KR20230172647A - Use of leucine-zipper protein for diagnosing or treating cancer - Google Patents

Use of leucine-zipper protein for diagnosing or treating cancer Download PDF

Info

Publication number
KR20230172647A
KR20230172647A KR1020220072622A KR20220072622A KR20230172647A KR 20230172647 A KR20230172647 A KR 20230172647A KR 1020220072622 A KR1020220072622 A KR 1020220072622A KR 20220072622 A KR20220072622 A KR 20220072622A KR 20230172647 A KR20230172647 A KR 20230172647A
Authority
KR
South Korea
Prior art keywords
colon cancer
protein
expression
zipper protein
leucine zipper
Prior art date
Application number
KR1020220072622A
Other languages
Korean (ko)
Inventor
고제상
김수현
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020220072622A priority Critical patent/KR20230172647A/en
Publication of KR20230172647A publication Critical patent/KR20230172647A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명은 대장암의 진단 또는 치료를 위한 류신 지퍼 단백질의 용도 에 관한 것이다. 본 발명에 따르면, 류신 지퍼 단백질 (Leucine-zipper protein)이 암세포의 자가포식 기전 및 대사 프로그래밍을 조절함으로써, 대장암세포의 대사에 중요한 역할을 함을 확인할 수 있었는바, 상기 본 발명의 단백질 또는 이의 단편은 대장암의 진단, 개선 또는 치료를 위한 표적으로 활용될 수 있을 것이다. The present invention relates to the use of leucine zipper protein for diagnosis or treatment of colon cancer. According to the present invention, it has been confirmed that leucine-zipper protein plays an important role in the metabolism of colon cancer cells by regulating the autophagy mechanism and metabolic programming of cancer cells, and the protein of the present invention or a fragment thereof could be used as a target for diagnosis, improvement, or treatment of colon cancer.

Description

암의 진단 또는 치료를 위한 작은 류신 지퍼 단백질의 용도 {Use of leucine-zipper protein for diagnosing or treating cancer}{Use of leucine-zipper protein for diagnosing or treating cancer}

본 발명은 암의 진단 또는 치료를 위한 작은 류신 지퍼 단백질의 신규 용도 에 관한 것이다. The present invention relates to novel uses of small leucine zipper proteins for the diagnosis or treatment of cancer.

암 미세 환경(tumor microenvironment)에서는 암세포의 빠른 증식으로 인해 세포 성장에 필요한 포도당 등의 영양분 공급이 부족한 특징을 보인다. 세포의 해당과정(glycolysis) 불활성화는 대사 스트레스를 유발하고, 암세포는 대사물질의 재분배를 촉진하기 위하여 자가포식(autophagy) 기전을 활성화한다. 암세포는 자가포식 기전을 통한 높은 대사 유연성으로 대사 리프로그래밍(metabolic reprogramming)을 유도함으로써 스트레스 환경을 극복하기 때문에 대사 억제를 이용한 항암치료에 빠르게 저항성을 갖게 되고 효과적인 치료에 어려움을 겪는다. 따라서, 암세포의 대사 리프로그래밍에 밀접하게 관여하는 물질을 발굴하고 연구하는 것은 암 진단과 대사항암제 개발을 위하여 중요하다. The tumor microenvironment is characterized by a lack of supply of nutrients such as glucose required for cell growth due to the rapid proliferation of cancer cells. Inactivation of cellular glycolysis causes metabolic stress, and cancer cells activate the autophagy mechanism to promote redistribution of metabolites. Cancer cells overcome stressful environments by inducing metabolic reprogramming with high metabolic flexibility through the autophagy mechanism, so they quickly become resistant to anticancer treatments using metabolic inhibition and have difficulty in effective treatment. Therefore, discovering and studying substances closely involved in metabolic reprogramming of cancer cells is important for cancer diagnosis and development of anti-cancer drugs.

인간 류신 지퍼 단백질(leucine zipper protein, LZIP)은 염기성 DNA 결합 도메인, 추정적 막통과 도메인 및 류신 지퍼 도메인을 포함하는 bZIP 전사인자이다(Raggo C, et al., Mol Cell Biol 22:5639-5649, 2002). 편재 적으로 발현되는 인간 LZIP는 염기성 글루코코르티코이드 반응 부위(glucocorticoid responsive element, CR E)에 결합하여 세포증식을 조절한다(Freiman RN, et al., Genes Dev 11:3122-3127, 1997). 또한, LZIP는 종양 억제제 및 ER 스트레스 관련 단백질 분해 인자로서 기능하는 것으로 알려져 있다(Jin DY, et al., EMBO J 19:729-740, 2000; Liang G, et al., Mol Cell Biol 26:7999-8010, 2006). 이전에 본 발명자들에 의해 인간 LZIP가 CC 케모카인 수용체 1(CC chemokine receptor 1, CCR 1)에 결합하고, CC 케모카인 류코탁틴 1(CC chemokine leukotactin(Lkn)-1)에 의해 유도된 세포 이동에서 양성 조절자인 것을 보고된바 있다(Ko J, et al., FASEB J 18:890-892, 2004). 최근 연구에서는 LZIP가 HIV-1 LTR(long terminal repeat)의 Tat 매개 전사 및 CCR2 발현에 관련되어 있음이 보고된바 있다(Blot G, et al., J Mol Biol 364:1034-1047, 2006; Sung HJ, et al., Exp Mol Med 40:332-338, 2008). 이런 결과는 인간 LZIP가 전사인자 뿐만 아니라 세포 조절자로서 기 능을 한다는 것을 나타낸다. 이런 인간 LZIP의 다양한 역할이 제시되어 있음에도 불구하고, 이의 기능이 완전 히 알려져 있지 않으며 LZIP의 세포내 위치는 여전히 논쟁의 여지가 있다.Human leucine zipper protein (LZIP) is a bZIP transcription factor containing a basic DNA binding domain, a putative transmembrane domain, and a leucine zipper domain (Raggo C, et al., Mol Cell Biol 22:5639-5649, 2002). The ubiquitously expressed human LZIP regulates cell proliferation by binding to the basic glucocorticoid responsive element (CR E) (Freiman RN, et al., Genes Dev 11:3122-3127, 1997). Additionally, LZIP is known to function as a tumor suppressor and ER stress-related protein degradation factor (Jin DY, et al., EMBO J 19:729-740, 2000; Liang G, et al., Mol Cell Biol 26:7999 -8010, 2006). Previously, the present inventors showed that human LZIP binds to CC chemokine receptor 1 (CCR 1) and plays a positive role in cell migration induced by CC chemokine leukotactin (Lkn)-1. It has been reported to be a regulator (Ko J, et al., FASEB J 18:890-892, 2004). Recent studies have reported that LZIP is involved in Tat-mediated transcription of HIV-1 long terminal repeat (LTR) and CCR2 expression (Blot G, et al., J Mol Biol 364:1034-1047, 2006; Sung HJ, et al., Exp Mol Med 40:332-338, 2008). These results indicate that human LZIP functions not only as a transcription factor but also as a cell regulator. Despite these proposed diverse roles for human LZIP, its function is not fully known and its subcellular localization remains controversial.

아울러, 본 발명자에 의해 인간 LZIP의 아형이 발견되었고, 상기 LZIP은 기존의 인간 LZIP과 달리 추정적 막통과 도메인(229-245 아미노산 잔기)이 결핍 된 354개의 아미노산으로 구성되어 있으며(small leucine zipper protein, 이하 sLZIP으로 명명), 인간 LZIP과 달리 핵내에 주로 위치하고 있으며, 리간드에 의해 유 도되는 GR의 전사활성을 억제하는 기능을 가지고 있음을 확인되었다(공개특허 KR10-2011-0044545호).In addition, a subtype of human LZIP was discovered by the present inventors, and unlike the existing human LZIP, LZIP consists of 354 amino acids lacking a putative transmembrane domain (229-245 amino acid residues) (small leucine zipper protein , hereinafter referred to as sLZIP), unlike human LZIP, is mainly located in the nucleus and has been confirmed to have the function of suppressing the transcriptional activity of GR induced by the ligand (published patent KR10-2011-0044545).

sLZIP은 세포의 핵에서 전사인자로 기능하여, 암의 발달 및 세포 내 조절 기전들에 관여하는 유전자들의 전사를 직접적으로 조절하하여 다양한 암과 대사성질환의 악성화에 관여한다고 알려져 있으나, 대장암의 대사 리프로그래밍 및 자가포식 기전 활성화에 관한 조절 기능은 알려진 바가 없다.sLZIP is known to be involved in the malignancy of various cancers and metabolic diseases by functioning as a transcription factor in the nucleus of cells and directly regulating the transcription of genes involved in cancer development and intracellular regulatory mechanisms. Its regulatory function regarding reprogramming and activation of autophagic mechanisms is unknown.

이에 본 발명자들은 sLZIP가 대장암세포의 자가포식을 유도하여 대장암의 진행에 기여하는 것을 확인하고, 이를 대장암 치료의 후보 바이오마커로써 대장암의 치료를 위한 대사항암제로의 활용 가능성을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors confirmed that sLZIP contributes to the progression of colon cancer by inducing autophagy in colon cancer cells, and confirmed the possibility of using it as an anticancer agent for the treatment of colon cancer as a candidate biomarker for colon cancer treatment. The invention was completed.

공개특허 KR10-2011-0044545호Public patent KR10-2011-0044545

본 발명의 목적은 대장암의 진단을 위한 작은 류신 지퍼 단백질의 용도를 제공하는데 있다.The purpose of the present invention is to provide a use of a small leucine zipper protein for the diagnosis of colon cancer.

본 발명의 목적은 대장암의 치료를 위한 대장항암제로써의 류신 지퍼 단백질의 용도를 제공하는데 있다. The purpose of the present invention is to provide the use of leucine zipper protein as a colon anticancer agent for the treatment of colon cancer.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

상기와 같은 본 발명의 목적을 달성하기 위하여, In order to achieve the purpose of the present invention as described above,

본 발명은 작은 류신 지퍼 단백질의 활성 억제제 또는 상기 단백질을 암호화하는 유전자의 발현 억제제를 유효성분으로 포함하는, 대장암 개선 또는 치료용 약학적 조성물을 제공한다. The present invention provides a pharmaceutical composition for improving or treating colon cancer, comprising as an active ingredient an inhibitor of the activity of a small leucine zipper protein or an inhibitor of the expression of a gene encoding the protein.

본 발명은 작은 류신 지퍼 단백질(small leucine-zipper protein)의 활성 또는 상기 단백질을 암호화하는 유전자의 발현 수준을 측정하기 위한 프로브를 포함하는, 대장암 진단용 조성물을 제공한다.The present invention provides a composition for diagnosing colon cancer, including a probe for measuring the activity of a small leucine-zipper protein or the expression level of a gene encoding the protein.

본 발명은 개체로부터 분리된 세포 또는 조직에 후보물질을 처리하고 상기 세포 또는 조직에서 작은 류신 지퍼 단백질의 발현 수준을 측정하는 것을 포함하며, The present invention involves treating cells or tissues isolated from an individual with a candidate material and measuring the expression level of small leucine zipper protein in the cells or tissues,

상기 후보물질이 작은 류신 지퍼 단백질의 발현을 하향조절할 때 대장암 개선 또는 치료용 의약으로 판별하는, 대장암 개선 또는 치료용 의약의 스크리닝 방법을 제공한다.Provided is a screening method for a drug for improving or treating colon cancer, wherein the candidate substance is identified as a drug for improving or treating colon cancer when it downregulates the expression of a small leucine zipper protein.

본 발명에 따르면, 작은 류신 지퍼 단백질 (small leucine-zipper protein)이 암이 진행중인 대장암 세포에서의 자가포식 기전을 조절하는데 중요한 역할을 함을 확인함으로써, 상기 본 발명의 작은 류신 지퍼 단백질 또는 이의 단편은 대장암의 진단, 개선 또는 치료를 위한 대사항암제의 표적으로 활용될 수 있다. According to the present invention, by confirming that the small leucine-zipper protein plays an important role in regulating the autophagy mechanism in colon cancer cells in progress, the small leucine-zipper protein of the present invention or a fragment thereof Can be used as a target for metabolic anticancer drugs for the diagnosis, improvement, or treatment of colon cancer.

도 1A-1C는 포도당과 글루타민이 결핍된 환경에서 sLZIP의 발현 변화를 측정한 결과이다.
도 1D-1F는 sLZIP의 발현과 LC3B의 발현과의 관계를 확인한 결과이다.
도 2A-2B는 sLZIP 발현 증가에 따른 LC3의 프로모터의 활성을 확인한 결과이다.
도 2C-2E는 sLZIP가 결합하는 LC3B의 프로모터 부위 및 결합 부위를 도식한 것이다.
도 3A-3C는 sLZIP 에 의한 LC3B 발현 증가가 자가 포식체 형성에 영향을 주는지 여부를 확인한 결과이다.
도 3D-3E는 영양분 결핍 조건에서 sLZIP 과발현에 의해 LC3 단백질의 발현이 증가함과 동시에 p62 단백질의 양은 감소하는 것을 통해 자가 포식이 촉진됨을 확인한 결과이다.
도 3F-3G는 대장암 세포에서 sLZIP의 발현 억제에 따른 영양 결핍 스트레스에 의한 세포 사멸의 증가를 확인한 결과이다.
도 4A-4G는 대장암세포에서 sLZIP가 자가포식 활성화를 통해 미토콘드리아 호흡을 촉진하는 대사 리프로그래밍을 유도하는지 여부를 확인한 결과이다.
도 5A-5I는 대장암세포에서 자가포식 활성화를 통해 산화환원 항상성 조절에 관여하는지 여부를 확인한 결과이다.
도 6A-6I는 대장암세포에서 sLZIP의 발현 억제에 따른 해당과정 억제에 의한 세포 사멸의 증가를 확인한 결과이다.
도 7A-7E는 sLZIP의 발현이 억제된 대장암세포에서 해당 과정 억제제에 대한 종양 억제 민감도를 확인한 결과이다.
도 7F-7G는 대장암 환자 및 정상인의 조직에서의 CREB3와 LC3B 유전자 발현량을 비교한 결과이다.
도 8A-8C는 대장암 환자 및 정상인의 조직에서의 CREB3와 LC3B 단백질 발현량을 비교한 결과이다.
도 9는 대장암에서 sLZIP가 관여하는 대사 리프로그램밍 기전을 나타낸 것이다.
Figures 1A-1C show the results of measuring changes in the expression of sLZIP in a glucose- and glutamine-deficient environment.
Figures 1D-1F show the results confirming the relationship between the expression of sLZIP and the expression of LC3B.
Figures 2A-2B show the results confirming the activity of the LC3 promoter according to increased sLZIP expression.
Figures 2C-2E are diagrams of the promoter region and binding site of LC3B to which sLZIP binds.
Figures 3A-3C show the results of confirming whether increasing LC3B expression by sLZIP affects autophagosome formation.
Figures 3D-3E show results confirming that autophagy is promoted through sLZIP overexpression under nutrient-deficient conditions, as the expression of LC3 protein increases and the amount of p62 protein decreases.
Figures 3F-3G show the results confirming the increase in cell death due to nutrient deficiency stress due to inhibition of sLZIP expression in colon cancer cells.
Figures 4A-4G show the results of confirming whether sLZIP induces metabolic reprogramming that promotes mitochondrial respiration through autophagy activation in colon cancer cells.
Figures 5A-5I show the results of confirming whether colon cancer cells are involved in regulating redox homeostasis through autophagy activation.
Figures 6A-6I show the results confirming the increase in cell death due to inhibition of glycolysis due to inhibition of sLZIP expression in colon cancer cells.
Figures 7A-7E show the results of confirming tumor inhibition sensitivity to glycolysis inhibitors in colon cancer cells in which the expression of sLZIP was suppressed.
Figures 7F-7G show the results of comparing the expression levels of CREB3 and LC3B genes in tissues of colon cancer patients and normal people.
Figures 8A-8C show the results of comparing the protein expression levels of CREB3 and LC3B in tissues of colon cancer patients and normal people.
Figure 9 shows the metabolic reprogramming mechanism involved in sLZIP in colon cancer.

이하, 본 발명을 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail.

본 발명은 대장암의 개선 또는 치료를 위한 류신 지퍼 단백질의 용도를 제공한다. The present invention provides the use of leucine zipper protein for improving or treating colon cancer.

보다 구체적으로, 본 발명은 작은 류신 지퍼 단백질의 활성 억제제 또는 상기 단백질을 암호화하는 유전자의 활성 억제제를 유효성분으로 포함하는, 대장암 개선 또는 치료용 약학적 조성물; 및 치료상 유효량의 작은 류신 지퍼 단백질의 활성 억제제 또는 발현 억제제를 개체에 투여하는 단계를 포함하는, 대장암 개선 또는 치료 방법을 제공한다. More specifically, the present invention provides a pharmaceutical composition for improving or treating colon cancer, comprising as an active ingredient an inhibitor of the activity of a small leucine zipper protein or an inhibitor of the activity of a gene encoding the protein; and administering a therapeutically effective amount of an activity inhibitor or expression inhibitor of small leucine zipper protein to a subject.

본 발명에서 사용되는 용어, “개선”이란 본 발명에 따른 약학적 조성물의 투여에 의해 대장암 질환을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.The term “improvement” used in the present invention refers to all actions that suppress or delay the onset of colon cancer disease by administering the pharmaceutical composition according to the present invention.

본 발명에서 사용되는 용어, “치료”란 본 발명에 따른 약학적 조성물의 투여에 의해 대장암 질환에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.As used in the present invention, the term “treatment” refers to any action in which the symptoms of colon cancer disease are improved or beneficially changed by administration of the pharmaceutical composition according to the present invention.

본 발명에서, 류신 지퍼 단백질 (LZIP)은 bZIP 패밀리의 구성원으로서 CREB/ATF 유전자 패밀리에 속한다. 류신 지퍼 단백질은 기본 DNA-결합 도메인 (basic DNA-binding domain)과 류신 지퍼 도메인을 가지고 있고, cAMP-responsive element (CRE)와 AP-1 element에 결합한다. 또한 HCF-1 결합 단백질로 밝혀졌으며, 세포 증식과 세포성 형질 전환을 촉진하고, 2개의 LxxLL-전사 도움인자 결합 모티프를 포함하고 있다. 아울러, 류신 지퍼 단백질은 CREB3 (LZIP, Luman), CREB3L1 (OASIS), CREB3L2 (BBF2H7), CREB3L3 (CREB-H), CREB3L4 (AIbZIP)로 5개의 구성원으로 되어있으며, 이들은 상동성을 가지고 있으나, 전사 인자 각각의 기능은 다르다. 보고된 류신 지퍼 단백질의 기능으로는 CCR1에 결합하여 Lkn-1 의존성 세포이동을 조절하고, CCR2 프로모터에 결합하여 CCR2의 발현을 조절함 등이 있으나, 본 발명에서 개시하고 있는 바와 같이, 대장암에서 암세포의 자가포식 및 대사 리프로그래밍 조절에 대해서는 알려진 바가 없는 실정이다. In the present invention, leucine zipper protein (LZIP) is a member of the bZIP family and belongs to the CREB/ATF gene family. Leucine zipper protein has a basic DNA-binding domain and a leucine zipper domain, and binds to the cAMP-responsive element (CRE) and AP-1 element. It has also been identified as an HCF-1 binding protein, promotes cell proliferation and cellular transformation, and contains two LxxLL-transcription helper binding motifs. In addition, the leucine zipper protein consists of five members, CREB3 (LZIP, Luman), CREB3L1 (OASIS), CREB3L2 (BBF2H7), CREB3L3 (CREB-H), and CREB3L4 (AIbZIP), and although they have homology, they are not transcribed. Each argument has a different function. The reported functions of the leucine zipper protein include binding to CCR1 to regulate Lkn-1-dependent cell migration and binding to the CCR2 promoter to regulate CCR2 expression. However, as disclosed in the present invention, in colon cancer Nothing is known about the regulation of autophagy and metabolic reprogramming in cancer cells.

구체적으로 본 발명의 구체적인 일 실시예에서 사용된 류신 지퍼 단백질은 기존의 인간 LZIP과 달리 추정적 막통과 도메인(229-245 아미노산 잔기)이 결핍 된 354개의 아미노산으로 구성되어 있으며(GeneBank (accession No FJ263669)), 인간 LZIP과 달리 핵내에 주로 위치하고 있는 것을 특징으로 한다. 본 명세서에서는 인간 LZIP와 구분하여 작은 류신 지퍼 단백질(small leucine zipper protein, sLZIP)로 명명하여 사용하였다. Specifically, the leucine zipper protein used in one specific embodiment of the present invention, unlike the existing human LZIP, is composed of 354 amino acids lacking a putative transmembrane domain (229-245 amino acid residues) (GeneBank (accession No FJ263669 )), unlike human LZIP, is characterized by being mainly located in the nucleus. In this specification, it is called small leucine zipper protein (sLZIP) to distinguish it from human LZIP.

상기 작은 류신 지퍼 단백질은 서열번호 1로 표시되는 아미노산 서열로 이루어질 수 있으며, 상기 서열번호 1로 표시되는 아미노산 서열과, 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 아미노산 서열을 포함할 수 있다.The small leucine zipper protein may be composed of the amino acid sequence represented by SEQ ID NO: 1, and the amino acid sequence represented by SEQ ID NO: 1, and at least 70%, preferably at least 80%, more preferably at least 90%, most. Preferably, it may include an amino acid sequence having 95% or more sequence homology.

또한, 상기 작은 류신 지퍼 단백질을 코딩하는 유전자는 바람직하게, 서열번호 1로 표시되는 아미노산을 코딩할 수 있는 모든 종류의 염기서열을 포함할 수 있고, 가장 바람직하게, 서열번호 2으로 표시되는 염기서열로 이루어질 수 있으며, 상기 서열번호 2으로 표시되는 염기서열과 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다.In addition, the gene encoding the small leucine zipper protein may preferably include all types of base sequences capable of encoding the amino acid shown in SEQ ID NO: 1, and most preferably, the base sequence shown in SEQ ID NO: 2. It may consist of a base sequence having a sequence homology of at least 70%, preferably at least 80%, more preferably at least 90%, and most preferably at least 95% with the base sequence shown in SEQ ID NO: 2. can do.

구체적인 일 실시예에서, 본 발명자들은 대장암에서 sLZIP의 자가포식 유도 기능을 비롯하여 영양소가 결핍된 조건에서 대장암 세포의 생존에 미치는 영향에 대하여 조사하였다. 대장암 세포 내 영양소가 고갈되면 sLZIP의 전사량이 영양소 결핍 시간에 비례하여 증가할 뿐만 아니라, 자가포식소체의 형성에 중요한 역할을 하는 것으로 알려진 LC3B 유전자의 프로모터 인근 부위에 직접적으로 sLZIP이 결합하여 LC3B 유전자의 전사를 증가시킴을 확인하였다. sLZIP에 의해 유도된 자가포식소체의 분해는 대사스트레스 상황에서 글루타민을 공급하여 미토콘드리아의 ATP 생성 기능을 유지시키고 대사 스트레스가 주어지는 상황에서 세포의 Nrf2 기전을 활성화시켜 암 세포 미세환경에서 산화환원 항상성을 유지하는 것을 확인하였다. 아울러, 동물 실험을 통해 억제제를 통한 sLZIP 유전자 발현의 감소가 대장암 세포의 대사 유연성을 낮춤으로써 암 세포 진행 억제에 대한 민감도를 높인다는 사실을 확인하였다. In a specific example, the present inventors investigated the autophagy-inducing function of sLZIP in colon cancer and its effect on the survival of colon cancer cells under nutrient-deficient conditions. When nutrients in colon cancer cells are depleted, not only does the transcription amount of sLZIP increase in proportion to the time of nutrient deprivation, but also sLZIP binds directly to the region near the promoter of the LC3B gene, which is known to play an important role in the formation of autophagosomes, thereby increasing the LC3B gene. It was confirmed that the transcription of was increased. Decomposition of autophagosomes induced by sLZIP maintains the ATP production function of mitochondria by supplying glutamine in situations of metabolic stress and maintains redox homeostasis in the cancer cell microenvironment by activating the cell's Nrf2 mechanism in situations of metabolic stress. It was confirmed that In addition, animal experiments confirmed that reducing sLZIP gene expression through an inhibitor lowers the metabolic flexibility of colon cancer cells, thereby increasing their sensitivity to inhibition of cancer cell progression.

본 발명에서, 발현 억제제는 류신 지퍼 단백질을 암화화하는 유전자에 대하여 상보적인 유전자 가위, 안티센스 올리고뉴클레오티드, siRNA, shRNA, miRNA, 또는 이를 포함하는 벡터일 수 있다. 이러한 유전자 가위, 안티센스올리고뉴클레오타이드, siRNA, shRNA, miRNA 또는 이들을 포함하는 벡터는 당업계에 공지된 방법을 이용하여 제작할 수 있다. 본 발명에 있어서, 상기 "벡터"는 폴리펩타이드를 암호화하는 게놈 내로 삽입된 외부 DNA를 포함하는 유전자 작제물을 말한다. 본 발명과 관련된 벡터는 상기 유전자를 저해하는 핵산 서열이 게놈 내로 삽입된 벡터로서, 이들 벡터는 DNA 벡터, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터, 효모 벡터, 또는 바이러스 벡터를 예로 들 수 있다.In the present invention, the expression inhibitor may be a gene scissors, antisense oligonucleotide, siRNA, shRNA, miRNA, or a vector containing the same that is complementary to the gene coding for the leucine zipper protein. These gene scissors, antisense oligonucleotides, siRNA, shRNA, miRNA, or vectors containing them can be produced using methods known in the art. In the present invention, the “vector” refers to a genetic construct containing foreign DNA inserted into the genome encoding a polypeptide. The vector related to the present invention is a vector in which a nucleic acid sequence that inhibits the gene is inserted into the genome, and examples of these vectors include DNA vectors, plasmid vectors, cosmid vectors, bacteriophage vectors, yeast vectors, or viral vectors.

또한, 본 발명에서, 작은 류신 지퍼 단백질의 활성 억제제는 류신 지퍼 단백질의 기능 저하, 바람직하게, 상기 단백질 기능의 탐지가 불가능해지거나 무의미한 수준으로 존재하도록 하는 물질을 의미한다. 보다 구체적으로, 상기 활성 억제제는 류신 지퍼 단백질과 특이적으로 결합하는 항체; 류신 지퍼 단백질 내 특정 단편을 코딩하는 유전자에 대한 안티센스 올리고뉴클레오티드, siRNA, shRNA, miRNA, 유전자 기위 또는 이를 포함하는 벡터; 류신 지퍼 단백질 내 특정 단편의 활성을 억제하는 것일 수 있으나, 이에 제한되는 것은 아니다. In addition, in the present invention, an activity inhibitor of a small leucine zipper protein refers to a substance that reduces the function of the leucine zipper protein, preferably, makes detection of the protein function impossible or exists at an insignificant level. More specifically, the activity inhibitor is an antibody that specifically binds to the leucine zipper protein; Antisense oligonucleotides, siRNA, shRNA, miRNA, gene loci for genes encoding specific fragments within the leucine zipper protein, or vectors containing the same; It may inhibit the activity of a specific fragment within the leucine zipper protein, but is not limited to this.

본 발명의 약학적 조성물은 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 첨가제를 사용하여 제조될 수 있으며, 상기 첨가제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다.The pharmaceutical composition of the present invention can be prepared using pharmaceutically suitable and physiologically acceptable additives in addition to the active ingredients, and the additives include excipients, disintegrants, sweeteners, binders, coating agents, swelling agents, lubricants, and lubricants. Solubilizers such as agents or flavoring agents can be used.

본 발명의 약학적 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 약학적 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 해당분야의 적절한 방법으로 Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.For administration, the pharmaceutical composition of the present invention may be preferably formulated as a pharmaceutical composition containing one or more pharmaceutically acceptable carriers in addition to the active ingredient. Acceptable pharmaceutical carriers for compositions formulated as liquid solutions include those that are sterile and biocompatible, such as saline solution, sterile water, Ringer's solution, buffered saline solution, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and One or more of these ingredients can be mixed and used, and other common additives such as antioxidants, buffers, and bacteriostatic agents can be added as needed. In addition, diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate injectable formulations such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules, or tablets. Furthermore, it can be preferably formulated according to each disease or ingredient using a method disclosed by Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA, as an appropriate method in the field.

본 발명의 약학적 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다.Pharmaceutical preparation forms of the pharmaceutical composition of the present invention include granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions, and sustained-release preparations of the active compound. It can be.

본 발명의 약학적 조성물은 정맥내, 동맥내, 복강내, 근육내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. The pharmaceutical composition of the present invention may be administered in the conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraperitoneal, intrasternal, transdermal, intranasal, inhalation, topical, rectal, oral, intraocular or intradermal routes. can do.

본 발명의 약학적 조성물의 유효성분의 유효량은 질환의 개선 또는 치료, 또는 뼈 성장 유도 효과를 이루는데 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여시, 본 발명의 저해제는 1일 1회 내지 수회 투여시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 유전자 가위, 안티센스올리고뉴클레오타이드, siRNA, shRNAi, 또는 miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다.The effective amount of the active ingredient of the pharmaceutical composition of the present invention refers to the amount required to achieve the effect of improving or treating disease or inducing bone growth. Therefore, the type of disease, the severity of the disease, the type and content of the active ingredient and other ingredients contained in the composition, the type of dosage form and the patient's age, weight, general health condition, gender and diet, administration time, administration route and composition. It can be adjusted depending on a variety of factors, including secretion rate, duration of treatment, and concurrent medications. It is not limited thereto, but for example, in the case of adults, when administered once or several times a day, the inhibitor of the present invention is administered once or several times a day, and in the case of a compound, 0.1 ng/kg to 10 g/kg, polypeptide, For proteins or antibodies, it can be administered at a dose of 0.1 ng/kg to 10 g/kg, and for gene scissors, antisense oligonucleotides, siRNA, shRNAi, or miRNA, it can be administered at a dose of 0.01 ng/kg to 10 g/kg.

본 발명에 있어서, '개체'는 인간, 오랑우탄, 침팬지, 마우스, 랫트, 개, 소, 닭, 돼지, 염소, 양 등을 포함하나, 이들 예에 한정되는 것은 아니다. In the present invention, 'individual' includes humans, orangutans, chimpanzees, mice, rats, dogs, cows, chickens, pigs, goats, sheep, etc., but is not limited to these examples.

또한, 본 발명의 다른 양태로서, 대장암의 진단을 위한 작은 류신 지퍼 단백질의 용도를 제공한다. Additionally, in another aspect of the present invention, the use of a small leucine zipper protein for diagnosis of colon cancer is provided.

구체적인 일 실시예에서, 본 발명자들은 대장암 환자의 암 조직 내 유전자 및 단백질 발현을 비교했을 때, 본 발명의 sLZIP의 아형인 CREB3의 발현이 정상조직에 비해 증가되어 있었으며 대장암의 진행 단계와 상관관계를 보이는 것을 확인하였다. 이러한 결과는 sLZIP의 발현은 대장암의 진행과 관련되어 있고, sLZIP는 대장암의 진단의 바이오마커로 이용될 수 있다. In a specific example, when the present inventors compared gene and protein expression in cancer tissues of colon cancer patients, the expression of CREB3, a subtype of sLZIP of the present invention, was increased compared to normal tissues and was correlated with the progression stage of colon cancer. It was confirmed that there was a relationship. These results indicate that the expression of sLZIP is related to the progression of colon cancer, and sLZIP can be used as a biomarker for the diagnosis of colon cancer.

이에 따라, 본 발명은 작은 류신 지퍼 단백질의 활성 또는 상기 단백질을 암호화하는 유전자의 발현 수준을 측정하기 위한 프로브를 포함하는, 대장암 진단용 조성물; 및 유효량의 작은 류신 지퍼 단백질의 활성 또는 상기 단백질을 암호화하는 유전자의 발현 수준을 측정하기 위한 프로브를 개체에 투여하는 단계를 포함하는, 대장암의 진단을 위한 정보제공 방법을 제공한다. Accordingly, the present invention provides a composition for diagnosing colon cancer, comprising a probe for measuring the activity of a small leucine zipper protein or the expression level of a gene encoding the protein; and administering to the subject an effective amount of a probe for measuring the activity of a small leucine zipper protein or the expression level of a gene encoding the protein.

본 발명의 진단용 조성물 등은 역시 상술한 작은 류신 지퍼 단백질을 이용하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the diagnostic composition of the present invention also uses the small leucine zipper protein described above, the description of common content between the two is omitted in order to avoid excessive complexity of the present specification.

본 발명에서 사용되는 용어, "진단"이란 본 발명에 따른 조성물의 투여에 의해 병리 상태, 즉 대장암의 존재 또는 특징을 확인하는 행위이다. 본 발명의 목적 상, 생체 조직 내 작은 류신 지퍼 단백질 또는 상기 작은 류신 지퍼 단백질 내 특정 단편의 발현 또는 활성이 증진된 경우, 대장암으로 판단하는 것을 의미한다.As used in the present invention, the term “diagnosis” refers to the act of confirming the presence or characteristics of a pathological state, that is, colon cancer, by administering the composition according to the present invention. For the purpose of the present invention, when the expression or activity of small leucine zipper protein or a specific fragment within the small leucine zipper protein is enhanced in biological tissue, it means that it is judged to be colon cancer.

본 발명에서, 상기 작은 류신 지퍼 단백질의 발현을 측정하기 위한 프로브는, 작은 류신 지퍼 단백질과 특이적으로 결합하는 항체, 또는 상기 단백질을 코딩하는 유전자와 특이적으로 결합하는 핵산 프로브 또는 프라이머일 수 있고, 상기 류신 지퍼 단백질의 활성을 측정하기 위한 프로브는, 류신 지퍼 단백질 내 특정 단편과 특이적으로 결합하는 항체, 또는 상기 단편을 코딩하는 유전자와 특이적으로 결합하는 핵산 프로브 또는 프라이머일 수 있으나, 류신 지퍼 단백질의 발현 또는 활성을 측정할 수 있는 물질이라면, 제한없이 포함될 수 있다. In the present invention, the probe for measuring the expression of the small leucine zipper protein may be an antibody that specifically binds to the small leucine zipper protein, or a nucleic acid probe or primer that specifically binds to the gene encoding the protein, , the probe for measuring the activity of the leucine zipper protein may be an antibody that specifically binds to a specific fragment within the leucine zipper protein, or a nucleic acid probe or primer that specifically binds to the gene encoding the fragment. Any substance that can measure the expression or activity of a zipper protein may be included without limitation.

상기 항체는 폴리클로날 항체, 모노클로날 항체, 인간항체 및 인간화 항체, 또는 이들의 단편을 사용할 수 있다. 또한 상기 항체 단편은 Fab, Fab', F(ab')2 및 Fv 단편; 디아바디 (diabody); 선형 항체; 단일쇄 항체 분자; 및 항체 단편으로부터 형성된 다중특이성 항체 등을 포함할 수 있다. The antibodies may be polyclonal antibodies, monoclonal antibodies, human antibodies, humanized antibodies, or fragments thereof. Additionally, the antibody fragments include Fab, Fab', F(ab')2 and Fv fragments; diabody; linear antibody; single chain antibody molecule; and multispecific antibodies formed from antibody fragments.

상기 핵산 프로브는 자연의 또는 변형된 모노머 또는 연쇄 (linkages)의 선형 올리고머를 의미하며, 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하고 타켓 뉴클레오타이드 서열에 특이적으로 혼성화할 수 있으며, 자연적으로 존재하거나 또는 인위적으로 합성된 것을 말한다. 본 발명에 따른 프로브는 단일쇄일 수 있으며, 바람직하게는 올리고디옥시리보뉴클레오티드일 수 있다. 본 발명의 프로브는 자연 dNMP (즉, dAMP, dGMP, dCMP 및 dTMP), 뉴클레오타이드 유사체 또는 유도체를 포함할 수 있다. 또한, 본 발명의 프로브는 리보뉴클레오타이드도 포함할 수 있다. 예컨대, 본 발명의 프로브는 골격 변형된 뉴클레오타이드, 예컨대, 펩타이드 핵산 (PNA), 포스포로티오에이트 DNA, 포스포로디티오에이트 DNA, 포스포로아미데이트 DNA, 아마이드-연결된 DNA, MMI-연결된 DNA, 2'-O-메틸 RNA, 알파-DNA 및 메틸포스포네이트 DNA, 당 변형된 뉴클레오타이드 예컨대, 2'-O-메틸 RNA, 2'-플루오로 RNA, 2'-아미노 RNA, 2'-O- 알킬 DNA, 2'-O-알릴 DNA, 2'-O-알카이닐 DNA, 헥소스 DNA, 피라노실 RNA 및 안히드로헥시톨 DNA, 및 염기 변형을 갖는 뉴클레오타이드 예컨대, C-5 치환된 피리미딘 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 에티틸-, 프로피닐-, 알카이닐-, 티아조릴-, 이미다조릴-, 피리딜- 포함), C-7 치환기를 갖는 7-데아자퓨린 (치환기는 플루오로-, 브로모-, 클로로-, 이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 알카이닐-, 알켄일-, 티아조릴-, 이미다조릴-, 피리딜-), 이노신 및 디아미노퓨린을 포함할 수 있다.The nucleic acid probe refers to a linear oligomer of natural or modified monomers or linkages, includes deoxyribonucleotides and ribonucleotides, can hybridize specifically to a target nucleotide sequence, and may exist naturally or be artificially synthesized. says what happened The probe according to the present invention may be a single chain, preferably an oligodeoxyribonucleotide. Probes of the invention may include native dNMPs (i.e., dAMP, dGMP, dCMP, and dTMP), nucleotide analogs, or derivatives. Additionally, the probe of the present invention may also contain ribonucleotides. For example, the probes of the present invention may contain backbone modified nucleotides, such as peptide nucleic acids (PNAs), phosphorothioate DNA, phosphorodithioate DNA, phosphoroamidate DNA, amide-linked DNA, MMI-linked DNA, 2 '-O-methyl RNA, alpha-DNA and methylphosphonate DNA, sugar modified nucleotides such as 2'-O-methyl RNA, 2'-fluoro RNA, 2'-amino RNA, 2'-O-alkyl DNA, 2'-O-allyl DNA, 2'-O-alkynyl DNA, hexose DNA, pyranosyl RNA and anhydrohexitol DNA, and nucleotides with base modifications such as C-5 substituted pyrimidines ( Substituents are fluoro-, bromo-, chloro-, iodo-, methyl-, ethyl-, vinyl-, formyl-, ethyl-, propynyl-, alkynyl-, thiazoryl-, imidazoryl- , including pyridyl-), 7-deazapurine with a C-7 substituent (substituents are fluoro-, bromo-, chloro-, iodo-, methyl-, ethyl-, vinyl-, formyl-, alkali- Nyl-, alkenyl-, thiazoryl-, imidazoryl-, pyridyl-), inosine and diaminopurine.

상기 프라이머는 적합한 온도 및 적합한 완충액 내에서 적합한 조건 (즉, 4종의 다른 뉴클레오시드 트리포스페이트 및 중합반응 효소) 하에서 주형-지시 DNA 합성의 개시점으로 작용할 수 있는 단일-가닥 올리고뉴클레오타이드를 의미한다. 프라이머의 적합한 길이는 다양한 요소, 예컨대, 온도와 프라이머의 용도에 따라 변화가 있을 수 있다. 또한, 프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명에서의 프라이머는 주형인 유전자의 뉴클레오타이드 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, 이 유전자 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 충분한 상보성을 가지면 충분하다. 또한, 본 발명에 따른 프라이머는 유전자 증폭 반응에 이용될 수 있는 것이 좋다. 상기 증폭 반응은 핵산 분자를 증폭하는 반응을 말하며, 이러한 유전자의 증폭 반응들에 대해서는 당업계에 잘 알려져 있고, 예컨대, 중합효소 연쇄반응 (PCR), 역전사 중합효소 연쇄반응 (RT-PCR), 리가아제 연쇄반응 (LCR), 전자 중재 증폭 (TMA), 핵산 염기서열 기판 증폭 (NASBA) 등이 포함될 수 있다.The primer refers to a single-stranded oligonucleotide that can act as an initiation point for template-directed DNA synthesis under suitable conditions (i.e., four different nucleoside triphosphates and polymerization enzymes) at a suitable temperature and in a suitable buffer. . The appropriate length of the primer may vary depending on various factors, such as temperature and the intended use of the primer. In addition, the sequence of the primer does not need to be completely complementary to a partial sequence of the template; it is sufficient to have sufficient complementarity within the range where the primer can hybridize with the template and perform its original function. Therefore, the primer in the present invention does not need to have a perfectly complementary sequence to the nucleotide sequence of the template gene, but it is sufficient to have sufficient complementarity within the range to hybridize to the gene sequence and function as a primer. Additionally, the primers according to the present invention are preferably used in gene amplification reactions. The amplification reaction refers to a reaction that amplifies a nucleic acid molecule, and amplification reactions of such genes are well known in the art, such as polymerase chain reaction (PCR), reverse transcription polymerase chain reaction (RT-PCR), and ligase. These may include enzyme chain reaction (LCR), electron-mediated amplification (TMA), and nucleic acid sequence substrate amplification (NASBA).

본 발명의 대장암 진단용 조성물은 키트의 형태로 포함될 수 있다.The composition for diagnosing colon cancer of the present invention may be included in the form of a kit.

상기 키트는 작은 류신 지퍼 단백질 또는 작은 류신 지퍼 단백질 내 특정 단편의 발현 또는 활성을 측정할 수 있는 항체, 프로브 또는 프라이머 등을 포함할 수 있고, 이들의 정의는 상술한 바와 같다.The kit may include antibodies, probes, or primers that can measure the expression or activity of small leucine zipper protein or a specific fragment within the small leucine zipper protein, and their definitions are as described above.

상기 키트가 PCR 증폭 과정에 적용되는 경우 선택적으로, PCR 증폭에 필요한 시약, 예컨대, 완충액, DNA 중합효소 (예컨대, Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis 또는 Pyrococcus furiosus (Pfu)로부터 수득한 열 안정성 DNA 중합효소), DNA 중합효소 보조인자 및 dNTPs를 포함할 수 있으며, 상기 키트가 면역 분석에 적용되는 경우, 본 발명의 키트는 선택적으로, 이차 항체 및 표지의 기질을 포함할 수 있다. 나아가, 본 발명에 따른 키트는 상기한 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있다.Optionally, when the kit is applied to a PCR amplification process, reagents required for PCR amplification, such as buffers, DNA polymerase (e.g., Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis or thermostable DNA polymerase obtained from Pyrococcus furiosus (Pfu), DNA polymerase cofactors, and dNTPs, and when the kit is applied to an immunoassay, the kit of the present invention optionally includes a secondary antibody and a label. It may include the substrate of Furthermore, the kit according to the present invention can be manufactured in a number of separate packaging or compartments containing the above-mentioned reagent components.

또한, 본 발명의 대장암 진단용 조성물은 마이크로어레이의 형태로 포함될 수 있다.Additionally, the composition for diagnosing colon cancer of the present invention may be included in the form of a microarray.

본 발명의 마이크로어레이에 있어서, 상기 류신 지퍼 단백질 또는 류신 지퍼 단백질 내 특정 단편의 발현 또는 활성을 측정할 수 있는 프 항체, 프로브 또는 프라이머 등은 혼성화 어레이 요소 (hybridizable array element)로서 이용되며, 기질 (substrate) 상에 고정화된다. 바람직한 기질은 적합한 견고성 또는 반-견고성 지지체로서, 예컨대, 막, 필터, 칩, 슬라이드, 웨이퍼, 파이버, 자기성 비드 또는 비자기성 비드, 겔, 튜빙, 플레이트, 고분자, 미소입자 및 모세관을 포함할 수 있다. 상기 혼성화 어레이 요소는 상기 기질 상에 배열되고 고정화되며, 이와 같은 고정화는 화학적 결합 방법 또는 UV와 같은 공유 결합적 방법에 의해 수행될 수 있다. 예를 들어, 상기 혼성화 어레이 요소는 에폭시 화합물 또는 알데히드기를 포함하도록 변형된 글래스 표면에 결합될 수 있고, 또한 폴리라이신 코팅 표면에서 UV에 의해 결합될 수 있다. 또한, 상기 혼성화 어레이 요소는 링커 (예: 에틸렌 글리콜 올리고머 및 디아민)를 통해 기질에 결합될 수 있다.In the microarray of the present invention, antibodies, probes, or primers capable of measuring the expression or activity of the leucine zipper protein or a specific fragment within the leucine zipper protein are used as a hybridizable array element, and a substrate ( It is immobilized on a substrate. Preferred substrates are suitable rigid or semi-rigid supports, which may include, for example, membranes, filters, chips, slides, wafers, fibers, magnetic or non-magnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. there is. The hybridization array elements are arranged and immobilized on the substrate, and such immobilization may be performed by a chemical bonding method or a covalent bonding method such as UV. For example, the hybridized array elements can be bonded to a glass surface modified to contain epoxy compounds or aldehyde groups, and can also be bonded by UV to a polylysine coated surface. Additionally, the hybridization array elements can be coupled to a substrate via linkers (eg, ethylene glycol oligomers and diamines).

한편, 본 발명의 마이크로어레이에 적용되는 시료가 핵산일 경우에는 표지될 수 있고, 마이크로어레이 상의 어레이 요소와 혼성화 될 수 있다. 혼성화 조건은 다양할 수 있으며, 혼성화 정도의 검출 및 분석은 표지 물질에 따라 다양하게 실시될 수 있다. Meanwhile, if the sample applied to the microarray of the present invention is a nucleic acid, it may be labeled and hybridized with array elements on the microarray. Hybridization conditions may vary, and detection and analysis of the degree of hybridization may be performed in various ways depending on the labeling substance.

본 발명의 또 다른 양태로서, 본 발명은 대장암의 개선 또는 치료용 의약의 개발을 위한 류신 지퍼 단백질의 용도를 제공한다. In another aspect of the present invention, the present invention provides the use of a leucine zipper protein for the development of a medicine for improving or treating colon cancer.

본 발명의 스크리닝 방법 등은 역시 상술한 류신 지퍼 단백질을 이용하기 때문에, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the screening method of the present invention also uses the leucine zipper protein described above, the description of common content between the two is omitted to avoid excessive complexity of the present specification.

한 구현예로서, 본 발명은 체외 (in vitro)에서, 류신 지퍼 단백질을 발현하는 세포 또는 조직에 후보물질을 처리하고, 상기 세포 또는 조직에서 류신 지퍼 단백질의 발현 수준을 측정하는 것을 포함하며, 상기 후보물질이 류신 지퍼 단백질의 발현을 하향조절할 때 대장암 개선 또는 치료용 의약으로 판별하는, 대장암 개선 또는 치료용 의약의 스크리닝 방법을 제공한다. In one embodiment, the present invention includes treating cells or tissues expressing a leucine zipper protein with a candidate material in vitro and measuring the expression level of the leucine zipper protein in the cells or tissues, Provided is a screening method for a drug for the improvement or treatment of colon cancer, in which a candidate substance is identified as a drug for the improvement or treatment of colon cancer when it downregulates the expression of the leucine zipper protein.

다른 구현예로서, 본 발명은 체외 (in vitro)에서, 류신 지퍼 단백질을 발현하는 세포 또는 조직에 후보물질을 처리하고, 상기 세포 또는 조직에서 류신 지퍼 단백질를 암호화하는 유전자의 발현량을 측정하는 것을 포함하며, 상기 후보물질이 류신 지퍼 단백질을 암호화하는 유전자의 발현을 하향조절할 때 대장암 개선 또는 치료용 의약으로 판별하는, 대장암 개선 또는 치료용 의약의 스크리닝 방법을 제공한다. In another embodiment, the present invention includes treating cells or tissues expressing a leucine zipper protein with a candidate material in vitro, and measuring the expression level of the gene encoding the leucine zipper protein in the cells or tissues. In addition, it provides a screening method for a drug for improving or treating colon cancer, in which the candidate substance is identified as a drug for improving or treating colon cancer when it downregulates the expression of the gene encoding the leucine zipper protein.

상기 후보물질은 통상적인 선정방식에 따라 류신 지퍼 단백질 또는 이의 특정 단편으로의 전사, 번역을 억제하는 물질. 또는 류신 지퍼 단백질 또는 이의 특정 단편의 기능 또는 활성을 억제하는 의약으로서의 가능성을 지닌 것으로 추정되거나 또는 무작위적으로 선정된 개별적인 핵산, 단백질, 펩타이드, 기타 추출물 또는 천연물, 화합물 등이 될 수 있다.The candidate material is a substance that inhibits transcription and translation of a leucine zipper protein or a specific fragment thereof according to a conventional selection method. Alternatively, it may be an individual nucleic acid, protein, peptide, other extract, natural product, compound, etc. that is presumed to have the potential as a medicine that inhibits the function or activity of the leucine zipper protein or a specific fragment thereof, or is randomly selected.

이후, 후보물질이 처리된 세포에서 상기 유전자의 발현양, 단백질의 양 또는 단백질의 활성을 측정할 수 있으며, 측정 결과, 상기 유전자의 발현양, 단백질의 양 또는 단백질의 활성이 감소되는 것이 측정되면 상기 후보물질은 대장암을 개선 또는 치료할 수 있는 물질로 판단할 수 있다.Thereafter, the expression level of the gene, the amount of protein, or the activity of the protein can be measured in cells treated with the candidate substance, and if the measurement results show that the expression level of the gene, the amount of protein, or the activity of the protein is decreased, The candidate substance can be judged as a substance that can improve or treat colon cancer.

상기에서 유전자의 발현양, 단백질의 양 또는 단백질의 활성을 측정하는 방법은 당업계에 공지된 다양한 방법을 통해 수행될 수 있는데, 예를 들면, 이에 제한되지는 않으나, 역전사 중합효소 연쇄반응 (reverse transcriptase-polymerase chain reaction), 실시간 중합효소 연쇄반응 (real time-polymerase chain reaction), 웨스턴 블럿, 노던 블럿, ELISA (enzyme linked immunosorbent assay), 방사선면역분석 (RIA: radioimmunoassay), 방사 면역 확산법 (radioimmunodiffusion) 및 면역침전분석법 (immunoprecipitation assay) 등을 이용하여 수행할 수 있다.The method of measuring the expression level of a gene, the amount of a protein, or the activity of a protein can be performed through various methods known in the art, for example, but not limited thereto, reverse transcription polymerase chain reaction (reverse transcription polymerase chain reaction). transcriptase-polymerase chain reaction, real time-polymerase chain reaction, Western blot, Northern blot, ELISA (enzyme linked immunosorbent assay), radioimmunoassay (RIA), radioimmunodiffusion. and immunoprecipitation assay.

본 발명의 스크리닝 방법을 통해 얻은, 류신 지퍼 단백질 또는 이의 특정 단편의 발현을 저해시키거나 단백질의 기능을 저해시키는 활성을 나타내는 후보물질이 대장암 개선 또는 치료용 대사항암제로써의 후보물질이 될 수 있다.Candidate substances that are obtained through the screening method of the present invention and exhibit the activity of inhibiting the expression of leucine zipper protein or a specific fragment thereof or inhibiting the function of the protein may be candidates as an anticancer agent for improving or treating colon cancer. .

이와 같은 대장암 개선 또는 치료용 의약의 후보물질은 이후의 대장암 대사항암제 개발과정에서 선도물질 (leading compound)로서 작용하게 되며, 선도물질이 류신 지퍼 단백질 또는 이의 특정 단편의 기능에 대한 억제효과를 나타낼 수 있도록 그 구조를 변형시키고 최적화함으로써, 새로운 대장암 치료제를 개발할 수 있다.Such candidate substances for improving or treating colon cancer serve as leading compounds in the subsequent development of anti-cancer drugs for colon cancer, and the leading compound has an inhibitory effect on the function of the leucine zipper protein or a specific fragment thereof. By modifying and optimizing the structure so that it can be expressed, a new treatment for colon cancer can be developed.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Below, preferred embodiments are presented to aid understanding of the present invention. However, the following examples are provided only to make the present invention easier to understand, and the content of the present invention is not limited by the following examples.

[실험 재료 및 실험 방법][Experimental materials and experimental methods]

1.One. 재료ingredient

RPMI 1640 및 DMEM 배지는 Thermo Fisher Scientific(Waltham, MA, USA)에서 구입하였다. 소태아혈청(FBS)은 HyClone Laboratories(Logan, UT, USA)에서 입수하였다. Myco-Guard™는 Biomax(한국, 서울)에서 구입하였다. β-액틴, α-튜불린, p62/SQSTM1 및 녹색 형광 단백질(GFP)을 인식하는 마우스 단일클론 항체는 Santa Cruz Biotechnology(Santa Cruz, CA, USA)에서 구입하였다. LC3, PARP, Keap1, Nrf2 및 절단된 capase-3에 대한 토끼 단일클론 항체 및 마우스 단일클론 NQO1 항체는 Cell Signaling Technology(Danvers, MA, USA)에서 입수하였다. 토끼 다중클론 Lamin A/C 항체는 GenScript Biotech(Piscataway, NJ, USA)에서 구입하였다. 토끼 다중클론 CREB3 항체는 Proteintech(Catalog number. 11275-1-AP, Chicago, IL, USA)에서 구입하였다. 토끼 다중클론 CREB3 항체는 sLZIP의 발현 여부 및 발현량을 정량하는데 사용되었다. 마우스 단일클론 플래그-M2 항체, 토끼 다중클론 LC3B 항체, 3-브로모피루베이트, 바필로마이신 A1, 브레펠딘 A, 다이싸이오트레이톨, 과산화수소 용액, 탑시가르긴, 투니카마이신은 Millipore Sigma(Burlington, MA, USA)에서 입수하였다. sLZIP에 대한 인간 작은 간섭 RNA(si-sLZIP)는 GenePharma(중국, 상하이)에서 입수하였다. 구체적으로, 상기 si-sLZIP는 5'-CCAGAUGACUCCACAGCAU-3'(서열번호 3)의 염기서열로 이루어졌다.RPMI 1640 and DMEM media were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Fetal bovine serum (FBS) was obtained from HyClone Laboratories (Logan, UT, USA). Myco-Guard™ was purchased from Biomax (Seoul, Korea). Mouse monoclonal antibodies recognizing β-actin, α-tubulin, p62/SQSTM1, and green fluorescent protein (GFP) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit monoclonal antibodies against LC3, PARP, Keap1, Nrf2, and cleaved capase-3, and mouse monoclonal NQO1 antibody were obtained from Cell Signaling Technology (Danvers, MA, USA). Rabbit polyclonal Lamin A/C antibody was purchased from GenScript Biotech (Piscataway, NJ, USA). Rabbit polyclonal CREB3 antibody was purchased from Proteintech (Catalog number. 11275-1-AP, Chicago, IL, USA). Rabbit polyclonal CREB3 antibody was used to quantify the expression and amount of sLZIP. Mouse monoclonal Flag-M2 antibody, rabbit polyclonal LC3B antibody, 3-bromopyruvate, bafilomycin A1, brefeldin A, dithiothreitol, hydrogen peroxide solution, thapsigargin, and tunicamycin were from Millipore Sigma ( Burlington, MA, USA). Human small interfering RNA for sLZIP (si-sLZIP) was obtained from GenePharma (Shanghai, China). Specifically, the si-sLZIP consisted of the base sequence 5'-CCAGAUGACUCCACAGCAU-3' (SEQ ID NO: 3).

2.2. 세포 배양, 형질 감염, 및 안정한 세포주 생성 방법Methods for cell culture, transfection, and stable cell line generation

HCT116, LoVo, SW620 및 HEK 293 세포는 ATCC(Manassas, VA, USA)에서 구입하였다. HCT116 및 SW620 세포를 RPMI 1640 배지에서 성장시켰다. LoVo 세포는 F12K 배지에서 성장되었고 HEK 293 세포는 DMEM에서 성장되었다. 모든 세포주는 10% FBS, 1% 페니실린/스트렙토마이신 및 마이코플라스마 제거 시약을 함유하는 배지에서 성장시켰다. E-fection Plus(Lugen Sci, Seoul, South Korea)를 사용하여 세포를 플라스미드로 형질감염시켰다. Interferin(Polyplus, New York, NY, USA)을 사용하여 세포를 siRNA로 형질감염시켰다. sLZIP-과발현 안정 세포주를 확립하기 위해, HCT116 세포를 cLV-CMV-CopGFP 또는 cLV-CMV-3xFlag-sLZIP로 감염시켰다. 감염 48시간 후에 배양 배지를 교체하고 2㎍/ml 퓨로마이신을 사용하여 안정한 집단을 선택하였다. CRISPR/Cas9 시스템을 사용하여 sLZIP-녹아웃 세포주를 확립하기 위해 HCT116 세포를 pRGEN-Cas9-CMV 또는 pRGEN-sgRNA(ToolGen Inc., Seoul, South Korea)로 형질감염시켰다. 2 ㎍/ml 퓨로마이신을 사용하여 안정한 집단을 선택하였다. 여기서 CRISPR/Cas9 시스템에서 sgRNA의 표적 서열은 서열번호 2로 표시되는 sLZIP을 암호화하는 염기서열 중 CCCAGCGTCGTTGAACATTCTCA 이다. HCT116, LoVo, SW620, and HEK 293 cells were purchased from ATCC (Manassas, VA, USA). HCT116 and SW620 cells were grown in RPMI 1640 medium. LoVo cells were grown in F12K medium and HEK 293 cells were grown in DMEM. All cell lines were grown in medium containing 10% FBS, 1% penicillin/streptomycin, and mycoplasma removal reagent. Cells were transfected with plasmids using E-fection Plus (Lugen Sci, Seoul, South Korea). Cells were transfected with siRNA using Interferin (Polyplus, New York, NY, USA). To establish sLZIP-overexpressing stable cell lines, HCT116 cells were infected with cLV-CMV-CopGFP or cLV-CMV-3xFlag-sLZIP. After 48 h of infection, the culture medium was replaced and stable populations were selected using 2 μg/ml puromycin. To establish sLZIP-knockout cell lines using the CRISPR/Cas9 system, HCT116 cells were transfected with pRGEN-Cas9-CMV or pRGEN-sgRNA (ToolGen Inc., Seoul, South Korea). Stable populations were selected using 2 μg/ml puromycin. Here, the target sequence of sgRNA in the CRISPR/Cas9 system is CCCAGCGTCGTTGAACATTCTCA among the base sequences encoding sLZIP represented by SEQ ID NO: 2.

3.3. RNA 분리 및 정량적 RT-PCRRNA isolation and quantitative RT-PCR

MiniBEST Universal RNA Extraction Kit(Takara, Shiga, Japan)를 사용하여 Total RNA를 분리하고 PrimeScript™ RT Master Mix(Takara, Shiga, Japan)를 사용하여 total RNA에서 cDNA를 합성하였다. cDNA 샘플은 QuantStudio3 실시간 PCR 기기(Applied Biosystems, Foster City, CA, USA)에서 EvaGreen Express 2x qPCR Master Mix(Applied Biological Materials)를 사용하여 삼중으로 분석되었다. qPCR 및 semi-qPCR 분석에 각각 하기 표 1 및 표 2의 프라이머가 사용되었다.Total RNA was isolated using the MiniBEST Universal RNA Extraction Kit (Takara, Shiga, Japan), and cDNA was synthesized from total RNA using PrimeScript™ RT Master Mix (Takara, Shiga, Japan). cDNA samples were analyzed in triplicate using EvaGreen Express 2x qPCR Master Mix (Applied Biological Materials) on a QuantStudio3 real-time PCR instrument (Applied Biosystems, Foster City, CA, USA). The primers shown in Tables 1 and 2 below were used for qPCR and semi-qPCR analysis, respectively.

The primer sequences used for qPCRThe primer sequences used for qPCR mRNAmRNA Primer sequencePrimer sequence MAP1LC3BMAP1LC3B F: AGCAGCATCCAACCAAAATCF: AGCAGCATCCAACCAAAATC R: CTGTGTCCGTTCACCAACAGR: CTGTGTCCGTTTCACCAACAG ATG3ATG3 F: GTTGGAAACAGATGAGGCTACCF: GTTGGAAACAGATGAGGCTACC R: TAGCCAAACAACCATAATCGTGR: TAGCCAAACAACCATAATCGTG ATG4BATG4B F: ACTGGGAAGATGGACGCAGF: ACTGGGAAGATGGACGCAG R: AGTATCCAAACGGGCTCTGAR: AGTATCCAAACGGGCTCTGA ATG5ATG5 F: GAAAGGGAAGCAGAACCATACTATTTGF: GAAAGGGAAGCAGAACCATACTATTTG R: TCAGTGGTGTGCCTTCATATTCAR: TCAGTGTGTGCCTTCATATTCA BECN1BECN1 F: GGAGAGGAGCCATTTATTGAAAF: GGAGAGGAGCCATTTATTGAAA R: AGAGTGAAGCTGTTGGCACTTTR: AGAGTGAAGCTGTTGGCACTTT ATG7ATG7 F: AAGCAAGAGAAAGCTGGTCATCF: AAGCAAGAGAAAGCTGGTCATC R: AGTAGCAGCCAAGCTTGTAACCR: AGTAGCAGCCAAGCTTGTAACC ATG10ATG10 F: CTGAAGGACATATGGGAAGGAGF: CTGAAGGACATATGGGAAGGAG R: GAGGTAGATTCAGCCCAACAACR: GAGGTAGATTCAGCCCAACAAC NQO1NQO1 F: AAGAGCACTGATCGTACTGGCF: AAGAGCACTGATCGTACTGGC R: GGATACTGAAAGTTCGCAGGGR: GGATACTGAAAGTTCGCAGGG CHOPCHOP F: ACCAAGGGAGAACCAGGAAACGF: ACCAAGGGAGAACCAGGAAACG R: TCACCATTCGGTCAATCAGAGCR: TCACCATTCGGTCAATCAGAGC GSTM1GSTM1 F: TTCCCAATCTGCCCTACTTGF: TTCCAATCTGCCCTACTTG R: GGTTGTCCATGGTCTGGTTCR:GGTTGTCCATGGTCTGGTTC HMOX1HMOX1 F: CCATAGGCTCCTTCCTCCTTTCF: CCATAGGCTCCTTCCTCCTTTC R: GGCCTTCTTTCTAGAGAGGGAATTR: GGCCTTTCTTTCTAGAGAGGGAATT SQSTM1SQSTM1 F: ATCGGAGGATCCGAGTGTF: ATCGGAGGATCCGAGTGT R: TGGCTGTGAGCTGCTCTTR: TGGCTGTGAGCTGCTCTT sLZIPsLZIP F: AGCAGCAGCATGTACTCCTCTF: AGCAGCAGCATGTACTCCTCT R: AGGCAGCTCCAGCTGGTAAGR:AGGCAGCTCCAGCTGGTAAG β-Actinβ-Actin F: AGCGAGCATCCCCCAAAGTTF: AGCGAGCATCCCCCAAAGTT R: GGGCACGAAGGCTCATCATTR: GGGCACGAAGGCTCATCATT

The primer sequences used for semi-qPCR The primer sequences used for semi-qPCR mRNAmRNA Primer sequencePrimer sequence MAP1LC3BMAP1LC3B F: TCGGAGAAGACCTTCAAGCAF:TCGGAGAAGACCTTCAAGCA R: GGCATAGACCATGTACAGGAR: GGCATAGACCATGTACAGGA BECN1BECN1 F: CCAGGATGGTGTCTCTCGCAF: CCAGGATGGTGTCTCTCGCA R: CTGCGTCTGGGCATAACGCAR: CTGCGTCTGGGCATAACGCA ATG5ATG5 F: AGCAACTCTGGATGGGATTGF: AGCAACTCTGGATGGGATTG R: CACTGCAGAGGTGTTTCCAAR: CACTGCAGAGTGTTTCCAA XBP-1XBP-1 F: AAACAGAGTAGCAGCTCAGACTGCF:AAACAGAGTAGCAGCTCAGACTGC R: TCCTTCTGGGTAGACCTCTGGGAGR:TCCTTCTGGGTAGACCTCTGGGAG sLZIPsLZIP F: AGCAGCAGCATGTACTCCTCTF: AGCAGCAGCATGTACTCCTCT R: CTAGCCTGAGTATCTGTCCTR: CTAGCCTGAGTATCTGTCCT β-Actinβ-Actin F: AGCGAGCATCCCCCAAAGTTF: AGCGAGCATCCCCCAAAGTT R: GGGCACGAAGGCTCATCATTR: GGGCACGAAGGCTCATCATT

4.4. 웨스턴 블랏 분석 방법Western blot analysis method

세포를 얼음 상에서 20분 동안 RIPA 완충액에 용해시키고 4˚C에서 12,000 x g에서 20분 동안 원심분리하였다. 단백질은 4˚C에서 밤새 특정 1차 항체로 프로브되었다. 블랏들은 25˚C에서 1시간 동안 2차 항체와 함께 배양되었다. 면역복합체는 West Save Gold western blot detection kit(YoungIn Frontier, Seoul, South Korea)를 이용하여 검출하였다.Cells were lysed in RIPA buffer for 20 min on ice and centrifuged at 12,000 x g for 20 min at 4˚C. Proteins were probed with specific primary antibodies overnight at 4˚C. Blots were incubated with secondary antibodies for 1 hour at 25˚C. Immune complexes were detected using the West Save Gold western blot detection kit (YoungIn Frontier, Seoul, South Korea).

5.5. 세포 분획 방법Cell fractionation method

세포를 얼음 상에서 30분 동안 세포질 용해 완충액(10mM NaCl HEPES 완충액)으로 용해시켰다. 세포 용해물을 4˚C에서 20분 동안 2,000 x g에서 원심분리하여 세포와 세포질 단백질을 분리하였다. 상층액에는 세포질 단백질이 포함되어 있다. 펠릿을 RIPA 완충액으로 용해하고 4˚C에서 20분 동안 12,000 x g에서 원심분리한 후, 분획된 샘플을 웨스턴 블랏 분석에 적용하였다.Cells were lysed with cytoplasmic lysis buffer (10mM NaCl HEPES buffer) for 30 min on ice. Cell lysates were centrifuged at 2,000 x g for 20 min at 4˚C to separate cells and cytosolic proteins. The supernatant contains cytosolic proteins. The pellet was dissolved in RIPA buffer and centrifuged at 12,000 x g for 20 minutes at 4˚C, and the fractionated samples were subjected to Western blot analysis.

6.6. 염색질 면역 침전 분석(Chromatin immunoprecipitation assay)Chromatin immunoprecipitation assay

ChIP 분석을 위해 세포를 포름알데히드로 고정하고 25˚C에서 15분 동안 회전시켰다. 글리신을 125mM의 최종 농도로 배지에 첨가하고 25˚C에서 5분 동안 진탕하면서 인큐베이션하였다. 염색질 샘플을 단백질 A/G 비드, 5㎍의 항-IgG 및 항-GST 항체와 함께 공동 면역침전시켰다. 샘플을 5 μl의 proteinase K(20 mg/ml)로 65˚C에서 18시간 동안 처리한 다음 페놀/클로로포름 추출을 수행하였다. ChIP 분석을 위해 하기 표 3의 프라이머를 사용하였다.For ChIP analysis, cells were fixed with formaldehyde and rotated at 25˚C for 15 min. Glycine was added to the medium to a final concentration of 125mM and incubated at 25˚C for 5 minutes with shaking. Chromatin samples were coimmunoprecipitated with protein A/G beads, 5 μg of anti-IgG, and anti-GST antibodies. Samples were treated with 5 μl of proteinase K (20 mg/ml) at 65˚C for 18 h, followed by phenol/chloroform extraction. For ChIP analysis, the primers listed in Table 3 below were used.

Target siteTarget site Primer sequencePrimer sequence CRE
(-267/+11 bp)
CRE
(-267/+11 bp)
F : CCCACAACCGTCACCTCAF: CCCACAACCGTCACCTCA R : AATCCGACTCTGGCGATAGCR:AATCCGACTCTGGCGATAGC

7.7. 루시퍼라제 활성 분석Luciferase activity assay

루시퍼라제 분석을 위해, 인간 LC3 프로모터를 인간 게놈 DNA로부터 단리하였다. 프로모터 영역을 pGL4.21 플라스미드 벡터(Promega, Madison, WI, USA)에 삽입하였다. 루시퍼라제 활성 분석은 Dual-Luciferase Reporter Assay 시스템(Promega)을 사용하여 수행되었다. Luminometer 20/20n(Turner BioSystems, Sunnyvale, CA, USA)을 사용하여 제조업체의 프로토콜에 따라 루시퍼라제 활성을 측정하였다.For luciferase analysis, the human LC3 promoter was isolated from human genomic DNA. The promoter region was inserted into the pGL4.21 plasmid vector (Promega, Madison, WI, USA). Luciferase activity assay was performed using the Dual-Luciferase Reporter Assay system (Promega). Luciferase activity was measured using Luminometer 20/20n (Turner BioSystems, Sunnyvale, CA, USA) according to the manufacturer's protocol.

8.8. 면역형광 현미경 분석Immunofluorescence microscopy analysis

세포를 4% 파라포름알데히드로 10분 동안 고정하고 용액 Ⅰ(0.2% Triton-X 100 및 1% BSA)로 25℃에서 15분 동안 투과시켰다. 세포를 4˚C에서 24시간 동안 항-LC3 항체를 함유하는 용액 Ⅱ(PBS 중 1% BSA)와 함께 인큐베이션하였다. PBS로 두 번 세척한 후 세포를 Alexa 488 또는 594-접합 항체와 함께 25˚C에서 2시간 동안 인큐베이션하였다. 세포는 LSM 700 공초점 현미경(Carl Zeiss, Jena, Germany)을 사용하여 이미지화하였다.Cells were fixed with 4% paraformaldehyde for 10 min and permeabilized with solution I (0.2% Triton-X 100 and 1% BSA) for 15 min at 25°C. Cells were incubated with solution II (1% BSA in PBS) containing anti-LC3 antibody for 24 hours at 4˚C. After washing twice with PBS, cells were incubated with Alexa 488 or 594-conjugated antibodies for 2 h at 25˚C. Cells were imaged using an LSM 700 confocal microscope (Carl Zeiss, Jena, Germany).

9.9. 세포 생존율 및 집락 형성 분석Cell viability and colony formation assay

세포 생존율 분석을 위해 제조사의 지시에 따라 Quanti-MAXTM Cell Viability Assay Kit(BIOMAX, Seoul, South Korea)를 사용하였다. Quanti-MAXTM 시약을 세포와 30분간 배양한 후 마이크로플레이트 리더(Molecular Devices, San Jose, CA, USA)를 사용하여 450nm에서 흡광도를 측정하였다. 콜로니 형성 분석을 위해 세포를 12웰 플레이트에 접종하고 5일 동안 인큐베이션하였다. 콜로니를 25˚C에서 4% 파라포름알데히드로 고정하고 0.05% 크리스탈 바이올렛(Millipore Sigma, Burlington, MA, USA)을 사용하여 염색하였다.To analyze cell viability, Quanti-MAXTM Cell Viability Assay Kit (BIOMAX, Seoul, South Korea) was used according to the manufacturer's instructions. After incubating Quanti-MAXTM reagent with cells for 30 minutes, absorbance was measured at 450 nm using a microplate reader (Molecular Devices, San Jose, CA, USA). For colony formation assay, cells were seeded in 12-well plates and incubated for 5 days. Colonies were fixed with 4% paraformaldehyde at 25˚C and stained using 0.05% crystal violet (Millipore Sigma, Burlington, MA, USA).

10.10. 산소 소모율 측정Oxygen consumption rate measurement

HCT116 세포를 24웰 플레이트에 접종하고 배지를 Seahorse 분석 배지(Agilent Technologies, Santa Clara, CA, USA)로 교체하였다. OCR은 Seahorse XF24 분석기(Agilent Technologies)를 사용하여 측정하고 데이터는 Seahorse Wave를 사용하여 분석하였다.HCT116 cells were seeded in 24-well plates, and the medium was replaced with Seahorse assay medium (Agilent Technologies, Santa Clara, CA, USA). OCR was measured using a Seahorse XF24 analyzer (Agilent Technologies), and data were analyzed using Seahorse Wave.

11.11. 세포 사멸 분석Cell death assay

사멸 세포는 Annexin V apoptosis 검출 키트 (BD Biosciences, San Jose, CA, USA)를 사용하여 정량화되었다. 간단히 말해서, 세포를 PBS로 세척하고 결합 완충액, Annexin V 및 propidium iodide(PI)와 혼합하였다. 사멸된 집단은 유세포 분석기(BD Biosciences)를 사용하여 1시간 이내에 분석되었다.Apoptotic cells were quantified using the Annexin V apoptosis detection kit (BD Biosciences, San Jose, CA, USA). Briefly, cells were washed with PBS and mixed with binding buffer, Annexin V, and propidium iodide (PI). Killed populations were analyzed within 1 hour using flow cytometry (BD Biosciences).

12.12. ATP 및 α-케토글루타레이트 측정ATP and α-ketoglutarate measurements

세포를 24시간 동안 완전 배지 또는 글루타민이 없는 배지에서 배양하였다. 세포 성분을 측정하기 전에 각 키트가 제공된 분석 완충액으로 세포를 균질화하고 10kDa 분자량 컷오프 스핀 컬럼(BioVision, Milpitas, CA, USA)을 사용하여 샘플을 탈단백질화하였다. 세포 내 ATP 수준은 colorimetric ATP Assay Kit(BIOMAX, Seoul, South Korea)를 사용하여 측정하였다. α-KG의 농도는 비색 α-KG 분석 키트(BioVision, Milpitas, CA, USA)를 사용하여 측정하였다. 흡광도는 마이크로플레이트 판독기(Molecular Devices, San Jose, CA, USA)를 사용하여 570 nm에서 측정하였다.Cells were cultured in complete medium or glutamine-free medium for 24 hours. Before measuring cellular components, cells were homogenized with the assay buffer provided with each kit and samples were deproteinized using a 10 kDa molecular weight cutoff spin column (BioVision, Milpitas, CA, USA). Intracellular ATP levels were measured using a colorimetric ATP Assay Kit (BIOMAX, Seoul, South Korea). The concentration of α-KG was measured using a colorimetric α-KG assay kit (BioVision, Milpitas, CA, USA). Absorbance was measured at 570 nm using a microplate reader (Molecular Devices, San Jose, CA, USA).

13.13. 동물 실험 방법Animal testing methods

6주령 수컷 BALB/c 누드 마우스는 ORIENT BIO 동물 센터(한국 성남)에서 구입하여 12시간 명암 주기로 특정 병원체 없는 조건에서 유지하였다. 동물 연구 프로토콜은 고려대학교 동물연구소 동물관리위원회의 승인을 받았다. 동물 실험는 실험 동물의 사용 및 관리 지침에 따라 수행되었다. 이종이식 모델의 경우, 누드 마우스에 PBS 100μl에서 대조군 또는 sg-sLZIP 안정 세포(5 x 106)를 피하 접종하였다. 종양 부피가 100 mm3에 도달하면 3-BP(2mg/kg/day)를 12일 동안 마우스에 복강내 주사하였다. 3일마다 디지털 캘리퍼스로 종양 부피를 측정하였다(종양 부피 = 0.5×길이×너비2). 최종 약물 투여 후, 모든 마우스를 즉시 죽이고 종양 분리 및 종양 중량 측정을 위해 해부하였다.Six-week-old male BALB/c nude mice were purchased from ORIENT BIO Animal Center (Seongnam, Korea) and maintained under specific pathogen-free conditions under a 12-h light/dark cycle. The animal study protocol was approved by the Animal Care Committee of Korea University Animal Research Institute. Animal experiments were performed in accordance with the Guide for Use and Care of Laboratory Animals. For the xenograft model, nude mice were subcutaneously inoculated with control or sg-sLZIP stable cells (5 x 10 6 ) in 100 μl of PBS. When the tumor volume reached 100 mm 3 , 3-BP (2 mg/kg/day) was injected intraperitoneally into the mice for 12 days. Tumor volume was measured with digital calipers every 3 days (tumor volume = 0.5 × length × width 2 ). After the final drug administration, all mice were killed immediately and dissected for tumor isolation and tumor weight measurement.

14.14. 데이터베이스 분석database analysis

CRC 환자 샘플의 마이크로어레이 결과는 유전자 발현 옴니버스 데이터베이스(GEO Access number GSE25071; National Center for Biotechnology Information, Bethesda, MD, USA; https://www.ncbi.nlm.nih.gov/geo/)에서 얻었다. Microarray results from CRC patient samples were obtained from the Gene Expression Omnibus Database (GEO Access number GSE25071; National Center for Biotechnology Information, Bethesda, MD, USA; https://www.ncbi.nlm.nih.gov/geo/).

15.15. 조직 마이크로어레이tissue microarray

인간 대장 종양 및 인접한 정상 대장 조직은 SuperBioChips Laboratories(서울, 한국)에서 입수하였다. 40개의 암종, 10개의 전이성 암종 및 9개의 정상 조직 표본을 포함하는 인간 대장 조직 마이크로어레이 슬라이드를 IHC 검증된 특정 CREB3 및 LC3B 항체에 대한 IHC 염색에 사용하였다. IHC 결과는 전체 조직 면적에 대한 양성 염색 면적의 비율을 계산하여 분석하였다.Human colon tumors and adjacent normal colon tissues were obtained from SuperBioChips Laboratories (Seoul, Korea). Human colon tissue microarray slides containing 40 carcinomas, 10 metastatic carcinomas, and 9 normal tissue specimens were used for IHC staining for IHC-validated specific CREB3 and LC3B antibodies. IHC results were analyzed by calculating the ratio of positive staining area to total tissue area.

[실험 결과][Experiment result]

[실시예] 대장암 진단 및 치료에서의 작은 류신 지퍼 단백질의 역할 규명[Example] Identification of the role of small leucine zipper protein in colon cancer diagnosis and treatment

실시예 1. 영양분 결핍으로 인한 대사 스트레스는 sLZIP 발현 유도 확인Example 1. Metabolic stress due to nutrient deficiency confirmed induction of sLZIP expression

암세포는 일반 세포보다 증식 속도가 매우 빠르기 때문에 세포 성장에 필요한 영양성분 공급이 충분하지 못한다. 이러한 암 미세 환경(tumor microenvironment)을 극복하기 위하여 암세포에서는 종양유전자의 발현 증가 및 신호전달 기전에 의한 빠른 대사 리프로그래밍과 대사물질 재분배가 이루어진다. 이러한 암세포의 대사적 특징은 대사 억제를 이용하는 항암치료 후에 빠른 대사 유연성을 획득함으로써 약물저항성을 얻은 악성 암으로 발달하게 한다.Cancer cells proliferate much faster than normal cells, so they do not receive enough nutrients for cell growth. To overcome this tumor microenvironment, cancer cells increase the expression of oncogenes and undergo rapid metabolic reprogramming and redistribution of metabolites through signaling mechanisms. These metabolic characteristics of cancer cells allow them to develop into malignant cancers that acquire drug resistance by acquiring rapid metabolic flexibility after anti-cancer treatment using metabolic inhibition.

세포의 주요 에너지원인 포도당과 글루타민이 결핍된 환경에서 sLZIP의 발현 변화를 조사한 결과, 영양분 결핍으로 인한 대사 스트레스가 대장암 세포주 내의 sLZIP 전사 및 단백질 발현을 유도하는 것을 발견하였다 (도 1A-C). sLZIP은 대장암세포에서 자가포식 기전에 관여하는 핵심유전자인 LC3B의 발현을 증가시킨다 (도 1D).As a result of examining changes in the expression of sLZIP in an environment lacking glucose and glutamine, the main energy sources of cells, we found that metabolic stress due to nutrient deficiency induced sLZIP transcription and protein expression in colon cancer cell lines (Figures 1A-C). sLZIP increases the expression of LC3B, a key gene involved in the autophagy mechanism in colon cancer cells (Figure 1D).

또한, sLZIP 발현량에 비례하여 LC3B의 mRNA 양이 조절되는 것을 관찰하였으며 (도 1E), 그로 인해 sLZIP이 LC3 단백질 발현을 조절하였다 (도 1F). In addition, we observed that the amount of LC3B mRNA was regulated in proportion to the amount of sLZIP expression (Figure 1E), and as a result, sLZIP regulated LC3 protein expression (Figure 1F).

실시예 2. sLZIP은 전사인자로 작용하여 직접적으로 LC3의 전사 유도 확인Example 2. sLZIP acts as a transcription factor and confirms direct transcriptional induction of LC3

LC3 인근 프로모터의 활성이 sLZIP 발현 증가에 의해 유도되며 (도 2A), 영양분 결핍 스트레스에 의해 증가하는 LC3 프로모터 활성이 sLZIP 발현 감소에 의해 억제되는 것을 관찰하였다 (도 2B). LC3 인근 프로모터를 여러 길이로 나누어 sLZIP의 영향을 받는 구역을 조사하였을 때, 전사 시작부위에서 제일 근접하고 두 곳의 CREB 결합 서열을 포함하는 프로모터 영역이 조절되는 것을 발견하였다 (도 2C).We observed that the activity of the promoter near LC3 was induced by increased sLZIP expression (Figure 2A), and that the LC3 promoter activity increased by nutrient deficiency stress was suppressed by decreased sLZIP expression (Figure 2B). When we examined the region affected by sLZIP by dividing the promoter near LC3 into several lengths, we found that the promoter region closest to the transcription start site and containing two CREB binding sequences was regulated (Figure 2C).

sLZIP이 LC3 유전자의 인근 프로모터에 직접적으로 결합하는 것을 관찰하였으며 (도2D), sLZIP이 -66/-58 위치의 CRE 서열을 통해 LC3 프로모터 활성을 조절하였다 (도 2E). 이러한 결과는 대장암 세포 내에서 sLZIP 유전자가 LC3의 발현에 직접적으로 관여하는 중요한 전사인자임을 알 수 있다. We observed that sLZIP directly bound to the nearby promoter of the LC3 gene (Figure 2D), and sLZIP regulated LC3 promoter activity through the CRE sequence at positions -66/-58 (Figure 2E). These results show that the sLZIP gene is an important transcription factor directly involved in the expression of LC3 in colon cancer cells.

실시예 3. sLZIP에 의한 LC3 발현 증가와 자가포식 기전과의 관계 확인Example 3. Confirmation of relationship between increased LC3 expression by sLZIP and autophagy mechanism

LC3는 자가포식체를 형성하는 주요 단백질이기 때문에 sLZIP에 의한 LC3 발현 증가가 자가포식 기전에 영향을 주는지 조사하였다. 영양분이 부족한 환경에서 대장암 세포주의 자가포식 기전이 활성화되었으며, 그 때 sLZIP이 LC3-Ⅰ과 LC3-Ⅱ를 모두 증가시킴을 관찰하였다 (도 3A). 그로 인해 sLZIP 과발현은 대사 스트레스 조건에서 자가포식체 형성을 촉진함을 확인하였다 (도 3B-C).Since LC3 is a major protein that forms autophagosomes, we investigated whether increasing LC3 expression by sLZIP affects the autophagy mechanism. In a nutrient-poor environment, the autophagy mechanism of colon cancer cell lines was activated, and it was observed that sLZIP increased both LC3-I and LC3-II (Figure 3A). As a result, it was confirmed that overexpression of sLZIP promotes autophagosome formation under metabolic stress conditions (Figure 3B-C).

세포 내 자가포식 기전의 활성화는 자가포식체 내부 물질의 분해가 촉진되는 것을 의미하는 것이므로, 분해 마커로 쓰이는 p62 단백질 양의 변화를 관찰하였다. 영양분 결핍 조건에서 sLZIP 과발현에 의해 LC3 단백질의 발현이 증가함과 동시에 p62 단백질의 양은 감소하는 것을 통해 autophagy flux가 촉진된 것을 관찰하였다 (도 3D). 또한, p62 단백질 양의 감소가 자가포식체에 의한 분해에 의한 것임을 리소좀 억제제인 bafilomycin A1을 처리하여 확인하였다 (도 3E). 따라서 sLZIP 발현이 감소된 대장암 세포는 영양분 결핍 스트레스에 의한 세포사멸이 상대적으로 증가하였다 (도 3F-G). 이는 sLZIP이 영양분 결핍 환경에서 암세포의 자가포식 기전을 조절하고 세포사멸을 억제하는 유전자라는 것을 규명하는 것이다.Since activation of the intracellular autophagy mechanism means that the degradation of materials inside the autophagosome is promoted, changes in the amount of p62 protein, which is used as a degradation marker, were observed. Under nutrient starvation conditions, autophagy flux was observed to be promoted by overexpression of sLZIP, as the expression of LC3 protein increased and the amount of p62 protein decreased (Figure 3D). In addition, it was confirmed by treatment with bafilomycin A1, a lysosomal inhibitor, that the decrease in p62 protein amount was due to degradation by autophagosomes (Figure 3E). Accordingly, colon cancer cells with reduced sLZIP expression exhibited relatively increased apoptosis due to nutrient deficiency stress (Figure 3F-G). This confirms that sLZIP is a gene that regulates the autophagy mechanism of cancer cells and inhibits apoptosis in a nutrient-deficient environment.

실시예 4. sLZIP의 자가포식 활성화를 통한 미토콘드리아 호흡을 촉진하는 대사 리프로그래밍 유도 확인.Example 4. Confirmation of induction of metabolic reprogramming that promotes mitochondrial respiration through autophagy activation of sLZIP.

영양분 결핍 환경에서 암세포는 자가포식 기전 활성화를 통해 대사 중간체를 생산하고 ATP 공급을 유지한다. 자가포식체 분해로 생성되는 아미노산 중에서 glutamine은 미토콘드리아 대사 과정의 중간체인 α-ketoglutarate(α-KG)로 전환되어 ATP를 생산할 수 있다. 대장암세포의 glutamine 의존도를 확인하기 위하여 glutamine 결여 배지로 세포를 배양한 결과, α-KG의 농도가 약 80% 감소하며 그로 인해 ATP 농도가 약 30% 감소하는 것을 확인하였다 (도 4A). sLZIP 과발현 대장암 세포주에서 glutamine 결핍은 자가포식을 활성화하였으며 sLZIP 과발현에 의해 autophagy flux가 향상되었다 (도 4B). sLZIP의 과발현이 대사에 미치는 영향을 확인하기 위해 세포의 미토콘드리아 대사를 oxygen consumption rate(OCR)로 측정하였을 때, sLZIP 발현과 OCR이 상관관계를 갖는 것을 관찰하였다 (도 4C-D). 그리고 OCR 측정 결과를 기반으로 sLZIP 발현 증가에 의해 ATP 생산과 연관된 OCR이 증가한 것을 관찰하였으며 (도 4E), 반면에 sLZIP이 ATP 생산에 쓰이는 산소의 비율에는 영향을 주지 않음을 확인하였다 (도 4F). sLZIP이 미토콘드리아 대사를 증가시키는 대사 리프로그래밍을 유도하므로 sLZIP의 발현이 감소된 대장암세포에서는 glutamine 결여 배지에 의한 α-KG 농도 감소가 약 45% 완화되었으며, 그 결과 ATP 농도가 약 20% 보완되었다 (도 4G). 이는 대장암세포에서 sLZIP이 LC3 발현을 증가시켜 자가포식 기전을 활성화하고 glutamine 공급을 통해 미토콘드리아 대사를 촉진하는 대사 리프로그래밍을 유도함을 의미한다.In a nutrient-deficient environment, cancer cells produce metabolic intermediates and maintain ATP supply through activation of the autophagy mechanism. Among the amino acids produced by autophagosome degradation, glutamine can be converted to α-ketoglutarate (α-KG), an intermediate in the mitochondrial metabolic process, to produce ATP. To confirm the dependence of colon cancer cells on glutamine, cells were cultured in glutamine-deficient medium. As a result, it was confirmed that the concentration of α-KG decreased by about 80% and the ATP concentration decreased by about 30% (Figure 4A). In colon cancer cell lines overexpressing sLZIP, glutamine depletion activated autophagy, and autophagy flux was enhanced by sLZIP overexpression (Figure 4B). To confirm the effect of overexpression of sLZIP on metabolism, when mitochondrial metabolism of cells was measured by oxygen consumption rate (OCR), a correlation between sLZIP expression and OCR was observed (Figure 4C-D). Based on the OCR measurement results, it was observed that OCR associated with ATP production increased due to increased sLZIP expression (Figure 4E). On the other hand, it was confirmed that sLZIP did not affect the ratio of oxygen used for ATP production (Figure 4F). . Since sLZIP induces metabolic reprogramming that increases mitochondrial metabolism, the decrease in α-KG concentration caused by glutamine-deficient medium was alleviated by about 45% in colon cancer cells with reduced expression of sLZIP, and as a result, ATP concentration was complemented by about 20% ( Figure 4G). This means that sLZIP increases LC3 expression in colon cancer cells, activating the autophagy mechanism and inducing metabolic reprogramming that promotes mitochondrial metabolism through glutamine supply.

실시예 5. sLZIP의 자가포식 활성화를 통한 산화환원 항상성을 조절과의 관계 확인.Example 5. Confirmation of relationship between regulation of redox homeostasis through autophagy activation of sLZIP.

영양분 공급이 원활하지 못하거나 세포 내 대사 기전이 억제되는 경우, 활성산소 농도가 증가하며 산화환원 항상성이 저해되고 이는 세포사멸을 일으킨다고 알려져 있다. 대사 스트레스에 의해 활성화되는 자가포식 기전은 Keap1 단백질을 자가포식체로 분해함으로써 Nrf2의 하위 유전자 발현을 증가시키고 활성산소를 완화한다. sLZIP은 glutamine이 결여된 환경에서 자가포식체를 통한 Keap1 분해를 증가시킴을 확인하였고 (도 5A), 이에 따라 sLZIP 과발현에 의해 Nrf2 단백질의 핵 이동이 증가함을 확인하였다 (도 5B). 그 결과, Nrf2의 하위 유전자로 알려진 NQO1, CHOP, SQSTM1(p62)의 전사가 유의미하게 증가하였고 (도 5C-D), p62와 NQO1의 단백질 발현을 증가시켰다 (도 5E). Nrf2의 핵 이동을 억제한다고 알려진 ascorbic acid를 처리하였을 때 sLZIP 과발현에 의해 증가하는 NQO1 단백질 발현이 감소하는 것을 통해 sLZIP이 Nrf2를 통해 NQO1의 발현을 조절한다는 것을 확인하였다 (도 5G).It is known that when nutrient supply is not smooth or intracellular metabolic mechanisms are inhibited, the concentration of active oxygen increases and redox homeostasis is impaired, which causes cell death. The autophagy mechanism activated by metabolic stress decomposes Keap1 protein into autophagosomes, thereby increasing the expression of downstream genes of Nrf2 and alleviating free radicals. It was confirmed that sLZIP increases Keap1 degradation through autophagosomes in an environment lacking glutamine (Figure 5A), and accordingly, nuclear movement of Nrf2 protein was confirmed to increase by overexpression of sLZIP (Figure 5B). As a result, the transcription of NQO1, CHOP, and SQSTM1 (p62), known as downstream genes of Nrf2, was significantly increased (Figure 5C-D), and protein expression of p62 and NQO1 was increased (Figure 5E). When treated with ascorbic acid, which is known to inhibit the nuclear movement of Nrf2, NQO1 protein expression, which was increased by sLZIP overexpression, was decreased, confirming that sLZIP regulates the expression of NQO1 through Nrf2 (Figure 5G).

sLZIP이 자가포식 촉진을 통해 활성산소 조절에 중요한 Keap1-Nrf2 기전을 조절함을 확인함으로써, 과산화수소(H2O2)에 노출되었을 때 세포 생존률을 유의미하게 높이는 것을 관찰하였다 (도 5H). 또한 과산화수소 처리하에 sLZIP 과발현 세포주에서 세포사멸에 관여하는 PARP 및 caspase-3 단백질의 cleavage가 감소되었다 (도 5I). 이러한 결과는, 대장암세포에서 sLZIP 과발현에 의한 자가포식 활성화가 활성산소 조절 기전을 조절하고 활성산소 유도 세포사멸을 억제하기 위해 중요하다는 것을 알 수 있다.By confirming that sLZIP regulates the Keap1-Nrf2 mechanism, which is important in controlling reactive oxygen species, by promoting autophagy, it was observed that cell survival rate was significantly increased when exposed to hydrogen peroxide (H 2 O 2 ) (Figure 5H). Additionally, cleavage of PARP and caspase-3 proteins involved in apoptosis was reduced in sLZIP overexpressing cell lines under hydrogen peroxide treatment (Figure 5I). These results show that autophagy activation by overexpression of sLZIP in colon cancer cells is important for controlling the reactive oxygen species regulation mechanism and suppressing reactive oxygen species-induced apoptosis.

실시예 6. sLZIP 발현 억제와 대장암세포의 세포 사멸 및 증식 억제 효과 확인Example 6. Confirmation of inhibition of sLZIP expression and inhibition of apoptosis and proliferation of colon cancer cells

암세포는 산소의 유무와 관계없이 해당과정을 통한 포도당 대사를 과도하게 이용하는 특징이 있다. 포도당이 낮은 농도로 포함되어 있는 배지로 대장암세포를 배양하였을 때 sLZIP은 자가포식체의 형성을 증가시켰으며 (도 6A-B), sLZIP 발현이 억제된 세포는 포도당 결핍 환경에서 발생하는 세포사멸이 더욱 증가되어 있음을 관찰하였다 (도 6C-D).Cancer cells have the characteristic of excessively utilizing glucose metabolism through glycolysis regardless of the presence or absence of oxygen. When colon cancer cells were cultured in medium containing a low concentration of glucose, sLZIP increased the formation of autophagosomes (Figure 6A-B), and cells with suppressed sLZIP expression suffered apoptosis that occurred in a glucose-deficient environment. It was observed that it increased further (Figure 6C-D).

암세포가 해당과정을 통한 포도당 대사를 주된 에너지 생산 방식으로 사용하기 때문에 이를 억제하기 위한 대사항암제가 주목받고 있다. 하지만 포도당 대사를 억제하는 방법은 암세포에 대사 스트레스로 작용하기 때문에 자가포식 기전이 활성화된다는 부작용이 발생한다. 해당과정의 초기에 작용하는 hexokinase 효소를 억제하기 위해서 3-bromopyruvate(3-BP)를 처리하였을 때, 처리시간에 비례하여 자가포식 기전이 활성화되었다 (도 6E). sLZIP 유전자 발현을 CRISPR/Cas9 방식으로 억제한 대장암세포주는 LC3 발현이 낮기 때문에 3-BP 처리에 의한 자가포식 활성화가 원활하지 못하고 3-BP에 의한 세포사멸이 증가함을 확인하였다 (도 6F). 따라서 sLZIP 발현 감소는 3-BP로 인한 해당과정 억제 조건에서 대장암 세포 증식을 효과적으로 억제하는 것을 확인하였다 (도 6G). sLZIP 발현 감소에 의한 대장암세포 증식 억제는 sLZIP의 하위유전자인 LC3를 과발현하였을 때 유의미하게 완화되었으며 (도 6H), 그와 동시에 세포사멸에 관여하는 cleaved PARP 단백질 양도 감소하였다 (도 6I). 이는 대사항암제에 의한 암세포 대사 저해 상황에서 sLZIP 발현 억제가 자가포식 기전 활성화를 막고 세포 증식을 억제하는 효과가 있음을 나타내는 것이다. Since cancer cells use glucose metabolism through glycolysis as their main energy production method, metabolic anti-cancer drugs to suppress this are attracting attention. However, the method of suppressing glucose metabolism causes metabolic stress on cancer cells, resulting in the side effect of activating the autophagy mechanism. When 3-bromopyruvate (3-BP) was treated to inhibit the hexokinase enzyme that acts at the beginning of glycolysis, the autophagy mechanism was activated in proportion to the treatment time (Figure 6E). It was confirmed that the colon cancer cell line in which sLZIP gene expression was suppressed using CRISPR/Cas9 had low LC3 expression, so autophagy activation by 3-BP treatment was not smooth and cell death by 3-BP increased (Figure 6F). Therefore, it was confirmed that reducing sLZIP expression effectively inhibits colon cancer cell proliferation under conditions of glycolysis inhibition caused by 3-BP (Figure 6G). Inhibition of colon cancer cell proliferation due to decreased sLZIP expression was significantly alleviated when LC3, a downstream gene of sLZIP, was overexpressed (Figure 6H), and at the same time, the amount of cleaved PARP protein involved in apoptosis was also decreased (Figure 6I). This indicates that inhibition of sLZIP expression has the effect of preventing activation of the autophagy mechanism and inhibiting cell proliferation in situations where cancer cell metabolism is inhibited by anti-cancer drugs.

또한, 대장암 세포주에서 sLZIP 발현 억제가 해당과정 저해 약물에 대한 민감도를 높였기 때문에 마우스를 이용한 동물실험에서도 종양 증식이 억제되는지 확인하였다. sLZIP 발현이 억제된 대장암세포주를 피하주사하여 종양을 형성하고 복강주사로 3-BP를 처리하였을 때, 대조군의 종양은 자라는반면 sLZIP knockout 종양의 크기는 증가하지 못하였다 (도 7A-B). 종양형성 20일차에 마우스로부터 종양을 분리하였고, 종양의 무게가 유의미하게 차이를 보였으며 본 동물실험은 종양형성이나 대사억제제 처리에 의한 개체 무게 변화를 일으키지 않는 조건에서 수행되었음을 확인하였다 (도 7C-E). 이러한 실험 결과는 대장암 치료를 위해 대사항암제 처리할 때 sLZIP의 발현 억제가 대사항암제 민감도를 높이고 종양 증식을 억제에 중요함을 규명하였다. In addition, because inhibition of sLZIP expression in colon cancer cell lines increased sensitivity to drugs that inhibit glycolysis, animal experiments using mice were also conducted to confirm whether tumor growth was inhibited. When a colon cancer cell line in which sLZIP expression was suppressed was injected subcutaneously to form a tumor and treated with 3-BP by intraperitoneal injection, the tumor in the control group grew, while the size of the sLZIP knockout tumor did not increase (Figure 7A-B). Tumors were isolated from mice on the 20th day of tumor formation, and the weight of the tumors showed a significant difference. It was confirmed that this animal experiment was conducted under conditions that did not cause changes in individual weight due to tumor formation or treatment with metabolic inhibitors (Figure 7C- E). These experimental results demonstrated that suppressing the expression of sLZIP is important for increasing sensitivity to anticancer drugs and suppressing tumor growth when treating colon cancer with anticancer drugs.

46명의 대장암 환자 유전자 발현을 정상 조직과 비교한 결과, sLZIP이 속한 CREB3 유전자 발현이 대장암 환자에서 높았으며 질병의 단계가 높은 환자에게서 유의미한 상관관계를 보였다 (도 7F). 또한 남성 대장암 환자 25명을 분석하였을 때, Ⅲ 및 Ⅳ 단계의 대장암환자에서 CREB3와 LC3B 유전자가 높게 발현되어 있음을 발견하였다 (도 7G). As a result of comparing the gene expression of 46 colon cancer patients with normal tissues, the expression of the CREB3 gene, which includes sLZIP, was high in colon cancer patients, and a significant correlation was shown in patients with high disease stages (Figure 7F). Additionally, when analyzing 25 male colon cancer patients, it was found that CREB3 and LC3B genes were highly expressed in stage III and IV colon cancer patients (Figure 7G).

실시예 7. 정상 조직과 비교하여 대장암 환자의 CREB3 및 LC3 단백질 발현이 높음.Example 7. CREB3 and LC3 protein expression is high in colon cancer patients compared to normal tissues.

40명의 대장암 환자 조직을 면역조직화학염색 기법으로 CREB3 및 LC3B 단백질 발현을 조사한 결과, 정상 조직에 비해 단백질 발현이 높았으며 대장암 유래 간 전이 조직에서도 CREB3 및 LC3B의 단백질이 강하게 염색되는 것을 관찰하였다 (도8A). 또한 동일 환자의 조직으로 단백질 발현 양상을 비교하였을 때, CREB3 및 LC3B가 유사한 발현 분포 양상을 보였다 (도 8B). 조직 면역 염색 정도를 수치화한 결과에서 대장암 환자의 CREB3 및 LC3B 단백질 염색이 정상보다 유의미하게 높았고 암 발달 단계가 높을수록 통계적 상관관계를 보임을 발견하였다 (도 8C-D). 이러한 결과는 CREB3 및 LC3B 단백질이 임상 병리학적으로 대장암 진단 및 발달 단계 구분을 위한 조직 면역 염색법 후보 단백질이 될 수 있음을 의미한다.As a result of examining CREB3 and LC3B protein expression in 40 colon cancer patient tissues using immunohistochemical staining, protein expression was higher than that in normal tissues, and strong staining of CREB3 and LC3B proteins was also observed in liver metastasis tissue derived from colon cancer. (Figure 8A). Additionally, when comparing protein expression patterns in tissues from the same patient, CREB3 and LC3B showed similar expression distribution patterns (Figure 8B). As a result of quantifying the degree of tissue immunostaining, it was found that CREB3 and LC3B protein staining in colorectal cancer patients was significantly higher than normal, and a statistical correlation was shown as the cancer development stage increased (Figure 8C-D). These results mean that CREB3 and LC3B proteins can be candidate proteins for tissue immunostaining for clinicopathological diagnosis and developmental stage differentiation of colon cancer.

<110> Korea University Research and Business Foundation <120> Use of leucine-zipper protein for diagnosing or treating cancer <130> P22U13C0203 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 354 <212> PRT <213> Artificial Sequence <220> <223> sLZIP <400> 1 Met Glu Leu Glu Leu Asp Ala Gly Asp Gln Asp Leu Leu Ala Phe Leu 1 5 10 15 Leu Glu Glu Ser Gly Asp Leu Gly Thr Ala Pro Asp Glu Ala Val Arg 20 25 30 Ala Pro Leu Asp Trp Ala Leu Pro Leu Ser Glu Val Pro Ser Asp Trp 35 40 45 Glu Val Asp Asp Leu Leu Cys Ser Leu Leu Ser Pro Pro Ala Ser Leu 50 55 60 Asn Ile Leu Ser Ser Ser Asn Pro Cys Leu Val His His Asp His Thr 65 70 75 80 Tyr Ser Leu Pro Arg Glu Thr Val Ser Met Asp Leu Glu Ser Glu Ser 85 90 95 Cys Arg Lys Glu Gly Thr Gln Met Thr Pro Gln His Met Glu Glu Leu 100 105 110 Ala Glu Gln Glu Ile Ala Arg Leu Val Leu Thr Asp Glu Glu Lys Ser 115 120 125 Leu Leu Glu Lys Glu Gly Leu Ile Leu Pro Glu Thr Leu Pro Leu Thr 130 135 140 Lys Thr Glu Glu Gln Ile Leu Lys Arg Val Arg Arg Lys Ile Arg Asn 145 150 155 160 Lys Arg Ser Ala Gln Glu Ser Arg Arg Lys Lys Lys Val Tyr Val Gly 165 170 175 Gly Leu Glu Ser Arg Val Leu Lys Tyr Thr Ala Gln Asn Met Glu Leu 180 185 190 Gln Asn Lys Val Gln Leu Leu Glu Glu Gln Asn Leu Ser Leu Leu Asp 195 200 205 Gln Leu Arg Lys Leu Gln Ala Met Val Ile Glu Ile Ser Asn Lys Thr 210 215 220 Ser Ser Ser Ser Met Tyr Ser Ser Asp Thr Arg Gly Ser Leu Pro Ala 225 230 235 240 Glu His Gly Val Leu Ser Arg Gln Leu Arg Ala Leu Pro Ser Glu Asp 245 250 255 Pro Tyr Gln Leu Glu Leu Pro Ala Leu Gln Ser Glu Val Pro Lys Asp 260 265 270 Ser Thr His Gln Trp Leu Asp Gly Ser Asp Cys Val Leu Gln Ala Pro 275 280 285 Gly Asn Thr Ser Cys Leu Leu His Tyr Met Pro Gln Ala Pro Ser Ala 290 295 300 Glu Pro Pro Leu Glu Trp Pro Phe Pro Asp Leu Phe Ser Glu Pro Leu 305 310 315 320 Cys Arg Gly Pro Ile Leu Pro Leu Gln Ala Asn Leu Thr Arg Lys Gly 325 330 335 Gly Trp Leu Pro Thr Gly Ser Pro Ser Val Ile Leu Gln Asp Arg Tyr 340 345 350 Ser Gly <210> 2 <211> 1062 <212> DNA <213> Artificial Sequence <220> <223> sLZIP <400> 2 atggagctgg aattggatgc tggtgaccaa gacctgctgg ccttcctgct agaggaaagt 60 ggagatttgg ggacggcacc cgatgaggcc gtgagggccc cactggactg ggcgctgccg 120 ctttctgagg taccgagcga ctgggaagta gatgatttgc tgtgctccct gctgagtccc 180 ccagcgtcgt tgaacattct cagctcctcc aacccctgcc ttgtccacca tgaccacacc 240 tactccctcc cacgggaaac tgtctccatg gatctagaga gtgagagctg tagaaaagag 300 gggacccaga tgactccaca gcatatggag gagctggcag agcaggagat tgctaggcta 360 gtactgacag atgaggagaa gagtctattg gagaaggagg ggcttattct gcctgagaca 420 cttcctctca ctaagacaga ggaacaaatt ctgaaacgtg tgcggaggaa gattcgaaat 480 aaaagatctg ctcaagagag ccgcaggaaa aagaaggtgt atgttggggg tttagagagc 540 agggtcttga aatacacagc ccagaatatg gagcttcaga acaaagtaca gcttctggag 600 gaacagaatt tgtcccttct agatcaactg aggaaactcc aggccatggt gattgagata 660 tcaaacaaaa ccagcagcag cagcatgtac tcctctgaca caagggggag cctgccagct 720 gagcatggag tgttgtcccg ccagcttcgt gccctcccca gtgaggaccc ttaccagctg 780 gagctgcctg ccctgcagtc agaagtgccg aaagacagca cacaccagtg gttggacggc 840 tcagactgtg tactccaggc ccctggcaac acttcctgcc tgctgcatta catgcctcag 900 gctcccagtg cagagcctcc cctggagtgg ccattccctg acctcttctc agagcctctc 960 tgccgaggtc ccatcctccc cctgcaggca aatctcacaa ggaagggagg atggcttcct 1020 actggtagcc cctctgtcat tttgcaggac agatactcag gc 1062 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> si-sLZIP <400> 3 ccagaugacu ccacagcau 19 <110> Korea University Research and Business Foundation <120> Use of leucine-zipper protein for diagnosing or treating cancer <130>P22U13C0203 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 354 <212> PRT <213> Artificial Sequence <220> <223> sLZIP <400> 1 Met Glu Leu Glu Leu Asp Ala Gly Asp Gln Asp Leu Leu Ala Phe Leu 1 5 10 15 Leu Glu Glu Ser Gly Asp Leu Gly Thr Ala Pro Asp Glu Ala Val Arg 20 25 30 Ala Pro Leu Asp Trp Ala Leu Pro Leu Ser Glu Val Pro Ser Asp Trp 35 40 45 Glu Val Asp Asp Leu Leu Cys Ser Leu Leu Ser Pro Pro Pro Ala Ser Leu 50 55 60 Asn Ile Leu Ser Ser Ser Asn Pro Cys Leu Val His His Asp His Thr 65 70 75 80 Tyr Ser Leu Pro Arg Glu Thr Val Ser Met Asp Leu Glu Ser Glu Ser 85 90 95 Cys Arg Lys Glu Gly Thr Gln Met Thr Pro Gln His Met Glu Glu Leu 100 105 110 Ala Glu Gln Glu Ile Ala Arg Leu Val Leu Thr Asp Glu Glu Lys Ser 115 120 125 Leu Leu Glu Lys Glu Gly Leu Ile Leu Pro Glu Thr Leu Pro Leu Thr 130 135 140 Lys Thr Glu Glu Gln Ile Leu Lys Arg Val Arg Arg Lys Ile Arg Asn 145 150 155 160 Lys Arg Ser Ala Gln Glu Ser Arg Arg Lys Lys Lys Val Tyr Val Gly 165 170 175 Gly Leu Glu Ser Arg Val Leu Lys Tyr Thr Ala Gln Asn Met Glu Leu 180 185 190 Gln Asn Lys Val Gln Leu Leu Glu Glu Gln Asn Leu Ser Leu Leu Asp 195 200 205 Gln Leu Arg Lys Leu Gln Ala Met Val Ile Glu Ile Ser Asn Lys Thr 210 215 220 Ser Ser Ser Ser Met Tyr Ser Ser Asp Thr Arg Gly Ser Leu Pro Ala 225 230 235 240 Glu His Gly Val Leu Ser Arg Gln Leu Arg Ala Leu Pro Ser Glu Asp 245 250 255 Pro Tyr Gln Leu Glu Leu Pro Ala Leu Gln Ser Glu Val Pro Lys Asp 260 265 270 Ser Thr His Gln Trp Leu Asp Gly Ser Asp Cys Val Leu Gln Ala Pro 275 280 285 Gly Asn Thr Ser Cys Leu Leu His Tyr Met Pro Gln Ala Pro Ser Ala 290 295 300 Glu Pro Pro Leu Glu Trp Pro Phe Pro Asp Leu Phe Ser Glu Pro Leu 305 310 315 320 Cys Arg Gly Pro Ile Leu Pro Leu Gln Ala Asn Leu Thr Arg Lys Gly 325 330 335 Gly Trp Leu Pro Thr Gly Ser Pro Ser Val Ile Leu Gln Asp Arg Tyr 340 345 350 Ser Gly <210> 2 <211> 1062 <212> DNA <213> Artificial Sequence <220> <223> sLZIP <400> 2 atggagctgg aattggatgc tggtgaccaa gacctgctgg ccttcctgct agaggaaagt 60 ggagatttgg ggacggcacc cgatgaggcc gtgagggccc cactggactg ggcgctgccg 120 ctttctgagg taccgagcga ctgggaagta gatgatttgc tgtgctccct gctgagtccc 180 ccagcgtcgt tgaacattct cagctcctcc aacccctgcc ttgtccacca tgaccacacc 240 tactccctcc cacgggaaac tgtctccatg gatctagaga gtgagagctg tagaaaagag 300 gggacccaga tgactccaca gcatatggag gagctggcag agcaggagat tgctaggcta 360 gtactgacag atgaggagaa gagtctattg gagaaggagg ggcttattct gcctgagaca 420 cttcctctca ctaagacaga ggaacaaatt ctgaaacgtg tgcggaggaa gattcgaaat 480 aaaagatctg ctcaagagag ccgcaggaaa aagaaggtgt atgttggggg tttagagagc 540 agggtcttga aatacacagc ccagaatatg gagcttcaga acaaagtaca gcttctggag 600 gaacagaatt tgtcccttct agatcaactg aggaaactcc aggccatggt gattgagata 660 tcaaaacaaaa ccagcagcag cagcatgtac tcctctgaca caagggggag cctgccagct 720 gagcatggag tgttgtcccg ccagcttcgt gccctcccca gtgaggaccc ttaccagctg 780 gagctgcctg ccctgcagtc agaagtgccg aaagacagca cacaccagtg gttggacggc 840 tcagactgtg tactccaggc ccctggcaac acttcctgcc tgctgcatta catgcctcag 900 gctcccagtg cagagcctcc cctggagtgg ccattccctg acctcttctc agagcctctc 960 tgccgaggtc ccatcctccc cctgcaggca aatctcacaa ggaagggagg atggcttcct 1020 actggtagcc cctctgtcat tttgcaggac agatactcag gc 1062 <210> 3 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> si-sLZIP <400> 3 ccagaugacu ccacagcau 19

Claims (10)

작은 류신 지퍼 단백질 (small leucine-zipper protein)의 활성 억제제 또는 상기 단백질을 암호화하는 유전자의 발현 억제제를 포함하는 대장암 개선 또는 치료용 약학적 조성물.
A pharmaceutical composition for improving or treating colon cancer, comprising an inhibitor of the activity of small leucine-zipper protein or an inhibitor of the expression of a gene encoding the protein.
제 1항에 있어서, 상기 유전자의 발현 억제제는 작은 류신 지퍼 단백질을 암호화하는 유전자에 상보적으로 결합하는 안티센스 뉴클레오티드, 짧은 헤어핀 RNA(short hairpin RNA: shRNA), 작은 간섭 RNA(small interfering RNA: siRNA) 및 유전자 가위로 이루어진 군으로부터 선택되는 어느 하나인 것인, 대장암 개선 또는 치료용 약학적 조성물.
The method of claim 1, wherein the gene expression inhibitor is an antisense nucleotide, short hairpin RNA (shRNA), or small interfering RNA (siRNA) that binds complementary to a gene encoding a small leucine zipper protein. and a pharmaceutical composition for improving or treating colon cancer, which is selected from the group consisting of gene scissors.
제 1항에 있어서, 상기 단백질의 활성 억제제는 작은 류신 지퍼 단백질에 특이적으로 결합하는 펩티드, 펩티드 미메틱스, 기질 유사체, 앱타머 및 항체로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 대장암 개선 또는 치료용 약학적 조성물.
The method of claim 1, wherein the protein activity inhibitor is any one selected from the group consisting of peptides, peptide mimetics, substrate analogs, aptamers, and antibodies that specifically bind to small leucine zipper proteins. Pharmaceutical composition for improving or treating colon cancer.
제 1항에 있어서, 작은 류신 지퍼 단백질 (small leucine-zipper protein)은 서열번호 1의 아미노산 서열을 포함하는 것인 대장암 개선 또는 치료용 약학적 조성물.
The pharmaceutical composition for improving or treating colon cancer according to claim 1, wherein the small leucine-zipper protein contains the amino acid sequence of SEQ ID NO: 1.
제1항에 있어서, 상기 조성물은 영양 결핍 상태에서 대장암 세포의 자가 포식을 억제하는 것을 특징으로 하는, 대장암 개선 또는 치료용 약학적 조성물.
The pharmaceutical composition for improving or treating colon cancer according to claim 1, wherein the composition inhibits autophagy of colon cancer cells in a nutrient-deficient state.
작은 류신 지퍼 단백질(small leucine-zipper protein)의 활성 또는 상기 단백질을 암호화하는 유전자의 발현 수준을 측정하기 위한 프로브를 포함하는, 대장암 진단용 조성물.
A composition for diagnosing colon cancer, comprising a probe for measuring the activity of a small leucine-zipper protein or the expression level of a gene encoding the protein.
제6항에 있어서, 상기 프로브는, 상기 작은 류신 지퍼 단백질과 특이적으로 결합하는 항체; 또는 상기 작은 류신 지퍼 단백질을 코딩하는 유전자와 상보적으로 결합하는 핵산 프로브 또는 프라이머인, 대장암 진단용 조성물.
The method of claim 6, wherein the probe is an antibody that specifically binds to the small leucine zipper protein; Or a composition for diagnosing colon cancer, which is a nucleic acid probe or primer that binds complementary to the gene encoding the small leucine zipper protein.
제6항에 있어서, 상기 작은 류신 지퍼 단백질은 서열번호 1의 아미노산 서열을 포함하는 것인 대장암 진단용 조성물.
The composition for diagnosing colon cancer according to claim 6, wherein the small leucine zipper protein contains the amino acid sequence of SEQ ID NO: 1.
개체로부터 분리된 세포 또는 조직에 후보물질을 처리하고 상기 세포 또는 조직에서 작은 류신 지퍼 단백질의 발현 수준을 측정하는 것을 포함하며,
상기 후보물질이 작은 류신 지퍼 단백질의 발현을 하향조절할 때 대장암 개선 또는 치료용 의약으로 판별하는, 대장암 개선 또는 치료용 의약의 스크리닝 방법.
It includes treating cells or tissues isolated from an individual with a candidate material and measuring the expression level of small leucine zipper protein in the cells or tissues,
A screening method for a drug for the improvement or treatment of colon cancer, wherein the candidate substance is identified as a drug for the improvement or treatment of colon cancer when it downregulates the expression of the small leucine zipper protein.
제 9항에 있어서,
상기 작은 류신 지퍼 단백질은 서열번호 1의 아미노산 서열을 포함하는 것인 대장암 개선 또는 치료용 의약의 스크리닝 방법.
According to clause 9,
A method for screening a medicine for improving or treating colon cancer, wherein the small leucine zipper protein contains the amino acid sequence of SEQ ID NO: 1.
KR1020220072622A 2022-06-15 2022-06-15 Use of leucine-zipper protein for diagnosing or treating cancer KR20230172647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220072622A KR20230172647A (en) 2022-06-15 2022-06-15 Use of leucine-zipper protein for diagnosing or treating cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220072622A KR20230172647A (en) 2022-06-15 2022-06-15 Use of leucine-zipper protein for diagnosing or treating cancer

Publications (1)

Publication Number Publication Date
KR20230172647A true KR20230172647A (en) 2023-12-26

Family

ID=89320294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072622A KR20230172647A (en) 2022-06-15 2022-06-15 Use of leucine-zipper protein for diagnosing or treating cancer

Country Status (1)

Country Link
KR (1) KR20230172647A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110044545A (en) 2009-10-23 2011-04-29 고려대학교 산학협력단 A novel human leucine zipper protein isoform and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110044545A (en) 2009-10-23 2011-04-29 고려대학교 산학협력단 A novel human leucine zipper protein isoform and use thereof

Similar Documents

Publication Publication Date Title
He et al. TRIM59 knockdown blocks cisplatin resistance in A549/DDP cells through regulating PTEN/AKT/HK2
Zhao et al. EGF promotes HIF-1α expression in colorectal cancer cells and tumor metastasis by regulating phosphorylation of STAT3.
KR20210056959A (en) Composition for preventing or treating of liver cancer
CN107586850B (en) Application of non-coding gene in diagnosis and treatment of liver cancer
CN116024211A (en) Application of tRNA derivative tRF-His-008 in diagnosis and treatment of renal cancer
Zhou et al. The functional implication of ATF6α in castration-resistant prostate cancer cells
Wu et al. MiR-628–5p inhibits cervical carcinoma proliferation and promotes apoptosis by targeting VEGF
Jiang et al. MiR-29c suppresses cell invasion and migration by directly targeting CDK6 in gastric carcinoma.
KR101906333B1 (en) Use of leucine-zipper protein for diagnosing or treating Fatty liver disease
TWI601533B (en) Use of lncrna aoc4p for the manufacture of a medicament for the treatment of hepatocellular carcinoma
Zhu et al. Hypoxia-induced LINC00674 facilitates hepatocellular carcinoma progression by activating the NOX1/mTOR signaling pathway
KR20230172647A (en) Use of leucine-zipper protein for diagnosing or treating cancer
KR101237117B1 (en) Biomarker for measuring radiation exposure
Wang et al. MiR-532-5p acts as a tumor suppressor and inhibits glioma cell proliferation by targeting CSF1.
CN113265466A (en) Long-chain non-coding RNA and application thereof in diagnosis and treatment of hepatocellular carcinoma
CN111733247A (en) Application of long-chain non-coding RNA in cancer diagnosis and treatment
CN114085832B (en) SiRNA molecules for inhibiting PRR14 gene
KR20190086131A (en) Composition for treatment and predicting prognosis of head and neck squamous cell carcinoma
CN113521291B (en) Application of ZNF143-MDIG-CDC6 axis in hepatocellular carcinoma
WO2017054759A1 (en) Prevention, diagnosis and treatment of cancer overexpressing gpr160
KR102549771B1 (en) Method for screening an inhibitor for metastasis of colorectal cancer
CN111733246B (en) Molecules for early diagnosis and treatment of cancer
JP5209699B2 (en) Gastric cancer gene ZNF312b, protein translated from the gene, diagnostic kit, and anticancer drug screening method using the protein
KR20230102595A (en) Nucleic acid fragment specifically binding to the 3&#39; untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof
Pan et al. The promotion of cell proliferation and invasion in cutaneous squamous cell carcinomas after ARNT downregulation is associated with CXCL3

Legal Events

Date Code Title Description
E902 Notification of reason for refusal