KR20240000398A - 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 - Google Patents

음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
KR20240000398A
KR20240000398A KR1020230080521A KR20230080521A KR20240000398A KR 20240000398 A KR20240000398 A KR 20240000398A KR 1020230080521 A KR1020230080521 A KR 1020230080521A KR 20230080521 A KR20230080521 A KR 20230080521A KR 20240000398 A KR20240000398 A KR 20240000398A
Authority
KR
South Korea
Prior art keywords
negative electrode
weight
binder
parts
active material
Prior art date
Application number
KR1020230080521A
Other languages
English (en)
Other versions
KR102650284B1 (ko
Inventor
박수진
이상민
이재욱
권요한
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to PCT/KR2023/008714 priority Critical patent/WO2023249444A1/ko
Publication of KR20240000398A publication Critical patent/KR20240000398A/ko
Application granted granted Critical
Publication of KR102650284B1 publication Critical patent/KR102650284B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.

Description

음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 {NEGATIVE ELECTRODE COMPOSITION, NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY COMPRISING SAME, AND LITHIUM SECONDARY BATTERY COMPRISING NEGATIVE ELECTRODE}
본 출원은 2022년 06월 23일 한국특허청에 제출된 한국 특허 출원 제10-2022-0076784호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차 전지용 전극으로서, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다.
특히 최근 고 밀도 에너지 전지에 대한 수요에 따라, 음극 활물질로서, 흑연계 소재 대비 용량이 10배 이상 큰 Si/C나 SiOx와 같은 실리콘계 화합물을 함께 사용하여 용량을 늘리는 방법에 대한 연구가 활발히 진행되고 있다. 고용량 소재인 실리콘계 화합물의 경우, 기존에 사용되는 흑연과 비교할 때, 용량이 크지만, 충전 과정에서 급격하게 부피가 팽창하여 도전 경로를 단절시켜 전지 특성을 저하시키는 문제점이 있다.
이에, 실리콘계 화합물을 음극 활물질로서 사용할 때의 문제점을 해소하기 위하여 구동 전위를 조절시키는 방안, 추가적으로 활물질층 상에 박막을 더 코팅하는 방법, 실리콘계 화합물의 입경을 조절하는 방법과 같은 부피 팽창 자체를 억제시키는 방안 혹은 도전 경로가 단절되는 것을 방지하기 위한 다양한 방안 등이 논의되고 있지만, 상기 방안들의 경우, 되려 전지의 성능을 저하시킬 수 있으므로, 적용에 한계가 있어, 여전히 실리콘계 화합물의 함량이 높은 음극 전지 제조의 상용화에는 한계가 있다.
특히, 부피 팽창에 따른 바인더의 조성에 관한 연구도 진행되었으며, 부피변화가 큰 음극 활물질의 충방전에 따른 부피 팽창을 억제하기 위하여 측면에서 강한 응력을 갖는 바인더 고분자를 사용하려는 연구가 진행되고 있다. 하지만 이들 바인더 고분자 단독으로는 음극 활물질의 수축 팽창으로 인한 전극의 두께 증가 및 이로부터 도출되는 리튬 이차 전지의 성능 저하를 억제하는 것에는 한계가 있었다.
또한 상기와 같은 실리콘계 활물질을 갖는 음극의 부피 팽창에 따른 문제를 해결하기 위하여, 분산성과 접착성을 동시에 가지는 수계 바인더를 사용하고 있다. 상기 수계 바인더의 경우 분산성을 개선할 수 있는 것에는 장점이 있으나, 연신 물성이 떨어져 사이클이 진행됨에 따라 활물질의 부피 팽창에 의해 활물질 간 전기적 접촉이 끊어지며 수명 물성이 열위해지는 문제가 발생하고 있다.
추가로, 수명 특성의 개선을 위하여 고무계 바인더를 또한 적용할 수 있으나, 실리콘계 활물질의 경우 고무계 바인더만을 포함하는 경우 바인더의 강성이 충분하지 못해 이 또한 한계가 있는 것으로 알려져 있다.
또한 수계 바인더는 전극 건조 시 열에 의한 수축이 심화되는 문제점이 있어 공정에 불리한 면이 있으나, 연성이 뛰어난 SBR 고무계 바인더는 건조 시 비교적 수축 경향이 덜한 차이가 있다.
따라서, 고용량의 전지를 제작하기 위해 고용량의 소재를 사용하는 경우에도, 활물질의 부피 팽창에 따른 도전성 네트워크를 단절하지 않으며, 또한 접착력도 우수한 특징을 갖는 바인더에 대한 연구가 필요하다.
일본 공개특허공보 제2009-080971호
본 출원은 고용량 및 고밀도의 음극을 제조함에 있어, 실리콘계 활물질의 부피 팽창에 따른 도전성 네트워크를 단절시키지 않으며, 음극 집전체와의 접착력이 우수한 특징을 갖는 바인더에 관한 것으로, 바인더의 영률 및 strain 값을 조절함과 동시에 함량부를 조절하는 경우 전술한 문제를 해결할 수 있음을 연구를 통하여 확인하였다. 이에 본 출원은 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
본 명세서의 일 실시상태는 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물을 제공한다.
[식 1]
1 ≤ X/Y < 4
상기 식 1에 있어서,
Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,
X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.
또 다른 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.
마지막으로, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시상태에 따른 음극 조성물은 고용량의 전지를 제작하기 위해 고용량 소재인 실리콘계 활물질을 사용함에 있어, 실리콘계 활물질의 부피 팽창에 따른 문제점을 특정의 음극 바인더를 적용하여 해결한 것을 특징로 한다.
특히, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 특정의 식 1의 범위를 만족한다.
구체적으로, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있다.
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질 입자를 고함량 가져 고용량 및 고밀도의 음극을 얻을 수 있음과 동시에, 실리콘계 활물질 입자를 고함량 가짐에 따른 부피 팽창 등의 문제점을 해결하기 위하여, 특정 조성 및 함량의 바인더를 사용하여 상기 문제를 해결하였다는 것을 본 발명의 주된 목적으로 한다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다.
도 3은 본 출원에 따른 실시예 및 비교예의 컬(Curl) 평가 방법을 나타낸 도이다.
본 발명을 설명하기에 앞서, 우선 몇몇 용어를 정의한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.
본 명세서에 있어서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출된 것이다. 즉 본 출원에 있어서 BET 비표면적은 상기 측정 방법으로 측정된 비표면적을 의미할 수 있다.
본 명세서에 있어서, "Dn"은 입도 분포를 의미하며, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경(평균 입경)이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 한편, 입도 분포는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다.
본 명세서에 있어서, 중합체가 어떤 단량체를 단량체 단위로 포함한다는 의미는 그 단량체가 중합 반응에 참여하여 중합체 내에서 반복 단위로서 포함되는 것을 의미한다. 본 명세서에 있어서, 중합체가 단량체를 포함한다고 할 때, 이는 중합체가 단량체를 단량체 단위로 포함한다는 것과 동일하게 해석되는 것이다.
본 명세서에 있어서, '중합체'라 함은 '단독 중합체'라고 명시되지 않는 한 공중합체를 포함한 광의의 의미로 사용된 것으로 이해한다.
본 명세서에 있어서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 분자량 측정용으로 시판되고 있는 다양한 중합도의 단분산 폴리스티렌 중합체(표준 시료)를 표준물질로 하고, 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)에 의해 측정한 폴리스티렌 환산 분자량이다. 본 명세서에 있어서, 분자량이란 특별한 기재가 없는 한 중량 평균 분자량을 의미한다.
본 출원의 일 실시상태에 있어서, 상기 영률의 측정 방법은 코팅된 그릇에 상기 바인더 용액을 넣고 오랜시간 동안 상온 건조를 시켜 수분을 제거한다. 수분을 날린 필름은 전극 건조 온도에 맞춰 130℃ 10hr 진공 건조를 진행하여 건조된 필름을 얻는다. 이 후 건조된 필름을 6mm x 100mm 수준의 시료 형태로 자르거나 타발하여 시료를 채취하고, UTM 장비를 이용하여 인장강도(영률)를 측정할 수 있다.
상기 영률은 측정 방식, 속도, 바인더의 측정 상태에 따라 상이하나, 상기 바인더의 영률은 노점 -5℃ 내지 10℃이고, 온도가 20℃ 내지 22℃ 정도의 드라이룸에서 측정한 값을 의미할 수 있다.
본 출원에서 노점은 습한 공기를 냉각해 가면 어느 온도에서 응축이 시작하는데, 공기 중의 수증기 분압이 그 온도에 있어서의 물의 포화 증기압과 같게 되었기 때문이며, 이 때의 온도를 의미한다. 즉 수증기를 포함하는 기체의 온도를 그대로 떨어뜨려 갔을 때, 상대 습도가 100%로 되어 이슬이 맺히기 시작할 때의 온도를 의미할 수 있다.
상기 노점 -5℃ 내지 10℃이고, 온도가 20℃ 내지 22℃ 정도는 일반적으로 드라이룸이라고 정의할 수 있고 이때 습도는 매우 낮은 수준에 해당한다.
본 출원의 일 실시상태에 있어서, 상기 strain의 측정 방법은 코팅된 그릇에 상기 바인더 용액을 넣고 오랜시간 동안 상온 건조를 시켜 수분을 제거한다. 수분을 날린 필름은 전극 건조 온도에 맞춰 130℃ 10hr 진공 건조를 진행하여 건조된 필름을 얻는다. 이 후 건조된 필름을 6mm x 100mm 수준의 시료 형태로 자르거나 타발하여 시료를 채취하고, UTM 장비를 이용하여 인장 변형률(strain)을 측정할 수 있다.
상기 바인더의 인장 변형률은 측정 방식, 속도, 바인더의 측정 상태에 따라 상이하나, 상기 바인더의 strain은 상기의 영률의 측정 조건과 동일하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 설명에 한정되지 않는다.
본 명세서의 일 실시상태는 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고, 상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물을 제공한다.
[식 1]
1 ≤ X/Y < 4
상기 식 1에 있어서,
Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,
X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.
구체적으로, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx(x=0), SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 발명의 활물질은 실리콘계 활물질을 포함한다. 실리콘계 활물질은 SiOx, Si/C, Si일 수 있다. SiOx는 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하다. 실리콘계 활물질은 Si과 C의 복합체로 구성된 Si/C 또는 Si일 수 있다. 또한 상기의 실리콘계 활물질을 2종 이상 혼합하여 사용할 수 있다. 상기 음극 활물질은 전술한 실리콘계 활물질과 함께 탄소계 활물질을 더 포함할 수 있다. 상기 탄소계 활물질은 본 발명의 음극 또는 이차전지에 우수한 사이클 특성 또는 전지 수명 성능 개선에 기여할 수 있다.
일반적으로 실리콘계 활물질은 탄소계 활물질에 비해 10배 이상의 높은 용량을 갖는 것으로 알려져 있고, 이에 따라 실리콘계 활물질을 음극에 적용할 경우 얇은 두께로도 높은 수준의 에너지 밀도를 갖는 전극 구현이 가능할 것으로 기대되고 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상, 바람직하게는 80 중량부 이상, 더욱 바람직하게는 90 중량부 이상을 포함할 수 있으며, 100 중량부 이하, 바람직하게는 99 중량부 이하, 더욱 비람직하게는 95 중량부 이하를 포함할 수 있다.
본 출원에 따른 실리콘계 활물질은 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것으로, SiOx(0<x<2) 계열을 주된 물질로 사용하는 실리콘계 활물질과 대비하였을 때, 이론적 용량이 본 출원의 실리콘계 활물질에 비하여 훨씬 높다. 즉 SiOx(0<x<2) 계열의 활물질을 사용하는 경우 활물질 자체에 어떠한 처리를 할지라도, 본원 발명 실리콘계 활물질을 갖는 경우 대비, 충전 및 방전 용량과 동등 조건을 구현할 수 없다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 순수 실리콘(Si)을 실리콘계 활물질로서 사용할 수 있다. 순수 실리콘(Si)을 실리콘계 활물질로 사용한다는 것은 상기와 같이 실리콘계 활물질을 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si 입자(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.
실리콘계 활물질은 기존에 사용되는 흑연계 활물질과 비교할 때, 용량이 현저히 높아 이를 적용하려는 시도가 높아지고 있지만, 충방전 과정에서 부피 팽창율이 높아, 흑연계 활물질에 미량을 혼합하여 사용하는 경우 등에 그치고 있다.
따라서, 본 발명은 용량 성능 향상을 위하여 실리콘계 활물질을 음극 활물질로서 고함량 사용하면서도, 상기와 같은 부피 팽창에 따른 도전성 경로 유지 및 도전재, 바인더, 활물질의 결합을 유지의 문제점을 해소하기 위하여, 특정 조건의 바인더를 사용한 것을 특징으로 한다.
한편, 본원 발명의 상기 실리콘계 활물질의 평균 입경(D50)은 5㎛ 내지 10㎛일 수 있으며, 구체적으로 5.5㎛ 내지 8㎛일 수 있고, 보다 구체적으로 6㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 상기 범위에 포함되는 경우, 입자의 비표면적이 적합한 범위로 포함하여, 음극 슬러리의 점도가 적정 범위로 형성 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하게 된다. 또한, 실리콘계 활물질의 크기가 상기 하한값의 범위 이상의 값을 갖는 것으로, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 우수하여, 도전 네트워크가 지속될 가능성이 높아져서 용량 유지율이 증가된다. 한편, 상기 평균 입경이 상기 범위를 만족하는 경우, 지나치게 큰 실리콘 입자들이 배제되어 음극의 표면이 매끄럽게 형성되며, 이에 따라 충방전 시 전류 밀도 불균일 현상을 방지할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 일반적으로 특징적인 BET 표면적을 갖는다. 실리콘계 활물질의 BET 표면적은 바람직하게는 0.01 내지 150.0 m2/g, 더욱 바람직하게는 0.1 내지 100.0 m2/g, 특히 바람직하게는 0.2 내지 80.0 m2/g, 가장 바람직하게는 0.2 내지 18.0 m2/g이다. BET 표면적은 (질소를 사용하여) DIN 66131에 따라 측정된다. 상기 DIN 66131 측정 방법은 질소 분자의 흡착/탈착량으로 기공을 측정하는 방법에 해당한다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질은 예컨대 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 규소 입자는 바람직하게는 구형 또는 파편형 입자이다. 대안으로서 그러나 덜 바람직하게는, 규소 입자는 또한 섬유 구조를 가지거나 또는 규소 포함 필름 또는 코팅의 형태로 존재할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상인 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상, 바람직하게는 65 중량부 이상, 더욱 바람직하게는 70 중량부 이상을 포함할 수 있으며, 95 중량부 이하, 바람직하게는 90 중량부 이하, 더욱 바람직하게는 85 중량부 이하일 수 있다.
본 출원에 따른 음극 조성물은 용량이 현저히 높은 실리콘계 활물질을 상기 범위로 사용하여도 충방전 과정에서 부피 팽창율을 잡아줄 수 있는 특정의 도전재 및 바인더를 사용하여, 상기 범위를 포함하여도 음극의 성능을 저하시키지 않으며 충전 및 방전에서의 출력 특성이 우수한 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 실리콘계 활물질은 비구형 형태를 가질 수 있고 그 구형도는 예를 들어 0.9 이하, 예를 들어 0.7 내지 0.9, 예를 들어 0.8 내지 0.9, 예를 들어 0.85 내지 0.9이다.
본 출원에 있어서, 상기 구형도(circularity)는 하기 식 1-1로 결정되며, A는 면적이고, P는 경계선이다.
[식 1-1]
4πA/P2
종래에는 음극 활물질로서 흑연계 화합물만을 사용하는 것이 일반적이었으나, 최근에는 고용량 전지에 대한 수요가 높아짐에 따라, 용량을 높이기 위하여 실리콘계 화합물을 혼합하여 사용하려는 시도가 늘어나고 있다. 다만, 실리콘계 화합물의 경우, 상기와 같이 실리콘계 활물질 자체의 특성을 본 출원에 따라 조절한다고 하더라도, 충/방전 과정에서 부피가 급격하게 팽창하여, 음극 활물질 층 내에 형성된 도전 경로를 훼손시키는 문제가 일부 발생될 수 있다.
따라서, 본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 점형 도전재, 면형 도전재 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가지는 점형 또는 구형 형태의 도전재를 의미한다. 구체적으로 상기 점형 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 작용기 함량(Volatile matter)이 0.01% 이상 1% 이하, 바람직하게는 0.01% 이상 0.3% 이하, 더욱 바람직하게는 0.01% 이상 0.1% 이하를 만족할 수 있다.
특히 점형 도전재의 작용기 함량이 상기 범위를 만족하는 경우, 상기 점형 도전재의 표면에 존재하는 관능기가 존재하여, 물을 용매로 하는 경우에 있어서 상기 용매 내에 점형 도전재가 원활하게 분산될 수 있다. 특히, 본 발명에서는 실리콘 입자 및 특정 바인더를 사용함에 따라 상기 점형 도전재의 작용기 함량을 낮출 수 있는데, 이에 따라 분산성 개선에 탁월한 효과를 갖는다.
본 출원의 일 실시상태에 있어서, 실리콘계 활물질과 함께, 상기 범위의 작용기 함량을 가지는 점형 도전재를 포함하는 것을 특징으로 하는 것으로, 상기 작용기 함량의 조절은 점형 도전재를 열처리의 정도에 따라 조절할 수 있다.
본 출원의 일 실시상태에 있어어서, 상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 도전재는 면형 도전재를 포함할 수 있다.
상기 면형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할할 수 있다. 상기 면형 도전재는 판상형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 3.5㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 D10이 0.5μm 이상 2.0μm 이하이고, D50이 2.5μm 이상 3.5μm 이하이며, D90이 6.5μm 이상 15.0μm 이하인 것인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 높은 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재로 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 제한없이 사용할 수 있으나, 특히 본 출원에 따른 면형 도전재는 분산 영향을 전극 성능에서 어느 정도 영향을 받을 수 있어, 분산에 문제가 발생하지 않는 저비표면적 면형 도전재를 사용하는 것이 특히 바람직할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 1m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 250m2/g 이하일 수 있다.
본 출원에 따른 면형 도전재는 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 고비표면적 면형 도전재이며, BET 비표면적이 50m2/g 이상 500m2/g 이하, 바람직하게는 80m2/g 이상 300m2/g 이하, 더욱 바람직하게는 100m2/g 이상 300m2/g 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 저비표면적 면형 도전재이며, BET 비표면적이 1m2/g 이상 40m2/g 이하, 바람직하게는 5m2/g 이상 30m2/g 이하, 더욱 바람직하게는 5m2/g 이상 25m2/g 이하의 범위를 만족할 수 있다.
그 외 도전재로는 탄소나노튜브 등의 선형 도전재가 있을 수 있다. 탄소나노튜브는 번들형 탄소나노튜브일 수 있다. 상기 번들형 탄소나노튜브는 복수의 탄소나노튜브 단위체들을 포함할 수 있다. 구체적으로, 여기서 '번들형(bundle type)'이란, 달리 언급되지 않는 한, 복수 개의 탄소나노튜브 단위체가 탄소나노튜브 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. 상기 탄소나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 번들형 탄소나노튜브는 인탱글형(entangled type) 탄소나노튜브에 비해 음극 제조 시 균일하게 분산될 수 있으며, 음극 내 도전성 네트워크를 원활하게 형성하여, 음극의 도전성이 개선될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하인 것인 음극 조성물을 제공한다. 또한 예를 들어 10 중량부 이상 40 중량부 이하를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하, 바람직하게는 0.2 중량부 이상 30 중량부 이하, 더욱 바람직하게는 0.4 중량부 이상 25 중량부 이하, 가장 바람직하게는 0.4 중량부 이상 10 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 면형 도전재; 및 선형 도전재를 포함하는 것인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하; 및 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하를 포함하는 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하, 바람직하게는 85 중량부 이상 내지 99.9 중량부 이하, 더욱 바람직하게는 95 중량부 이상 내지 98 중량부 이하를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하, 바람직하게는 0.1 중량부 이상 15 중량부 이하, 더욱 바람직하게는 0.2 중량부 이상 5 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재가 면형 도전재 및 선형 도전재를 포함하며 각각 상기 조성 및 비율을 만족함에 따라, 기존 리튬 이차 전지의 수명 특성에는 큰 영향을 미치지 않으며, 특히 면형 도전재 및 선형 도전재를 포함하는 경우 충전 및 방전이 가능한 포인트가 많아져 높은 C-rate에서 출력 특성이 우수하고 고온 가스 발생량이 줄어드는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재는 선형 도전재로 이루어질 수 있다.
특히, 선형 도전재를 단독으로 사용하는 경우, 실리콘계 음극의 문제점인 전극 tortuosity를 단순화할 수 있어, 전극 구조를 개선할 수 있고, 이에 따라 전극 내 리튬 이온의 이동 저항을 감소할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 음극 도전재가 선형 도전재를 단독으로 포함하는 경우 상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 5 중량부 이하, 바람직하게는 0.2 중량부 이상 3 중량부 이하, 더욱 바람직하게는 0.4 중량부 이상 1 중량부 이하를 포함할 수 있다.
본 출원에 따른 음극 도전재는 양극에 적용되는 양극 도전재와는 전혀 별개의 구성을 갖는다. 즉 본 출원에 따른 음극 도전재의 경우 충전 및 방전에 의해서 전극의 부피 팽창이 매우 큰 실리콘계 활물질들 사이의 접점을 잡아주는 역할을 하는 것으로, 양극 도전재는 압연될 때 완충 역할의 버퍼 역할을 하면서 일부 도전성을 부여하는 역할로, 본원 발명의 음극 도전재와는 그 구성 및 역할이 전혀 상이하다.
또한, 본 출원에 따른 음극 도전재는 실리콘계 활물질에 적용되는 것으로, 흑연계 활물질에 적용되는 도전재와는 전혀 상이한 구성을 갖는다. 즉 흑연계 활물질을 갖는 전극에 사용되는 도전재는 단순히 활물질 대비 작은 입자를 갖기 때문에 출력 특성 향상과 일부의 도전성을 부여하는 특성을 갖는 것으로, 본원 발명과 같이 실리콘계 활물질과 함께 적용되는 음극 도전재와는 구성 및 역할이 전혀 상이하다.
본 출원의 일 실시상태에 있어서, 전술한 음극 도전재로 사용되는 면형 도전재는 일반적으로 음극 활물질로 사용되는 탄소계 활물질과 상이한 구조 및 역할을 갖는다. 구체적으로, 음극 활물질로 사용되는 탄소계 활물질은 인조 흑연 또는 천연 흑연일 수 있으며, 리튬 이온의 저장 및 방출을 용이하게 하기 위하여 구형 또는 점형의 형태로 가공하여 사용하는 물질을 의미한다.
반면, 음극 도전재로 사용되는 면형 도전재는 면 또는 판상의 형태를 갖는 물질로, 판상형 흑연으로 표현될 수 있다. 즉, 음극 활물질층 내에서 도전성 경로를 유지하기 위하여 포함되는 물질로 리튬의 저장 및 방출의 역할이 아닌 음극 활물질층 내부에서 면형태로 도전성 경로를 확보하기 위한 물질을 의미한다.
즉, 본 출원에 있어서, 판상형 흑연이 도전재로 사용되었다는 것은 면형 또는 판상형으로 가공되어 리튬을 저장 또는 방출의 역할이 아닌 도전성 경로를 확보하는 물질로 사용되었다는 것을 의미한다. 이 때, 함께 포함되는 음극 활물질은 리튬 저장 및 방출에 대한 용량 특성이 높으며, 양극으로부터 전달되는 모든 리튬 이온을 저장 및 방출할 수 있는 역할을 하게 된다.
반면, 본 출원에 있어서, 탄소계 활물질이 활물질로 사용되었다는 것은 점형 또는 구형으로 가공되어 리튬을 저장 또는 방출의 역할을 하는 물질로 사용되었다는 것을 의미한다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함한다.
본 출원의 일 실시상태에 있어서, 상기 제1 바인더는 PAA, PAN 및 PAM 으로 이루어진 군에서 선택되는 1 이상을 포함하고, 상기 제2 바인더는 고무계 바인더인 것인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더를 포함한다.
또 다른 일 실시상태에 있어서, 상기 음극 바인더는 영률(Young's modulus)이 1x103MPa 이상, 바람직하게는 2x103MPa, 더욱 바람직하게는 5x103MPa 이상, 가장 바람직하게는 9x103MPa 이상일 수 있으며, 20x103MPa 이하, 바람직하게는 18x103MPa 이하, 더욱 바람직하게는 15x103MPa 이하를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 바인더의 영률은 3x103MPa 이상, 4x103MPa 이상, 6x103MPa 이상, 7x103MPa 이상, 8x103MPa 이상, 10x103MPa 이상, 19x103MPa 이하, 17x103MPa 이하, 16x103MPa 이하, 14x103MPa 이하, 13x103MPa 이하, 12x103MPa 이하일 수 있으며, 상기 범위의 다양한 조합을 모두 포함한다.
상기 제1 바인더는 음극 조성물이 포함된 음극 슬러리 상태에서 음극 활물질을 분산시키기 위한 분산성과 건조 후 음극 집전체층 및 음극 활물질층과 바인딩 하기 위한 접착력을 동시에 갖는 것으로, 그 접착력은 높은 편이 아닌 바인더에 해당한다. 즉 본 출원에 따른 제1 바인더는 상기 영률을 만족하는 수계 바인더를 포함하는 것으로, 면접착 형태를 갖는 바인더를 의미할 수 있다.
상기 제1 바인더는 충방전 과정 중 부피 팽창이 큰 실리콘 활물질을 음극에 적용한 리튬 이차 전지에 적합한 바인더로서, 상기 범위의 하한 조건 이하인 경우 실리콘의 부피 팽창을 효과적으로 제어하기 어려우며, 상기 범위의 상한 조건 이상인 경우 지나치게 강성이 단단하여 충방전 과정 중 결합이 깨질 가능성이 높다.
본 출원의 일 실시상태에 있어서, 상기 수계 바인더는 물 등 수계 용매에 용해될 수 있는 것으로서 폴리비닐알코올(PVA: polyvinyl alcohol), 폴리아크릴산(PAA: polyacrylic acid), 폴리에틸렌 글리콜(PEG: polyethylene glycol), 폴리아크릴로니트릴(PAN: polyacrylonitrile) 및 폴리아크릴 아미드(PAM: polyacryl amide)로 이루어진 군에서 선택된 적어도 1종을 포함한다. 바람직하게는 실리콘계 활물질의 부피 팽창/수축에 대한 우수한 저항성을 가지는 측면에서 폴리아크릴산(PAA: polyacrylic acid) 및 폴리아크릴 아미드(PAM: polyacryl amide)으로 이루어 진 군에서 선택된 적어도 1종, 더 바람직하게는 폴리아크릴산(PAA: polyacrylic acid) 및 폴리아크릴 아미드(PAM: polyacryl amide)를 포함할 수 있다.
더욱 구체적으로 상기 제1 바인더는 PAM계 바인더일 수 있으며, 이 때 PAM계 바인더는 PAM이 주성분인 바인더로, PAM, PAA, PAN의 비율을 조절하여 사용할 수 있으며, 상기 조성을 적절히 변경하여 상기와 같은 영률을 만족시킬 수 있다.
상기 제1 바인더는 음극 활물질층 형성을 위한 음극 슬러리 제조 시에 물 등 수계 용매에 더욱 잘 분산되도록 하고, 활물질을 보다 원활하게 피복하여 결착력을 향상시키기 위한 측면에서, 상기 제1 바인더 내의 수소를 Li, Na 또는 Ca 등으로 치환된 것을 포함할 수 있다.
상기 제1 바인더는 물에 친한 특성(hydrophilic)을 가지며, 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 용해되지 않는 성질을 가진다. 이러한 특성은 음극 또는 리튬 이차 전지에 적용 시에 상기 제1 바인더에 강한 응력 또는 인장 강도를 부여할 수 있으며, 이에 따라 실리콘계 활물질의 충방전에 따른 부피 팽창/수축 문제를 효과적으로 억제할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 바인더의 중량 평균 분자량은 100,000g/mol 이상 2,000,000g/mol 이하인 것인 음극 조성물을 제공한다.
또한 보다 바람직하게는 500,000g/mol 이상일 수 있으며, 1,500,000g/mol 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 바인더는 strain이 15% 이상일 수 있으며, 바람직하게는 strain이 20% 이상, 더욱 바람직하게는 strain이 30% 이상, 가장 바람직하게는 strain이 40% 이상일 수 있으며, strain이 300% 이하, 바람직하게는 200% 이하, 더욱 바람직하게는 150% 이하일 수 있다.
또 다른 일 실시상태에 있어서, strain이 25% 이상, strain이 35% 이상, strain이 45% 이상, strain이 75% 이하, strain이 65% 이상, strain이 55% 이하를 만족할 수 있으며, 해당 범위의 다양한 조합이 포함될 수 있다.
상기와 같이 제2 바인더의 strain값이 상기 범위 미만인 경우 응력이 높아 실리콘의 부피 팽창을 효과적으로 제어하기 어려우며, 상기 범위를 초과하는 경우 전극 간 접착력을 효과적으로 제어하기 어렵게 된다.
제1 바인더는 전술한 모듈러스 범위를 만족하여 강한 응력을 가지므로, 제1 바인더만을 단독으로 사용할 경우 음극의 휘어짐 현상, 휘어 짐에 따른 크랙 발생, 수명 특성 열화의 위험이 있다. 제2 바인더는 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 잘 용해될 수 있으며, 제1 바인더와 병용 시에 제1 바인더의 응력을 일정 수준으로 완화시킬 수 있다.
따라서, 본 발명의 음극 조성물은 상기 제1 바인더 및 제2 바인더를 특정 중량비로 포함되는 음극 바인더를 사용함으로써, 실리콘계 활물질의 부피 팽창/수축 문제를 효과적으로 해소하여 수명 특성을 향상시킬 수 있고, 박막 음극 제조 시의 휘어짐 문제를 해소할 수 있으며, 또한 접착력도 개선할 수 있는 특징을 갖게 된다.
이 때 제2 바인더의 strain 값은 구체적으로 SBR 바인더의 ST/BD의 비율을 적당 범위로 조절하여 전술한 상기의 범위를 만족하는 범위로 구현할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 바인더는 상기 제1 바인더와는 다른 물질이며, 물 등 수계 용매에 잘 용해되지 않으나 수계 용매에 원활한 분산이 가능한 것으로 정의될 수 있다. 구체적으로 상기 strain이 15% 이상인 제2 바인더는 스티렌부타디엔 고무(SBR: styrene butadiene rubber), 수소화 니트릴부타디엔 고무(HNBR: hydrogenated nitrile butadiene rubber), 아크릴로니트릴부타디엔 고무(acrylonitrile butadiene rubber), 아크릴 고무(acrylic rubber), 부틸 고무(butyl rubber) 및 플루오르 고무(fluoro rubber)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 분산에 용이하고, 상 안정성이 우수하다는 측면에서 스티렌부타디엔 고무 및 수소화 니트릴부타디엔 고무로 이루어진 군에서 선택된 적어도 1종, 더 바람직하게는 스티렌부타디엔 고무를 포함할 수 있다.
일반적으로 제2 바인더는 제1 바인더 대비 전해질 젖음성이 매우 높은 재료이다. 전술한 제2 바인더가 실리콘계 음극 표면 근처에 위치하는 경우, SEI layer를 만들 수 있는 FEC용매나 LiPF6염을 빠르게 공급할 수 있기 때문에 음극 저항이 낮아진다.
본 출원의 일 실시상태에 있어서, 상기 식 1은 1≤ X/Y < 4, 바람직하게는 1.1≤ X/Y < 3.9, 더욱 바람직하게는 1.2≤ X/Y < 3.8을 만족할 수 있다.
보다 구체적으로 , 1.3 ≤ X/Y < 3.7, 1.4 ≤ X/Y < 3.6, 1.5 ≤ X/Y < 3.5, 1.6 ≤ X/Y < 3.4, 1.7 ≤ X/Y < 3.3, 1.8 ≤ X/Y < 3.2, 1.9 ≤ X/Y < 3.1, 2.0 ≤ X/Y < 3.0, 1.2 ≤ X/Y < 2.0일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하이며, 상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하이다.
또 다른 일 실시상태에 있어서, 상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하, 바람직하게는 55 중량부 이상 90 중량부 이하, 더욱 바람직하게는 55 중량부 이상 80 중량부 이하일 수 있다. 또한, 50 중량부 이상 70 중량부 이하, 55 중량부 이상 67 중량부 이하, 60 중량부 이상 67 중량부 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하, 바람직하게는 10 중량부 이상 45 중량부 이하, 더욱 바람직하게는 20 중량부 이상 45 중량부 이하일 수 있다. 또한, 33 중량부 이상 45 중량부 이하, 35 중량부 이상 45 중량부 이하, 40 중량부 이상 45 중량부 이하일 수 있다.
상기와 같이 본 출원에 따른 음극 바인더는 제1 바인더 및 제2 바인더가 상기 함량을 만족하는 것으로, 실리콘계 활물질을 사용하는 경우에도 분산성을 개선하고, 또한 접착력의 문제를 해결할 수 있는 특징을 갖게 된다.
제1 바인더는 전술한 모듈러스 범위를 만족하여 강한 응력을 가지므로, 제1 바인더만을 단독으로 사용할 경우 음극의 휘어짐 현상, 휘어 짐에 따른 크랙 발생, 수명 특성 열화의 위험이 있다. 제2 바인더는 일반적으로 이차전지에 사용되는 전해질 또는 전해액에 잘 용해될 수 있으며, 제1 바인더와 병용 시에 제1 바인더의 응력을 일정 수준으로 완화시킬 수 있다.
따라서, 본 발명의 음극 조성물은 상기 제1 바인더 및 제2 바인더를 특정 중량비로 포함되는 음극 바인더를 사용함으로써, 실리콘계 활물질의 부피 팽창/수축 문제를 효과적으로 해소하여 수명 특성을 향상시킬 수 있고, 박막 음극 제조 시의 휘어짐 문제를 해소할 수 있으며, 또한 접착력도 개선할 수 있는 특징을 갖게 된다.
더욱이 상기의 음극 바인더와 음극 도전재로 면형 도전재; 및 선형 도전재를 포함하는 경우, 접착력의 문제를 개선할 수 있음과 동시에 음극 내부 저항 또한 개선할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 1 중량부 이상 20 중량부 이하인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 바인더는 상기 음극 조성물 100 중량부 기준 20 중량부 이하, 바람직하게는 15 중량부 이하를 포함할 수 있으며, 1 중량부 이상, 5 중량부 이상, 10 중량부 이상일 수 있다.
본 출원의 일 실시상태에 있어서, 음극 집전체층; 및 상기 음극 집전체층의 일면 또는 양면에 형성된 본 출원에 따른 음극 조성물을 포함하는 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 도 1은 음극 활물질층이 일면에 형성된 것을 나타내나, 음극 집전체층의 양면에 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극은 상기 음극 조성물을 포함하는 음극 슬러리를 집전체의 일면 또는 양면에 코팅하여 리튬 이차 전지용 음극을 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리는 음극 조성물; 및 슬러리 용매;를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 슬러리의 고형분 함량은 5% 이상 40% 이하, 바람직하게는 7% 이상 35%이하, 더욱 바람직하게는 10% 이상 30% 이하의 범위를 만족할 수 있다.
상기 음극 슬러리의 고형분 함량이라는 것은 상기 음극 슬러리 내에 포함되는 음극 조성물의 함량을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 상기 음극 조성물의 함량을 의미할 수 있다.
상기 음극 슬러리의 고형분 함량이 상기 범위를 만족하는 경우, 음극 활물질층 형성시 점도가 적당하여 음극 조성물의 입자 뭉침 현상을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층은 일반적으로 1㎛ 내지 100㎛의 두께를 가진다. 이러한 음극 집전체층은, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며, 상기 음극 활물질층의 두께는 20μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극을 제공한다.
다만, 두께는 사용되는 음극의 종류 및 용도에 따라 다양하게 변형할 수 있으며 이에 한정되지 않는다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 공극률은 10% 이상 60% 이하, 바람직하게는 20% 이상 50% 이하, 더욱 바람직하게는 30% 이상 45% 이하의 범위를 만족할 수 있다.
상기 공극률은 음극 활물질층에 포함되는 실리콘계 활물질; 도전재; 및 바인더의 조성 및 함량에 따라 변동되는 것으로, 특히 본 출원에 따른 실리콘계 활물질; 및 도전재를 특정 조성 및 함량부 포함함에 따라 상기 범위를 만족하는 것으로, 이에 따라 전극에 있어 전기 전도도 및 저항이 적절한 범위를 갖는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하를 만족하는 것인 리튬 이차 전지용 음극을 제공한다.
또 다른 일 실시상태에 있어서, 상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하, 바람직하게는 300gf/5mm 이상 450gf/5mm 이하, 더욱 바람직하게는 350gf/5mm 이상 430gf/5mm 이하를 만족할 수 있다.
특히, 본 출원에 따른 음극은 전술한 음극 조성물로 특정의 음극 바인더를 포함하여, 상기와 같이 접착력이 개선된다. 또한 음극의 충전 및 방전을 반복하여 실리콘계 활물질의 팽창 및 수축이 반복되어도, 특정 조성의 음극 바인더 및 음극 도전재를 적용하여 도전 네트워크를 유지하고, 단절을 막아 저항의 상승을 억제할 수 있는 특징을 갖게 된다.
상기 접착력은 Peel strength 측정기로 3M 9070 tape를 이용하여 90°, 5mm/s의 속도로 측정하였다. 구체적으로 접착 필름이 붙어있는 슬라이드 글래스(3M 9070 tape)의 일면 상에 상기 리튬 이차 전지용 음극의 상기 음극 활물질층의 일면을 접착시킨다. 이후 2kg 고무 롤러로 5회 내지 10회 왕복하여 부착하고, 90°의 각도 방향으로, 5mm/s의 속도로 접착력(박리력)을 측정하였다. 이 때, 25℃, 상압 조건에서 접착력을 측정할 수 있다.
구체적으로, 측정은 5mm x 15cm 전극에 대하여 25℃, 상압 조건에서 접착력을 측정하였다.
본 출원의 일 실시상태에 있어서, 상압은 특정 압력을 가하거나 낮추지 않은 상태의 압력을 의미할 수 있으며, 대기압과 같은 의미로 사용될 수 있다. 일반적으로 1기압으로 표시될 수 있다.
본 출원의 일 실시상태에 있어서, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
도 2는 본 출원의 일 실시상태에 따른 리튬 이차 전지의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(10)의 일면에 음극 활물질층(20)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 양극 집전체층(50)의 일면에 양극 활물질층(40)을 포함하는 리튬 이차 전지용 양극(200)을 확인할 수 있으며, 상기 리튬 이차 전지용 음극(100)과 리튬 이차 전지용 양극(200)이 분리막(30)을 사이에 두고 적층되는 구조로 형성됨을 나타낸다.
본 명세서의 일 실시상태에 따른 이차 전지는 특히 상술한 리튬 이차 전지용 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 일 실시상태는 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 조성물을 이용하여 음극을 제조하는 방법을 제공한다. 보다 구체적으로, 상기 음극 조성물에 용매를 첨가하여 음극 슬러리를 얻는다. 상기 음극 슬러리는 음극 집전체층의 적어도 일면에 도포되어 음극 활물질층을 형성한다. 이 후 음극 집전체층에 코팅된 음극 활물질층을 건조 및 압연하여 음극을 제조한다.
본 출원에 있어서, 상기 음극 슬러리에 포함되는 용매는 예를 들어 증류수일 수 있다.
본 출원의 하나의 실시상태에 있어서, 상기 음극 슬러리는 고형분 함량이 5% 이상 40% 이하를 만족할 수 있다.
다른 실시예에서 상기 음극 슬러리는 고형분 함량 범위를 5% 이상 40% 이하, 바람직하게는 7% 이상 35% 이하, 보다 바람직하게는 10% 이상 30% 이하를 만족할 수 있다.
상기 음극 슬러리의 고형분 함량은 음극 슬러리에 포함된 음극 조성물의 양을 의미할 수 있으며, 음극 슬러리 100 중량부를 기준으로 한 음극 조성물의 양을 의미할 수 있다.
음극 슬러리가 상기 고형분 함량 범위인 5% 이상 40% 이하를 만족하는 경우, 음극 활물질층은 음극 활물질층 형성시 적절한 점도를 가지므로 음극 활물질의 입자 뭉침 현상이 전극 조성을 최소화하여 음극 활물질층을 효율적으로 형성할 수 있는 특성을 갖는다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<제조예>
<음극 조성물의 제조>
하기 표 1의 조성 및 함량을 만족하는 음극 조성물을 각각 제조하였다.
실리콘계 활물질 음극 도전재 음극 바인더
종류 함량 종류 함량 제1 바인더
(함량)
제2 바인더
(함량)
식 1
실시예 1 Si 89 SWCNT 1 PAM-1 (4.5) SBR-1
(5.5)
1.2
실시예 2 Si 89 SWCNT 1 PAM-2 (4.5) SBR-1
(5.5)
1.2
실시예 3 Si 89 SWCNT 1 PAM-1 (4.5) SBR-2
(5.5)
1.2
실시예 4 Si 89 SWCNT 1 PAM-1 (3.3) SBR-1
(6.7)
2
실시예 5 Si 80 SWCNT/판상형도전재 A 0.4/9.6 PAM-1
(4.5)
SBR-1
(5.5)
1.2
실시예 6 Si 80 SWCNT 1 PAM-2 (4.5) SBR-2
(5.5)
1.2
비교예 1 Si 89 SWCNT 1 PAM-1 (10) - -
비교예 2 Si 89 SWCNT 1 - SBR-1
(10)
-
비교예 3 Si 89 SWCNT 1 PAM-1 (1.6) SBR-1
(8.4)
5.25
비교예 4 Si 89 SWCNT 1 PAM-1 (6) SBR-1
(4)
0.66
비교예 5 Si 89 SWCNT 1 PAN(5.5) SBR-1
(4.5)
0.82
비교예 6 Si 89 SWCNT 1 PAM-1 (5.5) SBR-3
(4.5)
0.82
상기 표 1에 있어서, 실리콘계 활물질인 Si(평균 입경(D50): 5 ㎛)이고, 판상형 도전재 A는 BET 비표면적이 17m2/g이며, D10:1.7μm, D50:3.5μm, D90: 6.8μm이고, SWCNT는 BET 비표면적이 1000~1500m2/g 내외를 만족하고 종횡비가 10000 이상인 물질을 사용하였다.
또한 상기 표 1에 있어서, 제1 바인더로 PAM-1은 영률(Young's modulus)이 15x103MPa(=15GPa)인 바인더이며, PAM-2는 영률(Young's modulus)이 9x103MPa(9GPa)인 바인더이고, PAN은 영률(Young's modulus)이 102MPa이다.
또한 상기 표 1에 있어서, 제2 바인더로 SBR-1은 Strain이 60%인 바인더이며, SBR-2는 Strain이 40%인 바인더이며 SBR-3은 strain이 10%인 바인더이다.
이 때 상기 제1 바인더의 영률은 PAM를 주성분으로 갖는 바인더에서 PAA 및 PAN의 혼합 비율을 조절하여 상기 범위를 만족하였고, 상기 제2 바인더의 Strain 값은 SBR 바인더에서 ST/BD의 비율을 조절하여 상기 범위를 만족하도록 구현하였다.
상기 제1 바인더의 중량 평균 분자량은 5.0 x 105 내지 1.5 x 106 수준을 만족하며, 상기 제2 바인더는 cross-linking 전의 중량 평균 분자량은 측정 가능하지만 실제 사용되는 형태는 구형의 입자로 존재하므로 중량 평균 분자량의 측정이 되지 않는다.
상기 표 1에 있어서 함량은 전체 음극 조성물 100 중량부를 기준으로 한 각 조성의 무게비(중량부)를 의미할 수 있다.
음극의 제조
상기 표 1의 조성을 갖는 음극 조성물에 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 25중량%).
이 후, 8μm 두께의 Cu foil 위에 38μm의 두께로 음극 로딩양을 76.34mg/25cm2으로 하여, 음극 활물질층을 코팅한 후 130℃에서 12시간 건조하고, 음극의 공극률을 40%로 압연하여 음극을 제조하였다.
<이차전지의 제조>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 15㎛), 도전재로서 카본블랙 (제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 78중량%).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 양면에 상기 양극 슬러리를 537mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 65㎛)을 형성하여, 양극을 제조하였다 (양극의 두께: 77㎛, 공극률 26%).
상기 양극과 상기 실시예 및 비교예의 음극 사이에 폴리에틸렌 분리막을 개재하고 전해질을 주입하여 리튬 이차 전지를 제조하였다.
상기 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 10:90의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것이었다.
상기 실시예들 및 비교예들의 음극을 사용한 것을 제외하고는 상기와 동일한 방법으로 모노셀을 각각 제조하여, 4.2-3.0V 범위에서 수명 특성 평가를 진행하였다.
실험예 1: 모노셀 상온 수명 특성 평가(25℃, 4.2-3.OV)
상기 실시예들 및 비교예들에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 사이클(cycle) 테스트를 진행하였고, 용량 유지율이 80%가 되는 시점의 Cycle 횟수를 측정하였다.
용량 유지율(%) = {(N번째 사이클에서의 방전 용량)/(첫 번째 사이클에서의 방전 용량)} Х 100
그 결과는 하기 표 2와 같았다.
실험예 2: 모노셀 저항 증가율 측정 평가(250cycle, @SOC50, 방전)
상기 실험예 1에서 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정한 후, SOC50에서 2.5C pulse로 방전하여 저항을 측정하여 저항 증가율을 비교 분석하였다.
상기 저항 증가율 측정 평가에 대하여, 250cycle에서의 데이터를 계산하였으며 그 결과는 하기 표 2와 같았다.
실험예 3: 모노셀 고온 수명 특성 평가(45℃, 4.2-3.OV)
상기 실시예들 및 비교예들에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 사이클(cycle) 테스트를 진행하였고, 용량 유지율이 80%가 되는 시점의 Cycle 횟수를 측정하였다.
그 결과는 하기 표 2와 같았다.
실험예 4: 전극 Curl 측정
도 3과 같이 코팅된 전극의 코팅부를 위로 오도록 두고 중심부의 높이를 측정하여 휘어짐 정도를 측정하였다. 즉 바인더의 건조 시 tensile 작용하여 코팅부가 오목해지며 이에 따라 curl 이 발생하는 것으로, 그 curl 정도를 측정하였고, 그 결과를 하기 표 2에 기재하였다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6
SOH80%(cycle)상온 수명 특성 평가
(4.2-3.0V)
248 238 241 230 223 242 203 150 163 200 170 131
저항 증가율
(%, @250cycle, 방전)
43 47 45 50 53 60 100 200 130 105 120 300
SOH80%(cycle)고온 수명 특성 평가
(4.2-3.0V)
230 218 - - - - 189 130 - - - -
컬 평가(mm) 13 - 9 7 - - 25 - - 20 5 -
실시예 1 내지 6과 같이 제1 바인더 및 제2 바인더를 포함하며 특정 식 1을 만족하는 것으로 특히 일정 범위의 strain을 갖는 SBR이 Blend되어 사이클 진행에 따른 부피 팽창에도 활물질 사이사이의 contact point를 유지해줄 수 있어 저항 증가율이 낮으며, 이에 따라 상온 및 고온에서의 수명 성능도 우수함을 확인할 수 있었다.
참고로, 실시예 1, 3 및 4와 비교예 1, 4 및 5를 비교하였을 때, SBR의 비율이 높을수록 전극의 curl 발생이 적어 공정 안정성에 유리함을 확인할 수 있었으며, 비교예 4의 경우처럼 SBR의 비율이 본 출원의 비율 미만인 경우 curl 현상이 심해짐을 확인할 수 있었다.
참고로 비교예 1의 경우 제2 바인더를 포함하지 않은 경우이고, 비교예 2는 제1 바인더를 포함하지 않은 경우이며, 비교예 3은 제1 및 제2 바인더를 포함하나 그 함량 범위가 식 1의 범위를 초과하는 경우이고, 비교예 4는 식 1의 범위 미만인 경우이며, 비교예 5는 식 1의 범위는 만족하나 제1 바인더의 영률이 본 출원 범위 미만인 경우에 해당하고, 비교예 6은 식 1의 범위는 만족하나 제2 바인더의 strain이 본 출원 범위 미만인 경우에 해당한다.
상기 비교예 1 내지 6을 각각 확인하였을 때, 본 출원에 따른 실시예 1 내지 6에 비하여 수명 특성이 낮으며, 저항 증가율이 높음을 확인할 수 있었고, 또한 curl 현상 또한 많이 발생하고 있음을 확인할 수 있었다.
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질을 사용하는 경우에도 활물질을 분산시키기 위한 분산성을 개선하고, 또한 접착력을 향상시키기 위하여 특정 조성의 제1 및 제2 바인더를 포함하여, 실리콘계 활물질을 사용하는 전지의 초기 및 후기의 접착력 및 부피팽창에 따른 도전 네트워크 단절의 문제를 해결할 수 있는 것을 확인할 수 있었다.
즉, 본 출원에 따른 음극 조성물은 실리콘계 활물질 입자를 고함량 가져 고용량 및 고밀도의 음극을 얻을 수 있음과 동시에, 실리콘계 활물질 입자를 고함량 가짐에 따른 부피 팽창 등의 문제점을 해결함을 확인할 수 있었다.
10: 음극 집전체층
20: 음극 활물질층
30: 분리막
40: 양극 활물질층
50: 양극 집전체층
100: 리튬 이차 전지용 음극
200: 리튬 이차 전지용 양극

Claims (15)

  1. 실리콘계 활물질; 음극 도전재; 및 음극 바인더;를 포함하는 음극 조성물로,
    상기 음극 바인더는 영률(Young's modulus)이 103MPa 이상인 제1 바인더 및 strain이 15% 이상인 제2 바인더를 포함하고,
    상기 음극 바인더는 하기 식 1을 만족하는 것인 음극 조성물:
    [식 1]
    1 ≤ X/Y < 4
    상기 식 1에 있어서,
    Y는 상기 음극 바인더 100 중량부 기준 상기 제1 바인더의 중량부를 의미하고,
    X는 상기 음극 바인더 100 중량부 기준 상기 제2 바인더의 중량부를 의미한다.
  2. 청구항 1에 있어서,
    상기 X는 상기 음극 바인더 100 중량부 기준 50 중량부 이상 95 중량부 이하이며,
    상기 Y는 상기 음극 바인더 100 중량부 기준 5 중량부 이상 50 중량부 이하인 것인 음극 조성물.
  3. 청구항 1에 있어서,
    상기 음극 조성물 100 중량부 기준 상기 음극 바인더는 1 중량부 이상 20 중량부 이하인 것인 음극 조성물.
  4. 청구항 1에 있어서,
    상기 제1 바인더는 PAA, PAN 및 PAM 으로 이루어진 군에서 선택되는 1 이상을 포함하고,
    상기 제2 바인더는 고무계 바인더인 것인 음극 조성물.
  5. 청구항 1에 있어서,
    상기 실리콘계 활물질은 상기 음극 조성물 100 중량부 기준 60 중량부 이상인 음극 조성물.
  6. 청구항 1에 있어서,
    상기 실리콘계 활물질은 SiOx (x=0), SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.
  7. 청구항 1에 있어서, 상기 실리콘계 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 실리콘계 활물질 100 중량부 기준 상기 SiOx (x=0)를 70 중량부 이상 포함하는 것인 음극 조성물.
  8. 청구항 1에 있어서,
    상기 음극 도전재는 상기 음극 조성물 100 중량부 기준 0.1 중량부 이상 40 중량부 이하인 것인 음극 조성물.
  9. 청구항 1에 있어서,
    상기 음극 도전재는 점형 도전재; 면형 도전재; 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 음극 조성물.
  10. 청구항 9에 있어서,
    상기 음극 도전재는 상기 음극 도전재 100 중량부 기준 상기 면형 도전재 80 중량부 이상 99.9 중량부 이하; 및 상기 선형 도전재 0.1 중량부 이상 20 중량부 이하를 포함하는 것인 음극 조성물.
  11. 청구항 1에 있어서, 상기 제1 바인더의 중량 평균 분자량은 100,000g/mol 이상 2,000,000g/mol 이하인 것인 음극 조성물.
  12. 음극 집전체층; 및
    상기 음극 집전체층의 일면 또는 양면에 형성된 청구항 1 내지 청구항 11 중 어느 한 항에 따른 음극 조성물을 포함하는 음극 활물질층;
    을 포함하는 리튬 이차 전지용 음극.
  13. 청구항 12에 있어서,
    상기 음극 활물질층의 상기 음극 집전체층과 접하는 면의 접착력은 25℃, 상압 조건에서 100gf/5mm 이상 500gf/5mm 이하를 만족하는 것인 리튬 이차 전지용 음극.
  14. 청구항 12에 있어서,
    상기 음극 집전체층의 두께는 1μm 이상 100μm 이하이며,
    상기 음극 활물질층의 두께는 20μm 이상 500μm 이하인 것인 리튬 이차 전지용 음극.
  15. 양극;
    청구항 12에 따른 리튬 이차 전지용 음극;
    상기 양극과 상기 음극 사이에 구비된 분리막; 및
    전해질;을 포함하는 리튬 이차 전지.
KR1020230080521A 2022-06-23 2023-06-22 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지 KR102650284B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/008714 WO2023249444A1 (ko) 2022-06-23 2023-06-22 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220076784 2022-06-23
KR1020220076784 2022-06-23

Publications (2)

Publication Number Publication Date
KR20240000398A true KR20240000398A (ko) 2024-01-02
KR102650284B1 KR102650284B1 (ko) 2024-03-22

Family

ID=89322452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230080521A KR102650284B1 (ko) 2022-06-23 2023-06-22 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Country Status (2)

Country Link
US (1) US20230420665A1 (ko)
KR (1) KR102650284B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極
KR20140147052A (ko) * 2013-06-18 2014-12-29 주식회사 엘지화학 애노드용 바인더 용액, 그를 포함하는 애노드용 활물질 슬러리, 그 활물질 슬러리를 이용한 애노드 및 이를 포함하는 전기화학소자
KR20200089568A (ko) * 2019-01-17 2020-07-27 주식회사 엘지화학 음극 및 이를 포함하는 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極
KR20140147052A (ko) * 2013-06-18 2014-12-29 주식회사 엘지화학 애노드용 바인더 용액, 그를 포함하는 애노드용 활물질 슬러리, 그 활물질 슬러리를 이용한 애노드 및 이를 포함하는 전기화학소자
KR20200089568A (ko) * 2019-01-17 2020-07-27 주식회사 엘지화학 음극 및 이를 포함하는 리튬 이차 전지

Also Published As

Publication number Publication date
US20230420665A1 (en) 2023-12-28
KR102650284B1 (ko) 2024-03-22

Similar Documents

Publication Publication Date Title
KR20240056435A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20230048997A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR102650284B1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR102601530B1 (ko) 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법
KR102685719B1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR102634009B1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
KR102693645B1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR102606420B1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR102698870B1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR102698878B1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR102698874B1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240000400A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 및 음극을 포함하는 리튬 이차 전지
KR20230095798A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
EP4376121A1 (en) Anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20240000399A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20240000396A (ko) 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240000397A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20230155213A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
KR20230139409A (ko) 음극 슬러리, 음극 슬러리의 제조 방법, 음극 슬러리를 포함하는 리튬 이차 전지용 음극 및 리튬 이차 전지용 음극의 제조 방법
KR20230139067A (ko) 음극 조성물, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240101256A (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20230129914A (ko) 리튬 이차 전지의 제조 방법 및 리튬 이차 전지
KR20240056269A (ko) 리튬 이차 전지의 제조 방법 및 리튬 이차 전지
KR20240102303A (ko) 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
KR20240092913A (ko) 패턴을 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant