KR20230102595A - Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof - Google Patents

Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof Download PDF

Info

Publication number
KR20230102595A
KR20230102595A KR1020210192838A KR20210192838A KR20230102595A KR 20230102595 A KR20230102595 A KR 20230102595A KR 1020210192838 A KR1020210192838 A KR 1020210192838A KR 20210192838 A KR20210192838 A KR 20210192838A KR 20230102595 A KR20230102595 A KR 20230102595A
Authority
KR
South Korea
Prior art keywords
pik3ca
gene
nucleic acid
mir
acid fragment
Prior art date
Application number
KR1020210192838A
Other languages
Korean (ko)
Inventor
이혜영
정효림
황다솜
Original Assignee
주식회사 이노제닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노제닉스 filed Critical 주식회사 이노제닉스
Priority to KR1020210192838A priority Critical patent/KR20230102595A/en
Priority to PCT/KR2022/020224 priority patent/WO2023128399A1/en
Publication of KR20230102595A publication Critical patent/KR20230102595A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자의 3'비번역 부위(UTR)에 특이적으로 결합하는 서열번호 1의 핵산 절편 및 그 핵산 절편을 유효성분으로 포함하는 자궁경부암 치료 및 진단용 조성물 등의 용도에 관한 것이다. The present invention relates to a nucleic acid fragment of SEQ ID NO: 1 that specifically binds to the 3' untranslated region (UTR) of a phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and cervical cancer treatment comprising the nucleic acid fragment as an active ingredient, and It relates to the use of diagnostic compositions and the like.

Description

포스파티딜이노시톨 3-키나아제 촉매 소단위 알파 유전자의 3'비번역 부위에 특이적으로 결합하는 핵산 절편 및 그 응용{Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof}Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) genes and applications thereof}

본 발명은 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자의 3'비번역 부위(UTR)에 특이적으로 결합하는 핵산 절편 및 그 응용에 관한 것이다.The present invention relates to a nucleic acid fragment that specifically binds to the 3' untranslated region (UTR) of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and its applications.

자궁경부암은 전 세계적으로 여성에게 네 번째로 흔한 암이다. 2020년에 전 세계적으로 약 598,000건의 새로운 사례와 338,800명의 자궁경부암으로 인한 사망이 보고되었다. 자궁경부암의 주요 원인은 지속적인 고위험 인유두종바이러스(HR-HPV) 감염으로 알려져 있다.Cervical cancer is the fourth most common cancer in women worldwide. In 2020, approximately 598,000 new cases and 338,800 deaths from cervical cancer were reported worldwide. The main cause of cervical cancer is known to be persistent high-risk human papillomavirus (HR-HPV) infection.

자궁경부암 검진을 위해 HR-HPV 검사와 Papanicolaou 검사는 HPV/Pap cotest라고 하는 단일 샘플로 수행된다. 이를 통해 전암 단계에서 조기 진단 및 치료가 가능하다. 그럼에도 불구하고 FIGO(International Federation of Gynecology and Obstetrics)에 따르면 전 세계 자궁경부암 환자의 약 50%는 수술로 치료할 수 없는 진행 단계에 있다.For cervical cancer screening, the HR-HPV test and the Papanicolaou test are performed on a single sample called the HPV/Pap cotest. This enables early diagnosis and treatment in the precancerous stage. Nevertheless, according to FIGO (International Federation of Gynecology and Obstetrics), about 50% of cervical cancer patients worldwide are at an advanced stage that cannot be treated with surgery.

현재 진행성 자궁경부암의 표준 치료법은 화학방사선 요법이다. 그러나 진행된 병기의 환자는 치료를 받아도 재발률이 높다. 현재 진행되고 있는 진행된 병기 환자에 대한 치료법은 환자가 재발성 또는 전이성 질환을 앓고 있기 때문에 증상을 완화하고 생존 기간을 연장하는 역할만 한다. 따라서 진행성 자궁경부암에 대한 새로운 치료법이 필요하다.Currently, the standard treatment for advanced cervical cancer is chemoradiation. However, patients with advanced disease have a high recurrence rate even with treatment. Treatments for patients with ongoing advanced stages only serve to relieve symptoms and prolong survival because the patients have recurrent or metastatic disease. Therefore, new therapies for advanced cervical cancer are needed.

최근에는 종양유전자를 표적으로 하여 억제하는 방법인 종양유전자 표적치료제가 집중적으로 연구되고 있다. 그 결과 FDA 승인을 받은 여러 종양 유전자 표적 치료제가 있다. 예를 들어, 허셉틴(Herceptin)이라고도 하는 트라스투주맙 (trastuzumab)은 종양 성장에 관여하는 수용체 티로신-단백질 키나제 erbB-2(HER-2)를 선택적으로 공격하여 유방암과 위암을 치료한다. 또한 vemurafenib은 serine/threonine-protein kinase B-Raf(BRAF) 유전자 돌연변이가 있는 전이성 흑색종 환자에게 사용된다.Recently, oncogene-targeted therapy, which is a method of targeting and inhibiting oncogenes, has been intensively studied. As a result, there are several oncogene-targeted therapies that have received FDA approval. For example, trastuzumab, also known as Herceptin, treats breast and stomach cancer by selectively attacking the receptor tyrosine-protein kinase erbB-2 (HER-2) involved in tumor growth. In addition, vemurafenib is indicated for metastatic melanoma patients with serine/threonine-protein kinase B-Raf (BRAF) gene mutations.

포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자는 자궁경부암의 주요 종양 유전자이다. 예를 들어, PIK3CA 돌연변이가 있는 자궁경부암 환자는 암 관련 유전자의 돌연변이가 더 많았다. 또한, cBioPortal 생물정보학 도구(http://www.cbioportal.org/)를 사용하는 The Cancer Genome Atlas(TCGA) 데이터베이스에 따르면 PIK3CA 유전자의 유전자 돌연변이 및 복제수 증폭 빈도는 모두 자궁경부암에서 높다. 따라서 PIK3CA 발현 억제는 자궁경부암 치료에 유용할 것으로 보인다. 또한 PI3K 억제제가 자궁경부암 세포에서 발암 활성을 감소시킨다는 전임상 연구도 있다.The phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene is a major oncogene in cervical cancer. For example, cervical cancer patients with PIK3CA mutations had more mutations in cancer-related genes. In addition, according to The Cancer Genome Atlas (TCGA) database using the cBioPortal bioinformatics tool (http://www.cbioportal.org/), both gene mutation and copy number amplification frequencies of the PIK3CA gene are high in cervical cancer. Therefore, inhibition of PIK3CA expression seems to be useful for the treatment of cervical cancer. There are also preclinical studies showing that PI3K inhibitors reduce oncogenic activity in cervical cancer cells.

최근 마이크로RNA(miRNA, miRs)에 대한 연구가 활발히 진행되고 있다. MicroRNA는 18-25개의 뉴클레오티드로 구성된 작은 비암호화 RNA로, RNA-유도 침묵 복합체라고 하는 miRNA-단백질 복합체를 형성하고 표적 mRNA의 3'-untranslated region(UTR)에 결합한다. 동물에서 표적 mRNA의 상보적 서열은 시드 영역(seed region)이라 불리는 miRNA의 5' 말단의 2-7개의 뉴클레오티드에 의해 결합된다. 시드 영역이 표적 mRNA에 완벽하게 결합하면 mRNA가 분해되는 반면 불완전한 결합은 mRNA의 번역 억제로 이어진다. MicroRNA는 종양 형성을 촉진하거나 억제하기 위해 종양 유전자 또는 종양 억제 유전자의 발현을 조절하는 것으로 알려져 있다. 종양 억제 miRNA의 경우 치료 연구에서 널리 연구되고 있다.Recently, studies on microRNAs (miRNAs, miRs) have been actively conducted. MicroRNAs are small noncoding RNAs of 18-25 nucleotides that form miRNA-protein complexes called RNA-induced silencing complexes and bind to the 3'-untranslated region (UTR) of target mRNAs. In animals, the complementary sequence of the target mRNA is bound by 2-7 nucleotides at the 5' end of the miRNA, called the seed region. Perfect binding of the seed region to the target mRNA leads to degradation of the mRNA, whereas incomplete binding leads to translational inhibition of the mRNA. MicroRNAs are known to regulate the expression of oncogenes or tumor suppressor genes to promote or inhibit tumorigenesis. Tumor suppressor miRNAs are widely studied in therapeutic research.

여러 연구에 따르면 miR-29a는 NAD-의존성 데아세틸라제 시르투인-1(SIRT1), 세포 분열 조절 단백질 42 동족체(CDC42), 및 사이토카인 신호전달 1(SOCS1)의 억제제의 역할을 하는 것으로 알려졌다.Several studies have shown that miR-29a acts as an inhibitor of NAD-dependent deacetylase sirtuin-1 (SIRT1), cell division regulatory protein 42 homologue (CDC42), and cytokine signaling 1 (SOCS1). .

[선행 특허 문헌][Prior Patent Literature]

대한민국 특허공개번호 제10-2016-0103949호Republic of Korea Patent Publication No. 10-2016-0103949

본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자의 3'비번역 부위(UTR)에 특이적으로 결합하는 핵산 절편을 제공하는 것이다.The present invention has been made in response to the above needs, and an object of the present invention is to provide a nucleic acid fragment that specifically binds to the 3' untranslated region (UTR) of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene.

본 발명의 다른 목적은 신규한 자궁 경부암 진단용 조성물을 제공하는 것이다.Another object of the present invention is to provide a novel composition for diagnosing cervical cancer.

본 발명의 또 다른 목적은 신규한 자궁 경부암 치료용 조성물을 제공하는 것이다.Another object of the present invention is to provide a novel composition for treating cervical cancer.

본 발명의 또 다른 목적은 신규한 자궁 경부암에 대한 정보제공 방법을 제공하는 것이다.Another object of the present invention is to provide a novel method for providing information on cervical cancer.

상기의 목적을 달성하기 위하여 본 발명은 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha, 이하 'PIK3CA'라 함) 유전자의 3'비번역 부위(UTR)에 특이적으로 결합하는 서열번호 1의 핵산 절편(AGCACCA;서열번호 1)을 제공한다.In order to achieve the above object, the present invention provides a 3' untranslated region (UTR) of the phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (hereinafter referred to as 'PIK3CA') gene. Provides a nucleic acid fragment of SEQ ID NO: 1 (AGCACCA; SEQ ID NO: 1) that specifically binds to.

또한 본 발명은 서열번호 1의 핵산 절편(AGCACCA)을 유효성분으로 포함하는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자 검출용 조성물을 제공한다.In addition, the present invention provides a composition for detecting phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene comprising the nucleic acid fragment (AGCACCA) of SEQ ID NO: 1 as an active ingredient.

또한 본 발명은 서열번호 1의 핵산 절편을 유효성분으로 포함하는 암 진단용 조성물을 제공한다.In addition, the present invention provides a composition for diagnosing cancer comprising the nucleic acid fragment of SEQ ID NO: 1 as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 암은 자궁경부암인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the cancer is preferably cervical cancer, but is not limited thereto.

또한 본 발명은 서열번호 1의 핵산 절편을 유효성분으로 포함하는 암 치료용 조성물을 제공한다.In addition, the present invention provides a composition for treating cancer comprising the nucleic acid fragment of SEQ ID NO: 1 as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 암은 자궁경부암인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the cancer is preferably cervical cancer, but is not limited thereto.

본 발명의 다른 구현예에 있어서, 상기 조성물은 암 세포의 이주 및 침투 능력을 저해하는 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the composition preferably inhibits the ability of cancer cells to migrate and invade, but is not limited thereto.

또한 본 발명은 인 비트로에서 시료로부터 얻은 유전자 풀에 서열번호 1의 핵산 절편을 처리하여 상기 서열번호 1의 핵산 절편에 결합하는 유전자가 있는 경우에 그 시료는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자를 포함하는 것으로 판단하는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자에 대한 정보 제공방법을 제공한다.In addition, in the present invention, when the gene pool obtained from the sample in vitro has a gene that binds to the nucleic acid fragment of SEQ ID NO: 1 by processing the nucleic acid fragment of SEQ ID NO: 1, the sample is phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA ) Provides a method for providing information on the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene, which is determined to contain the gene.

본 발명의 일 구현예에 있어서, 상기 핵산 절편과 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자와의 결합은 듀얼 루시퍼레이즈 분석(Dual luciferase assay)에 의하여 수행되는 것이 바람직하나 이에 한정되지 아니한다. In one embodiment of the present invention, the binding of the nucleic acid fragment to the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene is preferably performed by a dual luciferase assay, but is not limited thereto.

또한 본 발명은 인 비트로에서 시료로부터 얻은 유전자 풀에 서열번호 1의 핵산 절편을 처리하여 상기 서열번호 1의 핵산 절편에 결합하는 유전자가 있는 경우에 그 시료는 자궁경부암 관련 유전자를 포함하는 것으로 판단하는 자궁경부암에 대한 정보 제공방법을 제공한다. In addition, the present invention processes the nucleic acid fragment of SEQ ID NO: 1 in the gene pool obtained from the sample in vitro and determines that the sample contains a cervical cancer-related gene when there is a gene that binds to the nucleic acid fragment of SEQ ID NO: 1 Provides a method for providing information on cervical cancer.

본 발명의 상기 핵산 절편를 유효성분으로 포함하는 암 치료용 약학 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있으며, 함체와 함께 제제화 될 수 있다.The pharmaceutical composition for treating cancer comprising the nucleic acid fragment of the present invention as an active ingredient may further include a pharmaceutically acceptable carrier and may be formulated together with the carrier.

본 발명에서 용어, "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not stimulate organisms and does not inhibit the biological activity and properties of the administered compound. Acceptable pharmaceutical carriers for compositions formulated as liquid solutions are sterile and biocompatible, and include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added if necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to prepare formulations for injections such as aqueous solutions, suspensions, and emulsions, pills, capsules, granules, or tablets.

본 발명의 상기 핵산 절편 및 약학적으로 허용 가능한 담체를 포함하는 암 예방 또는 치료용 조성물은 이를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.The composition for preventing or treating cancer comprising the nucleic acid fragment and a pharmaceutically acceptable carrier of the present invention can be applied in any formulation containing the nucleic acid fragment as an active ingredient, and can be prepared as an oral or parenteral formulation. The pharmaceutical formulations of the present invention may be taken oral, rectal, nasal, topical (including buccal and sublingual), subcutaneous, vaginal or parenteral (intramuscular, subcutaneous). and intravenous) or forms suitable for administration by inhalation or insufflation.

본 발명의 조성물을 유효성분으로 포함하는 경구 투여용 제형으로는, 예를 들어 정제, 트로키제, 로렌지, 수용성 또는 유성현탁액, 조제분말 또는 과립, 에멀젼, 하드 또는 소프트 캡슐, 시럽 또는 엘릭시르제로 제제화할 수 있다. 정제 및 캡슐 등의 제형으로 제제화하기 위해, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴과 같은 결합제, 디칼슘 포스페이트와 같은 부형제, 옥수수 전분 또는 고구마 전분과 같은 붕괴제, 스테아르산 마스네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌글리콜 왁스와 같은 윤활유를 포함할 수 있으며, 캡슐제형의 경우 상기 언급한 물질 외에도 지방유와 같은 액체 담체를 더 함유할 수 있다.Formulations for oral administration containing the composition of the present invention as an active ingredient include, for example, tablets, troches, lozenges, aqueous or oily suspensions, prepared powders or granules, emulsions, hard or soft capsules, syrups or elixirs. can do. For formulation into dosage forms such as tablets and capsules, binders such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin, excipients such as dicalcium phosphate, disintegrants such as corn starch or sweet potato starch, massene stearate Lubricating oil such as calcium, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax may be included, and in the case of a capsule formulation, a liquid carrier such as fatty oil may be further included in addition to the above-mentioned materials.

본원에 기재된 조성물은 약제학적 조성물로서 제형화되고 다양한 형태로 인간 환자와 같은 포유 동물 숙주에 투여될 수있다. 상기 형태는 정맥 내, 근육 내, 국소 또는 피하 경로에 의해 선택된 투여 경로, 예를 들어 경구 또는 비경구 투여에 특히 적합할 수 있다.The compositions described herein can be formulated as pharmaceutical compositions and administered to mammalian hosts, such as human patients, in a variety of forms. The form may be particularly suitable for the selected route of administration, eg oral or parenteral administration, by intravenous, intramuscular, topical or subcutaneous routes.

본 발명의 조성물을 유효성분으로 포함하는 비경구 투여용 제형으로는, 피하주사, 정맥주사 또는 근육내 주사 등의 주사용 형태, 좌제 주입방식 또는 호흡기를 통하여 흡입이 가능하도록 하는 에어로졸제 등 스프레이용으로 제제화할 수 있다. 주사용 제형으로 제제화하기 위해서는 본 발명의 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여용으로 제제화할 수 있다. 좌제로 주입하기 위해서는, 코코아버터 또는 다른 글리세라이드 등 통상의 좌약 베이스를 포함하는 좌약 또는 관장제와 같은 직장투여용 조성물로 제제화할 수 있다. 에어로졸제 등의 스프레이용으로 제형화하는 경우, 수분산된 농축물 또는 습윤 분말이 분산되도록 추진제 등이 첨가제와 함께 배합될 수 있다.Formulations for parenteral administration containing the composition of the present invention as an active ingredient include injection forms such as subcutaneous, intravenous, or intramuscular injections, suppository injections, or sprays such as aerosols that enable inhalation through the respiratory tract. can be formulated into In order to formulate an injectable formulation, the composition of the present invention may be mixed in water with a stabilizer or buffer to prepare a solution or suspension, which may be formulated for unit administration in an ampoule or vial. For injection as a suppository, it may be formulated into a composition for rectal administration such as a suppository or an enema containing a conventional suppository base such as cocoa butter or other glycerides. When formulated for spraying, such as aerosols, propellants and the like may be blended with additives so that the concentrated concentrate or wet powder dispersed in water is dispersed.

본원에 기재된 조성물의 유용한 투여량은 동물 모델에서 이들의 시험 관내 활성 및 생체 내 활성을 비교함으로써 결정될 수 있다. 마우스 및 다른 동물에서 유효량을 인간에게 외삽하는 방법은 당업계에 공지되어 있으며; 예를 들어, 미국 특허 제 4,938,949 호 (Borch et al.)를 참조한다. 치료에 사용하기 위해 요구되는 본 발명의 유효성분의 양은 선택된 특정 화합물 또는 염뿐만 아니라 투여 경로, 치료되는 질병의 성질, 및 연령 및 환자의 상태, 그리고 궁극적으로 참여 의사 또는 임상의의 재량에 따른다.Useful dosages of the compositions described herein can be determined by comparing their in vitro and in vivo activities in animal models. Methods for extrapolating effective amounts to humans in mice and other animals are known in the art; See, eg, US Patent No. 4,938,949 (Borch et al.). The amount of the active ingredient of the present invention required for use in treatment depends not only on the particular compound or salt selected, but also on the route of administration, the nature of the disease being treated, and the age and condition of the patient, and ultimately the discretion of the participating physician or clinician.

그러나, 일반적으로, 적절한 투여 량은 일일 체중 약 0.05 내지 약 100 mg/kg, 예를 들어 약 kg 당 0.1 내지 약 50 mg/일 수용자의 체중과 같은 약 10 내지 약 75 mg /kg/일의 범위일 것이다. In general, however, a suitable dosage ranges from about 10 to about 75 mg/kg/day, such as about 0.05 to about 100 mg/kg of body weight per day, for example about 0.1 to about 50 mg/kg of body weight of the recipient per day. would.

본 발명을 통하여 알 수 있는 바와 같이, 본 발명의 결과는 PIK3CA mRNA의 3' UTR이 본 발명의 서열번호 1의 핵산 절편의 표적 mRNA 중 하나이며, 본 발명의 서열번호 1의 핵산 절편을 포함하는 유전자의 과발현은 PIK3CA 유전자의 발현 수준을 하향 조절한다는 것을 입증하였다. As can be seen through the present invention, the result of the present invention is that the 3' UTR of PIK3CA mRNA is one of the target mRNAs of the nucleic acid fragment of SEQ ID NO: 1 of the present invention, comprising the nucleic acid fragment of SEQ ID NO: 1 of the present invention It was demonstrated that overexpression of the gene down-regulated the expression level of the PIK3CA gene.

더욱이, 세포 이동 및 침입의 결과는 본 발명의 서열번호 1의 핵산 절편을 포함하는 miR-29a의 과발현이 PIK3CA의 조절된 발현의 효과를 통해 자궁경부암에서 종양 형성을 억제한다는 것을 나타내었다. Moreover, the results of cell migration and invasion indicated that the overexpression of miR-29a comprising the nucleic acid fragment of SEQ ID NO: 1 of the present invention inhibits tumor formation in cervical cancer through the effect of regulated expression of PIK3CA.

따라서 본 발명의 결과는 본 발명의 서열번호 1의 핵산 절편이 PIK3CA의 3' UTR을 표적으로 하여 자궁경부암의 새로운 치료제로 활용될 수 있음을 시사한다.Therefore, the results of the present invention suggest that the nucleic acid fragment of SEQ ID NO: 1 of the present invention can be used as a new therapeutic agent for cervical cancer by targeting the 3' UTR of PIK3CA.

도 1은 PIK3CA mRNA의 3' UTR에서 예상되는 miR-29a 결합 부위를 나타낸 그림으로,
TargetScan 소프트웨어(http://www.targetscan.org/)를 사용하여 PIK3CA 유전자의 포유류 miR-29a 표적 부위를 예측. TargetScan 알고리즘은 5' 말단에서 번호가 매겨지고 miRNA 시드 영역이라고 하는 miRNA의 염기 2-8에 대해 완벽한 상보성을 갖는 세그먼트에 대한 mRNA의 UTR을 검색.
도 2는 PIK3CA의 mRNA를 검출하기 위한 PIK3CA 프라이머 세트의 다중 정렬을 나타낸 그림으로,
프라이머 디자인에서 PIK3CA mRNA RT-qPCR 프라이머 후보는 Integrated DNA Technologies(IDT, Coralville, IA, USA)의 프라이머 퀘스트 도구, 올리고 분석기 도구, 기본 로컬 정렬 검색 도구(BLAST by NCBI, Bethesda, MD, USA) 및 PIK3CA의 mRNA만을 검출하기 위한 다중 정렬의 시퀀스에 의해 선택.
도 3은 인간 자궁경부암 세포주에서 miR-29a의 발현 수준을 나타낸 그림으로, RT-qPCR 분석은 세포주 RNA의 cDNA와 함께 사용되었다. 상대적 miR-29a 발현 수준을 RNU6B Ct 값과 비교하였다. 데이터는 표준 편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정과 Kruskal-Wallis 비모수 검정을 사용하여 계산되었다. **P < 0.01; ***P < 0.001,
도 4는 HeLa 세포의 세포 생존율에 대한 LipofectamineTM의 효과를 나타낸 그림으로,
1 x 104 HeLa 세포/웰의 밀도로 96웰 플레이트에 접종했다. 24시간 인큐베이션 후, 세포를 miR-29a 및 스크램블 miRNA로 처리하였다. Hela 세포의 세포 생존력은 MTT 분석을 사용하여 평가되었다. 흡광도는 분광광도계(Tecan)로 540 nm에서 측정하였다.
도 5는 Lipofectamine™을 사용한 miR-29a의 농도 최적화를 위한 젤 지연 분석을 나타낸 그림으로,
일정한 양의 miR-29a, 100nM과 복합체화된 LipofectamineTM의 각 부피(0, 1, 3, 5, 7, 9μl). 각각의 miR-29a 및 Lipofectamine™ 복합체를 2% 아가로스 젤의 웰에 로딩하고 100V에서 15분 동안 전기영동하고 Gel Doc Imaging System으로 시각화했다.
도 6은 miR-29a가 HeLa 세포의 세포 생존율에 미치는 영향을 나타낸 그림으로,
(A) HeLa 세포(1 x 104 cells/well)를 25 nM, 50 nM, 100 nM 및 200 nM 농도의 miR-29a와 1, 2, 3, 6, 12 μl의 LipofectamineTM으로 형질감염시켰다.
(B) 24시간 동안 Lipofectamine™을 사용한 스크램블 miRNA 및 miR-29a의 각 200nM 및 400nM 농도. MTT 분석은 HeLa 세포에서 생존 세포를 측정했다. 흡광도는 540 nm에서 측정되었다. 모든 실험은 독립적으로 3회 수행되었다. 데이터는 표준 편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정을 사용하여 계산되었다. ***P < 0.001,
도 7은 miR-29a는 PIK3CA mRNA의 3' UTR에 직접 결합하는 것을 나타낸 그림으로, (A) PIK3CA 3' UTR의 야생형 및 돌연변이형 벡터는 유전자 클로닝 서비스를 사용하여 잠재적인 결합 서열로 구성되었다.
(B) PIK3CA 야생형 및 PIK3CA 돌연변이형 플라스미드의 루시퍼라제 활성은 miR-29a 또는 스크램블 miRNA로 동시 형질감염된 HeLa 세포에서 측정되었다. 상대적 루시페라제 활성은 반딧불이 루시페라제 활성 대 레닐라 루시페라제 활성으로 계산되었다. 모든 실험은 독립적으로 3회 수행되었다. 데이터는 표준 편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정을 사용하여 계산되었다. ***P < 0.001,
도 8은 mRNA 수준에서 HeLa 세포에서 스크램블 miRNA 및 miR-29a 처리를 사용한 PIK3CA 발현을 나타낸 그림으로,
HeLa 세포를 miR-29a 및 scramble miRNA로 24시간 동안 형질감염시키고, HeLa 세포의 total RNA를 oligo dT 프라이머를 사용하여 cDNA로 합성하였다. PIK3CA mRNA의 상대적 발현 수준을 GAPDH 발현 수준과 비교하였다.
모든 실험은 독립적으로 3회 수행되었으며 데이터는 표준편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정을 사용하여 계산되었습니다. ***P < 0.001,
도 9는 SiHa 및 C33A 세포에서 PIK3CA mRNA 발현 수준을 나타낸 그림으로,
(A) SiHa 및 (B) C33A 세포를 miR-29a 및 스크램블 miRNA로 24시간 동안 형질감염시켰다. PIK3CA mRNA의 상대적 발현 수준을 GAPDH 발현 수준과 비교하였다.
모든 실험은 독립적으로 3회 수행되었으며 데이터는 표준편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정을 사용하여 계산되었다. **P < 0.05; ***P < 0.001,
도 10은 단백질 수준에서 HeLa 세포에서 스크램블 miRNA 및 miR-29a 처리로 PIK3CA 발현을 나타낸 그림으로,
(A) HeLa 세포를 miR-29a 및 스크램블 miRNA로 24시간 동안 형질감염시키고, 30㎍의 세포 용해물을 웨스턴 블롯팅에 사용하였다.
miR-29a로 형질감염된 HeLa 세포에서 PIK3CA의 단백질 발현 수준을 웨스턴 블롯팅을 통해 스크램블 miRNA와 비교하였다. PIK3CA 단백질 발현 수준은 내부 대조군 역할을 하는 GAPDH 단백질 발현 수준으로 계산하였다.
(B) ImageJ는 단백질 밴드의 강도를 측정했다.
도 11은 miR-29a가 HeLa 세포의 세포 이동 능력에 미치는 영향을 나타낸 그림으로,
HeLa 세포를 miR-29a 모방체로 형질감염시키고 24시간 동안 miRNA를 스크램블한 후, 세포를 긁어서 500 μm 너비의 상처 간격을 긁었다. 상처 갭은 (A) 현미경으로 0, 24, 48 및 72시간에 사진을 찍고 (B) ImageJ 소프트웨어를 사용하여 그래프로 표시했다.
데이터는 표준 편차(S.D.)가 있는 평균으로 표현되었다. 모든 실험은 독립적으로 3회 수행되었다.
도 12는 miR-29a가 HeLa 세포의 세포 침입에 미치는 영향을 나타낸 그림으로,
HeLa 세포가 miR-29a 모방체와 스크램블 miRNA로 형질감염된 후 트랜스웰 침입 분석을 사용하여 세포 침입 능력을 분석했다. 24시간 후 세포의 침윤을 계수하고, 음성 대조군과 비교하여 침윤된 세포의 백분율을 계산하였다.
트랜스웰 삽입체의 하부 표면은 (A) 현미경으로 무작위 필드에서 사진을 찍고, (B) ImageJ 소프트웨어를 사용하여 침윤된 세포를 계수하였다.
모든 실험은 독립적으로 3회 수행되었다. 데이터는 표준 편차(S.D.)가 있는 평균으로 표시되었다. P 값은 학생의 t-검정을 사용하여 계산되었다. ***P < 0.001
Figure 1 is a picture showing the expected miR-29a binding site in the 3' UTR of PIK3CA mRNA,
Prediction of the mammalian miR-29a target site in the PIK3CA gene using TargetScan software (http://www.targetscan.org/). The TargetScan algorithm searches the UTR of mRNA for segments that are numbered at the 5' end and have perfect complementarity to bases 2-8 of the miRNA, referred to as the miRNA seed region.
Figure 2 is a diagram showing multiple alignment of PIK3CA primer sets for detecting mRNA of PIK3CA,
In primer design, PIK3CA mRNA RT-qPCR primer candidates were selected from Integrated DNA Technologies (IDT, Coralville, IA, USA) Primer Quest Tool, Oligo Analyzer Tool, Basic Local Alignment Search Tool (BLAST by NCBI, Bethesda, MD, USA) and PIK3CA Selected by a sequence of multiple alignments to detect only the mRNA of
Figure 3 is a picture showing the expression level of miR-29a in human cervical cancer cell lines, RT-qPCR analysis was used with cDNA of cell line RNA. Relative miR-29a expression levels were compared with RNU6B Ct values. Data were expressed as mean with standard deviation (SD). P values were calculated using Student's t-test and Kruskal-Wallis nonparametric test. **P <0.01; ***P < 0.001,
Figure 4 is a picture showing the effect of LipofectamineTM on the cell viability of HeLa cells,
A 96-well plate was seeded at a density of 1 x 10 4 HeLa cells/well. After 24 hours incubation, cells were treated with miR-29a and scrambled miRNA. Cell viability of Hela cells was assessed using the MTT assay. Absorbance was measured at 540 nm with a spectrophotometer (Tecan).
Figure 5 is a picture showing the gel retardation analysis for optimization of the concentration of miR-29a using Lipofectamine ™,
Each volume (0, 1, 3, 5, 7, 9 μl) of Lipofectamine TM complexed with a constant amount of miR-29a, 100 nM. Each miR-29a and Lipofectamine™ complex was loaded into wells of a 2% agarose gel, electrophoresed at 100V for 15 minutes, and visualized with the Gel Doc Imaging System.
Figure 6 is a diagram showing the effect of miR-29a on the cell viability of HeLa cells,
(A) HeLa cells (1 x 10 4 cells/well) were transfected with 25 nM, 50 nM, 100 nM, and 200 nM of miR-29a and 1, 2, 3, 6, or 12 μl of Lipofectamine TM .
(B) 200 nM and 400 nM concentrations of scrambled miRNA and miR-29a, respectively, using Lipofectamine™ for 24 hours. MTT assay measured viable cells in HeLa cells. Absorbance was measured at 540 nm. All experiments were performed independently in triplicate. Data were expressed as mean with standard deviation (SD). P values were calculated using Student's t-test. ***P < 0.001,
7 is a diagram showing that miR-29a directly binds to the 3' UTR of PIK3CA mRNA. (A) Wild-type and mutant vectors of PIK3CA 3' UTR were constructed as potential binding sequences using a gene cloning service.
(B) Luciferase activity of PIK3CA wild type and PIK3CA mutant plasmids was measured in HeLa cells cotransfected with miR-29a or scrambled miRNA. Relative luciferase activity was calculated as firefly luciferase activity versus Renilla luciferase activity. All experiments were performed independently in triplicate. Data were expressed as mean with standard deviation (SD). P values were calculated using Student's t-test. ***P < 0.001,
Figure 8 is a diagram showing PIK3CA expression using scrambled miRNA and miR-29a treatment in HeLa cells at the mRNA level,
HeLa cells were transfected with miR-29a and scramble miRNA for 24 hours, and total RNA of HeLa cells was synthesized into cDNA using an oligo dT primer. The relative expression level of PIK3CA mRNA was compared to the GAPDH expression level.
All experiments were independently performed in triplicate and data are presented as mean with standard deviation (SD). P values were calculated using Student's t-test. ***P < 0.001,
Figure 9 is a figure showing the expression level of PIK3CA mRNA in SiHa and C33A cells,
(A) SiHa and (B) C33A cells were transfected with miR-29a and scrambled miRNA for 24 hours. The relative expression level of PIK3CA mRNA was compared to the GAPDH expression level.
All experiments were independently performed in triplicate and data are presented as mean with standard deviation (SD). P values were calculated using Student's t-test. **P <0.05; ***P < 0.001,
Figure 10 is a picture showing PIK3CA expression with scrambled miRNA and miR-29a treatment in HeLa cells at the protein level.
(A) HeLa cells were transfected with miR-29a and scrambled miRNA for 24 hours, and 30 μg of cell lysate was used for Western blotting.
The protein expression level of PIK3CA in HeLa cells transfected with miR-29a was compared with scrambled miRNA through Western blotting. The PIK3CA protein expression level was calculated as the GAPDH protein expression level serving as an internal control.
(B) ImageJ measured the intensity of protein bands.
Figure 11 is a diagram showing the effect of miR-29a on the cell migration ability of HeLa cells.
HeLa cells were transfected with the miR-29a mimic and after miRNA scrambled for 24 hours, the cells were scratched to scratch a 500 μm wide wound gap. Wound gaps were (A) photographed under a microscope at 0, 24, 48 and 72 hours and (B) graphed using ImageJ software.
Data were expressed as mean with standard deviation (SD). All experiments were performed independently in triplicate.
Figure 12 is a picture showing the effect of miR-29a on cell invasion of HeLa cells,
After HeLa cells were transfected with miR-29a mimics and scrambled miRNAs, the cell invasion ability was analyzed using a transwell invasion assay. Cell invasion was counted after 24 hours and the percentage of invaded cells compared to the negative control was calculated.
The lower surface of the transwell insert was (A) photographed in a random field under a microscope and (B) infiltrated cells were counted using ImageJ software.
All experiments were performed independently in triplicate. Data were expressed as mean with standard deviation (SD). P values were calculated using Student's t-test. ***P < 0.001

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재한 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다Hereinafter, the present invention will be described in more detail through non-limiting examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by the following examples.

실시예 1. 세포 배양Example 1. Cell culture

인간 자궁경부암 세포주(SiHa, ATCC HTB-35; HeLa, ATCC CCL-2; C33A, ATCC HTB-31)는 American Type Culture Collection(ATCC, VA, USA)에서 구입했다. Human cervical cancer cell lines (SiHa, ATCC HTB-35; HeLa, ATCC CCL-2; C33A, ATCC HTB-31) were purchased from the American Type Culture Collection (ATCC, VA, USA).

SiHa, HeLa 및 C33A 세포를 10% 소태아혈청(FBS, Gibco) 및 1% 스트렙토마이신-페니실린(Gibco)이 보충된 Dulbecco의 변형된 Eagle 배지(DMEM; Gibco, Carlsbad, CA, USA)에서 배양했다. 모든 세포주는 가습된 5% CO2 인큐베이터에서 37℃에서 인큐베이션되었다. 세포를 80-90% 합류점에서 계대배양하였다.SiHa, HeLa and C33A cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% streptomycin-penicillin (Gibco) . All cell lines were incubated at 37° C. in a humidified 5% CO2 incubator. Cells were subcultured at 80-90% confluence.

Figure pat00001
Figure pat00001

표 1은 본 발명에 사용된 자궁경부암 세포주의 생물학적 특성Table 1 shows the biological characteristics of cervical cancer cell lines used in the present invention.

실시예 2. 세포로부터 총 RNA 분리Example 2. Isolation of total RNA from cells

RNeasy Mini Kit(Qiagen, Hilden, Germany)를 사용하여 자궁경부암 세포주에서 총 RNA를 분리했다. Total RNA was isolated from cervical cancer cell lines using the RNeasy Mini Kit (Qiagen, Hilden, Germany).

요약하면, 세포 배양물의 상청액을 제거하고, 6-웰 배양 플레이트의 세포를 인산염 완충 식염수(PBS; Gibco)로 3회 세척하였다. PBS를 제거하고 6μl의 β-mercaptoethanol이 보충된 600μl의 lysis buffer RLT를 세포에 첨가하고 pipetting으로 잘 혼합하였다. 그 다음, 세포 용해물을 1.5 ml 마이크로 원심분리 튜브에 옮기고, 70% 에탄올 600 μl를 첨가하고 피펫팅하여 혼합하였다.Briefly, supernatants of cell cultures were removed, and cells in 6-well culture plates were washed three times with phosphate buffered saline (PBS; Gibco). After removing the PBS, 600 μl of lysis buffer RLT supplemented with 6 μl of β-mercaptoethanol was added to the cells and mixed well by pipetting. The cell lysate was then transferred to a 1.5 ml microcentrifuge tube, 600 μl of 70% ethanol was added and mixed by pipetting.

그 후, 600 μl의 용해물을 2 ml 수집 튜브의 RNeasy 미니 컬럼에 로딩하고 8,000 x g에서 15초(초) 동안 원심분리했다.Then, 600 μl of the lysate was loaded onto the RNeasy mini column in a 2 ml collection tube and centrifuged at 8,000 x g for 15 seconds (seconds).

통과액을 버리고 추가 600μl의 용해물을 RNeasy 미니 컬럼에 로딩하고 다시 8,000 x g에서 15초 동안 원심분리했다. 그 후, 700 μl의 버퍼 RW1을 RNeasy 컬럼에 첨가하고 8,000 x g에서 15초 동안 원심분리하였다. 통과액을 폐기하고 Buffer RPE 500μl를 RNeasy 미니 컬럼에 첨가하고 8,000 x g에서 15초 동안 원심분리했다. 플로우 스루는 폐기되었다. 500 μl의 버퍼 RPE를 다시 RNeasy 미니 컬럼에 첨가하고 8,000 x g에서 2분(분) 동안 원심분리했다. RNeasy 미니 컬럼을 새 수집 튜브로 옮기고 최대 속도로 1분 동안 원심분리했다. 그 후, RNeasy 미니 컬럼을 새로운 1.5ml 미세 원심분리 튜브에 넣었다.The flow-through was discarded and an additional 600 μl of lysate was loaded onto the RNeasy mini column and centrifuged again at 8,000 x g for 15 seconds. Then, 700 μl of Buffer RW1 was added to the RNeasy column and centrifuged at 8,000 x g for 15 seconds. The flow through was discarded and 500 μl of Buffer RPE was added to the RNeasy mini column and centrifuged at 8,000 x g for 15 seconds. The flow-through was scrapped. 500 μl of buffer RPE was added back to the RNeasy mini column and centrifuged at 8,000 x g for 2 minutes (min). The RNeasy mini column was transferred to a new collection tube and centrifuged for 1 minute at maximum speed. The RNeasy mini column was then placed in a new 1.5 ml microcentrifuge tube.

미니 컬럼에 DEPC 처리수 50 ㎕를 넣고 10,000 x g에서 1분간 원심분리하여 total RNA를 얻었다. 총 RNA의 순도 및 농도는 Infinite 200 분광광도계(Tecan, Austria)를 사용하여 260 및 280 nm에서의 흡광도 비율로 측정하였다. 총 RNA의 처리 절차는 RNase가 없는 조건에서 층류 후드에서 수행되었다. 분리된 total RNA는 사용 전까지 -80℃에서 보관하였다.50 μl of DEPC-treated water was added to the mini column and centrifuged at 10,000 x g for 1 minute to obtain total RNA. The purity and concentration of total RNA was determined by the absorbance ratio at 260 and 280 nm using an Infinite 200 spectrophotometer (Tecan, Austria). The processing procedure of total RNA was performed in a laminar flow hood under RNase-free conditions. Isolated total RNA was stored at -80 ℃ until use.

실시예 3. DNase 처리 및 상보적 DNA(cDNA) 합성Example 3. DNase treatment and complementary DNA (cDNA) synthesis

분리된 RNA를 Turbo DNase 키트(Life Technologies, Carlsbad, CA, USA)로 처리하여 dsDNA 템플릿을 분해하고 cDNA 합성에 사용했다. The isolated RNA was treated with a Turbo DNase kit (Life Technologies, Carlsbad, CA, USA) to digest the dsDNA template and used for cDNA synthesis.

요약하면, 1.5㎕의 DEPC, 2.5㎕의 TURBO DNase 완충액 및 1㎕의 TURBO DNase를 20㎕의 총 RNA 샘플에 첨가하였다. 37°C에서 30분 동안 인큐베이션한 후, DNase 억제제 3㎕를 첨가하고 유동 후드에서 5분 동안 탭핑하였다. 그 후, 전속력으로 잠시 원심분리하고 상층액을 1.5 ml 미세원심분리 튜브로 옮겼다.Briefly, 1.5 μl of DEPC, 2.5 μl of TURBO DNase buffer and 1 μl of TURBO DNase were added to 20 μl of total RNA sample. After incubation at 37 °C for 30 min, 3 μl of DNase inhibitor was added and tapped for 5 min in a flow hood. Thereafter, centrifugation was performed briefly at full speed and the supernatant was transferred to a 1.5 ml microcentrifuge tube.

miRNA의 경우, High Capacity cDNA Reverse Transcription Kit(Applied Biosystems, USA)를 사용하여 상보적 DNA(cDNA) 역전사를 수행했다. For miRNA, complementary DNA (cDNA) reverse transcription was performed using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, USA).

요약하면, 1-10ng의 RNA가 cDNA 합성에 사용되었다. 역전사효소(RT) 혼합물은 0.15μl의 100mM dNTP 혼합물(중성 pH에서 각각 100mM의 dATP, dGTP, dCTP 및 dTTP), 0.25μl의 200U/μl 뮤린 몰로니 백혈병 바이러스 역전사효소(MMLV-RT; Invitrogen, Carlsbad, CA, USA), 1.5μl의 10X 역전사효소 완충액, 0.19μl의 20U/μl RNase 억제제 및 3μl의 5X miRNA-특이적 프라이머를 혼합하고 RT 혼합물의 부피를 뉴클레아제가 없는 물로 15μl까지 조정했다. 다음 TaqMan 소형 RNA 분석(Applied Biosystems) 프라이머가 적용되었다:RNU6B 및 hsa-miR-29a. In brief, 1–10 ng of RNA was used for cDNA synthesis. The reverse transcriptase (RT) mixture consisted of 0.15 μl of 100 mM dNTP mixture (100 mM each of dATP, dGTP, dCTP and dTTP at neutral pH), 0.25 μl of 200 U/μl murine moloney leukemia virus reverse transcriptase (MMLV-RT; Invitrogen, Carlsbad). , CA, USA), 1.5 μl of 10X reverse transcriptase buffer, 0.19 μl of 20 U/μl RNase inhibitor and 3 μl of 5X miRNA-specific primer were mixed and the volume of the RT mixture was adjusted to 15 μl with nuclease-free water. The following TaqMan small RNA assay (Applied Biosystems) primers were applied: RNU6B and hsa-miR-29a.

cDNA 합성 반응은 16℃에서 30분, 42℃에서 30분, 85℃에서 5분 동안 수행하였다.The cDNA synthesis reaction was performed at 16°C for 30 minutes, 42°C for 30 minutes, and 85°C for 5 minutes.

mRNA의 경우, cDNA는 PrimeScript RT Master Mix(PrimeScript RTase, RNase Inhibitor, random 6-mers, Oligo dT Primer, dNTP 혼합물 및 완충액, Takara, Shiga, Japan)에 의해 합성되었다. For mRNA, cDNA was synthesized by PrimeScript RT Master Mix (PrimeScript RTase, RNase Inhibitor, random 6-mers, Oligo dT Primer, dNTP mixture and buffer, Takara, Shiga, Japan).

요약하면, 10μl의 Prime Script RT Master Mix, RNase 유리수 및 2500ng의 총 RNA를 혼합했다. 50 μl의 PCR 반응을 37°C에서 60분, 85°C에서 5초, 인큐베이션하고. 4°C에서 냉각을 하였다.Briefly, 10 μl of Prime Script RT Master Mix, RNase free water and 2500 ng of total RNA were mixed. Incubate the PCR reaction in 50 μl for 60 min at 37 °C and 5 s at 85 °C. Cooling was done at 4°C.

실시예 4. miRNA-29a 발현 분석을 위한 RT-qPCRExample 4. RT-qPCR for miRNA-29a expression analysis

miRNA 특이적 프라이머를 사용하는 TaqMan small RNA 분석(Applied Biosystems)을 사용하여 형광이 배경 형광보다 상당히 높은 값을 초과하는 형광에 필요한 PCR 주기의 수인 주기 임계값(Ct)을 결정하여 MicroRNA 발현을 정량화했다.MicroRNA expression was quantified using a TaqMan small RNA assay (Applied Biosystems) using miRNA-specific primers to determine the cycle threshold (Ct), which is the number of PCR cycles required for fluorescence to exceed a value significantly above background fluorescence. .

요약하면, 20㎕의 최종 부피에서 1㎕의 20x miRNA-특이적 프라이머 및 7㎕의 뉴클레아제가 없는 물과 함께 2x Thunderbird 프로브 qPCR 믹스(Toyobo, Osaka, Japan) 10㎕에 cDNA 2㎕를 첨가했다. RT-qPCR 반응은 CFX96 Real-Time PCR System Detector(Bio-Rad, Hercules, CA, USA)에서 수행되었다. 샘플은 각 실험에 대해 이중으로 실행되었다.Briefly, 2 μl of cDNA was added to 10 μl of 2x Thunderbird probe qPCR mix (Toyobo, Osaka, Japan) along with 1 μl of 20x miRNA-specific primers and 7 μl of nuclease-free water in a final volume of 20 μl. . RT-qPCR reactions were performed on a CFX96 Real-Time PCR System Detector (Bio-Rad, Hercules, CA, USA). Samples were run in duplicate for each experiment.

데이터는 내인성 대조군으로 세포에 대한 RNU6B를 사용한 비교 Delta Ct 방법(2-ΔCt)으로 계산되었다[Pfaffl, M.W., et al., Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002. 30(9): p. e36; Livak, K.J., et al., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8]. Data were calculated with the comparative Delta Ct method (2-ΔCt) using RNU6B on cells as an endogenous control [Pfaffl, MW, et al. , Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002. 30(9): p. e36; Livak, KJ, et al. , Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8].

시약의 오염을 모니터링하기 위해 각 프라이머 쌍에 대해 음성 대조군이 포함되었다. PCR 사이클링 조건은 95℃에서 10분, 95℃에서 15초, 60℃에서 60초를 40회 반복하였다.A negative control was included for each primer pair to monitor for reagent contamination. PCR cycling conditions were repeated 40 times: 95°C for 10 minutes, 95°C for 15 seconds, and 60°C for 60 seconds.

실시예 5. miRNA-29a 및 스크램블 miRNA의 세포 형질감염Example 5. Cell transfection of miRNA-29a and scrambled miRNA

HeLa, SiHa 및 C33A 세포를 6웰 배양 플레이트에 4×105 cells/well의 밀도로 시딩하고 miRNA-29a 모방체(miR-29a; Bioneer, 대전, 대한민국) 및 음성 대조군 모방체(스크램블 miRNA, 바이오니아)으로 트랜스팩션하였다. miRNA-29a 모방체의 서열은 5'-ACUGAUUUCUUU UGGUGUUCAG-3'(서열번호 2)이었다.HeLa, SiHa and C33A cells were seeded at a density of 4×10 5 cells/well in 6-well culture plates and miRNA-29a mimics (miR-29a; Bioneer, Daejeon, Korea) and negative control mimics (scrambled miRNA, Bioneer, Korea) ) was transfected with. The sequence of the miRNA-29a mimic was 5'-ACUGAUUUCUUU UGGUGUUCAG-3' (SEQ ID NO: 2).

70-80% 컨플루언스까지 배양한 후, 세포를 miRNA-29a 모방체로 형질감염시키고 LipofectamineTM RNAiMAX 시약(LipofectamineTM; Invitrogen) 및 Opti-MEM(Gibco)을 무혈청 배지와 함께 사용하여 miRNA를 스크램블했다. 37℃ 인큐베이션에서 24시간(hrs) 후, 형질감염된 세포를 수확하고 RNA 및 단백질 추출에 대해 분석하였다.After culturing to 70-80% confluence, cells were transfected with miRNA-29a mimics and miRNA scrambled using Lipofectamine™ RNAiMAX reagent (Lipofectamine ; Invitrogen) and Opti-MEM (Gibco) with serum-free medium . After 24 hours (hrs) at 37° C. incubation, transfected cells were harvested and analyzed for RNA and protein extraction.

실시예 6. 세포 생존율 분석Example 6. Cell viability assay

1 x 104 HeLa 세포/웰의 밀도로 96웰 플레이트에 접종했다. 24시간 후, 세포를 miRNA-29a 및 스크램블 miRNA로 처리하였다. 무혈청 배지에서 37℃에서 4시간 동안 배양한 후, 세포를 10% FBS와 함께 24시간 동안 추가로 배양하였다. Hela 세포의 세포 생존력은 MTT 분석에 의해 평가되었다.A 96-well plate was seeded at a density of 1 x 10 4 HeLa cells/well. After 24 hours, cells were treated with miRNA-29a and scrambled miRNA. After culturing for 4 hours at 37° C. in serum-free medium, the cells were further cultured with 10% FBS for 24 hours. Cell viability of Hela cells was assessed by MTT assay.

요약하면, 형질감염 후 세포를 96웰 배양 플레이트에서 밤새 배양하였다. PBS 중 총 2 mg/ml MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; Sigma-Aldrich, Burlington, MA, USA) 용액을 각 웰에 부드럽게 로딩했다. 부피 200 μl 및 5% CO2의 가습 인큐베이터에서 37℃에서 인큐베이션. 2시간 인큐베이션 후, 각 웰의 MTT 용액을 제거하고, DMSO 200㎕를 첨가하고 완전히 혼합하였다. 37℃ 인큐베이터에서 2시간 인큐베이션한 후, Infinite 200 분광광도계(Tecan)로 540 nm에서 흡광도를 측정하였다.Briefly, after transfection cells were cultured overnight in 96-well culture plates. A total of 2 mg/ml MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide; Sigma-Aldrich, Burlington, MA, USA) solution in PBS was gently loaded into each well. Incubate at 37°C in a humidified incubator with a volume of 200 μl and 5% CO2. After 2 hours incubation, the MTT solution in each well was removed, 200 μl of DMSO was added and mixed thoroughly. After incubation for 2 hours in a 37° C. incubator, absorbance was measured at 540 nm with an Infinite 200 spectrophotometer (Tecan).

실시예 7. 겔 지연 분석Example 7. Gel Retardation Assay

miRNA-29a와 LipofectamineTM transfection 시약의 복합화 비율을 관찰하기 위해 아가로스 겔 지연 분석을 수행했다. An agarose gel retardation assay was performed to observe the complexation ratio of miRNA-29a and Lipofectamine TM transfection reagent.

요약하면, 200nM의 miRNA-29a 모방체를 다양한 농도의 LipofectamineTM과 혼합하고 Opti-MEM으로 부피를 20μl까지 조정했다. 5분 인큐베이션 후, RNA:지질 복합체 용액을 2㎕의 5X 로딩 완충액과 혼합하고 에티듐 브로마이드를 함유하는 2% 아가로스 겔에 로딩하였다. 전기영동은 15분 동안 100V에서 1X TBE 실행 완충액에서 15분 동안 수행되었다. Gel Doc Imaging System(Bio-Rad)을 사용하여 이미지를 촬영했다.Briefly, 200 nM miRNA-29a mimics were mixed with various concentrations of LipofectamineTM and the volume was adjusted to 20 μl with Opti-MEM. After 5 min incubation, the RNA:lipid complex solution was mixed with 2 μl of 5X loading buffer and loaded onto a 2% agarose gel containing ethidium bromide. Electrophoresis was performed in 1X TBE running buffer at 100V for 15 minutes. Images were taken using the Gel Doc Imaging System (Bio-Rad).

실시예 8. 세포 이동 분석Example 8. Cell Migration Assay

세포 이동 분석은 SPLScarTM(SPL, 포천, 대한민국)로 수행되었다. 4 x 105 cells/well의 밀도로 HeLa를 6웰 배양 플레이트에 접종했다. 24시간 후, 70-80% 컨플루언스의 세포를 miRNA-29a 모방체 및 스크램블 miRNA로 형질감염시켰다. 37℃에서 24시간 동안 배양한 후, 세포를 PBS로 3회 세척하고, 단층 세포를 SPLScar™로 500μm 너비의 상처 틈을 직선으로 스크래치하였다. 스크래치된 세포를 10% FBS가 포함된 DMEM에서 배양하고, 긁힌 후 0, 24, 48, 72시간 후에 광학현미경(Olympus, Tokyo, Japan)을 사용하여 400배 배율로 상처 틈을 촬영하였다. 마이그레이션된 세포의 백분율은 ImageJ 소프트웨어(버전 1,53k; Media Cybernetics, Rockville, MD, USA)를 사용하여 그래프로 표시했다.Cell migration assay was performed with SPLScar™ (SPL, Pocheon, Korea). HeLa was inoculated into a 6-well culture plate at a density of 4 x 10 5 cells/well. After 24 hours, cells at 70-80% confluence were transfected with miRNA-29a mimics and scrambled miRNAs. After culturing at 37° C. for 24 hours, the cells were washed three times with PBS, and the monolayer cells were scratched with SPLScar™ in a straight line through a 500 μm wide wound gap. The scratched cells were cultured in DMEM containing 10% FBS, and 0, 24, 48, and 72 hours after scratching, the wound gap was photographed using an optical microscope (Olympus, Tokyo, Japan) at 400x magnification. The percentage of migrated cells was graphed using ImageJ software (version 1,53k; Media Cybernetics, Rockville, MD, USA).

실시예 9. 세포 침습 분석Example 9. Cell invasion assay

세포 침습 분석은 SPLInsertTM Hanging(SPL)으로 수행되었다. HeLa 세포를 miRNA-29a 모방체로 형질감염시키고 miRNA를 24시간 동안 스크램블한 후, 형질감염된 세포 펠렛을 무혈청 배양 배지에 재현탁시켰다. 기저막 환경을 시뮬레이션하기 위해 트랜스웰 인서트의 상부 챔버를 Matrigel Matrix(50 μL/cm2 성장 면적, BD Biosciences, Sparks, MD, USA)로 미리 코팅했다. Cell invasion assay was performed with SPLInsertTM Hanging (SPL). After HeLa cells were transfected with miRNA-29a mimics and the miRNAs were scrambled for 24 hours, the transfected cell pellets were resuspended in serum-free culture medium. To simulate the basement membrane environment, the upper chamber of the transwell insert was pre-coated with Matrigel Matrix (50 μL/cm2 growth area, BD Biosciences, Sparks, MD, USA).

재현탁된 세포를 트랜스웰 삽입물의 상부 챔버에 접종했다. 하부 챔버에 10% FBS를 화학유인물질로 포함하는 배양액을 첨가하고 트랜스웰을 24시간 동안 배양하였다.The resuspended cells were seeded into the upper chamber of the transwell insert. A culture solution containing 10% FBS as a chemoattractant was added to the lower chamber, and the transwell was cultured for 24 hours.

배양 후, 면봉을 사용하여 트랜스웰 삽입물의 상부 표면에 있는 세포를 제거하였다. 트랜스웰 막 하부 표면의 침윤된 세포는 30분에 4% 파라포름알데히드로 고정하고 1시간에 0.05% 크리스탈 바이올렛으로 염색하였다. PBS로 트랜스웰을 세척한 후, 광학현미경을 사용하여 3개의 무작위 필드에서 침윤된 세포의 수를 관찰하고 ImageJ 소프트웨어를 사용하여 계수하였다. 각 막에서 무작위로 3개의 필드를 선택하고, 침윤된 세포의 수를 세었다.After incubation, cells on the top surface of the transwell insert were removed using a cotton swab. Infiltrated cells on the lower surface of the transwell membrane were fixed with 4% paraformaldehyde for 30 minutes and stained with 0.05% crystal violet for 1 hour. After washing the transwell with PBS, the number of invaded cells in three random fields was observed using an optical microscope and counted using ImageJ software. Three fields were randomly selected from each membrane, and the number of infiltrated cells was counted.

실시예 10. 이중 루시페라제 분석Example 10. Dual Luciferase Assay

miRNA-29a와 PIK3CA 사이의 결합 친화성을 정량화하기 위해 Dual-Luciferase Reporter Assay System(Promega, San Luis Obispo, CA, USA)을 사용했다. PIK3CA mRNA의 예측된 3' UTR 결합 부위를 사용하여(도 2), 리포터 플라스미드 pmiRGLO Dual-Luciferase miRNA Target Expression Vector(pmiRGLO; Promega)의 반딧불이 루시페라제 유전자 발현 조절 부위에 야생 또는 돌연변이체의 결합 부위를 바이오니아 클로닝 서비스 시스템(바이오니아)에 의해 삽입했다; To quantify the binding affinity between miRNA-29a and PIK3CA, the Dual-Luciferase Reporter Assay System (Promega, San Luis Obispo, CA, USA) was used. Using the predicted 3' UTR binding site of PIK3CA mRNA (Fig. 2), the wild or mutant binding site to the firefly luciferase gene expression control region of the reporter plasmid pmiRGLO Dual-Luciferase miRNA Target Expression Vector (pmiRGLO; Promega) was inserted by the Bioneer Cloning Service System (Bioneer);

PIK3CA 야생형: 5'-GTTTAAACAATATGTGGTGTTAATAGATTGUGGUGCUTTTACTATTTAAAGACAACTTTCATCTAGA-3';서열번호 3, PIK3CA wild type: 5′-GTTTAAACAATATGTGGTGTTAATAGATTGUGGUGCUTTTACTATTTAAAGACAACTTTCATCTAGA-3′; SEQ ID NO: 3,

PIK3CA 돌연변이 유형: 5'-GTTTAAACAATATGTGGTGTTAATAGATTGACCACGATTTACTATTTAAAGACAACTTTCATTCTAGA-3';서열번호 4.PIK3CA mutation type: 5'-GTTTAAACAATATGTGGTGTTAATAGATTGACCACGATTTACTATTTAAAGACAACTTTCATTCTAGA-3'; SEQ ID NO: 4.

miR-29a가 PIK3CA 야생형 삽입 부위에 결합하면 반딧불이 루시페라아제의 발현이 억제되지만, 레닐라 루시페라아제는 플라스미드 수에 따라 결합과 무관하게 발현된다. 야생형 및 돌연변이형 플라스미드를 각각 miRNA-29a 또는 스크램블 miRNA로 공동 형질감염시켜 HeLa 세포에 넣었다. When miR-29a binds to the PIK3CA wild-type insertion site, the expression of firefly luciferase is suppressed, but Renilla luciferase is expressed independently of binding depending on the number of plasmids. Wild-type and mutant plasmids were co-transfected with miRNA-29a or scrambled miRNA, respectively, and introduced into HeLa cells.

그런 다음 리포터 활동은 마이크로플레이트 루미노미터(Centro XS3 LB960; Berthold, Oak Ridge, TN, USA)를 사용하여 24시간 형질감염 후에 수행되었다. 상대적 루시퍼라제 활성은 레닐라 루시퍼라제 활성과 비교하여 반딧불이 루시페라제 활성으로 계산되었다.Reporter activity was then performed 24 h after transfection using a microplate luminometer (Centro XS3 LB960; Berthold, Oak Ridge, TN, USA). Relative luciferase activity was calculated as firefly luciferase activity compared to Renilla luciferase activity.

실시예 11. PIK3CA 발현 분석을 위한 RT-qPCRExample 11. RT-qPCR for PIK3CA expression analysis

CFX96(Bio-Rad)을 사용하여 PIK3CA mRNA에 대한 역전사 정량적 PCR(RT-qPCR)을 수행했다. PIK3CA 및 GAPDH mRNA 프라이머 및 프로브를 설계 및 합성했다(Genotech, 대전, 대한민국)(표 2)(도 2). Reverse transcription quantitative PCR (RT-qPCR) for PIK3CA mRNA was performed using CFX96 (Bio-Rad). PIK3CA and GAPDH mRNA primers and probes were designed and synthesized (Genotech, Daejeon, Korea) (Table 2) (Fig. 2).

2X Thunderbird 프로브 qPCR 믹스(Toyobo) 10μl, 프라이머 3μl, 증류수 5μl 및 템플릿 cDNA 2μl를 포함하는 총 부피 20μl를 사용했다. 각 절차마다 양성 및 음성 대조군이 포함되었다. Real-time PCR의 반응 조건은 95℃에서 3분, 95℃에서 3초, 63℃에서 30초를 40회 반복하였다. A total volume of 20 μl was used, containing 10 μl of 2X Thunderbird probe qPCR mix (Toyobo), 3 μl of primers, 5 μl of distilled water and 2 μl of template cDNA. Positive and negative controls were included for each procedure. The reaction conditions of real-time PCR were repeated 40 times: 3 minutes at 95 ° C, 3 seconds at 95 ° C, and 30 seconds at 63 ° C.

Glyceraldehyde-3-phosphate dehydrogenase(GAPDH)는 mRNA 분해의 확인 및 내인성 대조군으로 사용되었다. 각 샘플을 세 번 테스트했다.Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous control and confirmation of mRNA degradation. Each sample was tested three times.

mRNA 발현은 형광이 배경 형광보다 상당히 높은 값을 초과하는 데 필요한 PCR 주기의 수인 주기 역치(Ct)를 결정함으로써 정량화되었다. mRNA expression was quantified by determining the cycle threshold (Ct), which is the number of PCR cycles required for fluorescence to exceed a value significantly above background fluorescence.

PIK3CA의 양은 GAPDH를 내인성 대조군으로 사용하여 비교 Delta Ct 방법(2-ΔCt)을 사용하여 결정되었다.The amount of PIK3CA was determined using the comparative Delta Ct method (2 -ΔCt ) using GAPDH as an endogenous control.

Figure pat00002
Figure pat00002

표 2는 본 발명에서 mRNA 발현 분석에 사용된 프라이머 및 프로브Table 2 shows primers and probes used for mRNA expression analysis in the present invention.

실시예 12. 단백질 분리 및 웨스턴 블로팅 분석Example 12. Protein Isolation and Western Blotting Analysis

4 x 105 cells/well의 밀도로 HeLa를 6웰 배양 플레이트에 접종했다. HeLa 세포를 miRNA-29a 모방체로 형질감염시키고 miRNA를 24시간 동안 스크램블한 후, 세포를 PBS로 2회 세척한 다음 50㎕의 차가운 RIPA 용해 완충액(RIPA; Boster Biological Technology, Pleasanton, CA, USA) 및 프로테아제 억제제 칵테일 (Roche Diagnostics, Indianapolis, IN, USA)에 용해시켰다. HeLa was inoculated into a 6-well culture plate at a density of 4 x 10 5 cells/well. After HeLa cells were transfected with miRNA-29a mimics and the miRNAs were scrambled for 24 hours, the cells were washed twice with PBS and then lysed in 50 μl of cold RIPA lysis buffer (RIPA; Boster Biological Technology, Pleasanton, CA, USA) and It was dissolved in protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN, USA).

세포 용해물을 Cell Scraper(SPL)를 사용하여 수집하고, 1.5 ml 마이크로 원심분리 튜브에 풀링하고, 14,000 rpm 및 4℃에서 30분 동안 원심분리하였다.Cell lysates were collected using a Cell Scraper (SPL), pooled into 1.5 ml microcentrifuge tubes, and centrifuged at 14,000 rpm and 4°C for 30 minutes.

상층액을 단백질로 사용하였다. 단백질 수준은 BCA 분석 키트(Thermo Fisher Scientific, Waltham, MA, USA)로 정량화했다. 총 30μg의 단백질 샘플을 웨스턴 블롯팅에 사용했다. 총 단백질은 90분 동안 100V에서 10%의 러닝 겔에서 SDS-PAGE를 수행한 다음 350mA에서 1시간 동안 니트로셀룰로오스 막(Bio-Rad)으로 옮겼다. 그 후, 1시간 배양 동안 5% 탈지유로 비특이적 결합 부위를 차단하였다. The supernatant was used as protein. Protein levels were quantified with a BCA assay kit (Thermo Fisher Scientific, Waltham, MA, USA). A total of 30 μg of protein sample was used for Western blotting. Total protein was subjected to SDS-PAGE on a 10% running gel at 100 V for 90 min and then transferred to a nitrocellulose membrane (Bio-Rad) at 350 mA for 1 h. Thereafter, non-specific binding sites were blocked with 5% skim milk for 1 hour incubation.

막을 TBST의 5% 탈지유에 담갔다. 그런 다음 막을 4°C에서 밤새 PIK3CA(1:1000, Rabbit mAb; Cell Signaling, Beverly, MA, USA) 및 GAPDH(1:1000, Mouse mAb; Cell Signaling)에 대한 1차 항체와 함께 인큐베이션했다. The membrane was soaked in 5% skim milk in TBST. Membranes were then incubated with primary antibodies against PIK3CA (1:1000, Rabbit mAb; Cell Signaling, Beverly, MA, USA) and GAPDH (1:1000, Mouse mAb; Cell Signaling) overnight at 4 °C.

다음날, 막을 양고추냉이 퍼옥시다제-접합 항-마우스 또는 항-토끼 2차 항체(1:1000; Cell Signaling)와 함께 실온에서 2-4시간 동안 인큐베이션하였다. 시각화를 위해 SuperSignal® WestPico Plus(Thermo Fisher Scientific)를 사용하여 단백질 밴드를 시각화했다. 밴드 강도는 화학 발광 이미징 시스템(FUSION Solo; Vilber, Paris, France)으로 측정하고 ImageJ 소프트웨어로 상대적 단백질 발현을 계산했다.The following day, membranes were incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies (1:1000; Cell Signaling) for 2-4 hours at room temperature. For visualization, protein bands were visualized using SuperSignal® WestPico Plus (Thermo Fisher Scientific). Band intensities were measured with a chemiluminescence imaging system (FUSION Solo; Vilber, Paris, France) and relative protein expression was calculated with ImageJ software.

본 발명의 통계 분석은 GraphPad Prism 소프트웨어 버전 9.0(GraphPad 소프트웨어, La Jolla, CA, USA)을 사용하여 통계 분석을 수행했다. 모든 실험은 3회 이상 반복하였고, 대표적인 결과를 하나 제시하였다. 두 그룹 간의 비교를 위해 양측 방식의 학생 t 편차(학생 t-검정)를 사용했다. Kruskal-Wallis 테스트는 비모수 통계로서 통계적 유의성을 결정하기 위해 사용되었다. 0.05 미만의 P 값은 통계적으로 유의한 것으로 간주되었다.Statistical analysis of the present invention was performed using GraphPad Prism software version 9.0 (GraphPad Software, La Jolla, CA, USA). All experiments were repeated at least three times, and one representative result is presented. A two-tailed Student's t deviation (Student's t-test) was used for comparison between the two groups. The Kruskal-Wallis test was used to determine statistical significance as a non-parametric statistic. A P value of less than 0.05 was considered statistically significant.

상기 실시예의 결과는 하기와 같다.The results of the above examples are as follows.

miR-29a 과발현을 위한 자궁경부암 세포주 선택Selection of cervical cancer cell lines for miR-29a overexpression

miR-29a의 과발현에 유용한 자궁경부암 세포주를 선택하기 위해 다양한 자궁경부암 세포주(C33A, SiHa 및 HeLa)에서 miR-29a 발현 수준을 테스트했다. 이를 위해 RT-qPCR 분석을 사용하여 miR-29a의 발현 수준을 결정했다. miR-29a의 상대 발현 수준은 델타 Ct(2-ΔCt) 방법으로 계산되었다. miR-29a Ct 값을 정상화하기 위해 작은 nucleolar RNA인 RNU6B를 참조 유전자 대조군으로 사용했다.To select useful cervical cancer cell lines for overexpression of miR-29a, we tested the expression level of miR-29a in various cervical cancer cell lines (C33A, SiHa and HeLa). To this end, we determined the expression level of miR-29a using RT-qPCR analysis. The relative expression level of miR-29a was calculated by the delta Ct (2 -ΔCt ) method. To normalize miR-29a Ct values, the small nucleolar RNA RNU6B was used as a reference gene control.

이 실험의 데이터는 HeLa(HPV 유형 18 양성)에서 miR-29a의 발현 수준이 다른 자궁경부암 세포주(C33A 및 SiHa)보다 현저히 낮음을 시사했다(P < 0.001)(그림 3). 따라서 후속 실험에서 HeLa 세포가 선택되었다.Data from this experiment suggested that the expression level of miR-29a in HeLa (HPV type 18 positive) was significantly lower (P < 0.001) than in other cervical cancer cell lines (C33A and SiHa) (Figure 3). Therefore, HeLa cells were selected for subsequent experiments.

miR-29a 및 Lipofectamine™ 복합체의 형질감염 조건Transfection conditions of miR-29a and Lipofectamine™ complex

지질 소포 운반체, HeLa 세포에 Lipofectamine™ 처리로 miR-29a의에 대한 농도 및 지속 시간을 선택하기 위해, HeLa 세포에 대한 처리량 및 기간에 따른 Lipofectamine™의 세포 독성을 세포 생존력 분석을 사용하여 테스트했다(도 4). 세포를 1-15μl의 LipofectamineTM으로 24시간 동안 처리했을 때, 세포 생존율은 11μl의 LipofectamineTM이 사용될 때까지 거의 100%에 머물렀다. 반면, 세포를 48시간 동안 처리한 경우, LipofectamineTM 처리 3μl에도 세포 생존율이 떨어지기 시작하였다. 따라서 다음 실험에서는 LipofectamineTM 1-9μl로 24시간 처리를 하였다.To select the concentration and duration of miR-29a by Lipofectamine™ treatment of the lipid vesicle transporter, HeLa cells, we tested the cytotoxicity of Lipofectamine™ at different doses and duration on HeLa cells using a cell viability assay ( Fig. 4). When cells were treated with 1-15 μl LipofectamineTM for 24 hours, cell viability remained almost 100% until 11 μl LipofectamineTM was used. On the other hand, when the cells were treated for 48 hours, the cell viability began to decrease even with 3 μl of LipofectamineTM treatment. Therefore, in the next experiment, treatment was performed for 24 hours with 1-9 μl of LipofectamineTM.

다음으로, Lipofectamine™과 miR-29a의 최적 착화 비율을 결정하기 위해 다양한 부피의 Lipofectamine™을 100nM의 miR-29a와 착화시키고 젤 지연 분석을 수행했다. Next, to determine the optimal complexing ratio between Lipofectamine™ and miR-29a, various volumes of Lipofectamine™ were complexed with 100 nM of miR-29a and gel retardation assays were performed.

도 5에서 볼 수 있듯이 Lipofectamine™과 혼합되지 않은 자유 miR-29a와 비교하여 Lipofectamine™ 3-9 μl는 100 nM의 miR-29a를 모두 포함하는 것으로 보인다. 이 결과로부터 3μl 이상의 LipofectamineTM이 100nM의 miR-29a를 포함할 수 있다고 결론지었다.As shown in FIG. 5, 3-9 μl of Lipofectamine™ seems to contain all of 100 nM of miR-29a compared to free miR-29a not mixed with Lipofectamine™. From these results, it was concluded that 3 μl or more of Lipofectamine TM could contain 100 nM of miR-29a.

HeLa 세포에서 miR-29a 과발현에 대한 최적화Optimization for miR-29a overexpression in HeLa cells

HeLa 세포에서 miR29a의 과발현을 위한 최적의 조건을 찾기 위해 LipofectamineTM과 복합체화된 miR-29a를 HeLa 세포에 형질감염시키고 세포 생존율을 평가했다. 이를 위해 miR-29a를 각각 LipofectamineTM 1, 2, 3, 6, 12 μl로 25 nM, 50 nM, 100 nM, 200 nM, 400 nM 농도로 HeLa 세포에 형질감염시켰다.To find optimal conditions for overexpression of miR29a in HeLa cells, HeLa cells were transfected with miR-29a complexed with Lipofectamine and cell viability was evaluated. To this end, miR-29a was transfected into HeLa cells at 25 nM, 50 nM, 100 nM, 200 nM, and 400 nM concentrations with Lipofectamine TM 1, 2, 3, 6, and 12 μl, respectively.

도 6a에서 볼 수 있듯이 Lipofectamine™ 단독 처리 시 세포 생존율과 비교했을 때 miR-29a가 각각 25nM, 50nM, 100nM, 200nM 및 400nM 농도로 트랜스팩션되었을 때 각각 102.5%, 101.1%, 96.0%, 75.6%, 28.8%의 세포 생존율을 보였다.As shown in Figure 6a, compared to cell viability when treated with Lipofectamine™ alone, miR-29a was transfected at 25 nM, 50 nM, 100 nM, 200 nM, and 400 nM concentrations, respectively, by 102.5%, 101.1%, 96.0%, 75.6%, It showed a cell viability of 28.8%.

miR-29a는 200nM과 400nM 농도에서 세포 생존을 유의하게 억제하였다(P < 0.001). miR-29a significantly inhibited cell survival at concentrations of 200 nM and 400 nM (P < 0.001).

본 발명의 상기 결과는 200nM 이상의 miR-29a 형질감염이 HeLa 세포의 세포 생존력에 영향을 미치고, 따라서 HeLa 세포에서 miR-29a 과발현 상태를 초래할 수 있음을 보여주었다.The above results of the present invention showed that miR-29a transfection at 200 nM or more affected the cell viability of HeLa cells, and thus could lead to a miR-29a overexpression state in HeLa cells.

다음으로, miR-29a에 의한 세포 생존율 감소가 miR-29a에 특이적인지 여부를 확인하기 위해 스크램블된 miRNA를 200 nM 및 400 nM 농도에서 6 및 12 μl LipofectamineTM과 miR-29a로 HeLa 세포에 24시간 동안 형질감염시켰다. Next, to confirm whether the decrease in cell viability by miR-29a is specific to miR-29a, scrambled miRNAs were incubated with 6 and 12 μl Lipofectamine TM and miR-29a at 200 nM and 400 nM concentrations for 24 hours in HeLa cells. during transfection.

LipofectamineTM 단독으로 형질감염된 세포의 생존율과 비교하여, 스크램블된 miRNA로 형질감염된 세포의 생존율은 89.6% 및 31.7%였고 miR-29a로 200nM 및 400nM 농도에서 각각 74.6% 및 30.9%였다(도 6b). Compared to the viability of cells transfected with Lipofectamine TM alone, the viability of cells transfected with scrambled miRNA was 89.6% and 31.7%, and 74.6% and 30.9% at 200 nM and 400 nM concentrations of miR-29a, respectively (Fig. 6b).

miR-29a 형질감염에 의한 세포 생존율은 스크램블된 miRNA에 비해 200 nM의 농도에서 유의하게 감소하였다(P < 0.001). Cell viability by miR-29a transfection was significantly reduced at a concentration of 200 nM compared to scrambled miRNA (P < 0.001).

반면, miR-29a 400 nM과 스크램블된 miRNA에 의한 세포 생존율은 유의한 차이를 보이지 않았으며, 이는 400 nM miR-29a와 12 μl의 LipofectamineTM이 miRNA 비의존적 세포독성을 일으켰음을 나타낸다. On the other hand, there was no significant difference in cell viability by 400 nM miR-29a and scrambled miRNA, indicating that 400 nM miR-29a and 12 μl of Lipofectamine TM caused miRNA-independent cytotoxicity.

따라서, 이러한 결과로부터 miR-29a 및 LipofectamineTM의 200 nM에 의한 HeLa 세포의 세포 생존율 감소는 miR-29a 과발현에 특이적인 것으로 결론지어진다.Therefore, from these results, it is concluded that the decrease in cell viability of HeLa cells by 200 nM of miR-29a and Lipofectamine TM is specific to miR-29a overexpression.

그러므로, 후속 실험에서 이 조건은 HeLa 세포에서 miR-29a의 과발현에 사용되었다.Therefore, in subsequent experiments this condition was used for overexpression of miR-29a in HeLa cells.

PIK3CA mRNA의 3' UTR에 대한 miR-29a의 직접 결합에 대한 이중 루시페라제 리포터 분석Dual luciferase reporter assay for direct binding of miR-29a to the 3' UTR of PIK3CA mRNA

miR-29a가 PIK3CA mRNA의 3' UTR에 결합하는지 여부를 조사하기 위해 이중 루시페라제 리포터 분석을 수행했다. To investigate whether miR-29a binds to the 3' UTR of PIK3CA mRNA, a dual luciferase reporter assay was performed.

PIK3CA 야생형 플라스미드의 경우, PIK3CA 유전자에서 3' UTR(5'-UGGUGCU-3')의 야생형 서열이 클로닝되었다. 또한, 돌연변이형 플라스미드의 경우, PIK3CA 유전자의 3' UTR 결합 서열이 5'-ACCACGA-3'으로 돌연변이되었다(도 7a).For the PIK3CA wild-type plasmid, the wild-type sequence of the 3' UTR (5'-UGGUGCU-3') in the PIK3CA gene was cloned. In addition, in the case of the mutant plasmid, the 3' UTR binding sequence of the PIK3CA gene was mutated to 5'-ACCACGA-3' (FIG. 7a).

다음으로, PIK3CA 야생형 또는 PIK3CA 돌연변이형 플라스미드를 각각 miR-29a 또는 스크램블된 miRNA로 HeLa 세포에 공동 형질감염시켰다. 2개의 루시페라아제의 리포터 활성은 루미노미터를 사용하여 형질감염 24시간 후에 측정하였다. 그런 다음 상대 루시페라제 활성을 레닐라 루시퍼라제 활성과 비교하여 반딧불이 루시페라제 활성으로 계산했습니다(도 7b).Next, PIK3CA wild-type or PIK3CA mutant plasmids were co-transfected into HeLa cells with miR-29a or scrambled miRNA, respectively. The reporter activity of the two luciferases was measured 24 hours after transfection using a luminometer. Relative luciferase activity was then compared to Renilla luciferase activity and calculated as firefly luciferase activity (Figure 7b).

그 결과, PIK3CA 야생형과 miR-29a를 동시 형질주입한 군에서 PIK3CA 야생형 및 스크램블된 miRNA 동시 형질주입군에 비해 상대적인 luciferase 활성이 유의하게 감소한 것으로 나타났다(P < 0.001). As a result, the PIK3CA wild-type and miR-29a co-transfected groups showed a significant decrease in relative luciferase activity compared to the PIK3CA wild-type and scrambled miRNA co-transfected groups (P < 0.001).

한편, PIK3CA 돌연변이형으로 세포를 동시 형질감염시킨 군에서는 스크램블된 miRNA와 miR-29a를 HeLa 세포에 처리한 경우 상대적인 루시퍼라제 활성에 차이가 없었다. 이러한 결과는 miR-29a가 PIK3CA mRNA의 3' UTR에 직접 결합함을 시사하는 것으로 보인다.On the other hand, in the group co-transfected with PIK3CA mutant cells, there was no difference in relative luciferase activity when HeLa cells were treated with scrambled miRNA and miR-29a. These results seem to suggest that miR-29a binds directly to the 3' UTR of PIK3CA mRNA.

PIK3CA 발현 수준에 대한 miR-29a의 효과Effect of miR-29a on PIK3CA expression level

PIK3CA 발현에 대한 과발현된 miR-29a의 영향을 조사하기 위해, PIK3CA 유전자의 mRNA 및 단백질 발현 수준을 각각 RT-qPCR 및 웨스턴 블롯으로 분석하였다.To investigate the effect of overexpressed miR-29a on PIK3CA expression, mRNA and protein expression levels of the PIK3CA gene were analyzed by RT-qPCR and Western blot, respectively.

PIK3CA의 프라이머와 프로브를 PIK3CA의 mRNA만을 검출하도록 설계한 후, HeLa 세포에 miR-29a와 scramble miRNA를 24시간 동안 형질감염시키고 PIK3CA mRNA의 상대적인 발현 정도를 비교하였다. After designing PIK3CA primers and probes to detect only PIK3CA mRNA, HeLa cells were transfected with miR-29a and scramble miRNA for 24 hours, and relative expression levels of PIK3CA mRNA were compared.

그 결과, 스크램블 miRNA 처리군에 비해 miR-29a 처리군에서 HeLa 세포의 PIK3CA mRNA 발현량이 유의하게 감소하였음을 확인하였다(도 8)(P < 0.001).As a result, it was confirmed that the PIK3CA mRNA expression level of HeLa cells was significantly decreased in the miR-29a-treated group compared to the scrambled miRNA-treated group (FIG. 8) (P < 0.001).

HeLa 세포에서 PIK3CA 발현 수준의 결과에 추가하여, miR-29a의 과발현 시 PIK3CA mRNA 발현 수준도 본 발명에서 설계된 PIK3CA 프라이머 및 프로브를 사용하여 SiHa 및 C33A 세포에서 조사되었다. In addition to the results of the PIK3CA expression level in HeLa cells, the PIK3CA mRNA expression level upon overexpression of miR-29a was also investigated in SiHa and C33A cells using the PIK3CA primers and probes designed in the present invention.

결과는 PIK3CA mRNA 발현 수준이 SiHa(P < 0.05) 및 C33A 세포(P < 0.001)에서 miR-29a에 의해 감소되었음을 보여주었다(도 9).The results showed that the PIK3CA mRNA expression level was reduced by miR-29a in SiHa (P < 0.05) and C33A cells (P < 0.001) (FIG. 9).

HeLa 세포에서 PIK3CA의 단백질 발현 수준을 웨스턴 블롯으로 조사했다. HeLa 세포에 miR-29a 및 스크램블 miRNA를 24시간 동안 형질감염시킨 후, 웨스턴 블롯팅을 수행하고(도 10a), ImageJ를 사용하여 단백질 밴드의 강도를 측정하였다(도 10b). The protein expression level of PIK3CA in HeLa cells was investigated by Western blot. After transfecting HeLa cells with miR-29a and scrambled miRNA for 24 hours, western blotting was performed (Fig. 10a), and the intensity of protein bands was measured using ImageJ (Fig. 10b).

PIK3CA 단백질의 발현 수준은 scramble miRNA 처리군과 비교하여 miR-29a 처리된 HeLa 세포에서 유의하게 하향조절되었다. RT-qPCR 및 웨스턴 블롯 분석 결과 PIK3CA의 mRNA 및 단백질 발현 수준이 과발현된 miR-29a의 효과에 의해 하향 조절되는 것으로 나타났다.The expression level of PIK3CA protein was significantly downregulated in HeLa cells treated with miR-29a compared to the scramble miRNA treated group. RT-qPCR and Western blot analysis showed that the mRNA and protein expression levels of PIK3CA were downregulated by the effect of overexpressed miR-29a.

miR-29a가 HeLa 세포 이동에 미치는 영향Effects of miR-29a on HeLa cell migration

PIK3CA 발현 수준의 변화가 자궁경부암의 발암 능력에 미치는 영향을 조사하기 위해 암세포의 6가지 발암 특성 중 두 가지인 HeLa 세포에서 세포 이동 및 침습 활성을 조사했다.To investigate the effect of changes in PIK3CA expression level on the oncogenic ability of cervical cancer, cell migration and invasion activities were investigated in HeLa cells, two of the six oncogenic properties of cancer cells.

HeLa 세포 이동에 대한 과발현된 miR-29a의 효과는 세포 이동 분석을 사용하여 평가되었다. miR-29a 모방체 및 스크램블 miRNA로 24시간 동안 형질감염시킨 후 상처 갭이 생성되었고 긁힌 후 0, 24, 48 및 72시간에 사진을 찍었다(도 11a). The effect of overexpressed miR-29a on HeLa cell migration was evaluated using a cell migration assay. Wound gaps were created after 24 h of transfection with miR-29a mimics and scrambled miRNAs and were photographed at 0, 24, 48 and 72 h after scratching (Fig. 11a).

마이그레이션된 세포의 백분율은 ImageJ 소프트웨어를 사용하여 그래프로 표시되었다(도 11b). 스크램블 miRNA로 스크래치된 단층의 폐쇄는 24시간, 48시간 및 72시간에서 각각 21.6%, 41.6% 및 71.1%였다. miR-29a의 경우 폐쇄율은 24시간, 48시간, 72시간에 각각 11.9%, 24.4%, 38.9%였습니다. The percentage of migrated cells was graphed using ImageJ software (FIG. 11B). Closure of the monolayer scratched with scrambled miRNA was 21.6%, 41.6% and 71.1% at 24, 48 and 72 hours, respectively. For miR-29a, the closure rates were 11.9%, 24.4%, and 38.9% at 24, 48, and 72 hours, respectively.

이러한 결과는 miR-29a의 과발현이 HeLa 세포의 이동 능력을 억제함을 나타낸다.These results indicate that overexpression of miR-29a inhibits the migration ability of HeLa cells.

MiR-29a가 HeLa 세포 침범에 미치는 영향Effects of MiR-29a on HeLa cell invasion

과발현된 miR-29a가 HeLa 세포 침입에 미치는 영향을 평가하기 위해 트랜스웰 침입 분석을 수행했다. Transwell invasion assay was performed to evaluate the effect of overexpressed miR-29a on HeLa cell invasion.

기저막 환경을 시뮬레이션하기 위해 트랜스웰 인서트의 상부 챔버를 Matrigel Matrix(50 μL/cm2 성장 영역)로 코팅했다. HeLa 세포를 miR-29a 모방체로 형질감염시키고 miRNA를 24시간 동안 스크램블한 후, 형질감염된 세포를 무혈청 배양 배지에 재현탁시키고 트랜스웰 삽입물의 상부 챔버에 접종하였다. To simulate the basement membrane environment, the upper chamber of the transwell insert was coated with Matrigel Matrix (50 µL/cm2 growth area). After HeLa cells were transfected with the miR-29a mimic and the miRNA scrambled for 24 hours, the transfected cells were resuspended in serum-free culture medium and seeded in the upper chamber of the transwell insert.

하부 챔버에 10% FBS를 화학유인물질로 포함하는 배양액을 첨가하고 트랜스웰을 24시간 동안 배양하였다. A culture solution containing 10% FBS as a chemoattractant was added to the lower chamber, and the transwell was cultured for 24 hours.

3개의 무작위 필드에서 침윤된 세포의 수를 현미경으로 관찰하고(도 12a), ImageJ 소프트웨어를 사용하여 계수했다(도 12b).The number of infiltrating cells in three random fields was observed under a microscope (FIG. 12A) and counted using ImageJ software (FIG. 12B).

scramble miRNA가 있는 군에서는 세포를 접종하지 않고 고정 염색한 transwell membrane의 음성 염색 결과와 비교하여 약 1,500개의 HeLa 세포가 침습을 수행하였다. miR-29a 처리군에서 트랜스웰 막을 침입하여 통과한 세포의 수는 약 350개의 HeLa 세포였다. miR-29a가 기저막 Matrigel을 통해 침입한 세포의 수는 scramble miRNA를 처리한 세포보다 유의하게 낮았다(P < 0.001). In the group with scramble miRNA, about 1,500 HeLa cells invaded compared to the negative staining result of transwell membrane fixed and stained without cell inoculation. The number of cells that invaded and passed through the transwell membrane in the miR-29a treatment group was about 350 HeLa cells. The number of cells invaded by miR-29a through the basement membrane Matrigel was significantly lower than those treated with scramble miRNA (P < 0.001).

이러한 결과는 miR-29a의 과발현이 HeLa 세포의 세포 침입 능력을 억제함을 시사한다.These results suggest that overexpression of miR-29a inhibits the cell invasion ability of HeLa cells.

<110> UNIVERSITY INDUSTRY FOUNDATION, YONSEI UNIVERSITY WONJU CAMPUS <120> Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof <130> DP21-0049HS <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 7 <212> RNA <213> Artificial Sequence <220> <223> Nucleic acid fragment <400> 1 agcacca 7 <210> 2 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miRNA-29a mimics <400> 2 acugauuucu uuugguguuc ag 22 <210> 3 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA <400> 3 gtttaaacaa tatgtggtgt taatagattg uggugcuttt actatttaaa gacaactttc 60 atctaga 67 <210> 4 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA Mutant <400> 4 gtttaaacaa tatgtggtgt taatagattg accacgattt actatttaaa gacaactttc 60 attctaga 68 <110> UNIVERSITY INDUSTRY FOUNDATION, YONSEI UNIVERSITY WONJU CAMPUS <120> Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof <130> DP21-0049HS <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 7 <212> RNA <213> artificial sequence <220> <223> Nucleic acid fragment <400> 1 agcacca 7 <210> 2 <211> 22 <212> RNA <213> artificial sequence <220> <223> miRNA-29a mimics <400> 2 acugauuucu uuugguguuc ag 22 <210> 3 <211> 67 <212> DNA <213> artificial sequence <220> <223> PIK3CA <400> 3 gtttaaacaa tatgtggtgt taatagattg uggugcuttt actatttaaa gacaactttc 60 atctaga 67 <210> 4 <211> 68 <212> DNA <213> artificial sequence <220> <223> PIK3CA Mutant <400> 4 gtttaaacaa tatgtggtgt taatagattg accacgattt actatttaaa gacaactttc 60 attctaga 68

Claims (10)

포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자의 3'비번역 부위(UTR)에 특이적으로 결합하는 서열번호 1의 핵산 절편.A nucleic acid fragment of SEQ ID NO: 1 that specifically binds to the 3' untranslated region (UTR) of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene. 서열번호 1의 핵산 절편을 유효성분으로 포함하는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자 검출용 조성물.A composition for detecting phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene comprising the nucleic acid fragment of SEQ ID NO: 1 as an active ingredient. 서열번호 1의 핵산 절편을 유효성분으로 포함하는 암 진단용 조성물.A composition for diagnosing cancer comprising the nucleic acid fragment of SEQ ID NO: 1 as an active ingredient. 제3항에 있어서, 상기 암은 자궁경부암인 것을 특징으로 하는 암 진단용 조성물.The composition for diagnosing cancer according to claim 3, wherein the cancer is cervical cancer. 서열번호 1의 핵산 절편을 유효성분으로 포함하는 암 치료용 조성물.A composition for treating cancer comprising the nucleic acid fragment of SEQ ID NO: 1 as an active ingredient. 제5항에 있어서, 상기 암은 자궁경부암인 것을 특징으로 하는 암 치료용 조성물.The composition for treating cancer according to claim 5, wherein the cancer is cervical cancer. 제5항에 있어서, 상기 조성물은 암 세포의 이주 및 침투 능력을 저해하는 것을 특징으로 하는 암 치료용 조성물.The composition for treating cancer according to claim 5, wherein the composition inhibits migration and invasion of cancer cells. 인 비트로에서 시료로부터 얻은 유전자 풀에 서열번호 1의 핵산 절편을 처리하여 상기 서열번호 1의 핵산 절편에 결합하는 유전자가 있는 경우에 그 시료는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자를 포함하는 것으로 판단하는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자에 대한 정보 제공방법. When there is a gene that binds to the nucleic acid fragment of SEQ ID NO: 1 by processing the nucleic acid fragment of SEQ ID NO: 1 in the gene pool obtained from the sample in vitro, the sample contains the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene. A method for providing information on the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene, which is determined to be. 제8항에 있어서, 상기 핵산 절편과 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자와의 결합은 듀얼 루시퍼레이즈 분석(Dual luciferase assay)에 의하여 수행되는 것을 특징으로 하는 포스파티딜이노시톨 3-키나아제 촉매 소단위 알파(PIK3CA) 유전자에 대한 정보 제공방법. The phosphatidylinositol 3-kinase catalytic subunit according to claim 8, wherein the binding of the nucleic acid fragment to the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene is performed by a dual luciferase assay. Method for providing information on alpha (PIK3CA) gene. 인 비트로에서 시료로부터 얻은 유전자 풀에 서열번호 1의 핵산 절편을 처리하여 상기 서열번호 1의 핵산 절편에 결합하는 유전자가 있는 경우에 그 시료는 자궁경부암 관련 유전자를 포함하는 것으로 판단하는 자궁경부암에 대한 정보 제공방법. When the gene pool obtained from the sample in vitro has a gene that binds to the nucleic acid fragment of SEQ ID NO: 1 by processing the nucleic acid fragment of SEQ ID NO: 1, the sample is considered to contain a gene related to cervical cancer. How to provide information.
KR1020210192838A 2021-12-30 2021-12-30 Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof KR20230102595A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210192838A KR20230102595A (en) 2021-12-30 2021-12-30 Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof
PCT/KR2022/020224 WO2023128399A1 (en) 2021-12-30 2022-12-13 Nucleic acid fragment specifically binding to 3' untranslated region of phosphatidylinositol 3-kinase catalytic subunit alpha gene, and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210192838A KR20230102595A (en) 2021-12-30 2021-12-30 Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof

Publications (1)

Publication Number Publication Date
KR20230102595A true KR20230102595A (en) 2023-07-07

Family

ID=86999541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210192838A KR20230102595A (en) 2021-12-30 2021-12-30 Nucleic acid fragment specifically binding to the 3' untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof

Country Status (2)

Country Link
KR (1) KR20230102595A (en)
WO (1) WO2023128399A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198050A1 (en) * 2007-09-14 2010-06-23 Asuragen, INC. Micrornas differentially expressed in cervical cancer and uses thereof
GB201400598D0 (en) * 2014-01-14 2014-03-05 Univ Glasgow Materials and methods for modulation of tendon healing
KR20230023612A (en) * 2020-04-02 2023-02-17 마이레큘, 인크. Targeted inhibition using engineered oligonucleotides

Also Published As

Publication number Publication date
WO2023128399A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN107267625B (en) Application of lncRNA as biomarker in liver cancer diagnosis and treatment
EP2740742A1 (en) Fusion gene of kif5b gene and ret gene, and method for determining effectiveness of cancer treatment targeting fusion gene
CN107586850B (en) Application of non-coding gene in diagnosis and treatment of liver cancer
Wang et al. MicroRNA‐627‐5p inhibits the proliferation of hepatocellular carcinoma cells by targeting BCL3 transcription coactivator
Wang et al. Hsa-let-7c exerts an anti-tumor function by negatively regulating ANP32E in lung adenocarcinoma
Geng et al. MicroRNA‑30a suppresses non‑small‑cell lung cancer by targeting Myb‑related protein B
WO2007129858A1 (en) Novel use of mln51 gene and protein
CN107267616B (en) Application of non-coding gene biomarker in liver cancer
CN107227362B (en) Gene related to liver cancer and application thereof
CN108707672B (en) Application of DUXAP8 in diagnosis and treatment of hepatocellular carcinoma
WO2020093575A1 (en) Polynucleotide for tumor treatment and use thereof
CN106868183B (en) Application of WFDC21P in diagnosis and treatment of liver cancer
KR20230102595A (en) Nucleic acid fragment specifically binding to the 3&#39; untranslated region of the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene and applications thereof
CN111733248B (en) Application of LOC158435 as biomarker for diagnosing and treating laryngeal squamous cell carcinoma
CN111518911A (en) Application of LINC01843 as liver cancer diagnosis and treatment marker
CN108165632B (en) Application of LINC01426 in diagnosis and treatment of hepatocellular carcinoma
CN107058534B (en) Biomarker ENSG00000248884 for liver cancer and application thereof
CN111733247A (en) Application of long-chain non-coding RNA in cancer diagnosis and treatment
CN111534587A (en) Molecular marker 5-tRF-His, breast cancer detection kit and application thereof
CN108277276B (en) Application of long-chain non-coding RNA and composition thereof in diagnosis/treatment of gastric cancer
KR20190005727A (en) Use of microRNA-1236 as a diagnostic marker and therapeutic agent of granulosa cell tumor or Endometrial cancer
CN114085832B (en) SiRNA molecules for inhibiting PRR14 gene
CN111172289B (en) Marker of miRNA for diagnosing and treating liver cancer
JP2018529362A (en) Prevention, diagnosis and treatment of cancers that overexpress GPR160
CN111635946B (en) Molecular biomarker for diagnosis and treatment of glioma and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal