KR20240015467A - 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치 - Google Patents

뉴럴 네트워크를 이용한 학습 관리 방법 및 장치 Download PDF

Info

Publication number
KR20240015467A
KR20240015467A KR1020220093373A KR20220093373A KR20240015467A KR 20240015467 A KR20240015467 A KR 20240015467A KR 1020220093373 A KR1020220093373 A KR 1020220093373A KR 20220093373 A KR20220093373 A KR 20220093373A KR 20240015467 A KR20240015467 A KR 20240015467A
Authority
KR
South Korea
Prior art keywords
learning
achievement
server
user
target
Prior art date
Application number
KR1020220093373A
Other languages
English (en)
Inventor
김성태
Original Assignee
주식회사 에이블에듀테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이블에듀테크 filed Critical 주식회사 에이블에듀테크
Priority to KR1020220093373A priority Critical patent/KR20240015467A/ko
Priority to PCT/KR2023/010157 priority patent/WO2024025225A1/ko
Publication of KR20240015467A publication Critical patent/KR20240015467A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • G06Q10/1091Recording time for administrative or management purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • G06Q50/205Education administration or guidance
    • G06Q50/2053Education institution selection, admissions, or financial aid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • G06Q50/205Education administration or guidance
    • G06Q50/2057Career enhancement or continuing education service
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Educational Technology (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Psychiatry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Developmental Disabilities (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Epidemiology (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Operations Research (AREA)
  • Artificial Intelligence (AREA)

Abstract

일 실시예에 따르면, 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치가 제공된다. 학습 관리 방법은, 사용자 단말기에 의해, 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받는 동작; 상기 사용자 단말기에 의해, 상기 사용자 정보를 서버로 송신하는 동작; 상기 서버에 의해, 상기 기존 진도와 기준 진도를 비교하는 동작; 상기 기존 진도가 상기 기준 진도 이상인 경우에, 상기 서버에 의해, 상기 사용자의 학년, 상기 기존 진도, 상기 테스트 횟수 및 상기 성적을 기초로 학습 성취도를 계산하는 동작; 상기 서버에 의해, 불안감 지수, 집중도, 상기 학습 성취도 및 상기 기존 학습 기간을 기초로 성취 잠재도를 계산하는 동작; 상기 서버에 의해, 상기 목표 대학 및 상기 목표 전공에 대응하는 목표 성취도를 결정하는 동작; 및 상기 서버에 의해, 상기 학습 성취도 및 상기 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 상기 목표 성취도를 달성하기 위한 커리큘럼을 제공하는 동작을 포함할 수 있다.

Description

뉴럴 네트워크를 이용한 학습 관리 방법 및 장치{STUDY MANAGEMENT METHOD AND APPARATUS THEREOF USING NEURAL NETWORKS}
본 발명의 실시예들은 학생의 학습을 관리하는 기술에 관한 것으로, 뉴럴 네트워크를 이용하여 학생의 학습 수준에 알맞은 학습 방법을 추천하는 기술에 대한 것이다.
최근 통신 기술이 발전함에 따라 교육 분야에 있어서도 온라인 교육 서비스가 점차 증가하고 있다. 기존의 오프라인 교육의 경우 학습자가 직접 학원까지 이동해서 수업을 수강해야 하기 때문에 학원에서 멀리 떨어진 지역에 거주하는 학습자의 경우 수업을 수강하지 못하거나, 하나의 강의를 수강할 수 있는 학습자의 수가 제한되는 등 다양한 불편함이 있다. 그러나 온라인 교육 서비스의 경우, 그러한 불편함이 해소되고, 교육 서비스 제공자가 다양한 방식으로 학습자에게 서비스를 제공할 수 있기 때문에 실질적으로 학습 서비스의 퀄리티가 상승할 수 있다.
그러나, 기존의 온라인 교육 서비스의 경우 학습 컨텐츠를 제공하는 서비스제공자가 학습자의 학습 능력을 개별적으로 체크하기 어렵기 때문에, 학습자 개인에게 적합한 학습 컨텐츠를 제공할 수 없다는 단점이 있었다.
위에서 설명한 배경기술은 발명자가 본원의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
실시예들은, 학습자의 응답을 기초로 뉴럴 네트워크를 이용하여 학습자의 학습 능력을 산출하고 학습 능력에 따른 커리큘럼을 제공하는 장치 및 방법을 제공한다.
실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
일 실시예에 따른 학습 관리 방법은, 사용자 단말기에 의해, 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받는 동작; 상기 사용자 단말기에 의해, 상기 사용자 정보를 서버로 송신하는 동작; 상기 서버에 의해, 상기 기존 진도와 기준 진도를 비교하는 동작; 상기 기존 진도가 상기 기준 진도 이상인 경우에, 상기 서버에 의해, 상기 사용자의 학년, 상기 기존 진도, 상기 테스트 횟수 및 상기 성적을 기초로 학습 성취도를 계산하는 동작; 상기 서버에 의해, 불안감 지수, 집중도, 상기 학습 성취도 및 상기 기존 학습 기간을 기초로 성취 잠재도를 계산하는 동작; 상기 서버에 의해, 상기 목표 대학 및 상기 목표 전공에 대응하는 목표 성취도를 결정하는 동작; 및 상기 서버에 의해, 상기 학습 성취도 및 상기 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 상기 목표 성취도를 달성하기 위한 커리큘럼을 제공하는 동작을 포함할 수 있다.
상기 방법은, 상기 사용자 단말기에 의해, 불안감 지수를 측정하기 위한 설문 세트를 표시하는 동작; 상기 사용자 단말기에 의해, 상기 표시된 설문 세트에 대응하는 상기 사용자의 입력 신호를 수신하는 동작; 및 상기 사용자 단말기에 의해, 상기 수신된 입력 신호를 상기 설문 세트에 대응하는 정답 세트와 비교하여 상기 불안감 지수를 측정하는 동작을 더 포함할 수 있다.
상기 방법은, 상기 사용자 단말기에 의해, 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 입력받아 상기 서버로 송신하는 동작; 및 상기 서버에 의해, 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 기초로 상기 사용자의 집중도를 계산하는 동작을 더 포함할 수 있다.
상기 성취 잠재도를 계산하는 동작은, 상기 집중도 및 상기 학습 성취도는 상기 성취 잠재도와 양의 상관관계를 형성하고, 상기 불안감 지수 및 상기 기존 학습 기간은 상기 성취 잠재도와 음의 관계를 형성할 수 있다.
상기 성취 잠재도를 계산하는 동작은, 상기 집중도, 상기 학습 성취도, 상기 불안감 지수 및 상기 기존 학습 기간을 기초로 수학식 1을 이용하여 상기 성취 잠재도를 계산하고,
[수학식 1]
수학식 1에서, 은 상태 등급을 나타내고, m은 2를 초과하는 정수로서, 학습 성취도의 세분화된 등급의 개수를 나타내고, 은 학습 성취도에 상응하는 표준 편차를 나타낼 수 있으며, 복수의 사용자 단말기를 통하여 수집된 복수의 학습 성취도를 기초로 획득될 수 있고, n은 2를 초과하는 정수로서, 불안감 지수의 세분화된 등급의 개수를 나타내고, 은 불안감 지수에 상응하는 표준 편차를 나타낼 수 있으며, 복수의 사용자 단말기를 통하여 수집된 복수의 불안감 지수를 기초로 획득될 수 있고, h는 집중도, s는 학습 성취도, 는 불안감 지수, t는 기존 학습 기간을 의미할 수 있다.
상기 커리큘럼 제공 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고, 학습 성취도 및 성취 잠재도로 구성된 각각의 학습 데이터는 상기 커리큘럼 제공 모델의 상기 입력 레이어에 입력되어 상기 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터를 출력하고, 상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 상기 커리큘럼 제공 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습될 수 있다.
일 실시예에 따른 학습 관리 시스템은, 사용자 단말; 및 서버를 포함하고,상기 사용자 단말기은, 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받고, 상기 사용자 정보를 서버로 송신하고, 상기 서버는, 상기 사용자의 학년, 상기 기존 진도, 상기 테스트 횟수 및 상기 성적을 기초로 학습 성취도를 계산하고, 불안감 지수, 집중도, 상기 학습 성취도 및 상기 기존 학습 기간을 기초로 성취 잠재도를 계산하고, 상기 목표 대학 및 상기 목표 전공에 대응하는 목표 성취도를 결정하고, 상기 학습 성취도 및 상기 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 상기 목표 성취도를 달성하기 위한 커리큘럼을 제공할 수 있다.
일 실시예에 따른 컴퓨터 프로그램은, 하드웨어와 결합되어 제1항의 방법을 실행시키기 위하여 컴퓨터 판독 가능한 기록매체에 저장될 수 있다.
일 실시예에 따른 컴퓨터 판독 가능한 기록매체는, 하드웨어와 결합되어 제1항의 방법을 실행시키기는 컴퓨터 프로그램이 저장될 수 있다.
실시예들에 따르면, 학습 관리 시스템은 학습자의 응답을 기초로 뉴럴 네트워크를 이용하여 학습자의 학습 능력을 산출하고 학습 능력에 따른 커리큘럼을 제공할 수 있다.
실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
실시예들에 대한 이해를 돕기 위해 상세한 설명의 일부로 포함된, 첨부 도면은 다양한 실시예들을 제공하고, 상세한 설명과 함께 다양한 실시예들의 기술적 특징을 설명한다.
도 1은 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.
도 2는 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.
도 3은 일 실시예에 따른 학습 관리 시스템의 전체 구성을 도시한 도면이다.
도 4는 일 실시예에 따른 학습 관리 방법의 동작을 도시한 흐름도이다.
도 5는 일 실시예에 따른 서버의 구성을 도시한 도면이다.
이하의 실시예들은 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 다양한 실시예들을 구성할 수도 있다. 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
이하, 다양한 실시예들에 따른 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 다양한 실시예들에서 사용되는 특정(特定) 용어들은 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.
도 1은, 다양한 실시예들에 따른, 네트워크 환경(100) 내의 전자 장치(101)의 블록도이다. 도 1을 참조하면, 네트워크 환경(100)에서 전자 장치(101)는 제 1 네트워크(198)(예: 근거리 무선 통신 네트워크)를 통하여 전자 장치(102)와 통신하거나, 또는 제 2 네트워크(199)(예: 원거리 무선 통신 네트워크)를 통하여 전자 장치(104) 또는 서버(108) 중 적어도 하나와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 서버(108)를 통하여 전자 장치(104)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 프로세서(120), 메모리(130), 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 연결 단자(178), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 포함할 수 있다. 어떤 실시예에서는, 전자 장치(101)에는, 이 구성요소들 중 적어도 하나(예: 연결 단자(178))가 생략되거나, 하나 이상의 다른 구성요소가 추가될 수 있다. 어떤 실시예에서는, 이 구성요소들 중 일부들(예: 센서 모듈(176), 카메라 모듈(180), 또는 안테나 모듈(197))은 하나의 구성요소(예: 디스플레이 모듈(160))로 통합될 수 있다. 전자 장치(101)는 클라이언트, 단말기 또는 피어로 지칭될 수도 있다.
프로세서(120)는, 예를 들면, 소프트웨어(예: 프로그램(140))를 실행하여 프로세서(120)에 연결된 전자 장치(101)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 일실시예에 따르면, 데이터 처리 또는 연산의 적어도 일부로서, 프로세서(120)는 다른 구성요소(예: 센서 모듈(176) 또는 통신 모듈(190))로부터 수신된 명령 또는 데이터를 휘발성 메모리(132)에 저장하고, 휘발성 메모리(132)에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(134)에 저장할 수 있다. 일실시예에 따르면, 프로세서(120)는 메인 프로세서(121)(예: 중앙 처리 장치 또는 어플리케이션 프로세서) 또는 이와는 독립적으로 또는 함께 운영 가능한 보조 프로세서(123)(예: 그래픽 처리 장치, 신경망 처리 장치(NPU: neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 예를 들어, 전자 장치(101)가 메인 프로세서(121) 및 보조 프로세서(123)를 포함하는 경우, 보조 프로세서(123)는 메인 프로세서(121)보다 저전력을 사용하거나, 지정된 기능에 특화되도록 설정될 수 있다. 보조 프로세서(123)는 메인 프로세서(121)와 별개로, 또는 그 일부로서 구현될 수 있다.
보조 프로세서(123)는, 예를 들면, 메인 프로세서(121)가 인액티브(예: 슬립) 상태에 있는 동안 메인 프로세서(121)를 대신하여, 또는 메인 프로세서(121)가 액티브(예: 어플리케이션 실행) 상태에 있는 동안 메인 프로세서(121)와 함께, 전자 장치(101)의 구성요소들 중 적어도 하나의 구성요소(예: 디스플레이 모듈(160), 센서 모듈(176), 또는 통신 모듈(190))와 관련된 기능 또는 상태들의 적어도 일부를 제어할 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성요소(예: 카메라 모듈(180) 또는 통신 모듈(190))의 일부로서 구현될 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 신경망 처리 장치)는 인공지능 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 인공지능 모델은 기계 학습을 통해 생성될 수 있다. 이러한 학습은, 예를 들어, 인공지능 모델이 수행되는 전자 장치(101) 자체에서 수행될 수 있고, 별도의 서버(예: 서버(108))를 통해 수행될 수도 있다. 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.
메모리(130)는, 전자 장치(101)의 적어도 하나의 구성요소(예: 프로세서(120) 또는 센서 모듈(176))에 의해 사용되는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(예: 프로그램(140)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 포함할 수 있다. 메모리(130)는, 휘발성 메모리(132) 또는 비휘발성 메모리(134)를 포함할 수 있다.
프로그램(140)은 메모리(130)에 소프트웨어로서 저장될 수 있으며, 예를 들면, 운영 체제(142), 미들 웨어(144) 또는 어플리케이션(146)을 포함할 수 있다.
입력 모듈(150)은, 전자 장치(101)의 구성요소(예: 프로세서(120))에 사용될 명령 또는 데이터를 전자 장치(101)의 외부(예: 사용자)로부터 수신할 수 있다. 입력 모듈(150)은, 예를 들면, 마이크, 마우스, 키보드, 키(예: 버튼), 또는 디지털 펜(예: 스타일러스 펜)을 포함할 수 있다.
음향 출력 모듈(155)은 음향 신호를 전자 장치(101)의 외부로 출력할 수 있다. 음향 출력 모듈(155)은, 예를 들면, 스피커 또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있다. 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 일실시예에 따르면, 리시버는 스피커와 별개로, 또는 그 일부로서 구현될 수 있다.
디스플레이 모듈(160)은 전자 장치(101)의 외부(예: 사용자)로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈(160)은, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 일실시예에 따르면, 디스플레이 모듈(160)은 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함할 수 있다.
오디오 모듈(170)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 일실시예에 따르면, 오디오 모듈(170)은, 입력 모듈(150)을 통해 소리를 획득하거나, 음향 출력 모듈(155), 또는 전자 장치(101)와 직접 또는 무선으로 연결된 외부 전자 장치(예: 전자 장치(102))(예: 스피커 또는 헤드폰)를 통해 소리를 출력할 수 있다.
센서 모듈(176)은 전자 장치(101)의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 사용자 상태)를 감지하고, 감지된 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 일실시예에 따르면, 센서 모듈(176)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서를 포함할 수 있다.
인터페이스(177)는 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 일실시예에 따르면, 인터페이스(177)는, 예를 들면, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.
연결 단자(178)는, 그를 통해서 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 일실시예에 따르면, 연결 단자(178)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 또는 오디오 커넥터(예: 헤드폰 커넥터)를 포함할 수 있다.
햅틱 모듈(179)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 움직임) 또는 전기적인 자극으로 변환할 수 있다. 일실시예에 따르면, 햅틱 모듈(179)은, 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.
카메라 모듈(180)은 정지 영상 및 동영상을 촬영할 수 있다. 일실시예에 따르면, 카메라 모듈(180)은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다.
전력 관리 모듈(188)은 전자 장치(101)에 공급되는 전력을 관리할 수 있다. 일실시예에 따르면, 전력 관리 모듈(188)은, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구현될 수 있다.
배터리(189)는 전자 장치(101)의 적어도 하나의 구성요소에 전력을 공급할 수 있다. 일실시예에 따르면, 배터리(189)는, 예를 들면, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.
통신 모듈(190)은 전자 장치(101)와 외부 전자 장치(예: 전자 장치(102), 전자 장치(104), 또는 서버(108)) 간의 직접(예: 유선) 통신 채널 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(190)은 프로세서(120)(예: 어플리케이션 프로세서)와 독립적으로 운영되고, 직접(예: 유선) 통신 또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 일실시예에 따르면, 통신 모듈(190)은 무선 통신 모듈(192)(예: 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS(global navigation satellite system) 통신 모듈) 또는 유선 통신 모듈(194)(예: LAN(local area network) 통신 모듈, 또는 전력선 통신 모듈)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제 1 네트워크(198)(예: 블루투스, WiFi(wireless fidelity) direct 또는 IrDA(infrared data association)와 같은 근거리 통신 네트워크) 또는 제 2 네트워크(199)(예: 레거시 셀룰러 네트워크, 5G 네트워크, 차세대 통신 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부의 전자 장치(104)와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성요소(예: 단일 칩)로 통합되거나, 또는 서로 별도의 복수의 구성요소들(예: 복수 칩들)로 구현될 수 있다. 무선 통신 모듈(192)은 가입자 식별 모듈(196)에 저장된 가입자 정보(예: 국제 모바일 가입자 식별자(IMSI))를 이용하여 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크 내에서 전자 장치(101)를 확인 또는 인증할 수 있다.
무선 통신 모듈(192)은 4G 네트워크 이후의 5G 네트워크 및 차세대 통신 기술, 예를 들어, NR 접속 기술(new radio access technology)을 지원할 수 있다. NR 접속 기술은 고용량 데이터의 고속 전송(eMBB(enhanced mobile broadband)), 단말 전력 최소화와 다수 단말의 접속(mMTC(massive machine type communications)), 또는 고신뢰도와 저지연(URLLC(ultra-reliable and low-latency communications))을 지원할 수 있다. 무선 통신 모듈(192)은, 예를 들어, 높은 데이터 전송률 달성을 위해, 고주파 대역(예: mmWave 대역)을 지원할 수 있다. 무선 통신 모듈(192)은 고주파 대역에서의 성능 확보를 위한 다양한 기술들, 예를 들어, 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO(multiple-input and multiple-output)), 전차원 다중입출력(FD-MIMO: full dimensional MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 또는 대규모 안테나(large scale antenna)와 같은 기술들을 지원할 수 있다. 무선 통신 모듈(192)은 전자 장치(101), 외부 전자 장치(예: 전자 장치(104)) 또는 네트워크 시스템(예: 제 2 네트워크(199))에 규정되는 다양한 요구사항을 지원할 수 있다. 일실시예에 따르면, 무선 통신 모듈(192)은 eMBB 실현을 위한 Peak data rate(예: 20Gbps 이상), mMTC 실현을 위한 손실 Coverage(예: 164dB 이하), 또는 URLLC 실현을 위한 U-plane latency(예: 다운링크(DL) 및 업링크(UL) 각각 0.5ms 이하, 또는 라운드 트립 1ms 이하)를 지원할 수 있다.
안테나 모듈(197)은 신호 또는 전력을 외부(예: 외부의 전자 장치)로 송신하거나 외부로부터 수신할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 서브스트레이트(예: PCB) 위에 형성된 도전체 또는 도전성 패턴으로 이루어진 방사체를 포함하는 안테나를 포함할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다. 이런 경우, 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 적어도 하나의 안테나가, 예를 들면, 통신 모듈(190)에 의하여 상기 복수의 안테나들로부터 선택될 수 있다. 신호 또는 전력은 상기 선택된 적어도 하나의 안테나를 통하여 통신 모듈(190)과 외부의 전자 장치 간에 송신되거나 수신될 수 있다. 어떤 실시예에 따르면, 방사체 이외에 다른 부품(예: RFIC(radio frequency integrated circuit))이 추가로 안테나 모듈(197)의 일부로 형성될 수 있다.
다양한 실시예에 따르면, 안테나 모듈(197)은 mmWave 안테나 모듈을 형성할 수 있다. 일실시예에 따르면, mmWave 안테나 모듈은 인쇄 회로 기판, 상기 인쇄 회로 기판의 제 1 면(예: 아래 면)에 또는 그에 인접하여 배치되고 지정된 고주파 대역(예: mmWave 대역)을 지원할 수 있는 RFIC, 및 상기 인쇄 회로 기판의 제 2 면(예: 윗 면 또는 측 면)에 또는 그에 인접하여 배치되고 상기 지정된 고주파 대역의 신호를 송신 또는 수신할 수 있는 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다.
상기 구성요소들 중 적어도 일부는 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input and output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))을 통해 서로 연결되고 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.
일실시예에 따르면, 명령 또는 데이터는 제 2 네트워크(199)에 연결된 서버(108)를 통해서 전자 장치(101)와 외부의 전자 장치(104)간에 송신 또는 수신될 수 있다. 외부의 전자 장치(102, 또는 104) 각각은 전자 장치(101)와 동일한 또는 다른 종류의 장치일 수 있다. 일실시예에 따르면, 전자 장치(101)에서 실행되는 동작들의 전부 또는 일부는 외부의 전자 장치들(102, 104, 또는 108) 중 하나 이상의 외부의 전자 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(101)가 어떤 기능이나 서비스를 자동으로, 또는 사용자 또는 다른 장치로부터의 요청에 반응하여 수행해야 할 경우에, 전자 장치(101)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 하나 이상의 외부의 전자 장치들에게 그 기능 또는 그 서비스의 적어도 일부를 수행하라고 요청할 수 있다. 상기 요청을 수신한 하나 이상의 외부의 전자 장치들은 요청된 기능 또는 서비스의 적어도 일부, 또는 상기 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(101)로 전달할 수 있다. 전자 장치(101)는 상기 결과를, 그대로 또는 추가적으로 처리하여, 상기 요청에 대한 응답의 적어도 일부로서 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 모바일 에지 컴퓨팅(MEC: mobile edge computing), 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다. 전자 장치(101)는, 예를 들어, 분산 컴퓨팅 또는 모바일 에지 컴퓨팅을 이용하여 초저지연 서비스를 제공할 수 있다. 다른 실시예에 있어서, 외부의 전자 장치(104)는 IoT(internet of things) 기기를 포함할 수 있다. 서버(108)는 기계 학습 및/또는 신경망을 이용한 지능형 서버일 수 있다. 일실시예에 따르면, 외부의 전자 장치(104) 또는 서버(108)는 제 2 네트워크(199) 내에 포함될 수 있다. 전자 장치(101)는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예: 스마트 홈, 스마트 시티, 스마트 카, 또는 헬스 케어)에 적용될 수 있다.
서버(108)는 전자 장치(101)가 접속되며, 접속된 전자 장치(101)로 서비스를 제공할 수 있다. 또한, 서버(108)는 회원 가입 절차를 진행하여 그에 따라 회원으로 가입된 사용자의 각종 정보를 저장하여 관리하고, 서비스에 관련된 각종 구매 및 결제 기능을 제공할 수도 있다. 또한, 서버(108)는, 사용자 간에 서비스를 공유할 수 있도록, 복수의 전자 장치(101) 각각에서 실행되는 서비스 애플리케이션의 실행 데이터를 실시간으로 공유할 수도 있다. 이러한 서버(108)는 하드웨어적으로는 통상적인 웹 서버(Web Server) 또는 왑 서버(WAP Server)와 동일한 구성을 가질 수 있다. 그러나, 소프트웨어적으로는, C, C++, Java, Visual Basic, Visual C 등 여하한 언어를 통하여 구현되어 여러 가지 기능을 하는 프로그램 모듈(Module)을 포함할 수 있다. 또한, 서버(108)는 일반적으로 인터넷과 같은 개방형 컴퓨터 네트워크를 통하여 불특정 다수 클라이언트 및/또는 다른 서버와 연결되어 있고, 클라이언트 또는 다른 서버의 작업수행 요청을 접수하고 그에 대한 작업 결과를 도출하여 제공하는 컴퓨터 시스템 및 그를 위하여 설치되어 있는 컴퓨터 소프트웨어(서버 프로그램)를 뜻하는 것이다. 또한, 서버(108)는, 전술한 서버 프로그램 이외에도, 서버(108) 상에서 동작하는 일련의 응용 프로그램(Application Program)과 경우에 따라서는 내부 또는 외부에 구축되어 있는 각종 데이터베이스(DB: Database, 이하 "DB"라 칭함)를 포함하는 넓은 개념으로 이해되어야 할 것이다. 따라서, 서버(108)는, 회원 가입 정보와, 게임에 대한 각종 정보 및 데이터를 분류하여 DB에 저장시키고 관리하는데, 이러한 DB는 서버(108)의 내부 또는 외부에 구현될 수 있다. 또한, 서버(108)는, 일반적인 서버용 하드웨어에 도스(DOS), 윈도우(windows), 리눅스(Linux), 유닉스(UNIX), 매킨토시(Macintosh) 등의 운영체제에 따라 다양하게 제공되고 있는 서버 프로그램을 이용하여 구현될 수 있으며, 대표적인 것으로는 윈도우 환경에서 사용되는 웹사이트(Website), IIS(Internet Information Server)와 유닉스환경에서 사용되는 CERN, NCSA, APPACH등이 이용될 수 있다. 또한, 서버(108)는, 서비스의 사용자 인증이나 서비스와 관련된 구매 결제를 위한 인증 시스템 및 결제 시스템과 연동할 수도 있다.
제1 네트워크(198) 및 제2 네트워크(199)는 단말들 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조 또는 서버(108)와 전자 장치들(101, 104)을 연결하는 망(Network)을 의미한다. 제1 네트워크(198) 및 제2 네트워크(199)는 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 3G, 4G, LTE, 5G, Wi-Fi 등이 포함되나 이에 한정되지는 않는다. 제1 네트워크(198) 및 제2 네트워크(199)는 LAN, WAN 등의 폐쇄형 제1 네트워크(198) 및 제2 네트워크(199)일 수도 있으나, 인터넷(Internet)과 같은 개방형인 것이 바람직하다. 인터넷은 TCP/IP 프로토콜 및 그 상위계층에 존재하는 여러 서비스, 즉 HTTP(HyperText Transfer Protocol), Telnet, FTP(File Transfer Protocol), DNS(Domain Name System), SMTP(Simple Mail Transfer Protocol), SNMP(Simple Network Management Protocol), NFS(Network File Service), NIS(Network Information Service)를 제공하는 전 세계적인 개방형 컴퓨터 제1 네트워크(198) 및 제2 네트워크(199) 구조를 의미한다.
데이터베이스는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스는 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 가질 수 있다. 데이터베이스는 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 개시의 일 실시예의 목적에 맞게 구현될 수 있고, 자신의 기능을 달성하기 위하여 적당한 필드(Field) 또는 엘리먼트들을 가질 수 있다.
도 2는 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.
도 2은 다양한 실시예에 따른 프로그램(140)을 예시하는 블록도(200)이다. 일실시예에 따르면, 프로그램(140)은 전자 장치(101)의 하나 이상의 리소스들을 제어하기 위한 운영 체제(142), 미들웨어(144), 또는 상기 운영 체제(142)에서 실행 가능한 어플리케이션(146)을 포함할 수 있다. 운영 체제(142)는, 예를 들면, AndroidTM, iOSTM, WindowsTM, SymbianTM, TizenTM, 또는 BadaTM를 포함할 수 있다. 프로그램(140) 중 적어도 일부 프로그램은, 예를 들면, 제조 시에 전자 장치(101)에 프리로드되거나, 또는 사용자에 의해 사용 시 외부 전자 장치(예: 전자 장치(102 또는 104), 또는 서버(108))로부터 다운로드되거나 갱신 될 수 있다. 프로그램(140)의 전부 또는 일부는 뉴럴 네트워크를 포함할 수 있다.
운영 체제(142)는 전자 장치(101)의 하나 이상의 시스템 리소스들(예: 프로세스, 메모리, 또는 전원)의 관리(예: 할당 또는 회수)를 제어할 수 있다. 운영 체제(142)는, 추가적으로 또는 대체적으로, 전자 장치(101)의 다른 하드웨어 디바이스, 예를 들면, 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 구동하기 위한 하나 이상의 드라이버 프로그램들을 포함할 수 있다.
미들웨어(144)는 전자 장치(101)의 하나 이상의 리소스들로부터 제공되는 기능 또는 정보가 어플리케이션(146)에 의해 사용될 수 있도록 다양한 기능들을 어플리케이션(146)으로 제공할 수 있다. 미들웨어(144)는, 예를 들면, 어플리케이션 매니저(201), 윈도우 매니저(203), 멀티미디어 매니저(205), 리소스 매니저(207), 파워 매니저(209), 데이터베이스 매니저(211), 패키지 매니저(213), 커넥티비티 매니저(215), 노티피케이션 매니저(217), 로케이션 매니저(219), 그래픽 매니저(221), 시큐리티 매니저(223), 통화 매니저(225), 또는 음성 인식 매니저(227)를 포함할 수 있다.
어플리케이션 매니저(201)는, 예를 들면, 어플리케이션(146)의 생명 주기를 관리할 수 있다. 윈도우 매니저(203)는, 예를 들면, 화면에서 사용되는 하나 이상의 GUI 자원들을 관리할 수 있다. 멀티미디어 매니저(205)는, 예를 들면, 미디어 파일들의 재생에 필요한 하나 이상의 포맷들을 파악하고, 그 중 선택된 해당하는 포맷에 맞는 코덱을 이용하여 상기 미디어 파일들 중 해당하는 미디어 파일의 인코딩 또는 디코딩을 수행할 수 있다. 리소스 매니저(207)는, 예를 들면, 어플리케이션(146)의 소스 코드 또는 메모리(130)의 메모리의 공간을 관리할 수 있다. 파워 매니저(209)는, 예를 들면, 배터리(189)의 용량, 온도 또는 전원을 관리하고, 이 중 해당 정보를 이용하여 전자 장치(101)의 동작에 필요한 관련 정보를 결정 또는 제공할 수 있다. 일실시예에 따르면, 파워 매니저(209)는 전자 장치(101)의 바이오스(BIOS: basic input/output system)(미도시)와 연동할 수 있다.
데이터베이스 매니저(211)는, 예를 들면, 어플리케이션(146)에 의해 사용될 데이터베이스를 생성, 검색, 또는 변경할 수 있다. 패키지 매니저(213)는, 예를 들면, 패키지 파일의 형태로 배포되는 어플리케이션의 설치 또는 갱신을 관리할 수 있다. 커넥티비티 매니저(215)는, 예를 들면, 전자 장치(101)와 외부 전자 장치 간의 무선 연결 또는 직접 연결을 관리할 수 있다. 노티피케이션 매니저(217)는, 예를 들면, 지정된 이벤트(예: 착신 통화, 메시지, 또는 알람)의 발생을 사용자에게 알리기 위한 기능을 제공할 수 있다. 로케이션 매니저(219)는, 예를 들면, 전자 장치(101)의 위치 정보를 관리할 수 있다. 그래픽 매니저(221)는, 예를 들면, 사용자에게 제공될 하나 이상의 그래픽 효과들 또는 이와 관련된 사용자 인터페이스를 관리할 수 있다.
시큐리티 매니저(223)는, 예를 들면, 시스템 보안 또는 사용자 인증을 제공할 수 있다. 통화(telephony) 매니저(225)는, 예를 들면, 전자 장치(101)에 의해 제공되는 음성 통화 기능 또는 영상 통화 기능을 관리할 수 있다. 음성 인식 매니저(227)는, 예를 들면, 사용자의 음성 데이터를 서버(108)로 전송하고, 그 음성 데이터에 적어도 일부 기반하여 전자 장치(101)에서 수행될 기능에 대응하는 명령어(command), 또는 그 음성 데이터에 적어도 일부 기반하여 변환된 문자 데이터를 서버(108)로부터 수신할 수 있다. 일 실시예에 따르면, 미들웨어(244)는 동적으로 기존의 구성요소를 일부 삭제하거나 새로운 구성요소들을 추가할 수 있다. 일 실시예에 따르면, 미들웨어(144)의 적어도 일부는 운영 체제(142)의 일부로 포함되거나, 또는 운영 체제(142)와는 다른 별도의 소프트웨어로 구현될 수 있다.
어플리케이션(146)은, 예를 들면, 홈(251), 다이얼러(253), SMS/MMS(255), IM(instant message)(257), 브라우저(259), 카메라(261), 알람(263), 컨택트(265), 음성 인식(267), 이메일(269), 달력(271), 미디어 플레이어(273), 앨범(275), 와치(277), 헬스(279)(예: 운동량 또는 혈당과 같은 생체 정보를 측정), 또는 환경 정보(281)(예: 기압, 습도, 또는 온도 정보 측정) 어플리케이션을 포함할 수 있다. 일실시예에 따르면, 어플리케이션(146)은 전자 장치(101)와 외부 전자 장치 사이의 정보 교환을 지원할 수 있는 정보 교환 어플리케이션(미도시)을 더 포함할 수 있다. 정보 교환 어플리케이션은, 예를 들면, 외부 전자 장치로 지정된 정보 (예: 통화, 메시지, 또는 알람)를 전달하도록 설정된 노티피케이션 릴레이 어플리케이션, 또는 외부 전자 장치를 관리하도록 설정된 장치 관리 어플리케이션을 포함할 수 있다. 노티피케이션 릴레이 어플리케이션은, 예를 들면, 전자 장치(101)의 다른 어플리케이션(예: 이메일 어플리케이션(269))에서 발생된 지정된 이벤트(예: 메일 수신)에 대응하는 알림 정보를 외부 전자 장치로 전달할 수 있다. 추가적으로 또는 대체적으로, 노티피케이션 릴레이 어플리케이션은 외부 전자 장치로부터 알림 정보를 수신하여 전자 장치(101)의 사용자에게 제공할 수 있다.
장치 관리 어플리케이션은, 예를 들면, 전자 장치(101)와 통신하는 외부 전자 장치 또는 그 일부 구성 요소(예: 외부 전자장치의 디스플레이 모듈 또는 카메라 모듈)의 전원(예: 턴-온 또는 턴-오프) 또는 기능(예: 밝기, 해상도, 또는 포커스)을 제어할 수 있다. 장치 관리 어플리케이션은, 추가적으로 또는 대체적으로, 외부 전자 장치에서 동작하는 어플리케이션의 설치, 삭제, 또는 갱신을 지원할 수 있다.
본 명세서에 걸쳐, 뉴럴 네트워크(neural network), 신경망 네트워크, 네트워크 함수는, 동일한 의미로 사용될 수 있다. 뉴럴 네트워크는, 일반적으로 "노드"라 지칭될 수 있는 상호 연결된 계산 단위들의 집합으로 구성될 수 있다. 이러한 "노드"들은, "뉴런(neuron)"들로 지칭될 수도 있다. 뉴럴 네트워크는, 적어도 둘 이상의 노드들을 포함하여 구성된다. 뉴럴 네트워크들을 구성하는 노드(또는 뉴런)들은 하나 이상의 "링크"에 의해 상호 연결될 수 있다.
뉴럴 네트워크 내에서, 링크를 통해 연결된 둘 이상의 노드들은 상대적으로 입력 노드 및 출력 노드의 관계를 형성할 수 있다. 입력 노드 및 출력 노드의 개념은 상대적인 것으로서, 하나의 노드에 대하여 출력 노드 관계에 있는 임의의 노드는 다른 노드와의 관계에서 입력 노드 관계에 있을 수 있으며, 그 역도 성립할 수 있다. 전술한 바와 같이, 입력 노드 대 출력 노드 관계는 링크를 중심으로 생성될 수 있다. 하나의 입력 노드에 하나 이상의 출력 노드가 링크를 통해 연결될 수 있으며, 그 역도 성립할 수 있다.
하나의 링크를 통해 연결된 입력 노드 및 출력 노드 관계에서, 출력 노드는 입력 노드에 입력된 데이터에 기초하여 그 값이 결정될 수 있다. 여기서, 입력 노드와 출력 노드를 상호 연결하는 노드는 가중치를 가질 수 있다. 가중치는 가변적일 수 있으며, 뉴럴 네트워크가 원하는 기능을 수행하기 위해, 사용자 또는 알고리즘에 의해 가변될 수 있다. 예를 들어, 하나의 출력 노드에 하나 이상의 입력 노드가 각각의 링크에 의해 상호 연결된 경우, 출력 노드는 상기 출력 노드와 연결된 입력 노드들에 입력된 값들 및 각각의 입력 노드들에 대응하는 링크에 설정된 가중치에 기초하여 출력 노드 값을 결정할 수 있다.
전술한 바와 같이, 뉴럴 네트워크는, 둘 이상의 노드들이 하나 이상의 링크를 통해 상호연결 되어 뉴럴 네트워크 내에서 입력 노드 및 출력 노드 관계를 형성한다. 뉴럴 네트워크 내에서 노드들과 링크들의 개수 및 노드들과 링크들 사이의 연관관계, 링크들 각각에 부여된 가중치의 값에 따라, 신경망 네트워크의 특성이 결정될 수 있다. 예를 들어, 동일한 개수의 노드 및 링크들이 존재하고, 링크들 사이의 가중치 값이 상이한 두 신경망 네트워크가 존재하는 경우, 두 개의 신경망 네트워크들은 서로 상이한 것으로 인식될 수 있다.
도 3은 일 실시예에 따른 학습 관리 시스템의 전체 구성을 도시한 도면이다.
일 실시예에 따르면, 학습 관리 시스템은 사용자의 학습 상태를 정밀하게 판단할 수 있다. 학습 관리 시스템은 학습 기간 및 다른 학생들과의 상대적인 비교를 통해 보다 정밀하게 사용자의 학습 성과를 진단할 수 있다.
일 실시예에 따르면, 학습 관리 시스템은 사용자의 현재 상태 뿐만 아니라 사용자의 성취 잠재도를 평가함으로써 보다 정확한 진단 결과를 제공할 수 있다. 학습 관리 시스템은 학습 능력 자체에 대한 잠재도 뿐만 아니라 심리적인 요인도 고려하여 보다 총체적인 성취 잠재도를 판단할 수 있다.
일 실시예에 따르면, 학습 관리 시스템은 사용자의 학습 상태 및 성취 잠재도를 기초로 사용자가 목표로 하는 성적을 달성하기 위한 커리 큘럼을 제안할 수 있다. 학습 관리 시스템은 대량의 학습 데이터를 통해 미리 학습된 뉴럴 네트워크 모델을 이용하여 사용자에게 적합한 커리큘럼을 제공할 수 있다.
이하에서 용어는 다음과 같이 정의된다.
기존 진도는 사용자의 학습 성취도의 판단 대상이 되는 특정한 과목에 포함된 사용자가 학습한 교과 과정을 의미한다.
테스트 횟수는 출제 범위가 기존 진도에 한정되는 일련의 문제로 구성된 테스트를 사용자가 수행한 횟수를 의미한다.
성적은 출제 범위가 기존 진도에 한정되는 일련의 문제로 구성된 테스트 각각에 대해 산정된 점수를 의미한다.
기존 학습 기간은 학습 성취도의 판단 대상이 되는 특정한 과목에 포함된 사용자가 학습한 교과 과정을 학습하는데 걸린 시간을 의미한다.
학습 성취도는 기존 진도에 대하여 사용자의 학습 상태를 나타내는 지표로서, 사용자의 학년, 테스트 횟수 및 성적을 기초로 계산되는 점수를 의미할 수 있다. 예를 들어, 학습 성취도는 성적을 합산하고 사용자의 학년이 높을수록 일정한 가중치를 적용하여 차감하는 방식으로 계산되고, 테스트 횟수는 학습 성취도의 신뢰도를 계산하는데 사용될 수 있다.
불안감 지수는 사용자의 학습 능력 이외의 심리 상태를 나타내는 지표로서, 미리 정해진 설문 세트에 대한 응답을 기초로 점수화되는 지표를 의미할 수 있다. 예를 들어, 불안감 지수는 설문 세트에 대응하는 상기 사용자의 입력 신호와 설문 세트에 대응하는 정답 세트를 비교하여 측정될 수 있다.
집중도는 사용자의 학습 능력과 관련된 심리 상태를 나타내는 지표로서, 학습 시간 동안 학습이 중단되는 요소를 측정함으로써 간접적으로 측정되는 지표를 의미할 수 있다. 예를 들어, 집중도는 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 기초로 계산될 수 있다.
성취 잠재도는 사용자가 학습하지 않은 교과 과정에 대한 미래의 학습 성취도를 나타내는 지표를 의미할 수 있다. 성취 잠재도는 사용자의 기존 진도로부터 평가된 사용자의 학습 능력 및 심리적인 요소를 기초로 장래의 진도에 대한 사용자의 학습 성취 가능성을 나타낼 수 있다.
목표 성취도는 사용자가 목표로하는 학습 성취도를 의미할 수 있다.
도 3을 참조하면, 학습 관리 시스템(300)은 서버(310), 네트워크(340), 사용자 단말기(321) 및 데이터베이스(311)를 포함할 수 있다.
일 실시예에 따르면, 사용자 단말기(321)는 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받을 수 있다.
사용자 단말기(321)는 사용자 정보를 서버로 송신할 수 있다.
서버(310)는 기존 진도와 기준 진도를 비교할 수 있다. 학습 관리 시스템(300)은 사용자의 학습 과정의 기존 진도를 기준으로 테스트 횟수를 판단할지 여부를 결정할 수 있다. 학습 관리 시스템(300)은 기존 진도가 임계값인 기준 진도 미만인 경우에 과정 별 난이도를 기초로 권장 학습 시간을 제공할 수 있다. 학습 관리 시스템(300)은 기존 진도가 임계값을 초과하는 경우에 테스트 횟수가 기준을 만족하는지 여부를 판단할 수 있다.
학습 관리 시스템(300)은 테스트 횟수를 임계값과 비교할 수 있다. 학습 관리 시스템(300)은 테스트 횟수가 임계값 이하인 경우에 진행된 과정 별 난이도를 기초로 테스트 주기를 설정하고 추후의 테스트 일정을 제공할 수 있다. 학습 관리 시스템(300)은 테스트 횟수가 임계값 이상인 경우에 성취 잠재도를 계산할 수 있다. 이처럼, 학습 관리 시스템(300)은 테스트 횟수가 일정 횟수 이상인 경우에만 성취 잠재도를 판단함으로써 성취 잠재도의 신뢰도를 높일 수 있다.
서버(310)는 기존 진도가 기준 진도 이상이고, 테스트 횟수가 임계값 이상인 경우에, 사용자의 학년, 기존 진도, 테스트 횟수 및 성적을 기초로 학습 성취도를 계산할 수 있다.
학습 관리 시스템(300)은 사용자 단말기(321)를 이용하여 API통신을 통해서 학습 성취도에 필요한 정보를 받아올 수 있다. 학습 관리 시스템(300)은 학습 성취도를 평가하기 위한 자체 솔루션 제공할 수 있다. 예를 들어, 학습 관리 시스템(300)은 주기적인 테스트를 제공하고 그 결과를 기초로 학습 성취도를 측정할 수 있다.
학습 관리 시스템(300)은 학교 성적표와 같은 사용자의 정보 입력을 통하여 학습 성취도의 평가를 위한 자료를 수집할 수도 있다. 학습 관리 시스템(300)은 시중 교재 또는 교과서에 대한 정답률 또는 각 문항별 답안의 입력을 통하여 사용자의 학습 성취도를 평가할 수도 있다.
학습 관리 시스템(300)은 사용자의 진도를 고려하여 해당 진도에 대한 학습 성취 수준을 평가할 수 있다. 예를 들어, 학습 관리 시스템(300)은 학습자의 학습 능력을 각 진도 별로, 또는 전체 과정에 대하여, -3 ~ +3의 범위로 평가할 수 있다.
학습 관리 시스템(300)은 사용자의 학습 성취도를 정밀하게 평가함으로써 사용자의 학습 수준을 파악할 수 있다. 학습 관리 시스템(300)은 학습 성취도를 통하여 학습에 대한 사용자의 정략적인 지표를 획득할 수 있다.
학습 관리 시스템(300)은 학습 능력 이외에 학습 성취도에 영향을 줄 수 있는 사용자의 심리 상태를 평가할 수 있다. 학습 관리 시스템(300)은 미리 결정된 심리 검사 항목으로 구성된 심리 검사를 통해 학습에 영향을 미치는 사용자의 심리 상태를 분석할 수 있다.
사용자 단말기(321)는 성취 잠재도를 계산하기 위한 독립 변수 중의 하나인 불안감 지수를 측정할 수 있다. 사용자 단말기(321)는 불안감 지수를 측정하기 위한 설문 세트를 표시할 수 있다. 사용자 단말기(321)는 표시된 설문 세트에 대응하는 사용자의 입력 신호를 수신할 수 있다. 사용자 단말기(321)는 수신된 입력 신호를 설문 세트에 대응하는 정답 세트와 비교하여 불안감 지수를 측정할 수 있다.
사용자 단말기(321)는 성취 잠재도를 계산하기 위한 독립 변수 중의 하나인 집중도를 측정할 수 있다. 사용자 단말기(321)는 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 입력받아 서버로 송신할 수 있다. 서버(310)는 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 기초로 사용자의 집중도를 계산할 수 있다.
서버(310)는 불안감 지수, 집중도, 학습 성취도 및 기존 학습 기간을 기초로 성취 잠재도를 계산할 수 있다. 여기서, 집중도 및 학습 성취도는 성취 잠재도와 양의 상관관계를 형성하고, 불안감 지수 및 기존 학습 기간은 성취 잠재도와 음의 관계를 형성할 수 있다.
예를 들어, 서버(310)는 집중도, 학습 성취도, 불안감 지수 및 기존 학습 기간을 기초로 수학식 1을 이용하여 성취 잠재도를 계산할 수 있다.
[수학식 1]
수학식 1에서, 은 상태 등급을 나타내고, m은 2를 초과하는 정수로서, 학습 성취도의 세분화된 등급의 개수를 나타내고, 은 학습 성취도에 상응하는 표준 편차를 나타낼 수 있으며, 복수의 사용자 단말기를 통하여 수집된 복수의 학습 성취도를 기초로 획득될 수 있고, n은 2를 초과하는 정수로서, 불안감 지수의 세분화된 등급의 개수를 나타내고, 은 불안감 지수에 상응하는 표준 편차를 나타낼 수 있으며, 복수의 사용자 단말기를 통하여 수집된 복수의 불안감 지수를 기초로 획득될 수 있고, h는 집중도, s는 학습 성취도, 는 불안감 지수, t는 기존 학습 기간을 의미할 수 있다.
서버(310)는 목표 대학 및 목표 전공에 대응하는 목표 성취도를 결정할 수 있다.
학습 관리 시스템(300)은 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 사용자의 학습 상태와 목표로 하는 대학, 전공 또는 성적 및 남은 학습 일수를 기초로 사용자에게 적합한 커리큘럼을 제공할 수 있다. 예를 들어, 현재 사용자의 학년이 중학교 1학년이고 현재 시점이 2022.02.08인 경우, 수능 시험까지의 대략 4년 반의 기간 동안 사용자에 적합한 커리큘럼이 학습 관리 시스템(300)에 의해 제공될 수 있다.
서버(310)는 학습 성취도 및 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 목표 성취도를 달성하기 위한 커리큘럼을 제공할 수 있다.
여기서, 커리큘럼 제공 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함할 수 있다.
학습 성취도 및 성취 잠재도로 구성된 각각의 학습 데이터는 커리큘럼 제공 모델의 입력 레이어에 입력되어 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터를 출력하고, 출력 벡터는 출력 레이어에 연결된 손실함수 레이어에 입력되고, 손실함수 레이어는 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 커리큘럼 제공 모델의 파라미터는 손실값이 작아지는 방향으로 학습될 수 있다.
예를 들어, 커리큘럼 제공 모델의 학습에 사용되는 손실 함수는 수학식 2를 따를 수 있다.
[수학식 2]
수학식 2에서, n은 클래스 별 학습 데이터의 수, y와 j는 클래스를 나타내는 식별자, C는 상수값, M은 클래스의 개수, x_y는 학습 데이터가 클래스 y에 속할 확률값, x_j는 학습 데이터가 클래스 j에 속할 확률값, L은 손실값을 의미할 수 있다.
수학식 2에는 클래스 별 학습 데이터의 수가 반영되기 때문에, 학습 데이터의 수가 작은 클래스는 학습에 작은 영향을 미치고 학습 데이터의 수가 큰 클래스는 학습에 큰 영향을 미칠 수 있다.
학습 관리 시스템(300)은 사용자의 학습에 관한 커리큘럼을 추천하고 모니터링할 수 있다. 학습 관리 시스템(300)은 사용자의 학습에 관한 코치를 할 수 있고 피드백을 제공할 수 있다. 학습 관리 시스템(300)은 사용자의 슬럼프를 예측하고 극복하기 위한 솔루션을 제공할 수 있다.
도 4는 일 실시예에 따른 학습 관리 방법의 동작을 도시한 흐름도이다.
일 실시예에 따르면, 동작(401)에서, 학습 관리 시스템(300)은 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력할 수 있다.
일 실시예에 따르면, 동작(403)에서, 학습 관리 시스템(300)은 사용자 정보를 서버로 송신할 수 있다.
일 실시예에 따르면, 동작(405)에서, 학습 관리 시스템(300)은 기존 진도와 기준 진도를 비교할 수 있다.
일 실시예에 따르면, 동작(407)에서, 학습 관리 시스템(300)은 기존 진도가 기준 진도 이상인 경우에, 서버에 의해, 사용자의 학년, 기존 진도, 테스트 횟수 및 성적을 기초로 학습 성취도를 계산할 수 있다.
일 실시예에 따르면, 동작(409)에서, 학습 관리 시스템(300)은 불안감 지수, 집중도, 학습 성취도 및 기존 학습 기간을 기초로 성취 잠재도를 계산할 수 있다.
일 실시예에 따르면, 동작(411)에서, 학습 관리 시스템(300)은 목표 대학 및 목표 전공에 대응하는 목표 성취도를 결정할 수 있다.
일 실시예에 따르면, 동작(413)에서, 학습 관리 시스템(300)은 학습 성취도 및 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 목표 성취도를 달성하기 위한 커리큘럼을 제공할 수 있다.
도 5는 일 실시예에 따른 서버의 구성을 도시한 도면이다.
일 실시예에 따르면, 학습 관리 시스템(300)은 사용자 단말기(321) 및 서버(310)를 포함할 수 있다.
사용자 단말기(321)는 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받을 수 있다. 사용자 단말기(321)는 사용자 정보를 서버로 송신할 수 있다.
서버(310)는 메모리(530), 프로세서(510) 및 통신부(520)를 포함할 수 있다.
서버(310)의 프로세서(510)는 사용자의 학년, 기존 진도, 테스트 횟수 및 성적을 기초로 학습 성취도를 계산할 수 있다.
서버(310)의 프로세서(510)는 불안감 지수, 집중도, 학습 성취도 및 기존 학습 기간을 기초로 성취 잠재도를 계산할 수 있다.
서버(310)의 프로세서(510)는 목표 대학 및 목표 전공에 대응하는 목표 성취도를 결정할 수 있다.
서버(310)의 프로세서(510)는 학습 성취도 및 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 목표 성취도를 달성하기 위한 커리큘럼을 제공할 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (8)

  1. 사용자 단말기에 의해, 사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받는 동작;
    상기 사용자 단말기에 의해, 상기 사용자 정보를 서버로 송신하는 동작;
    상기 서버에 의해, 상기 기존 진도와 기준 진도를 비교하는 동작;
    상기 기존 진도가 상기 기준 진도 이상인 경우에, 상기 서버에 의해, 상기 사용자의 학년, 상기 기존 진도, 상기 테스트 횟수 및 상기 성적을 기초로 학습 성취도를 계산하는 동작;
    상기 서버에 의해, 불안감 지수, 집중도, 상기 학습 성취도 및 상기 기존 학습 기간을 기초로 성취 잠재도를 계산하는 동작;
    상기 서버에 의해, 상기 목표 대학 및 상기 목표 전공에 대응하는 목표 성취도를 결정하는 동작; 및
    상기 서버에 의해, 상기 학습 성취도 및 상기 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 상기 목표 성취도를 달성하기 위한 커리큘럼을 제공하는 동작
    을 포함하는, 학습 관리 방법.
  2. 제1항에 있어서,
    상기 사용자 단말기에 의해, 불안감 지수를 측정하기 위한 설문 세트를 표시하는 동작;
    상기 사용자 단말기에 의해, 상기 표시된 설문 세트에 대응하는 상기 사용자의 입력 신호를 수신하는 동작; 및
    상기 사용자 단말기에 의해, 상기 수신된 입력 신호를 상기 설문 세트에 대응하는 정답 세트와 비교하여 상기 불안감 지수를 측정하는 동작
    을 더 포함하는, 학습 관리 방법.
  3. 제1항에 있어서,
    상기 사용자 단말기에 의해, 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 입력받아 상기 서버로 송신하는 동작; 및
    상기 서버에 의해, 목표 학습 중단 시각, 휴대폰 시작 시각, 목표 휴대폰 중단 시각 및 실제 휴대폰 중단 시각을 기초로 상기 사용자의 집중도를 계산하는 동작
    을 더 포함하는, 학습 관리 방법.
  4. 제1항에 있어서,
    상기 성취 잠재도를 계산하는 동작은,
    상기 집중도 및 상기 학습 성취도는 상기 성취 잠재도와 양의 상관관계를 형성하고, 상기 불안감 지수 및 상기 기존 학습 기간은 상기 성취 잠재도와 음의 관계를 형성하는,
    학습 관리 방법.
  5. 제1항에 있어서,
    상기 커리큘럼 제공 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고,
    학습 성취도 및 성취 잠재도로 구성된 각각의 학습 데이터는 상기 커리큘럼 제공 모델의 상기 입력 레이어에 입력되어 상기 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터를 출력하고, 상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 상기 커리큘럼 제공 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습되는,
    학습 관리 방법.
  6. 사용자 단말; 및
    서버를 포함하고,
    상기 사용자 단말기은,
    사용자의 학년, 기존 진도, 테스트 횟수, 성적, 기존 학습 기간, 목표 대학 및 목표 전공을 포함하는 사용자 정보를 입력 받고,
    상기 사용자 정보를 서버로 송신하고,
    상기 서버는,
    상기 사용자의 학년, 상기 기존 진도, 상기 테스트 횟수 및 상기 성적을 기초로 학습 성취도를 계산하고,
    불안감 지수, 집중도, 상기 학습 성취도 및 상기 기존 학습 기간을 기초로 성취 잠재도를 계산하고,
    상기 목표 대학 및 상기 목표 전공에 대응하는 목표 성취도를 결정하고,
    상기 학습 성취도 및 상기 성취 잠재도를 기초로 뉴럴 네트워크로 구성된 커리큘럼 제공 모델을 이용하여 상기 목표 성취도를 달성하기 위한 커리큘럼을 제공하는,
    학습 관리 시스템.
  7. 하드웨어와 결합되어 제1항의 방법을 실행시키기 위하여 컴퓨터 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.
  8. 하드웨어와 결합되어 제1항의 방법을 실행시키기는 컴퓨터 프로그램이 저장된 컴퓨터 판독 가능한 기록매체.


KR1020220093373A 2022-07-27 2022-07-27 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치 KR20240015467A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220093373A KR20240015467A (ko) 2022-07-27 2022-07-27 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치
PCT/KR2023/010157 WO2024025225A1 (ko) 2022-07-27 2023-07-17 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220093373A KR20240015467A (ko) 2022-07-27 2022-07-27 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20240015467A true KR20240015467A (ko) 2024-02-05

Family

ID=89706814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220093373A KR20240015467A (ko) 2022-07-27 2022-07-27 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20240015467A (ko)
WO (1) WO2024025225A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796713B1 (ko) * 2016-09-23 2017-11-10 주식회사 투데잇 모바일 장치를 이용하여 학습계획을 관리하는 방법
KR20190069629A (ko) * 2017-10-31 2019-06-20 주식회사 그로티 학습 스케줄 관리 시스템 및 그 방법
KR102091789B1 (ko) * 2017-12-20 2020-03-20 주식회사 순수교육 온라인 기반의 자기 주도 학습 코칭 방법
KR102398417B1 (ko) * 2021-08-17 2022-05-16 주식회사 아이스크림에듀 학습분석 표준모델을 기반으로 멀티모달 학습 데이터를 수집 및 분석하는 시스템
KR102413770B1 (ko) * 2021-09-06 2022-06-29 배정환 뉴럴 네트워크를 이용하는 심리 치료 서비스 제공 방법 및 장치

Also Published As

Publication number Publication date
WO2024025225A1 (ko) 2024-02-01

Similar Documents

Publication Publication Date Title
KR102413770B1 (ko) 뉴럴 네트워크를 이용하는 심리 치료 서비스 제공 방법 및 장치
KR102474122B1 (ko) 사용자의 유형 및 사용자와 관련된 정보를 기초로 증강현실을 이용하여 상품을 추천하는 방법 및 장치
KR102544246B1 (ko) 학습자 맞춤형 수학 교육 시스템
KR102627731B1 (ko) 학생의 학업성취를 위한 맞춤형 학습방향 설정 서비스 제공 장치 및 방법
KR102596451B1 (ko) 뉴럴 네트워크를 이용하여 상담사 단말과 내담자 단말을 매칭시키는 방법 및 장치
KR102484291B1 (ko) 뉴럴 네트워크를 이용하여 서버가 구직자 리스트를 단말에게 제공하는 방법 및 장치
KR102479512B1 (ko) 성과 지향 교육 방법, 그 방법을 수행하는 서버 및 단말기
KR102714419B1 (ko) 뉴럴 네트워크를 이용하여 색상 이미지 및 색상 이미지를 선택한 순서에 기반한 심리 상태와 관련된 정보를 제공하는 방법 및 장치
KR20230168097A (ko) 웹툰의 장르 값에 기반하여 웹툰의 유사도를 결정하는 방법 및 장치
KR102384892B1 (ko) 뉴럴 네트워크를 이용한 기부 컨텐츠 추천 방법 및 장치
KR20220087410A (ko) 뉴럴 네트워크를 이용하는 심리 치료 서비스 제공 방법 및 장치
KR20240015467A (ko) 뉴럴 네트워크를 이용한 학습 관리 방법 및 장치
KR102563678B1 (ko) 학습된 뉴럴 네트워크를 이용하여 맞춤형 학습 서비스를 제공하는 서버 및 동작 방법
KR102446665B1 (ko) 다자간 영상 회의 서비스를 이용한 교습 시스템을 제공하는 서버 및 그 동작 방법
KR102562282B1 (ko) 성향 기반 매칭 방법 및 장치
KR102487754B1 (ko) 뉴럴 네트워크를 이용하여 서버가 마케팅 비용에 대한 정보를 단말에게 제공하는 방법 및 장치
KR102590839B1 (ko) 뉴럴 네트워크 기반의 컨텍스트 분석을 통한 진로 상담 컨텐츠 제공 시스템
KR20240006983A (ko) 뉴럴 네트워크를 이용한 학습 피드백 제공 장치 및 방법
KR102600656B1 (ko) 능동-수동 매칭 알고리즘 기반 농구 플레이어 매칭 서비스 제공 방법
KR102554242B1 (ko) 뉴럴 네트워크를 이용하여 서버가 이벤트와 관련된 메시지를 단말에게 제공하는 방법 및 장치
KR102585090B1 (ko) 뉴럴 네트워크를 이용하여 웹툰과 연동된 게임을 사용자 단말에게 제공하는 방법 및 장치
KR102581822B1 (ko) 교육용 프로그램에서 문자를 인식하는 방법
KR102692067B1 (ko) 골프 코칭 방법
KR102546976B1 (ko) 블록체인 기반의 골프장 운영 시스템 및 골프장 운영 방법
KR102439323B1 (ko) 플랜트 상태 관리 시스템

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal