897897 298298 31.531.5 5.005.00 Pg_S7655.1Pg_S7655.1 94369436 10332(+)10332(+) PF00704PF00704 897897 298298 31.531.5 4.784.78 PgPg _S7804.4_S7804.4 2734627346 29407(-)29407(-) PF00704PF00704 978978 325325 35.235.2 8.358.35

<< 실시예Example 2> GH18 단백질의 계통학적 및 모티프 분석 2> Phylogenetic and motif analysis of GH18 protein

식물 종에서 GH18 단백질의 진화적 관계를 이해하기 위해 인삼의 26개 GH18 계열 단백질과 애기장대의 10개 GH18 계열 단백질의 아미노산 서열을 분리 및 정렬했다. 인삼과 애기장대의 GH18 계열들은 단백질이 비슷한 서열로 구성되어있다. 따라서 인삼 GH18 유전자의 분류를 결정하기 위해 계통수를 구축하였다(도 2). 그러나, 표 2의 유전자 중 Pg_S5173.2와 At4G01040은 잘못된 정렬로 인해 계통수에서 제외되었다.To understand the evolutionary relationships of GH18 proteins in plant species, the amino acid sequences of 26 GH18 family proteins from ginseng and 10 GH18 family proteins from Arabidopsis were isolated and aligned. The GH18 families of ginseng and Arabidopsis thaliana have similar protein sequences. Therefore, a phylogenetic tree was constructed to determine the classification of the ginseng GH18 gene (Figure 2). However, among the genes in Table 2, Pg_S5173.2 and At4G01040 were excluded from the phylogenetic tree due to incorrect alignment.

인삼 GH18 유전자의 chitinase class는 이미 class 분류가 되어있는 애기장대의 10개 GH18 계열 유전자를 이용하여 분류되었으며, 크게 Class III와 V로 나뉘었다. 인삼에서는 처음으로 chitinase class를 분류하였다. 인삼 유전자는 23개의 class III와 3개의 class V로 분류되었다. 인삼 유전자를 애기장대와 비교해보면, 애기장대는 10개 중 1개의 유전자만이 class IIIa에 속한다. 그러는 반면, 인삼은 GH18 계열 유전자의 절반 이상이 class III에 속한다. 또한 Class IIIb에 속하는 애기장대 서열은 없으며, Class V에 속하는 애기장대 유전자는 9개이지만 인삼에는 4개의 유전자만 있다.The chitinase class of the ginseng GH18 gene was classified using the 10 GH18 family genes of Arabidopsis that had already been classified into classes, and was largely divided into Class III and V. In ginseng, chitinase class was classified for the first time. Ginseng genes were classified into 23 class III and 3 class V. Comparing ginseng genes with Arabidopsis thaliana, only 1 out of 10 genes in Arabidopsis belongs to class IIIa. On the other hand, more than half of the GH18 family genes in ginseng belong to class III. Additionally, there are no Arabidopsis thaliana sequences belonging to Class IIIb, and while there are 9 Arabidopsis genes belonging to Class V, there are only 4 genes in ginseng.

GH18 유전자의 구조적 보존과 다양성을 연구하기 위해 엑손-인트론 구조와 보존된 모티프의 분포를 조사했다. Class IIIa와 V는 하나 또는 두 개의 엑손을 가지고 있으며, IIIb는 하나의 엑손만 가지고 있고 인트론을 가지지 않는다(도 2b). Class V의 인트론 수는 0, 1, 2, 또는 6개로 다양하다 (도 2b). To study the structural conservation and diversity of the GH18 gene, we examined the exon-intron structure and the distribution of conserved motifs. Class IIIa and V have one or two exons, and Class IIIb has only one exon and no intron (Figure 2b). The number of introns in Class V varies from 0, 1, 2, or 6 (Figure 2b).

chitinase에 속하는 인삼과 애기장대의 유전자 염기서열의 보존 정도를 알아보기 위해 class 단백질에 대해 다중 정렬을 수행하였다. 아미노산 서열의 분석은 클래스 III 및 V chitianse에서 CHITINASE_18(PS01095) 활성 특징을 갖는 GH18 촉매 도메인(PF00704)을 밝혀냈다(도 3, 도 4 및 도 5). GH18 계열에는 DXDXE라는 보존된 모티브가 있다. Pg_S6123.6은 순서와 패턴이 PgGH18과 유사하나 N-말단 부분이 길다는 차이점이 있다.To determine the degree of conservation of gene sequences of ginseng and Arabidopsis thaliana belonging to chitinase, multiple alignment was performed on class proteins. Analysis of the amino acid sequence revealed a GH18 catalytic domain (PF00704) with CHITINASE_18 (PS01095) activity characteristics in class III and V chitianse (Figures 3, 4, and 5). The GH18 family has a conserved motif called DXDXE. Pg_S6123.6 is similar in sequence and pattern to PgGH18, but the difference is that the N-terminal part is longer.

도 5를 보면, class III와 V 둘 다 DXDXE 모티프를 가진 것을 볼 수 있다. Class III에서 이 모티프는 DFDIE와 DIDYE 두 가지로 나뉘게 되고, 이는 IIIa와 IIIb로 나뉘는 기준이 된다(도 4). 이에 반해 Class V에서는 DXDXE가 없는 유전자(Pg_S0302.44)가 하나뿐이므로 이 유전자만 제거하여 정렬하면 보존된 모티프를 확인할 수 있다(도 5).Looking at Figure 5, you can see that both classes III and V have the DXDXE motif. In Class III, this motif is divided into DFDIE and DIDYE, which becomes the standard for division into IIIa and IIIb (Figure 4). On the other hand, in Class V, there is only one gene (Pg_S0302.44) without DXDXE, so if only this gene is removed and aligned, the conserved motif can be confirmed (Figure 5).

<< 실시예Example 3> 3> PgGH18의of PgGH18 발현 분석 Expression analysis

최근, 인삼에 염 처리를 했을 때 Pg_S7804.4가 높은 반응성을 보이는 것을 확인했다. 비표적 단백질체 분석은 통해 인삼 뿌리를 염 용액에 노출시킨 후 인삼 잎에서 고도로 발현되는 단백질로 이 유전자를 확인했다. 따라서 본 발명자들은 PgGH18이라는 추가 특성화를 위해 이 유전자를 선택했다. Recently, it was confirmed that Pg_S7804.4 showed high reactivity when ginseng was treated with salt. Through non-targeted proteomic analysis, this gene was identified as a protein highly expressed in ginseng leaves after exposing ginseng roots to a salt solution. Therefore, we selected this gene for further characterization as PgGH18 .

첫째로, 인삼 조직에서 PgGH18의 발현을 확인하기 위해 2년근, 4년근의 종자, 잎, 줄기, 뿌리, 뿌리털, 근경, 꽃, 내근, 외근을 이용하여 real-time PCR을 하였다. PgGH18의 전사 정도는 조직별로 다양했고, 뿌리털에서 가장 높은 발현을 보였다(도 6a). PgGH18의 뿌리 발현 정도는 잎과 줄기보다 더 높았다. 뿌리 조직 중에서도 표피와 피질을 포함하고 있는 외근에서 가장 높은 발현을 보였다. 그에 반해서, 중과피를 포함하는 내근은 거의 발현이 없었다(도 6a).First, to confirm the expression of PgGH18 in ginseng tissues, real-time PCR was performed using seeds, leaves, stems, roots, root hairs, rhizomes, flowers, internal roots, and external roots of 2-year-old and 4-year-old roots. The transcription level of PgGH18 varied among tissues, with the highest expression in root hairs (Figure 6a). The root expression level of PgGH18 was higher than that in leaves and stems. Among root tissues, the highest expression was shown in external roots containing the epidermis and cortex. In contrast, the inner roots containing the mesocarp had almost no expression (Figure 6a).

다음으로, qRTPCR을 사용해 PgGH18의 발현을 조사하여 염분 노출에서 살아남기 위해 인삼 식물이 적응한 스트레스 내성의 분자 메커니즘을 조사했다. NaCl을 처리한 인삼 묘목에서 48시간 동안 노출되었을 때 PgGH18의 발현이 10배 증가하였다(도 6b). 이러한 데이터는 PgGH18이 염 스트레스에 반응할 수 있음을 보여준다.Next, we investigated the molecular mechanism of stress tolerance adapted by ginseng plants to survive salt exposure by examining the expression of PgGH18 using qRTPCR. The expression of PgGH18 increased 10-fold in NaCl-treated ginseng seedlings when exposed for 48 hours (Figure 6b). These data show that PgGH18 can respond to salt stress.

<< 실시예Example 4> 4> PgGH18PgGH18 과발현 overexpression

PgGH18이 염 내성을 가지는지 여부를 확인하기 위해 애기장대에 PgGH18 유전자를 과발현시켰다. PCR로 애기장대 유전체에서 PgGH18의 삽입을 확인했다. 총 30개의 독립적인 동형 접합 과발현체 라인이 생성되었고 그 중 높은 발현 값을 가지는 #20, 22, 28번을 선정했다. 이들의 표현형은 야생형과 차이점이 없었고, qRT-PCR과 웨스턴 블롯을 통해 PgGH18이 과발현되었음을 확인했다(도 7).To determine whether PgGH18 has salt tolerance, the PgGH18 gene was overexpressed in Arabidopsis. Insertion of PgGH18 was confirmed in the Arabidopsis genome by PCR. A total of 30 independent homozygous overexpressor lines were generated, of which #20, 22, and 28 with high expression values were selected. Their phenotype was no different from the wild type, and it was confirmed that PgGH18 was overexpressed through qRT-PCR and Western blot (Figure 7).

GFP가 결합된 PgGH18 구조는 PgGH18의 위치를 실험적으로 확인하기 위해 만들어졌다. 아무것도 없는 GFP 단백질이 대조군으로 사용되었고, 대조군의 GFP는 핵, 세포막, 세포질에서 발견되었다(도 8). PgGH18 단백질은 주로 세포질과 핵 주변부에서 발견되었다(도 8b-e). 형광은 핵 마커인 NLS-mcherry와 비교했을 때 핵 내부보다는 핵 막 주변부에서 관찰되었다. 세포막을 붉게 염색하는 FM4-64로 담배 세포를 염색했을 때, PgGH18-GFP 신호와 부분적으로 겹쳐져 세포막에서 노란색의 신호를 나타냈다(도 8f). 신호가 세포벽에 위치하는지 여부를 결정하기 위해 감염된 잎에 1M의 NaCl을 처리하여 원형질 분리를 일으켰다(도 8e). PgGH18-GFP 신호는 주로 세포질과 막 뿐만 아니라 아포플라스트에서도 발견되어 세포벽에도 존재할 가능성이 있다고 예상된다(도 8e). 유사하게, 사탕수수에서 chitinase class III 유전자인 ScChi는 핵, 세포질, 세포막에 위치한다고 보고했다(Su et al. 2014).The GFP-conjugated PgGH18 structure was created to experimentally confirm the location of PgGH18. Blank GFP protein was used as a control, and GFP of the control was found in the nucleus, cell membrane, and cytoplasm (Figure 8). PgGH18 protein was mainly found in the cytoplasm and nuclear periphery (Figure 8b-e). Compared to the nuclear marker NLS-mcherry, fluorescence was observed at the periphery of the nuclear membrane rather than inside the nucleus. When tobacco cells were stained with FM4-64, which stains the cell membrane red, a yellow signal appeared in the cell membrane, partially overlapping with the PgGH18-GFP signal (Figure 8f). To determine whether the signal was located in the cell wall, infected leaves were treated with 1 M NaCl, resulting in protoplast detachment ( Fig. 8E ). PgGH18-GFP signals were mainly found in the cytoplasm and membrane, as well as in the apoplast, predicting that they may also be present in the cell wall (Figure 8e). Similarly, in sugarcane, ScChi, a chitinase class III gene, was reported to be located in the nucleus, cytoplasm, and cell membrane (Su et al . 2014).

<< 실시예Example 5> 염 스트레스에 내성을 보이는 5> Resistant to salt stress PgGH18PgGH18 과발현 라인 overexpression line

염 스트레스 내성에 대한 PgGH18 과발현의 효과를 연구하기 위해 NaCl로 처리한 형질전환 식물을 사용했다. 염 스트레스 하에서 발아율을 확인하기 위해 야생형과 과발현된 PgGH18ox #20, 22, 28을 0mM과 150mM NaCl이 포함된 1/2MS 배지에서 10일 동안 키웠다(도 9a). 정상 조건하에서, 야생형은 81.3%의 발아율을 보였고, 형질전환 식물은 각각 96.7%, 97.3%, 98%의 발아율을 보였다. 150mM NaCl이 처리된 배지에서 키운 애기장대는 모든 라인에서 무처리 배지에서 보다 발아율이 줄어들었다. 그러나 야생형은 81.3%에서 66%로 약 15%가 크게 감소한 반면, 과발현 라인들은 5% 이내로 감소하였으며, PgGH18ox #28은 오히려 발아율이 증가하였다(도 9b).To study the effect of PgGH18 overexpression on salt stress tolerance, transgenic plants treated with NaCl were used. To determine the germination rate under salt stress, wild type and overexpressed PgGH18ox #20, 22, and 28 were grown in 1/2MS medium containing 0mM and 150mM NaCl for 10 days (Figure 9a). Under normal conditions, the wild type showed a germination rate of 81.3%, and the transgenic plants showed a germination rate of 96.7%, 97.3%, and 98%, respectively. The germination rate of Arabidopsis thaliana grown in medium treated with 150mM NaCl was reduced compared to that in untreated medium in all lines. However, while the wild type significantly decreased by about 15% from 81.3% to 66%, the overexpression lines decreased to within 5%, and the germination rate of PgGH18ox #28 actually increased (Figure 9b).

더 높은 발아율의 원인을 확인하기 위해, 야생형과 과발현 라인을 100mM NaCl이 포함된 배지에서 수직으로 키웠다. 7일 후, 뿌리 길이에서의 차이가 확인되었다. NaCl을 처리한 애기장대가 처리하지 않은 것보다 뿌리가 더 짧았다. 그러나 100mM NaCl이 처리된 배지에서 자란 묘목 중에서 과발현 라인들이 대조군보다 뿌리가 더 긴 것이 관찰되었다(도 10a). 염 스트레스 내성이 ROS 신호전달과 관련이 있으므로, ROS 축적을 확인하였다. 과산화수소(H2O2)에 민감한 염색시약인 DAB 염색 결과, 염이 처리된 뿌리가 처리되지 않은 뿌리보다 어두운 색을 띠었으며, PgGH18ox 라인들은 야생형보다 더 어두운 뿌리 색이 축적되었다(도 10b). 또한 살아있는 세포 내에서 수산기, 퍼옥실 및 기타 ROS 생성을 염색하는 세포 내 ROS 염색 시약인 H2DCF-DA를 사용했으며 NaCl 처리 시 야생형와 비교하여 PgGH18ox 라인의 뿌리 끝에서 더 많은 형광이 관찰되었다.To determine the cause of the higher germination rate, wild-type and overexpression lines were grown vertically in medium containing 100mM NaCl. After 7 days, differences in root length were confirmed. Arabidopsis plants treated with NaCl had shorter roots than those without treatment. However, among seedlings grown in medium treated with 100mM NaCl, it was observed that the overexpression lines had longer roots than the control group (Figure 10a). Since salt stress tolerance is related to ROS signaling, ROS accumulation was confirmed. As a result of DAB staining, a staining reagent sensitive to hydrogen peroxide (H 2 O 2 ), salt-treated roots had a darker color than untreated roots, and the PgGH18ox lines accumulated darker root colors than the wild type (FIG. 10b). We also used H2DCF-DA, an intracellular ROS staining reagent that stains hydroxyl, peroxyl and other ROS production within living cells, and observed more fluorescence in the root tips of the PgGH18ox line compared to the wild type upon NaCl treatment.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred implementation examples and do not limit the scope of the present invention.

Claims (6)

인삼 유래 GH18 계열인, Pg_S7804.4 단백질 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 식물체의 염 스트레스 내성 증진용 조성물.A composition for enhancing salt stress tolerance in plants comprising the Pg_S7804.4 protein, a member of the GH18 series derived from ginseng, or the gene encoding it, as an active ingredient. 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체에 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 식물체의 염 스트레스 내성을 증진시키는 방법.A method for enhancing salt stress tolerance of a plant, comprising the step of transforming a plant with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, a member of the ginseng-derived GH18 series, and overexpressing the Pg_S7804.4 gene. 인삼 유래 GH18 계열인, Pg_S7804.4 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물체를 형질전환시켜, Pg_S7804.4 유전자를 과발현시키는 단계를 포함하는 염 스트레스 내성이 증진된 형질전환 식물체 제조 방법.A method for producing a transgenic plant with improved salt stress tolerance, comprising the step of transforming the plant with a recombinant vector containing a gene encoding the Pg_S7804.4 protein, a GH18 family member derived from ginseng, and overexpressing the Pg_S7804.4 gene. 제3항에 있어서, 상기 형질전환 식물체는 애기장대인 것을 특징으로 하는 염 스트레스 내성이 증진된 형질전환 식물체 제조 방법.The method of claim 3, wherein the transgenic plant is Arabidopsis thaliana. 제3항 또는 제4항의 방법에 따라 제조된 염 스트레스 내성이 증진된 형질전환 식물체.A transgenic plant with improved salt stress tolerance prepared according to the method of claim 3 or 4. 제5항의 염 스트레스 내성이 증진된 형질전환 식물체의 형질전환된 종자.A transformed seed of the transgenic plant with improved salt stress tolerance according to claim 5.
KR1020220127058A 2022-10-05 2022-10-05 Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng KR20240048578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220127058A KR20240048578A (en) 2022-10-05 2022-10-05 Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220127058A KR20240048578A (en) 2022-10-05 2022-10-05 Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng

Publications (1)

Publication Number Publication Date
KR20240048578A true KR20240048578A (en) 2024-04-16

Family

ID=90882759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220127058A KR20240048578A (en) 2022-10-05 2022-10-05 Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng

Country Status (1)

Country Link
KR (1) KR20240048578A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210085328A (en) 2019-12-30 2021-07-08 경희대학교 산학협력단 Method for reducing salt stress in Panax ginseng using plant growth-promoting myobacteria

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210085328A (en) 2019-12-30 2021-07-08 경희대학교 산학협력단 Method for reducing salt stress in Panax ginseng using plant growth-promoting myobacteria

Similar Documents

Publication Publication Date Title
US11746356B2 (en) Transcriptional regulation for improved plant productivity
KR101790010B1 (en) Gene enhancing pre―harvest sprouting tolerance derived from Oryza sativa and uses thereof
US10041086B2 (en) Method for production of transgenic cotton plants
KR101465692B1 (en) Method for producing transgenic plant with regulated anthocyanin biosynthesis using AtbHLH113 gene and the plant thereof
CN111116721A (en) Plant stress resistance-related transcription factor PwNAC30, and coding gene and application thereof
KR102632726B1 (en) OsWRKY5 gene controlling resistance to abiotic stress in plant and uses thereof
KR20240048578A (en) Method for producing salt-stress resistant plants using PgGH18 gene from Panax ginseng
KR102231138B1 (en) OsXCP2-5 gene from Oryza sativa for controlling salt stress tolerance of plant and uses thereof
CN113980106A (en) Small peptide for regulating and controlling sizes of plant seeds and organs, and coding gene and application thereof
KR101281072B1 (en) Method for producing transgenic plant with increased resistance to various environmental stresses using osfkbp16-3 gene and the plant thereof
KR101902915B1 (en) OsPHS2 Gene enhancing pre―harvest sprouting tolerance derived from Oryza sativa and uses thereof
KR101376522B1 (en) OsMLD gene increasing tolerance to salt stress from rice and uses thereof
KR101028113B1 (en) CaHB1 gene involved in growth enhancement, salt tolerance and senescence regulation of Capsicum annuum and uses thereof
KR102674984B1 (en) CaSIRF1 gene and Method for improving the resistance to the drought stress using CaSIRF1 in plants
KR101402602B1 (en) Method for producing transgenic plant with increased resistance to environmental stresses using oscyp18-2 gene
KR101664206B1 (en) OsWOX13 gene from rice for increasing environmental stress resistance of plant and uses thereof
CN104862319A (en) Arabidopis thaliana gene AtTIE 1 controlling plant branching and applications thereof
KR102173875B1 (en) Composition for enhancing herbicide resistance of plants and method for enhancing herbicide resistance of plants using the same
CN112979775B (en) Method for cultivating pre-sprouting resistant transgenic wheat and related biological material thereof
KR102674998B1 (en) CaFAF1 genes and Method for improving the resistance to the drought and salt stress using CaFAF1 in plants
KR102603683B1 (en) Plant growth regulatory genes encoding seeds plant specific extensin motif containing proteins and uses thereof
KR102231136B1 (en) OsCP1 gene from Oryza sativa for controlling salt stress tolerance of plant and uses thereof
KR102646071B1 (en) RsMYB1 or RsTT8 transcript with intron retention from radish and uses thereof
KR101849151B1 (en) pTAC10 gene from Arabidopsis thaliana for increasing biomass or seed productivity of plant and uses thereof
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof