KR20230164177A - 에너지 확산 이온 빔을 위한 장치, 시스템 및 방법 - Google Patents

에너지 확산 이온 빔을 위한 장치, 시스템 및 방법 Download PDF

Info

Publication number
KR20230164177A
KR20230164177A KR1020237037898A KR20237037898A KR20230164177A KR 20230164177 A KR20230164177 A KR 20230164177A KR 1020237037898 A KR1020237037898 A KR 1020237037898A KR 20237037898 A KR20237037898 A KR 20237037898A KR 20230164177 A KR20230164177 A KR 20230164177A
Authority
KR
South Korea
Prior art keywords
ion beam
electrode assembly
energy
focused ion
ribbon
Prior art date
Application number
KR1020237037898A
Other languages
English (en)
Inventor
폴 제이. 머피
프랭크 신클레어
준 루
다니엘 티거
앤서니 르노
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20230164177A publication Critical patent/KR20230164177A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

이온 주입기는 연속 이온 빔을 생성하도록 배열된 이온 공급원, 연속 이온 빔을 가속하기 위한 DC 가속 시스템뿐만 아니라, 연속 이온 빔을 수신하고 집군된 이온 빔을 출력하기 위한 AC 선형 가속기를 포함할 수 있다. 이온 주입기는 또한, 집군된 이온 빔을 수신하고, 집군된 이온 빔의 전파의 국부적 방향을 따라, 에너지 확산 전극 조립체의 복수의 전극들 사이에 RF 전압을 인가하기 위한 에너지 확산 전극 조립체를 포함할 수 있다.

Description

에너지 확산 이온 빔을 위한 장치, 시스템 및 방법
본 개시내용은 일반적으로, 이온 주입 장치에 관한 것이고, 더 구체적으로, 고에너지 빔라인 이온 주입기들에 관한 것이다.
현재, 특정 디바이스들, 예컨대, 절연 게이트 양극성 트랜지스터들(IGBT들), CMOS 이미지 센서들, 및 다른 반도체 디바이스들은 다수의 이온 주입들을 사용하여 제조된다. 다수의 이온 주입들의 사용은 반도체 기판 내의 깊이의 함수로서 목표 형상을 갖는 매끄러운 도펀트 프로파일의 생성을 용이하게 하며, 이 접근법은 비교적 깊은 이온 주입 프로파일들에 특히 유용하다. 현황에서, 이러한 목표 형상은 많은 상이한 이온 에너지들의 이온들의 비교적 작은 양들을 주입함으로써 달성될 수 있다. 예를 들어, CMOS 이미지 센서들(CIS) 디바이스들에 대한 현재의 최신 기술은, 1E10 내지 1E12/cm2의 범위의 양들의, 500 keV 내지 10 MeV 초과의 범위의 20개의 이산 에너지들을 채용할 수 있는 한편, 자동차 및 다른 응용들에 필요한 더 짧은 파장 감지의 경우, 주입 단계들의 개수는 2배이거나 훨씬 더 높을 수 있다.
주어진 이온 주입 작동 내에서 이온 에너지들의 확산을 생성하기 위해, 다수의 주입들을 채용하기보다는, 톱니 흡수 필터의 사용이 제안되었다. 그러나, 이러한 접근법에는 오염, 입자 및 필터 수명에 대한 위험들이 수반되고 이는 실제 생산 환경에서 그러한 접근 방식을 제한할 수 있다.
이들 및 다른 고려사항들과 관련하여 본 개시내용이 제공된다.
일 실시예에서, 이온 주입기는 연속 이온 빔을 생성하도록 배열된 이온 공급원, 연속 이온 빔을 가속하기 위한 DC 가속 시스템뿐만 아니라, 연속 이온 빔을 수신하고 집군된 이온 빔을 출력하기 위한 AC 선형 가속기를 포함할 수 있다. 이온 주입기는 또한, 집군된 이온 빔을 수신하고, 집군된 이온 빔의 전파의 국부적 방향을 따라, 에너지 확산 전극 조립체의 복수의 전극들 사이에 RF 전압을 인가하기 위한 에너지 확산 전극 조립체를 포함할 수 있다.
다른 실시예에서, 이온 빔을 연속 이온 빔으로서 생성하기 위한 이온 공급원, 및 연속 이온 빔을 집군하고 이온 빔을 집군된 이온 빔으로서 출력하기 위한 선형 가속기를 포함하는 이온 주입기가 제공된다. 이온 주입기는, 제1 방향을 따라 전파되는 집군된 이온 빔을 수신하고, 제1 방향에 수직인 제2 방향을 따라, 집군된 이온 빔을 스캐닝하도록 배열된 스캐너를 포함할 수 있다. 이온 주입기는, 스캐너의 하류에 배치된, 집군된 이온 빔을 수신하고, 집군된 이온 빔을 리본 빔으로서 출력하기 위한 시준기를 더 포함할 수 있다. 이온 주입기는 또한, 선형 가속기의 하류에 배치되고, 리본 빔의 전파의 국부적 방향을 따라, 에너지 확산 전극 조립체의 복수의 전극들 사이에 AC 전압을 인가하도록 배열되는 에너지 확산 전극 조립체를 포함할 수 있다.
추가적인 실시예에서, 빔 컨디셔닝 장치는, 제1 방향을 따라 전파되는 집군된 이온 빔을 수신하고, 제1 방향에 수직인 제2 방향을 따라 이온 빔을 스캐닝하도록 배열된 스캐너를 포함할 수 있다. 빔 컨디셔닝 장치는 또한, 스캐너의 하류에 배치된, 집군된 이온 빔을 수신하고, 집군된 이온 빔을 리본 빔으로서 출력하기 위한 시준기를 포함할 수 있다. 빔 컨디셔닝 장치는, 선형 가속기의 하류에 배치되고, 리본 빔의 전파의 국부적 방향을 따라, 에너지 확산 전극 조립체의 복수의 전극들 사이에 AC 전압을 인가하도록 배열되는 에너지 확산 전극 조립체를 더 포함할 수 있다. 빔 컨디셔닝 장치는, 리본 빔의 전파의 국부적 방향에 수직인 방향을 따라, 리본 빔의 폭에 걸쳐, 리본 빔의 균일한 에너지 확산을 생성하기 위해 스캐너 및 에너지 확산 전극 조립체를 제어하도록 배열된 제어기를 추가적으로 포함할 수 있다.
도 1은 본 개시내용의 실시예들에 따른 이온 주입기를 도시하고;
도 2는 본 개시내용의 실시예들에 따른 다른 예시적인 이온 주입기를 도시하고;
도 3은 본 개시내용의 추가의 실시예들에 따라 배열된 이온 주입기를 도시한다.
도 4는 본 개시내용의 추가의 실시예들에 따라 배열된 이온 주입기를 도시한다.
도면들은 반드시 축척에 맞는 것은 아니다. 도면들은 단지 표현들일 뿐이며, 본 개시내용의 특정 파라미터들을 묘사하도록 의도되지 않는다. 도면들은 본 개시내용의 예시적인 실시예들을 도시하도록 의도되므로 범위를 제한하는 것으로 간주되어서는 안 된다. 도면들에서, 유사한 번호는 유사한 요소들을 나타낸다.
이제, 본 개시내용에 따른 장치, 시스템 및 방법이, 시스템 및 방법의 실시예들이 도시되는 첨부 도면들을 참조하여 이하에서 더 완전히 설명될 것이다. 시스템 및 방법은 많은 상이한 형태들로 구현될 수 있고, 본원에 제시된 실시예들로 제한되는 것으로 해석되지 않아야 한다. 오히려, 이러한 실시예들은 본 개시내용이 철저하고 완전하도록, 그리고 관련 기술분야의 통상의 기술자에게 본 시스템 및 방법의 범위를 완전히 전달하도록 제공된다.
본원에서, "최상부", "바닥", "상부", "하부", "수직", "수평", "측방향" 및 "종방향"과 같은 용어들은, 도면들에 나타나는 바와 같은 반도체 제조 디바이스의 구성요소의 기하형상 및 배향에 대해, 이러한 구성요소들 및 그들의 구성 부분들의 상대적인 배치 및 배향을 설명하는 데 사용될 수 있다. 용어는 구체적으로 언급된 단어들, 그 파생어들 및 유사한 의미의 단어들을 포함할 수 있다.
본원에서 사용되는 바와 같이, 단수로 언급되고 단수 단어가 선행되는 요소 또는 작동은 잠재적으로 복수의 요소들 또는 작동들도 포함하는 것으로 이해된다. 또한, 본 개시내용의 "일 실시예"에 대한 참조들은, 언급된 특징들을 또한 포함하는 추가적인 실시예들의 존재를 배제하는 것으로서 해석되도록 의도되지 않는다.
빔라인 아키텍처에 기초한, 개선된 이온 주입 시스템들 및 구성요소들, 특히, 고에너지 이온 주입기들, 예컨대, 선형 가속기들에 기초한 이온 주입기들에 대한 접근법들이 본원에 제공된다. 간결성을 위해, 이온 주입 시스템은 또한, 본원에서 "이온 주입기"로 지칭될 수 있다. 다양한 실시예들은 선형 가속기 또는 LINAC에서의 처리를 위해, 집군된 리본 이온 빔들을 생성하는 신규한 접근법들을 수반한다.
다양한 실시예들에서, 고주파수에서 전극 조립체에 전달되는 AC 신호를 사용하여, 집군된 이온 빔의 에너지를 수정하기 위해 LINAC의 하류에 전극 조립체가 제공된다. 기판을 처리하기 위해 기판 및/또는 이온 빔의 스캐닝이 수행되는 다양한 실시예들에서, 에너지 변동의 주파수는 기판의 스캐닝보다 훨씬 더 빠르게 설정될 수 있고, 그에 의해, 전극 조립체에 의해 생성되는 에너지 변동은 기판 상의 각각의 지점에서 제어되고 반복가능한 에너지 확산으로서 나타난다.
도 1은 본 개시내용의 실시예들에 따른 이온 주입기(100)를 도시한다. 이온 주입기(100)는, 이온 빔(120)으로 도시된 연속 이온 빔을 생성하도록 배열된 이온 공급원(102)을 포함한다. 이온 주입기(100)는, 이온 빔(120)을 수신하기 위해 이온 공급원(102)의 하류에 배치된, 선형 가속기(104)로 표시된 AC 선형 가속기를 포함할 수 있다. 선형 가속기(104)는, 집군된 이온 빔(122)이 생성되도록 이온 빔(120)을 수정하기 위해, 관련 기술분야에 알려진 바와 같은 집군기(별도로 도시되지 않음)를 포함할 수 있다. 선형 가속기(104)의 복수의 스테이지들에서, 다양한 비제한적인 실시예들에 따라, 집군된 이온 빔(122)의 에너지는 목표 이온 에너지, 예컨대, 1 MeV, 2 MeV, 5 MeV 또는 다른 적합한 이온 에너지로 증가될 수 있다.
본 개시내용의 일부 비제한적인 실시예들에 따르면, 이온 주입기(100)는, 집군된 이온 빔(122)을 성형, 시준, 필터링, 또는 스캐닝하거나, 또는 이러한 작동들의 임의의 조합을 수행하기 위해, 선형 가속기(104)의 하류에 배치된 추가적인 구성요소들을 포함할 수 있다. 이러한 추가적인 구성요소들은 하류 구성요소(106)에 의해 예시되며, 이 구성요소는 선형 가속기(104)와 에너지 확산 전극 조립체(108) 사이 중간에 배치된다. 에너지 확산 전극 조립체(108)는 집군된 이온 빔(122)을 수신하고, 에너지 확산 이온 빔(124)을 기판(110)에 출력하기 위해, 집군된 이온 빔(122)의 에너지를 변조하도록 배열된다.
다양한 실시예들에서, 집군된 이온 빔(122)의 에너지는 에너지 확산 전극 조립체(108)에 걸쳐 고주파수 전압을 인가함으로써 변조될 수 있고, 이 전압은, 도시된 데카르트 좌표계에서 Z 축으로서 표현되는, 집군된 이온 빔(122)의 전파 방향을 따라, 대응하는 고주파 전기장을 생성할 수 있다. 특히, 본 실시예 및 후속하는 다른 실시예들에서, 에너지 확산 전극 조립체(108)는, 전파의 방향을 따라 고주파 장을 인가하면서, 집군된 이온 빔(122)을 전도하는 중공 전극들로서 배열될 수 있다. 이러한 방식으로, 에너지 확산 전극 조립체를 통한 횡단 동안 가변 에너지가, 집군된 이온 빔(122)에 부여될 수 있다. 예를 들어, 적합한 주파수, 예컨대, 1 MHz 초과의 주파수에서 에너지 확산 전극 조립체(108) 내의 상이한 전극들 사이에 AC 전압 신호(본원에서 사용되는 바와 같은 "AC 전압" 또는 "AC 전압 신호"라는 용어들은 1 kHz, 1 MHz 등을 포함하는 임의의 적합한 주파수 범위를 포함할 수 있음)를 생성하기 위해 RF 전원(130)이 채용될 수 있다. 에너지 확산 전극 조립체(108)뿐만 아니라 선형 가속기의 가속 스테이지들을 구동하기 위한 적절한 가속 주파수의 예들은 다양한 비제한적인 실시예들에서 13.56 MHz 내지 40 MHz의 주파수들을 포함한다.
본 개시내용의 다양한 실시예들에 따르면, 에너지 확산 전극 조립체(108)에 전달되는 AC 전압은 기판(110)에 전달되는 바와 같은 에너지 확산 이온 빔(124) 내에 목표 에너지 확산을 생성하기에 적합한 진폭을 가질 수 있다. 예를 들어, 일부 비제한적인 실시예들에 따르면, 에너지 확산 이온 빔(124)은 1% 공칭 이온 빔 에너지, 2% 공칭 에너지, 5% 공칭 에너지, 10% 공칭 에너지, 또는 20% 공칭 에너지와 등가인 반치 전폭(FWHM)을 갖는 에너지 분포를 가질 수 있다. 이로써, 상이한 실시예들에서, 공칭 이온 빔 에너지는 500 keV 초과, 1 MeV 초과, 2 MeV 초과, 5 MeV 초과일 수 있다. 이러한 방식으로, 주어진 공칭 이온 빔 에너지에 대하여, 에너지 확산 이온 빔(124)은 동일한 공칭 이온 빔 에너지를 갖는 단일에너지 이온 빔에 의해 생성된 주입 프로파일에 비해 더 넓은 주입 프로파일을 전달하는 방식으로 기판(110) 내에 주입될 수 있다.
도 2는 본 개시내용의 추가적인 실시예들에 따른 이온 주입기(200)를 도시한다. 이온 주입기(100)의 경우에서와 같이, 이온 주입기(200)는, 이온 공급원(102), 및 이온 공급원(102)의 하류에 배치된 선형 가속기(104)를 포함한다.
이온 주입기(200)는, 선형 가속기(104)의 하류에 배치되고, 스캐너(202), 시준기(204), 및 에너지 확산 전극 조립체(208)를 포함하는 빔 컨디셔닝 장치(220)를 포함할 수 있다.
선형 가속기(104)는 집군된 이온 빔(122)을 이온 빔(120)으로부터 생성하기 위한 집군기(도시되지 않음)를 포함할 수 있고, 이 빔은 연속 이온 빔으로서 선형 가속기(104)에 진입할 수 있다. 스캐너(202)는 집군된 이온 빔(122)(어두운 타원들로 표현되는 이온 다발들로서 개략적으로 도시됨)을 수신하도록 배열되고, 집군된 이온 빔(122)을 제1 빔라인 측과 제2 빔라인 측 사이에서 스캐닝하기 위해, 스캔 기간에 의해 정의되는 스캔 신호를 전달하도록 배열된다. 이 예에서, 집군된 이온 빔(122)은 펜슬 또는 스폿 이온 빔일 수 있고, 여기서, 집군된 이온 빔(122)은 도시된 바와 같이 X-Z 평면에서 스캐닝된다. 예를 들어, 일부 비제한적인 실시예들에 따르면, 스캔 생성기(230)는 스캔 신호, 예컨대, 진동 전압을, kHz 범위의 스캔 주파수, 예컨대, 1 kHz, 2 kHz, 5 kHz의 진동 전기장을 생성하는 전극 플레이트들의 쌍에 전달할 수 있다. 이로써, 주어진 스캔 주파수에 대해 스캔 생성기(230)의 기간보다 더 긴 시간 규모에 걸쳐 평균화될 때, 스캐닝된 집군된 이온 빔은 X 축을 따라 세장형 단면을 형성하도록 전개될 수 있다. 본 실시예에서, 에너지 확산 전극 조립체(208)는 집군된 이온 빔(122)에 대한 바람직한 에너지 확산을 달성하도록 적절한 위상을 선택하기 위해, 집군된 이온 빔(122)의 스캔 위치의 정보를 사용하는 위상 제어 시스템에 결합된 일련의 AC 전극들을 포함한다.
시준기(204)는, 이 경우에 전개된 빔의 형태의, 집군된 이온 빔(122)을 수신하기 위해, 스캐너(202)의 하류에 배치된다. 시준기(204)는 집군된 이온 빔(122)을 X 축을 따라 세장형의 리본 빔(222)으로서 성형하고 출력하도록 배열될 수 있다. 도 2에 더 도시된 바와 같이, 에너지 확산 전극 조립체(208)는 리본 빔(222)을 수신하기 위해 시준기(204)의 하류에 배치된다. 아래에 상세히 설명되는 바와 같이, 에너지 확산 전극 조립체(208)는 내부에서 에너지 확산을 생성하기 위해, 리본 빔의 전파의 방향을 따라, 복수의 전극들 사이에 RF 전압을 인가하도록 배열된다.
도 2의 예에서, 에너지 확산 전극 조립체(208)는 제1 접지 전극(212) 및 제2 접지 전극(216)을 포함하고, 급전 전극(214)이 2개의 접지 전극들 사이에 배치된다. RF 전력 공급부(234)는 RF 전력 신호를 적합한 주파수로 급전 전극(214)에 공급할 수 있다. 예를 들어, RF 전력 공급부(234)는 RF 전압 신호를 급전 전극(214)에 전달하는 공진기(별도로 도시되지 않음)에 RF 신호를 지향시킬 수 있다. 이로써, 급전 전극(214)과 제1 접지 전극(212) 및 제2 접지 전극(216) 사이에 RF 전압이 전개될 것이고, 여기서, RF 전압은 RF 전압 신호의 주파수에 대응하는 주파수를 갖는 진동 전기장을 리본 빔(222)의 전파 방향으로 Z 축을 따라 생성한다.
본 개시내용의 다양한 실시예들에 따르면, 에너지 확산 전극 조립체(208)는 리본 빔(222)을 둘러싸도록 설계된 (X 축을 따른) 세장형 단면을 갖는 일련의 중공 전도성 실린더들로서 배열될 수 있다. 이러한 방식으로, 에너지 확산 전극 조립체(208)는 선형 가속기에서 이온 빔을 집군하거나 가속하기 위해 사용되는 알려진 드리프트 튜브 조립체의 일부 특징들을 나타낼 수 있다. 리본 빔(222)이 에너지 확산 전극 조립체의 주어진 중공 전극을 횡단함에 따라, 리본 빔(222)은 전기장이 존재하지 않는 중공 전극 내의 드리프트 영역을 경험할 것이다. 진동 전기장이 제1 접지 전극(212)과 급전 전극(214) 사이에 전개될 것인 한편, 진동 전기장이 또한, 급전 전극(214)과 제2 접지 전극(216) 사이에 전개될 것이다. 이러한 방식으로, 에너지 확산 전극 조립체(208)는 2개의 가속 갭들을 특징으로 하는 소위 이중 갭 구성을 한정할 수 있다. 본 개시내용의 다양한 실시예들에 따르면, 이온 에너지를 확산시키는 바람직한 효과를 갖기 위해, 에너지 확산 전극 조립체(208)에 인가되는 진동 전압의 주파수 및 위상은 여러 인자들을 고려하여 선택된다. 이러한 인자들은 이온들의 속도, 이온 다발에서의 위상들의 확산, 및 이중 갭 구성의 2개의 갭들 사이의 길이를 포함한다.
리본 빔(222)이 에너지 확산 전극 조립체(208)의 가속 갭에 진입할 때, 리본 빔(222)의 주어진 이온 다발의 진입의 타이밍은 이온들이 갭에 걸쳐 어떻게 가속되거나 감속되는지에 영향을 줄 것이다. 예를 들어, 사인파 RF 전압 신호가 급전 전극(214)에 인가될 수 있고, 여기서 사인파 전기장이 가속 갭에 걸쳐 전개된다. 이온이 가속 갭을 가로지를 때의 전기장의 순간 진폭 및 부호에 따라, 이온은 더 적거나 더 큰 정도로 가속 또는 감속될 수 있다. 따라서, 가속 갭을 횡단하는 주어진 이온 다발 내에서, 다발의 선단 에지 상의 이온들은 다발의 후단 에지 상의 이온들과 상이한 정도로 가속 또는 감속될 것이고, 이는 에너지 확산 전극 조립체(208)를 통한 횡단 동안 리본 빔(222)의 이온 에너지의 확산으로 이어진다.
본 개시내용의 실시예들에 따르면, 에너지 확산 전극 조립체(208)는 바람직한 범위의 이온 에너지들을 갖는 에너지 확산 이온 빔(224)(에너지 확산을 나타내기 위해 더 세장형인 어두운 타원들로서 도시됨)을 기판(110)에 전달하기 위해 리본 빔(222)의 에너지를 목표량만큼 확장 또는 확산시킬 수 있다. 예를 들어, 하나의 시나리오에서, 선형 가속기(104)는 리본 빔(222)에 1 MeV의 이온 에너지를 부여할 수 있는 한편, 80 keV의 진폭을 갖는 RF 전압 신호가 급전 전극(214)에 전달된다. 리본 빔(222)에 대한 초기 단일에너지의 에너지를 가정하면, 80 kV 신호는 에너지 확산 이온 빔(224)이 1 MeV의 평균 에너지 및 최대 160 keV의 FWHM으로 기판(110)을 타격하게 할 수 있다.
본 개시내용의 다양한 비제한적인 실시예들에 따르면, 에너지 확산 전극 조립체는 1 Me 내지 10 MeV의 범위의 초기 이온 에너지들에 대해 이온 에너지(FWHM)를 1% 내지 30%만큼 확산시키기 위해 이온 빔을 처리할 수 있다. 위에서 논의된 바와 같이, 리본 빔(222)은 시간 및 공간이 서로 분리된 이산적인 일련의 이온 패킷들 또는 다발들을 의미하는 집군된 이온 빔으로서 에너지 확산 전극 조립체에 진입할 것이라는 점을 주목한다. 이러한 집군은 에너지 확산 전극 조립체(108)의 작동과 유사한 방식으로 수행할 수 있는 드리프트 튜브 장치에 의해 달성되며, 여기서 RF 신호는 일련의 드리프트 튜브 전극들의 적어도 하나의 급전 전극에 인가된다. 집군기의 이러한 드리프트 튜브 조립체들은, RF 장이 가속 갭에 걸쳐 진동함에 따라 상이한 이온들이 가속 갭을 횡단하는 타이밍에 따라 이온 빔의 상이한 이온들을 차등적으로 가속/감속시키는 경향이 있는 2개 이상의 가속 갭들을 생성할 것이다. 더욱이, 본 개시내용의 다양한 실시예들에 따르면, 집군된 이온 빔(리본 빔(222))은 RF 전력 공급부(234)에 의해 출력되는 확산 주파수와 동일한 집군 주파수로 집군될 수 있다. 이러한 방식으로, 리본 빔(222)의 이온 다발들의 도달의 타이밍은 에너지 확산 전극 조립체(208)에 걸쳐 생성된 전기장과 동기화될 수 있다.
특정 실시예들에서, 에너지 확산 전극 조립체(208)의 확산 주파수(예를 들어, 대략 MHz 또는 수십 MHz)가 스캐너(202)의 스캔 주파수(예를 들어, 대략 1 kHz 정도)보다 훨씬 더 빠를 수 있는 경우, 에너지 확산은 균일한 반복가능한 방식으로 에너지 확산 이온 빔(224)의 상이한 다발들에 부여될 수 있다. 예를 들어, 리본 빔(222)이 전파 방향(Z 축)에 수직인 측방향(X 축)을 따라 신장되는 동안, 에너지 확산 전극 조립체(208)는, X 축을 따라, 집군된 리본 빔의 폭에 걸쳐 상이한 이온 다발들에 대해, 균일한 에너지 확산을 집군된 리본 빔(리본 빔(222))에 인가할 수 있다. 에너지 확산의 이러한 균일성은 RF 전력 공급부(234)에 의해 에너지 확산 전극 조립체(208)에 출력되는 RF 신호와 리본 빔의 다발들의 도달 시간의 일정한 위상 관계를 유지함으로써 달성될 수 있다.
일 실시예에서, 이온 주입기(200)는 검출기(210), 및 에너지 확산 전극 조립체(208)로의 입구에서의 리본 빔(222)의 이온 다발들의 위상을 측정하기 위한 위상 측정 구성요소(232)를 포함할 수 있다. 이온 주입기(200)는, 도 2에 도시된 바와 같이, 이러한 위상 정보를 RF 전력 공급부(234)와 동기화하기 위해 제어기(236)를 더 포함할 수 있다. 대안적으로, 제어기(236)는 리본 빔(222)의 이온 다발의 (X 축을 따른) 순간 스캔 위치를 결정하기 위해 스캔 생성기(230)로부터 신호들을 검색 또는 수신할 수 있다. 이온 다발의 순간 스캔 위치에 대한 지식은, 주어진 이온 다발이 목표 에너지 확산을 생성하기 위해 적절한 간격으로 에너지 확산 전극 조립체(208)를 횡단하는 것을 보장하기 위해, RF 전력 공급부(234)에 의해 생성된 RF 신호의 동기화를 허용할 것이다.
도 3은 본 개시내용의 추가의 실시예들에 따라 배열된 이온 주입기(300)를 도시한다. 이온 주입기(100) 및 이온 주입기(200)의 경우에서와 같이, 이온 주입기(300)는, 이온 공급원(102), 및 이온 공급원(102)의 하류에 배치된 선형 가속기(104)를 포함한다. 본 실시예에서(뿐만 아니라, 도 1, 2 및 4의 실시예들의 변형들에서), 이온 주입기는 선형 가속기(104)에서 이온 빔의 추가의 가속이 일어나기 전에, 일부 비제한적인 실시예들에 따라, 이온 빔(120)을 적합한 에너지, 예컨대, 250 keV 내지 500 keV로 가속하기 위해, DC 가속 시스템(103)을 더 포함할 수 있다.
본 실시예에서, 에너지 확산 장치는, 이 경우에, 상류 전극(312) 및 하류 전극(314)을 포함하는 다이오드 세트로서 구현되는 에너지 확산 전극 조립체(310)에 결합되는 전력 공급부들을 포함할 수 있다. 일부 실시예들에 따르면, AC 전압이 상류 전극(312)과 하류 전극(314) 사이에 인가될 수 있다. 도 3에 도시된 바와 같이, 빔라인의 상류 부분(322)은 빔라인의 하류 부분(324)으로부터 전기적으로 격리된다. 상이한 실시예들에 따르면, 기판(110)을 하우징하는 엔드스테이션(도시되지 않음)을 포함하여, 빔라인의 상류 부분(322)이 전기적으로 플로팅될 수 있거나 하류 부분(324)이 전기적으로 플로팅될 수 있다. 이러한 접근법의 장점은, 이 예에서, 에너지 확산 전극 조립체(310)가, 선형 가속기(104)에 인가되는 RF 전압과 동일한 주파수로 설정되는 RF 전압 신호를 수신할 필요가 없다는 것이다. 도 3의 실시예는 일부 양상들에서 도 2의 실시예보다 더 단순한데, 이는, 에너지 확산 전극 조립체(310)에 단 하나의 갭만이 존재하고, 에너지 진동의 주파수가 다른 문제들을 야기하지 않고서 상당히 넓은 범위에 걸쳐 자유롭게 선택될 수 있기 때문이다. 그러나, 도 3의 실시예는, 접지 전위로부터 큰 조립체의 분리를 요구하고 절연체들 상에 조립체를 장착하는, 더 복잡한 기계적 설계를 제시한다.
상류 전극(312)과 하류 전극(314) 사이에 AC 전압이 인가되는 실시예들에서, (집군기를 포함하는) 선형 가속기(104)에 인가되는 RF 전압의 스캔 주파수 및/또는 집군 주파수로 AC 전압을 에일리어싱하는 것을 회피하기 위해, AC 전압 주파수는 주의깊게 선택되어야 한다. 선형 가속기(104)의 스테이지들에서 인가되는 집군 주파수는 수 MHz 이상인 것으로 가정되고, 스캐너(202)에 대한 스캔 주파수는 ~1 kHz의 범위에 있을 수 있으므로, 일부 실시예들에 따르면, ~100 kHz, 예컨대, 50 kHz 내지 500 kHz의 범위의 AC 전압 주파수가 에너지 확산 전극 조립체(310)를 위해 채용될 수 있다. 도 3의 실시예에 도시된 바와 같이, 제1 전력 공급부(332)가 상류 부분(322)에 결합되거나, 대안적으로, 전력 공급부(334)가 하류 부분(324)에 결합될 수 있고, 여기에서 각각의 전력 공급부는 제어기(330)에 결합될 수 있다. 이러한 후자의 주파수가 선형 가속기(104)의 집군 주파수보다 훨씬 더 낮을(~10X 이상) 수 있기 때문에, 에너지 확산 전극 조립체(310)를 통과하는 이온들의 각각의 다발은 본질적으로 DC 가속 또는 감속을 경험할 것이다. 달리 말하면, 이를테면, 13.56MHz의 주파수로 집군되는 이온 다발의 경우, 에너지 확산 전극 조립체(310)를 통한 이온 다발의 다발 길이 및 그에 따른 이동 시간은, 훨씬 더 낮은 에너지 확산 장 주파수(~100kHz)로 인해, 그 다발에 의해 경험되는 유효 장이 준-일정하게 보일 정도로 충분히 짧다.
도 4는 본 개시내용의 추가의 실시예들에 따라 배열된 이온 주입기(400)를 도시한다. 이온 주입기(100), 이온 주입기(200), 및 이온 주입기(300)의 경우에서와 같이, 이온 주입기(300)는, 이온 공급원(102), 및 이온 공급원(102)의 하류에 배치된 선형 가속기(104)를 포함한다. 도 2 및 도 3의 실시예들과 달리, 본 실시예에서, 이온 주입기(400)는 펜슬 빔(또는 스폿 빔)을 생성하고 기판(110)으로 지향시킨다.
전술된 실시예들에서와 같이, 선형 가속기(104)의 복수의 스테이지들은, 다양한 비제한적인 실시예들에 따라, 집군된 이온 빔(122)을 생성하고 목표 이온 에너지, 예컨대, 1 MeV, 2 MeV, 5 MeV 또는 다른 적합한 이온 에너지로 가속시킬 수 있다. 전술된 실시예들과 달리, 기판(110)을 타격하기 전에, 목표 값의 이온 에너지를 갖는 스폿 빔으로서, 집군된 이온 빔(122)을 처리하기 위해 에너지 선택기 자석(404)과 같은 구성요소가 제공될 수 있다. 에너지 선택기 자석(404)(때로는 "최종 에너지 자석"이라고 함)은 빔라인의 그 지점에서의 이온들의 에너지의 독립적인 측정을 제공하는 역할을 한다. 이온 주입기(400)는 고주파수 전력 공급부(412)로서 구현되는 에너지 확산 장치, 및 에너지 확산 전극 조립체(406)를 더 제공한다. 간략화를 위해, 에너지 확산 전극 조립체(406)는 2개의 전극들로서 도시된다. 그러나, 상이한 실시예들에 따르면, 에너지 확산 전극 조립체(406)는, 에너지 확산 전극 조립체(208)와 유사하게, 이중 갭 드리프트 튜브 조립체로서, 또는 대안적으로, 2개의 급전 전극들이 2개의 접지 전극들 사이에 제공되는 삼중 갭 전극 조립체로서 구현될 수 있다. 이로써, 고주파수 전력 공급부(412)는 전력 공급 조립체(410)가 RF 전압을 집군기 및 선형 가속기(104)의 다양한 스테이지들에 제공하는 것과 동일한 주파수의 RF 전압을 생성할 수 있다. 도 4의 아키텍처의 장점은, 선형 가속기로부터 에너지 확산 전극 조립체(406)로의 집군된 이온 빔(122)의 이온들의 경로 길이가 일정하기 때문에, 그 둘 사이의 위상 관계가 또한 일정하다는 것이다. 일련의 이온 다발들의 바람직하고 반복가능한 가속 또는 감속을 달성하기 위해, 가속 또는 감속 AC 장의 위상은 AC 장 상에서 작용하고 있는 이온 다발들의 도달 시간과 매칭되도록 요구된다. 다시 말해서, 에너지 확산 전극 조립체(406)에 도달하는 각각의 연속적인 이온 다발은 인가되는 AC 장의 동일한 진폭 및 위상을 경험해야 한다. 이에 따라, 전력 공급 조립체(410)에 의해 생성되는 집군 신호 및 고주파수 전력 공급부(412)에 의해 전송되는 확산 신호의 동일한 주파수를 확립함으로써, 그리고 집군 신호와 확산 신호의 적절한 동기화에 의해, 주어진 이온 경로를 따른 각각의 연속적인 이온 다발은 에너지 확산 전극 조립체로부터의 인가된 AC 장에 의해 동일한 방식으로 처리될 것이다. 도 2의 구성에서, 이러한 위상 관계는 상이한 이온 경로들에 대한 경로 길이가 그 순간의 스캔 각도에 따라 변함에 따라 변하는 반면, 도 4의 구성에서는 경로 길이를 변화시키는 고속 스캐닝이 존재하지 않는다. 이에 따라, 제어기(414)는 선형 가속기(104)를 통한 집군된 이온 빔(122)의 가속과 에너지 확산 전극 조립체(406)에 의해 수행되는 에너지 확산을 더 쉽게 동기화할 수 있다.
도 4에 도시된 바와 같이, 이온 주입기(400)는, Z 축을 중심으로 기판(110)을 회전시킬 뿐만 아니라 수직 축, 예컨대, X 축을 따라 기판을 병진시키도록 구성되는 기판 스테이지(408)를 포함할 수 있다. 이러한 방식으로, 집군된 이온 빔(122)은 단지, 주어진 경우에 기판(110)의 부분을 노출시킬 수 있지만, 기판(110)의 전체 또는 그의 임의의 목표 부분은 기판(110)의 적합한 회전 및/또는 병진에 의해 에너지 확산 이온 빔(420)에 노출될 수 있다.
전술한 내용을 고려하여, 적어도 다음의 장점들이, 본원에 개시된 실시예들에 의해 달성된다. 본 실시예들의 이온 주입기들에 의해 제공되는 제1 장점은, 알려진 단일에너지의 고에너지 주입기들을 사용하여 가능한 것보다, 주어진 주입 프로세스 내에서 더 넓은 주입 프로파일을 달성하는 능력이다. 추가의 장점은, 단지, 에너지 확산 구성요소에 인가되는 전압을 조정함으로써 주입 프로파일의 폭을 쉽게 조정하는 능력이다.
본 개시내용의 특정 실시예들이 본원에 설명되었지만, 본 개시내용은 이에 제한되지 않는데, 이는, 본 개시내용이, 관련 기술분야가 허용할 바와 같이 그 범위가 광범위하고 본 명세서도 그와 같이 읽혀질 수 있기 때문이다. 그러므로, 상기 설명은 제한으로서 해석되어서는 안 된다. 관련 기술분야의 통상의 기술자는 첨부된 청구항들의 범위 및 사상 내에서 다른 수정들을 구상할 것이다.

Claims (20)

  1. 이온 주입기로서,
    연속 이온 빔을 생성하도록 배열된 이온 공급원;
    상기 연속 이온 빔을 가속시키기 위한 DC 가속 시스템;
    상기 연속 이온 빔을 수신하고 집군된 이온 빔을 출력하기 위한 AC 선형 가속기; 및
    에너지 확산 전극 조립체 - 상기 집군된 이온 빔을 수신하고, 상기 집군된 이온 빔의 전파의 국부적 방향을 따라, 상기 에너지 확산 전극 조립체의 복수의 전극들 사이에 RF 전압을 인가함 -
    를 포함하는, 이온 주입기.
  2. 제1항에 있어서,
    상기 집군된 이온 빔은 집군 주파수로 집군되고, 상기 집군 주파수와 동일한 확산 주파수에서 RF 신호를 상기 에너지 확산 전극 조립체에 출력하기 위한 RF 전력 공급부를 더 포함하는, 이온 주입기.
  3. 제1항에 있어서,
    상기 에너지 확산 전극 조립체로의 입구에서의 상기 집군된 이온 빔의 위상을 측정하기 위한 검출기를 포함하는, 이온 주입기.
  4. 제1항에 있어서,
    상기 에너지 확산 전극 조립체에 출력되는 RF 신호와 상기 집군된 이온 빔의 위상 사이에 일정한 위상 관계를 유지하기 위해 제어기를 더 포함하는, 이온 주입기.
  5. 제1항에 있어서,
    상기 집군된 이온 빔은 집군 주파수로 구동되고, 상기 에너지 확산 전극 조립체는 상기 집군된 이온 빔을 펜슬 빔으로서 수신하도록 배열되고, 상기 에너지 확산 전극 조립체는 상기 집군 주파수와 동일한 확산 주파수로 구동되는, 이온 주입기.
  6. 제1항에 있어서,
    제1 방향을 따라 전파되는 상기 집군된 이온 빔을 수신하고, 상기 제1 방향에 수직인 제2 방향을 따라 상기 집군된 이온 빔을 스캐닝하도록 배열된 스캐너; 및
    상기 스캐너의 하류에 배치된, 상기 집군된 이온 빔을 수신하고, 상기 집군된 이온 빔을 집군된 리본 빔으로서 상기 에너지 확산 전극 조립체에 출력하기 위한 시준기를 더 포함하는, 이온 주입기.
  7. 제6항에 있어서,
    상기 에너지 확산 전극 조립체는 상기 집군된 리본 빔을 둘러싸도록 세장형 단면으로 배열되는 복수의 중공 전도성 실린더들을 포함하는, 이온 주입기.
  8. 제6항에 있어서,
    상기 집군된 리본 빔은 전파의 국부적 방향에 수직인 측방향을 따라 신장되고, 상기 에너지 확산 전극 조립체는 상기 측방향을 따라 상기 집군된 리본 빔의 폭에 걸쳐 상기 집군된 리본 빔에 균일한 에너지 확산을 인가하도록 배열되는, 이온 주입기.
  9. 제4항에 있어서,
    제1 방향을 따라 전파되는 상기 집군된 이온 빔을 수신하고, 상기 제1 방향에 수직인 제2 방향을 따라 상기 집군된 이온 빔을 스캐닝하도록 배열된 스캐너를 더 포함하고,
    상기 스캐너는 상기 집군된 이온 빔을 집군된 리본 빔으로서 생성하고,
    상기 제어기는 상기 집군된 리본 빔의 순간 스캔 위치를 결정함으로써 상기 일정한 위상 관계를 유지하도록 배열되는, 이온 주입기.
  10. 이온 주입기로서,
    이온 빔을 연속 이온 빔으로서 생성하기 위한 이온 공급원;
    상기 연속 이온 빔을 집군하고 상기 연속 이온 빔을 집군된 이온 빔으로서 출력하기 위한 선형 가속기;
    제1 방향을 따라 전파되는 상기 집군된 이온 빔을 수신하고, 상기 제1 방향에 수직인 제2 방향을 따라 상기 집군된 이온 빔을 스캐닝하도록 배열된 스캐너;
    상기 스캐너의 하류에 배치된, 상기 집군된 이온 빔을 수신하고, 상기 집군된 이온 빔을 리본 빔으로서 출력하기 위한 시준기; 및
    에너지 확산 전극 조립체 - 상기 선형 가속기의 하류에 배치되고, 상기 리본 빔의 전파의 국부적 방향을 따라, 상기 에너지 확산 전극 조립체의 복수의 전극들 사이에 AC 전압을 인가하도록 배열됨 -
    를 포함하는, 이온 주입기.
  11. 제10항에 있어서,
    상기 에너지 확산 전극 조립체는 상기 리본 빔을 둘러싸도록 세장형 단면으로 배열되는 복수의 중공 전도성 실린더들을 포함하는, 이온 주입기.
  12. 제10항에 있어서,
    상기 집군된 이온 빔은 집군 주파수로 집군되고, 상기 집군 주파수와 동일한 확산 주파수에서 RF 신호를 상기 에너지 확산 전극 조립체에 출력하기 위한 RF 전력 공급부를 더 포함하는, 이온 주입기.
  13. 제10항에 있어서,
    상기 리본 빔은 전파의 국부적 방향에 수직인 측방향을 따라 신장되고, 상기 에너지 확산 전극 조립체는 상기 측방향을 따라 상기 집군된 리본 빔의 폭에 걸쳐 상기 집군된 리본 빔에 균일한 에너지 확산을 인가하도록 배열되는, 이온 주입기.
  14. 제10항에 있어서,
    상기 에너지 확산 전극 조립체는 다이오드 세트를 포함하는, 이온 주입기.
  15. 빔 컨디셔닝 장치로서,
    제1 방향을 따라 전파되는 집군된 이온 빔을 수신하고, 상기 제1 방향에 수직인 제2 방향을 따라 상기 집군된 이온 빔을 스캐닝하도록 배열된 스캐너;
    상기 스캐너의 하류에 배치된, 상기 집군된 이온 빔을 수신하고, 상기 집군된 이온 빔을 리본 빔으로서 출력하기 위한 시준기;
    에너지 확산 전극 조립체 - 상기 시준기의 하류에 배치되고, 상기 리본 빔의 전파의 국부적 방향을 따라, 상기 에너지 확산 전극 조립체의 복수의 전극들 사이에 AC 전압을 인가하도록 배열됨 -; 및
    상기 리본 빔의 전파의 국부적 방향에 수직인 방향을 따라, 상기 리본 빔의 폭에 걸쳐, 상기 리본 빔의 균일한 에너지 확산을 생성하기 위해 상기 스캐너 및 상기 에너지 확산 전극 조립체를 제어하도록 배열되는 제어기
    를 포함하는, 빔 컨디셔닝 장치.
  16. 제15항에 있어서,
    상기 에너지 확산 전극 조립체는 상기 리본 빔을 둘러싸도록 세장형 단면으로 배열되는 복수의 중공 전도성 실린더들을 포함하는, 빔 컨디셔닝 장치.
  17. 제15항에 있어서,
    상기 집군된 이온 빔은 집군 주파수로 집군되고, 상기 집군 주파수와 동일한 확산 주파수에서 RF 신호를 상기 에너지 확산 전극 조립체에 출력하기 위한 RF 전력 공급부를 더 포함하는, 빔 컨디셔닝 장치.
  18. 제15항에 있어서,
    상기 제어기는, 상기 에너지 확산 전극 조립체에 출력되는 RF 신호와 상기 리본 빔의 위상 사이에 일정한 위상 관계를 유지하도록 배열되는, 빔 컨디셔닝 장치.
  19. 제18항에 있어서,
    상기 에너지 확산 전극 조립체로의 입구에서의 상기 리본 빔의 위상을 측정하기 위한 검출기를 포함하는, 빔 컨디셔닝 장치.
  20. 제18항에 있어서,
    상기 제어기는, 상기 리본 빔의 순간 스캔 위치를 결정함으로써 상기 일정한 위상 관계를 유지하는, 빔 컨디셔닝 장치.
KR1020237037898A 2021-04-02 2022-02-10 에너지 확산 이온 빔을 위한 장치, 시스템 및 방법 KR20230164177A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/221,033 US11569063B2 (en) 2021-04-02 2021-04-02 Apparatus, system and method for energy spread ion beam
US17/221,033 2021-04-02
PCT/US2022/015959 WO2022211910A1 (en) 2021-04-02 2022-02-10 Apparatus, system and method for energy spread ion beam

Publications (1)

Publication Number Publication Date
KR20230164177A true KR20230164177A (ko) 2023-12-01

Family

ID=83448334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237037898A KR20230164177A (ko) 2021-04-02 2022-02-10 에너지 확산 이온 빔을 위한 장치, 시스템 및 방법

Country Status (6)

Country Link
US (2) US11569063B2 (ko)
JP (1) JP2024512671A (ko)
KR (1) KR20230164177A (ko)
CN (1) CN117203736A (ko)
TW (2) TW202403820A (ko)
WO (1) WO2022211910A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825590B2 (en) * 2021-09-13 2023-11-21 Applied Materials, Inc. Drift tube, apparatus and ion implanter having variable focus electrode in linear accelerator
US11812539B2 (en) * 2021-10-20 2023-11-07 Applied Materials, Inc. Resonator, linear accelerator configuration and ion implantation system having rotating exciter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504341A (en) * 1995-02-17 1996-04-02 Zimec Consulting, Inc. Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system
GB2395354B (en) * 2002-11-11 2005-09-28 Applied Materials Inc Ion implanter and a method of implanting ions
US7348576B2 (en) 2005-03-16 2008-03-25 Varian Semiconductor Equipment Associates, Inc. Technique for ion beam angle process control
KR20090029209A (ko) 2006-06-13 2009-03-20 세미이큅, 인코포레이티드 이온 주입을 위한 이온 빔 장치 및 방법
CN105027686B (zh) 2013-02-28 2017-04-12 三菱电机株式会社 高频加速器的制造方法、高频加速器以及圆形加速器系统
JP6086819B2 (ja) 2013-05-29 2017-03-01 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置
DE102016106119B4 (de) 2016-04-04 2019-03-07 mi2-factory GmbH Energiefilterelement für Ionenimplantationsanlagen für den Einsatz in der Produktion von Wafern
JP6933962B2 (ja) * 2017-11-22 2021-09-08 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入装置の制御方法
US10763071B2 (en) * 2018-06-01 2020-09-01 Varian Semiconductor Equipment Associates, Inc. Compact high energy ion implantation system

Also Published As

Publication number Publication date
TW202240642A (zh) 2022-10-16
JP2024512671A (ja) 2024-03-19
TWI821912B (zh) 2023-11-11
US20220319806A1 (en) 2022-10-06
WO2022211910A1 (en) 2022-10-06
US11569063B2 (en) 2023-01-31
US20240029997A1 (en) 2024-01-25
TW202403820A (zh) 2024-01-16
CN117203736A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JP3730666B2 (ja) 大電流リボンビーム注入装置
US20240029997A1 (en) Apparatus, system and method for energy spread ion beam
KR101828633B1 (ko) 리본 이온빔의 에너지 변경 시스템 및 이온 주입 시스템
JP7034378B2 (ja) バンチ化されたイオンビームを生成するための新規な装置及び技術
TW202013415A (zh) 緻密高能離子植入系統及用於生成高能離子射束的設備及方法
JP2008503067A (ja) 改良したイオン注入均一化のためのイオンビーム走査システム及び方法
KR101244116B1 (ko) 이온 빔 집속 시스템 및 방법
JP7474255B2 (ja) イオン注入システムおよび方法
US11818830B2 (en) RF quadrupole particle accelerator
US11217427B1 (en) System, apparatus and method for bunched ribbon ion beam
KR102306266B1 (ko) 이온주입장치 및 이온주입방법
JP5004318B2 (ja) イオン注入装置
US3013154A (en) Method of and apparatus for irradiating matter with high energy electrons
KR20030042042A (ko) 비평행 이온 빔을 이용한 2-모드 이온 주입
JP6453756B2 (ja) イオンビーム処理装置
KR101778515B1 (ko) 포토레지스트 가스 방출 동안 주입 균일성을 향상시키는 방법
KR102521604B1 (ko) 넓은 빔 전류 동작 범위에서의 이온 빔 제어
KR102489016B1 (ko) 이온 빔 스캐너, 이온 주입기 및 스팟 이온 빔을 제어하는 방법
US20240114613A1 (en) Particle accelerator having novel electrode configuration for quadrupole focusing
TWI787739B (zh) 離子注入系統
US20230207247A1 (en) Cyclotron having continuously variable energy output
TW202240629A (zh) 離子植入裝置及離子植入方法